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Abstract

In this paper, maximum likelihood estimation technique is employed to consider the spectral statistics of
nuclear systems in the nearest neighbor spacing distribution framework. With using the available empirical
data, the spectral statistics of different sequences are analyzed. The ML-based estimated values propose
more regular dynamics and also minimum uncertainties (variations very close to CRLB) in compare to
other estimation methods. Also, the efficiencies of considered distribution functions are examined where
suggest the least CRLB for Brody distribution.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The investigations of spectral statistics and non-linear dynamics in different systems are re-
cently receiving considerable attentions. In common analyses [1,2], the fluctuation properties of
quantum system’s spectra are compared with the prediction of Random Matrix Theory (RMT).
This model describes a chaotic system by an ensemble of random matrices subject only to the
symmetry restrictions. Systems with time reversal symmetry such as atomic nuclei are described
by Gaussian Orthogonal Ensemble (GOE). On the other hand, systems whose classical dynamics
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are everywhere rigorous in the phase space, are well characterized by Poisson distribution [3–6].
The statistical analyses which accomplished on different nuclear systems’ spectra, proposed an
intermediate behavior between these two extremes for considered systems.

Different statistics [1–3] have been employed to describe the statistical situations of systems in
related to these limits while the Nearest Neighbor Spacing Distribution (NNSD) is the observable
most commonly used to analyze the short-range fluctuation properties of nuclear spectra. In
NNSD framework [2–5], a Least Square Fit (LSF) have been carried out to compare the spacings
of each sequences with some well-known distributions such as Brody and etc [7–10] while the
value of every distribution’s parameter(s) describes the deviation to regular or chaotic dynamics.
The great uncertainties and also some unacceptable results in some sequences (particularly with
small size of data) have been interpreted in this approach [3–5].

On the other hand, the LSF is one of the widely used estimation methods more well known
than the other parametric estimation methods included Maximum Likelihood Estimation (MLE)
or Bayesian Estimation methods (BEM) [11]. Although, as presented in Ref. [12], the LSF is
really equivalent to producing a maximum likelihood procedure in the variables estimating which
are linearly related to some Gaussian case. Therefore, one can expect, in sequences where the
LSF method yields estimation very close to GOE (chaotic) limit, other estimation methods, those
with more precise in compare to LSF which yield estimation more close to real distribution,
predict more regular dynamics.

In this paper, we employed the MLE technique [11–17] to estimate the parameter(s) of all
considered distributions (Brody, Berry–Robnik and Abul-Magd distributions). Also, to obtain the
uncertainties of estimated values, we used the Cramer–Rao Lower Bound (CRLB) [11] which
is the common method to determine the uncertainties of unbiased estimators (as mentioned in
Ref. [15], the MLE method achieves the lowest CRLB).

To compare the ML-based estimated statistics with the predictions of other parametric estima-
tion techniques, we employed sequences introduced in Refs. [3,18] where description have been
carried out by LSF technique. The MLE method proposes similar spectral statistics in different
sequences but with more precision (the accuracies very close to CRLB) and also less chaotic
dynamics in compare to other methods.

To propose a physical meaning for the estimated values, similar to procedure have been
concerned in Ref. [18], we estimated the parameter of Berry–Robnik distribution in sequences
prepared by nuclei classified in different mass regions which have definite quadrupole deforma-
tion parameter “β2”. The ML-based estimated values confirm previous predictions with again
less chaoticity in compare to LSF-based estimated values.

Also, with employing the MLE technique, the parameter of Abul-Magd’s distribution es-
timated in sequences prepared by oblate and prolate nuclei. The ML-based estimated values
suggest same spectral statistics (similar to the predictions of Refs. [19,20] where BEM have
been used) with more regularities and more precisions.

With using all the available experimental data [21–25], namely 2+ and 4+ levels of nuclei in
which the spin–parity Jπ assignment of at least five consecutive levels are definite, the spectral
statistics of nuclei provide empirical evidences for three dynamical symmetry limits and tran-
sitional regions of Interacting Boson Model (IBM) [26,27] analyzed. The ML-based estimated
values, confirm theoretical predictions, namely, suggest more regular dynamics for nuclei char-
acterize dynamical symmetry limits (particularly, nuclei with U(5) dynamical symmetry) and
also less regular dynamics by nuclei localized in the transitional regions [29–31].

Finally, to compare the efficiencies of different distributions in the same sequences, we deter-
mined CRLBs for all considered distributions where Brody distribution has the least CRLB.
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The paper is arranged as follows. Section 2 briefly summarizes the statistical approaches in-
cluded unfolding process, well-known distributions, MLE and CRLB techniques. In Section 3,
we present the ML-based considered relations for all distributions. Section 4, contains the numer-
ical results obtained by applying the MLE method to different sequences. Section 5 is devoted
to comparison of MLE method with LSF one, based on results given in Section 4. The paper
ends with appendices containing the details and related calculations of Brody, Berry–Robnik and
Abul-Magd distributions and CRLBs.

2. Statistical analysis

2.1. Nearest Neighbor Spacing Distribution (NNSD)

The spectral fluctuations of low-lying nuclear levels have been considered by different statis-
tics such as Nearest Neighbor Spacing Distribution (NNSD) [1], linear coefficients between
adjacent spacing [3] and Dyson–Mehta �3(L) statistics [3–5] which based on the comparison of
statistical properties of nuclear spectra with the predictions of Random Matrix Theory (RMT).
The NNSD, or P(s) functions, is the observable most commonly used to analyze the short-range
fluctuation properties in the nuclear spectra. On the other hand, the NNSD statistics would per-
form by complete (few or no missing levels) and pure (few or no unknown spin–parities) level
scheme [3] where these conditions are available for a limited number of nuclei. Therefore, to ob-
tain the statistically relevant samples, we in need to combine different level schemes to construct
sequences. To compare the different sequences to each other, each set of energy levels must be
converted to a set of normalized spacing, namely, each sequence must be unfolded. The unfold-
ing process has been described in detail in Ref. [3]. Here, we briefly outline the basic ansatz and
summarize the results. To unfold our spectrum, we had to use some levels with same symmetry.
This requirement is equivalent with the use of levels with same total quantum number (J ) and
same parity. Firstly we consider the number of the levels below E and write it as [3]

N(E) =
E∫

0

ρ(E)dE = e
E−E0

T − e− E0
T + N0. (2.1)

N0 establishes the number of levels with energies less than zero and must be assume as zero. The
best fit to N(E) (≡ F(E)) would be carried while a correct set of energies is prepared by means
of

E′
i = Emin + F(Ei) − F(Emin)

F (Emax) − F(Emin)
(Emax − Emin), (2.2)

both Emax and Emin remain unchanged with this transformation. These transformed energies
should now display on average a constant level density. The normalized spacing used in the
determination of NNS distributions are given by

Si = E′
i+1 − E′

i , si = Si

D
(2.3)

where D is the average of the spacing between corrected energy levels. Distribution P(s) will be
in such a way in which P(s)ds is the probability for the si to lie within the infinitesimal interval
[s, s + ds]. For nuclear systems with time reversal symmetry while spectral spacing follows
Gaussian Orthogonal Ensemble (GOE) statistics, the NNS probability distribution function is
well approximated by Wigner distribution [1,2]
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P(s) = 1

2
πse− πs2

4 , (2.4)

while exhibits the chaotic properties of spectra. On the other hand, the NNSD of systems with
regular dynamics is generically represented by Poisson distribution

P(s) = e−s . (2.5)

Different investigations have been accomplished on nuclear system’s spectra, proposed inter-
mediate performance of spectral statistics between these two regular and chaotic limits [3–6].
Different distributions functions (with one or more parameters) were suggested to describe the
intermediate situation of considered systems. One of popular distribution is Brody distribution [7]

P(s) = b(1 + q)sqe−bsq+1
, b =

[
�

(
2 + q

1 + q

)]q+1

. (2.6)

Considers a power-law level repulsion and interpolates between the Poisson (q = 0) and Wigner
(q = 1) limits. Another distribution which proposed by Berry–Robnik is derived by assuming
that, the energy level spectrum is a product of the superposition of independent subspectra,
which are contributed respectively from localized eigenfunctions into invariant (disjoint) phase
space [8]

P(s) =
[
q + 1

2
π(1 − q)s

]
e−qs− 1

4 π(1−q)s2
, (2.7)

where exhibits Poisson and GOE limits by q = 1 and 0, respectively. Another distribution which
is appropriate to use, is distribution proposed by the Rosenzweig and Porter random matrix
model. The exact form of this model is complicated and its simpler form is proposed by Abul-
Magd et al. in Refs. [9,10] as:

P(s, q) =
[

1 − q + q(0.7 + 0.3q)
πs

2

]
exp

(
−(1 − q)s − q(0.7 + 0.3q)

πs2

4

)
, (2.8)

where interpolates between Poisson (q = 0) and Wigner (q = 1) limits. In common descriptions,
the parameter(s) of considered distribution while exhibits the chaoticity degree of spectra, is
determined via the best fit obtained by LSF technique. The LSF is on firm theoretical grounds
when it can reasonably be assumed that the deviations of the observations from the expectations
of the true theory are independently, identically and normally distributed. Therefore, one can
expect a deviation to chaotic dynamics by prediction of LSF. To avoid these problems, Abul-
Magd et al. [9,10] have employed the BEM technique in their analyses where have achieved
more precision and also more regularities for considered systems in compare to the predictions
of LSF. In the following, we would employ the MLE technique to describe the spectral statistics
of considered systems with more accuracy.

2.2. Maximum Likelihood Estimation (MLE)

The LSF is one of the parametric estimation methods which the present use is subjective but
some disadvantages such as a deviation to GOE limit and also great uncertainties in the estima-
tion processes for sequences with small size of data have been interpreted. Some suggestions
have been advised to overcome these problems while the best one is Maximum Likelihood (ML)
method. The ML method has been described in detail in Refs. [11–16]. Here, we briefly outline
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the basic ansatz and summarize the results. The likelihood function for the probability distribu-
tion function f (x; θ) = f (x1, . . . , xn; θ) of random variables (X1, . . . ,Xn) (both discrete and
continuous variables), is defined as [11–16]

L(θ) = f (x; θ) = f (x1, . . . , xn; θ). (2.9)

That is the chance function for observing variables (x1, . . . , xn) in order to obtaining a correct
choice of θ . If θML = s(x1, . . . , xn) indicates the maximum value of function L(θ), namely

L(θML) = MaxL(θ). (2.10)

Thus, the likelihood estimator of θ is defined as

ΘML = s(X1, . . . ,Xn). (2.11)

Therefore θML is the estimate or MLE suggestion for θ . In the estimation procedure of θ , we
would consider the fact that L(θ) and lnL(θ) have maximum value for the same θ . Consistency,
namely, the estimator converges to the value that has been estimated and also more efficiency
which means, it would reach to the lower bound of Cramer–Rao have been considered as ad-
vantages of this technique. These mean, asymptotic mean squared errors of any asymptotically
unbiased estimators wouldn’t lower than those of MLE. To describe the uncertainties in the esti-
mation procedures, we would use the Cramer–Rao lower bound which is a limit for the variance
would be attained by an unbiased estimator.

2.3. Cramer–Rao Lower Bound (CRLB)

In the estimation theory and statistical applications, the Cramer–Rao lower bound (CRLB)
measures how close this estimator’s variance comes to this lower bound. Suppose θ is an un-
known deterministic parameter which is to be estimated from measurements of x and also
suppose that its corresponding distribution probability density function is f (x; θ). Inverse of
the Fisher information bounds the variance of any unbiased estimator θ of θ as fallow [11,15]:

var(θ̂ ) � 1

MF(θ)
, (2.12)

where M is the sample size and Fisher information F(θ) is defined as follows:

F(θ) = E

[(
∂ lnf (x; θ)

θ

)2]
,

f (x; θ) ≡ P(s) ⇒ F(θ) =
∑ 1

P(s)

[
d lnP(s)

dθ

]2

.

The expression (2.12) is called the Cramer–Rao inequality. The scalar quantity 1
MF(θ)

is the
CRLB on the variances of unbiased estimators of f (x; θ) (≡P(s)).

2.4. The Cramer–Rao Lower Bound for vector functions of vector parameters

One can assume a parameter column vector in order to extending the Cramer–Rao bound into
multiple parameters,

θ = [θ1, θ2, . . . , θd ]T ∈R
d .
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With probability density function of f (x; θ) which satisfies the regularity condition. On the other
hand, Fisher information matrix would be a d ×d matrix with element Fm,k that is defined as [11]

Fm,k = E

[
d

dθm

logf (x; θ)
d

dθk

logf (x; θ)

]
.

Assume T (X) be an estimator of any vector function of parameters, namely T (X) = (T1(X), . . . ,

TN(X))T , and denote its expectation vector E[T (X)] by ρ(θ), consequently, the Cramer–Rao
bound shows that the covariance matrix T (X) satisfies as [11]

covθ

(
T (X)

)
� ∂ρ(θ)

∂θT

[
F(θ)

]−1 ∂ρT (θ)

∂θ
. (2.13)

Similar to scalar one (2.12), the expression (2.13) is called the Cramer–Rao inequality and

quantity ∂ρ(θ)

∂θT [F(θ)]−1 ∂ρT (θ)
∂θ

is the CRLB. The difference between the traces of left and right
sides of Eq. (2.13) will be used to describe the variation (decreasing) of uncertainties for esti-
mated parameters during the iterations.

3. The MLE-based relations for parameter(s) of considered distribution functions

Now we are proceeding to determine the parameters of the above introduced distributions
functions via the MLE technique.

3.1. Brody distribution

Due to some problems concerned in the maximizing the likelihood function containing the
Gamma functions, we propose a generalized Brody distribution with two parameters b and q as:

P(s) = b(1 + q)sqe−bsq+1
, (3.1)

where it reduces to Brody one by choosing b = [�(
2+q
1+q

)]q+1. In the following, namely Fig. 7, we
would present a closer corresponding between our suggestion and main definition of Brody distri-
bution. Now, in order to estimate the parameters b and q , we need to introduce the corresponding
maximum likelihood estimators. To this aim, we try to use the products of the generalized Brody
distribution functions as a likelihood function [11], namely

L(q, b) =
n∏

i=1

b(1 + q)s
q
i e−bs

q+1
i = [

b(1 + q)
]n n∏

i=1

s
q
i e−b

∑
s
q+1
i . (3.2)

Then, taking the derivative of the log of likelihood function (3.2) with respect to the parame-
ters “q” and “b” and setting them to zero, i.e., maximizing likelihood function, we obtain the
following pair of implicit equations for the required estimators:

f1:
1

n

∑
s
q+1
i − 1

b
for b, (3.3)

f2:
b

n

∑
ln sis

q+1
i − 1

n

∑
ln si − 1

1 + q
for q. (3.4)

Now, the parameters b and q can be estimated by high precision via solving above equations
by Newton–Raphson iteration method [11] (full details presented in Appendix A), where the
difference between the traces of left- and right-hand sides of Eq. (2.13) (see Appendix B for more
details) is used to see the decreasing of the variation of uncertainties for estimated parameters
during the iterations.
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3.2. Berry–Robnik distribution

We can repeat the above mentioned process for Berry–Robnik distribution [8]

P(s) =
[
q + 1

2
π(1 − q)s

]
e−qs− 1

4 π(1−q)s2
. (3.5)

In order to estimate the parameter of distribution, likelihood function assumed as products of all
P(s) functions

L(q) =
n∏

i=1

P(si) =
n∏

i=1

[
q + 1

2
π(1 − q)si

]
e−qsi− 1

4 π(1−q)s2
i . (3.6)

Then, taking the derivative of the log of likelihood function (3.6) with respect to its parameter
(q) and set it to zero, i.e., maximizing likelihood function, we obtain the following relation for
desired estimator (see Appendix C for more details)

f :
∑ 1 − 1

2πsi

q + 1
2π(1 − q)si

−
∑(

si − 1

4
πs2

i

)
. (3.7)

We can estimate “q” by high accuracy via solving the above equation by Newton–Raphson
method. Also we would use the difference of both sides of Eq. (2.12) to obtain the decreasing of
uncertainties for estimated values.

3.3. Abul-Magd’s distribution

This distribution similar to Berry–Robnik distribution, considers one parameter to interpolates
between regular and chaotic limits, namely;

P(s, q) =
[

1 − q + q(0.7 + 0.3q)
πs

2

]
exp

(
−(1 − q)s − q(0.7 + 0.3q)

πs2

4

)
.

As previous case, we can prepare likelihood function to estimate “q” by products of all P(s, q)’s

L(q) =
n∏

i=1

P(si) =
n∏

i=1

[
1 − q + q(0.7 + 0.3q)

πsi

2

]
e−(1−q)si−q(0.7+0.3q)

πs2
i

4 . (3.8)

With setting zero the derivative of the log of likelihood function (3.8) with respect to its parameter
“q”, i.e., maximizing likelihood function, we obtain the following relation for required estimator
(see Appendix D for more details)

f :
∑ −1 + (0.7 + 0.6q)

πsi
2

[1 − q + q(0.7 + 0.3q)
πsi
2 ] +

∑[
si − (0.7 + 0.6q)

πs2
i

4

]
. (3.9)

We must use Newton–Raphson iteration method to estimate “q” (see Appendix D for more de-
tails), and also as previous case, we can use the difference of right and left sides of (2.12) to
obtain decreasing of uncertainties for our estimated values.



36 M.A. Jafarizadeh et al. / Nuclear Physics A 890–891 (2012) 29–49
Table 1
The LSF-based estimated values of Brody distribution’s parameter “q” in different sequences taken from Ref. [3].

Sequence All Even–even Even–even
(0+,3+)

Even–even
(2+,4+)

Even–even
not
(2+,4+)

Odd mass Odd–Odd

All 0.43 ± 0.05 0.42 ± 0.08 0.56 ± 0.20 0.34 ± 0.10 0.56 ± 0.13 0.40 ± 0.10 0.44 ± 0.07
Spherical 0.60 ± 0.08 0.55 ± 0.11 0.52 ± 0.21 0.52 ± 0.15 0.57 ± 0.16 1.06 ± 0.39 0.60 ± 0.12
Deformed 0.30 ± 0.06 0.26 ± 0.11 0.74 ± 0.52 0.16 ± 0.13 0.51 ± 0.21 0.32 ± 0.10 0.31 ± 0.09
0 < A � 50 0.72 ± 0.16 0.67 ± 0.25 0.62 ± 0.25 0.64 ± 0.21
50 < A � 100 0.88 ± 0.41 1.04 ± 0.67
100 < A � 150 0.55 ± 0.11 0.62 ± 0.16 0.46 ± 0.22 0.65 ± 0.27 0.59 ± 0.19 0.47 ± 0.15
150 < A � 180 0.33 ± 0.07 0.26 ± 0.11 0.74 ± 0.52 0.13 ± 0.14 0.54 ± 0.22 0.36 ± 0.14 0.36 ± 0.11
180 < A � 210 0.43 ± 0.17 0.30 ± 0.18 0.16 ± 0.24 1.02 ± 0.55
230 < A 0.24 ± 0.11 0.27 ± 0.32 0.27 ± 0.16 0.20 ± 0.16

Table 2
The ML-based estimated values of Brody distribution’s parameter “q” in the similar sequences have been used in Table 1.

Sequence All Even–even Even–even
(0+,3+)

Even–even
(2+,4+)

Even–even
not
(2+,4+)

Odd mass Odd–Odd

All 0.20 ± 0.03 0.19 ± 0.03 0.20 ± 0.07 0.18 ± 0.02 0.25 ± 0.02 0.17 ± 0.03 0.24 ± 0.02
Spherical 0.31 ± 0.03 0.28 ± 0.06 0.21 ± 0.09 0.28 ± 0.04 0.26 ± 0.03 0.47 ± 0.06 0.30 ± 0.03
Deformed 0.19 ± 0.02 0.14 ± 0.04 0.37 ± 0.05 0.12 ± 0.03 0.20 ± 0.05 0.13 ± 0.07 0.19 ± 0.07
0 < A � 50 0.28 ± 0.04 0.23 ± 0.08 0.34 ± 0.05 0.35 ± 0.05
50 < A � 100 0.37 ± 0.07 0.61 ± 0.11
100 < A � 150 0.19 ± 0.05 0.19 ± 0.04 0.27 ± 0.06 0.37 ± 0.08 0.25 ± 0.04 0.29 ± 0.02
150 < A � 180 0.11 ± 0.03 0.11 ± 0.02 0.31 ± 0.11 0.08 ± 0.02 0.21 ± 0.06 0.21 ± 0.02 0.23 ± 0.03
180 < A � 210 0.14 ± 0.04 0.14 ± 0.05 0.11 ± 0.06 0.41 ± 0.10
230 < A 0.09 ± 0.02 0.12 ± 0.09 0.14 ± 0.03 0.18 ± 0.03

4. MLE parameter estimation of Brody, Berry–Robnik and Abul-Magd distributions
from experimental data and its comparison with other methods

As mentioned in previous sections, we expect, the estimated values by MLE method yield
accuracies which are closer to CRLBs. To this aim, we apply the MLE method in estimating the
parameter of Brody distribution by using the sequences introduced in Ref. [3]. These sequences
constructed of empirical data for levels with definite spin–parity of nuclei given in Table 1 of
Ref. [3] obtained by applying unfolding processes.

Since, the investigation of the majority of short sequences yields an overestimation about the
degree of chaoticity measured by the values of different distributions parameters [9], therefore,
we wouldn’t concentrate only on the implicit values of them and examine a comparison between
the amounts while the smallest value (in Brody and Abul-Magd distributions) explains more
regular dynamics and vice versa.

The estimated values for Brody distribution’s parameter corresponding to these sequences are
listed in Tables 1 and 2, respectively, where the first one is obtained by LSF method while the sec-
ond one estimated by MLE method. In MLE case, we have followed the prescription explained
in Section 3.1, namely, the ML-based estimated parameters correspond to the converging values
of iterations (A.4) and (A.5), where as an initial value, we have chosen the values of parameters
obtained by LSF method given in Table 1. The ML-based estimated parameters display reduction
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Fig. 1. (Color online.) The variations of CRLBs in the iteration processes for sequences prepared by all spherical and
deformed nuclei taken from Table 1 of Ref. [3]. Since the initial values in the estimation procedure obtained by LSF
method and therefore, the first points of these curves display their uncertainties where the decline of curves in the
following suggest reduction of uncertainties for ML-based estimated values, i.e. propose estimator’s variance very close
to CRLB. Brody distribution has used in these estimation procedures.

Fig. 2. (Color online.) Similar to Fig. 1, variations of CRLBs in the iteration processes for sequences prepared by nuclei
taken from Table 1 of Ref. [3] classified in two mass regions (A � 50 and A � 230). Berry–Robnik distribution has
employed in these estimation procedures.

of uncertainties and yield estimator’s variances very close to CRLBs as shown in Figs. 1 and 2,
respectively for Brody and Berry–Robnik distributions (due to similar shapes of CRLB curves,
we only represent four CRLBs curves).

In Berry–Robnik distribution case, using the similar sequences have been analyzed in
Ref. [18], the ML-based estimated values are obtained as the converging values of iterations
(C.5) by choosing the LSF estimated values (taken from Ref. [18]) as initial values where listed
in Table 3.
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Table 3
Comparison of the ML estimated values of “q” in Berry–Robnik distribution with those estimated by LSF method for
different sequences given in Ref. [18].

Nuclei q (LSF-based estimated) q (MLE-based estimated)

A < 50 0.03 ± 0.16 0.32 ± 0.08
50 < A < 100 0.27 ± 0.30 0.69 ± 0.06
100 < A < 150 0.37 ± 0.32 0.77 ± 0.10
150 < A < 180 0.53 ± 0.10 0.91 ± 0.04
180 < A < 210 0.27 ± 0.27 0.82 ± 0.08
230 < A 0.59 ± 0.18 0.95 ± 0.19
Deformed (0+,3+) 0.29 ± 0.09 0.84 ± 0.10
Spherical (2+,4+) 0.34 ± 0.20 0.63 ± 0.05
Deformed (2+,4+) 0.74 ± 0.23 0.56 ± 0.21

Considering the estimated “q” values (by MLE and LSF methods) given in Tables 1–3, we
can deduce the following important facts:

(I) Estimated values of both Brody and Berry–Robnik distributions parameters given in Ta-
bles 1, 3 (estimated by LSF methods), imply that, sequences prepared by lightest nuclei
(A � 50) display more chaotic behavior in compare to heaviest ones (230 < A) [3]. The
ML-based estimated values for both distributions suggest similar statistics but with more
regular dynamics. It means, the spectra of heaviest nuclei are more regular than what LSF
estimation indicates. Similarly, in light nuclei, nuclei are not so much chaotic that LSF
estimation indicates.

(II) As it is predicted in Refs. [3,18] (by LSF estimation method), 2+ and 4+ levels are more
regular (are more closer to Poisson distribution) than 0+ and 3+ones. Obviously, the ML
estimated parameters given in Tables 2–3 confirm this but again all of above levels are more
regular than what LSF indicates.

(III) The nuclei in 180 < A < 200 mass region, i.e. spherical nuclei, are located between two
sequences of deformed nuclei, namely 150 < A < 180 and A > 230 ones. As it is suggested
in Refs. [3,18] (by LSF estimation method), there is a considerable variations in the values
of “q” which implies that, spherical nuclei exhibit more chaotic dynamics in compare to
deformed ones. The ML estimated values given in Table 2 confirm this behavior but predict
less chaotic dynamic for all sequences.

(IV) Similar to the predictions of Shriner et al. in Ref. [3], one expects, the spherical odd–mass
and odd–odd nuclei display more chaotic dynamics in compare to deformed nuclei, the
ML-based estimated values given in Tables 2 and 3 confirm this but predict less chaotic
dynamic again.

(V) As already mentioned in previous sections, due to presence of noticeable uncertainties
in LSF estimated values (because of high level variances of estimators), it is almost im-
possible to do any reliable statistical analyses of odd-odd nuclei in 50 < A < 100 and
180 < A < 210 mass regions [3], while as a result of small variations in the MLE method,
hence minimum uncertainties, the trustworthy analysis is quite possible (see Table 2 for
these reliable ML estimated “q” values for above mass region).

On the whole, the ML-based estimated values are almost exact in all sequences, even in cases
with small sample sizes, where by LSF estimation method one cannot achieve the appropriate
results.
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Table 4
The ML-based estimated values of Berry–Robnik distribution’s parameter in sequences
prepared by nuclei classified in different mass regions which have definite calculated
deformation parameter 〈β2〉. These sequences prepared by the method introduced in
Ref. [18].

Sequence q (Berry–Robnik distribution’s parameter) 〈β2〉
A < 50 0.32 ± 0.08 −0.025
50 < A < 100 0.69 ± 0.06 0.032
100 < A < 150 0.77 ± 0.10 0.051
150 < A < 180 0.91 ± 0.04 0.246
180 < A < 210 0.82 ± 0.08 −0.125
230 < A 0.95 ± 0.19 0.217

Fig. 3. (Color online.) NNS distributions for sequences prepared of oblate and prolate nuclei introduced in Ref. [20]
where solid line represents ML-based estimated distribution.

Also, we can compare the ML- and LSF-based estimated values for Berry–Robnik distri-
bution’s parameter “q” in sequences prepared by nuclei with definite quadrupole deformation
values. These nuclei classified in different mass region while their calculated mean deformation
parameter defined as [18]

〈β2〉 =
∑

k

Nkβ
k
2

/∑
k

Nk,

where Nk represents the number of levels of nucleus k which have been involved in the analysis
and βk

2 is the quadrupole deformation parameter of nucleus k taken from Ref. [25]. As it has pre-
dicted by LSF method in Ref. [18], the chaoticity degrees of sequences decrease with increasing
of β . The ML-based estimated values given in Table 4, propose similar statistics but with less
chaoticity degrees. Again these values are obtained as the converging values of iterations (C.5)
by choosing the LSF estimated values as initial values.

In the Abul-Magd distribution case, we employed the sequences prepared by oblate and
prolate nuclei introduced in Refs. [19,20] (we wouldn’t review the theoretical criteria for this
classification while a detailed account presented in Ref. [20]). These are the sequences have
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Table 5
ML, LSF and BEM estimated values of Abul-Magd distribution’s parameter “q” in sequences prepared by oblate and
prolate nuclei taken from Ref. [20]. The BEM estimated values are those of Ref. [20].

Nuclei q (obtained by LSF) q (obtained by BEM) q (obtained by MLE)

Prolate nuclei 0.78 ± 0.09 0.73 ± 0.05 0.64 ± 0.02
Oblate nuclei 0.61 ± 0.09 0.59 ± 0.07 0.57 ± 0.07

Fig. 4. (Color online.) Similar to Fig. 1, variations of CRLBs in the iteration process for sequence prepared by oblate
nuclei.

been used to estimate “q”, namely the parameter of Abul-Magd distribution by Bayesian estima-
tion method (BEM) [20]. The ML-based estimated values are obtained as the converging values
of iterations (D.4) where the estimated “q” values listed in Table 5 and the corresponding NNS
distributions displayed in Fig. 3. For the initial values of iterations, we have chosen both LSF
and BEM estimated values, where both choices yield almost the same values given in Table 5.

The above given ML-based estimated values together with NNS distributions displayed in
Fig. 4, like the previous analyses [19,20], reveal some regularity in oblate sequence in compare to
prolate one, but similar to other cases with less chaoticity in both sequences. With regards to the
majority of oblate nuclei are deformed ones, the more regular dynamics for them may interpret as
Abul-Magd–Weidenmuller [28] chaoticity effect. Also, this result suggests the weaker coupling
of the single particle and collective degrees of freedom in oblate nuclei than prolate one.

Also, the ML-based estimated parameters have the least uncertainties while suggest the vari-
ances of estimators very close to CRLBs as shown in Fig. 4 (due to similarity of CRLB shapes,
we only represent CRLB figure for oblate nuclei). The minimum CRLB correspond to for the
final value in iteration procedure while suggested by ML estimated value. On the other hand,
the LSF (or BEM) estimated values correspond to the initial values of iterations with variances
far from these minimums. Therefore, one can conclude that, MLE method yield the most exact
result in compare to BEM and LSF estimation methods and display less chaoticity in compare to
other methods.

To analyze the spectral statistics of nuclei provide empirical evidences for three dynamical
symmetry limits and transitional regions of IBM (a detailed description of these classification are
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Table 6
The Nuclei provide empirical evidences for three dynamical symmetry limits and transitional regions of IBM have been
used to prepare sequences.

Sequence Nuclei

U(5) 98Mo, 100Mo, 108Cd, 112Cd, 114Cd, 110Cd, 116Cd, 118Cd, 118Te, 120Te, 122Te, 124Te,
126Te, 112Sn, 114Sn, 134Xe, 154Dy

O(6) 56Fe, 78Ge, 80Se, 130Ba, 132Ba, 132Ce, 134Ce, 196Hg, 194Pt, 196Pt, 198Pt, 198Hg

SU(3) 166Er, 176Hf, 180W, 168Yb, 174Hf, 160Dy, 230Th, 184W, 232Th, 182W, 232U, 178Hf, 170Yb,
162Dy, 234U, 164Dy, 172Yb, 240Pu, 168Er, 170Er, 246Cm

SU(3)–U(5) Nd–Sm–Gd isotopes
U(5)–O(6) Ru–Pd isotopes, Xe isotopes (else ones mentioned in the above series), 134Ba
O(6)–SU(3) Os–Pt isotopes (else 194Pt, 196Pt, 198Pt)

Table 7
The ML- and LSF-based estimated values of Brody distribution’ parameter in sequences prepared by nuclei introduced
in Table 6.

Sequence q (obtained from LSF) q (obtained by MLE)

Nuclei with O(6) symmetry 0.52 ± 0.16 0.48 ± 0.06
Nuclei with SU(3) symmetry 0.71 ± 0.13 0.57 ± 0.08
Nuclei with U(5) symmetry 0.46 ± 0.18 0.33 ± 0.06
Nuclei with U(5)–O(6) transition 0.78 ± 0.13 0.59 ± 0.09
Nuclei with U(5)–SU(3) transition 0.74 ± 0.14 0.63 ± 0.10
Nuclei with O(6)–SU(3) transition 0.94 ± 0.14 0.74 ± 0.08

available in Refs. [29–36]), we have prepared 6 sequences of nuclei with particular symmetries
listed in Table 6. In order to prepare sequences with the available empirical data taken from [21–
25], we have followed the same method given in Ref. [3]. Namely, we considered nuclei in which
the spin–parity Jπ assignments of at least five consecutive levels are definite. In cases where the
spin–parity assignments are uncertain and where the most probable value appeared in brackets,
we admit this value. We terminated the sequences in each nucleus when we reach at a level with
unassigned Jπ . We focus on 2+ and 4+ levels for even mass for their relative abundance. With
unfolding processes and then by using the iterations (A.4), (A.5) of corresponding estimators
obtained via MLE technique, the parameter of Brody distribution estimated.

The NNSDs for these 6 sequences displayed in Fig. 5 where the ML-based estimated val-
ues listed in Table 7. Analogous to the theoretical predictions [29–31], the ML-based estimated
values suggest, nuclei exhibit the U(5) (vibrational limit) dynamical symmetry explore more reg-
ularity in compare to other dynamical symmetry limits. On the other hand, nuclei in transitional
regions exhibit less regular statistics in compare to dynamical symmetry limits. Again, ML tech-
nique yield estimator’s variance very close to CRLB as shown in Fig. 6 for SU(3) dynamical
symmetry limit and also U(5)–O(6) transitional region.

The ML-based estimated values listed in Tables 4, 5 and 7, more or less confirm the above de-
duced facts from the contents of Tables 1–3, namely, due to existence of noticeable uncertainties
in LSF estimated values, reliable statistical analyses would be somehow impossible. On the other
hand, as a result of small variations in MLE method, hence minimum uncertainties, the trustwor-
thy analyses are possible. In general, ML estimated values are almost exact in all sequences, even
in cases where one cannot reach the appropriate results by LSF or BEM estimation methods.
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Fig. 5. (Color online.) NNS distributions for sequences prepared by nuclei provide empirical evidences for three dynam-
ical symmetry limits and transitional regions of IBM. Solid line represents ML-based estimated distribution.

Fig. 6. (Color online.) Similar to Fig. 1, The variations of CRLBs in the iteration processes for sequences prepared by
nuclei provide empirical evidences of SU(3) and U(5) ↔ O(6) transitional region.
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Table 8
CRLBs for LSF-based estimated values of Brody, Berry–Robnik and Abul-Magd distributions in different sequences.

Sequence Brody distribution Berry–Robnik distribution Abul-Magd distribution

Oblate nuclei q = 0.73 q = 0.37 q = 0.61
CRLB = 0.04 CRLB = 0.07 CRLB = 0.09

Prolate nuclei q = 0.82 q = 0.21 q = 0.78
CRLB = 0.05 CRLB = 0.10 CRLB = 0.09

Nuclei with U(5) symmetry q = 0.46 q = 0.44 q = 0.57
CRLB = 0.18 CRLB = 0.31 CRLB = 0.29

Nuclei with SU(3) symmetry q = 0.71 q = 0.31 q = 0.69
CRLB = 0.13 CRLB = 0.17 CRLB = 0.34

Nuclei with O(6) symmetry q = 0.52 q = 0.40 q = 0.62
CRLB = 0.16 CRLB = 0.26 CRLB = 0.25

Nuclei in U(5)–O(6) region q = 0.78 q = 0.22 q = 0.80
CRLB = 0.13 CRLB = 0.15 CRLB = 0.21

Nuclei in U(5)–SU(3) region q = 0.74 q = 0.29 q = 0.71
CRLB = 0.14 CRLB = 0.18 CRLB = 0.31

Nuclei in SU(3)–O(6) region q = 0.94 q = 0.19 q = 0.86
CRLB = 0.10 CRLB = 0.13 CRLB = 0.23

Also, the ML-based estimated values indicate less chaotic dynamics in compare to what LSF or
BEM indicates.

Finally, to compare the efficiencies of considered distributions, we determined the CRLBs,
namely the term defined on the right-hand side of Cramer–Rao inequality (2.12) as

CRLB ≡ 1

MF(θ)

∣∣∣∣
for final value of “θ” obtained from MLE or fitting processes

.

To this aim, we have evaluated the CRLBs for Brody, Berry–Robnik and Abul-Magd distributions
based in sequences prepared by prolate, oblate, three dynamical symmetry and also three transi-
tional regions of IBM (please see Appendices B–D) for details) as tabulated in Tables 8–9. The
obtained result implies that, the MLE method yields good accuracies in all distributions, since
the ML estimated values have the least uncertainties. It means, the variances in MLE method are
closer to the CRLB than those of LSF method. Also, Brody distribution has the least CRLBs in
compare to two other distributions, hence one can conclude that, it is the best NNS distribution
function based on the existing theoretical and experimental data.

From these tables and figures, we see the apparent regularities and also a significant reduc-
tion of uncertainties by ML-based estimated results. Also, these results may be interpreted that
nuclei provide empirical evidence for dynamical symmetries limits would be regarded as regular
systems, i.e. an obvious deviation to Poisson limit occur in their spectral statistics while nuclei
with mixed symmetries, namely nuclei known as candidates for transitional regions, represent
less regular dynamics [29,30].

5. Conclusions

In the present paper, the spectral statistics of different nuclear systems have considered in the
NNSD-based statistics. By employing the MLE technique, we have estimated the parameter of
all used distributions (Brody, Berry–Robnik and Abul-Magd) in sequences prepared by nuclei
classified in the different mass groups, nuclei with special values of deformation parameter (β),
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Table 9
CRLBs for ML-based estimated values of Brody, Berry–Robnik and Abul-Magd distributions in different sequences.

Sequence Brody distribution Berry–Robnik distribution Abul-Magd distribution

Oblate nuclei q = 0.60 q = 0.49 q = 0.57
CRLB = 0.02 CRLB = 0.05 CRLB = 0.08

Prolate nuclei q = 0.53 q = 0.39 q = 0.64
CRLB = 0.03 CRLB = 0.07 CRLB = 0.06

Nuclei with U(5) symmetry q = 0.33 q = 0.59 q = 0.38
CRLB = 0.06 CRLB = 0.22 CRLB = 0.18

Nuclei with SU(3) symmetry q = 0.57 q = 0.44 q = 0.55
CRLB = 0.08 CRLB = 0.17 CRLB = 0.29

Nuclei with O(6) symmetry q = 0.48 q = 0.43 q = 0.44
CRLB = 0.06 CRLB = 0.15 CRLB = 0.13

Nuclei in U(5)–O(6) region q = 0.59 q = 0.31 q = 0.71
CRLB = 0.09 CRLB = 0.17 CRLB = 0.15

Nuclei in U(5)–SU(3) region q = 0.63 q = 0.41 q = 0.62
CRLB = 0.10 CRLB = 0.17 CRLB = 0.28

Nuclei in SU(3)–O(6) region q = 0.74 q = 0.33 q = 0.75
CRLB = 0.08 CRLB = 0.11 CRLB = 0.11

oblate and prolate nuclei and also by nuclei provide empirical evidences for three dynamical
symmetry limits and transition regions in the framework of the IBM.

In all cases, the ML-based estimated values propose minimum uncertainties in compare to
those estimated by other methods, that is, the variation of ML estimated values are rather small
and close enough to CRLB. Therefore, in investigating the statistical properties of nuclear spec-
tra, MLE method is more reliable than other estimation methods, particularly LSF one. Also,
the ML-based estimated values suggest more regular dynamics in compare to what LSF or BEM
indicates. This is more obvious in cases with small size of data, such that LSF estimated val-
ues are not reliable at all. Finally, besides reliability, MLE method is also handier than other
sophisticated estimation methods such as BEM.

Appendix A. MLE approach to Brody distribution

As mentioned in previous sections, we have employed Brody distribution by some differences
(more parameter) in compare to certain distributions. This is caused by troubles which occur in
maximizing the likelihood function contains Gamma functions, although we would display in
the following, namely Fig. 7, a closer corresponding apparent between this definition and main
distribution. For Brody distribution

P(s) = b(1 + q)sqe−bsq+1
. (A.1)

The likelihood function is assumed as

L(q, b) =
n∏

i=1

b(1 + q)s
q
i e−bs

q+1
i = [

b(1 + q)
]n n∏

i=1

s
q
i e−b

∑
s
q+1
i . (A.2)
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Fig. 7. (Color online.) Variation of b/[�(
2+q
1+q

)]q+1), the ratio of our proposed constant to definition of Brody distribu-
tion, in different iteration stages which verify our aim, i.e. any change wouldn’t occur in compare to the main distribution.

Now, one can propose estimators as

∂ lnL(q, b)

∂b
= 0 ⇒ f1:

1

n

∑
s
q+1
i − 1

b
,

∂ lnL(q, b)

∂q
= 0 ⇒ f2:

b

n

∑
ln sis

q+1
i − 1

n

∑
ln si − 1

1 + q
,

and we can achieve the final relation by using of Newton–Raphson iteration method [11]:[
qnew
bnew

]
=

[
qold
bold

]
− Df −1(qold, bold)f (qold, bold), (A.3)
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(A.4)
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(A.5)

Now, if we consider the variations of (b/[�(
2+q
1+q

)]q+1), i.e. the ratio of our proposed parameter
to the main definition of distribution, in the iteration processes, an exact correspondence is yield.
It means, our suggestion wouldn’t apply any change to main definition, as have displayed in
Fig. 7.
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Appendix B. CRLB of Brody distribution

As have defined in Ref. [11], the CRLB for vector function of vector parameters defined as

covθ

(
T (X)

)
� ∂ρ(θ)

∂θT

[
F(θ)

]−1 ∂ρT (θ)

∂θ
, θ1 → b and θ2 → q,

ρ1 → 1

b
⇒ ∂ρ1

∂b
= −1

b2
,

∂ρ1

∂q
= 0 and ρ2 → 1

1 + q
⇒ ∂ρ2

∂b
= 0,

∂ρ2

∂q
= −1

(1 + q)2
. (B.1)

Fisher information defined as

F(θ) =
[

E[(Xq − Xq)2] E[(Xq − Xq)(Xb − Xb)]
E[(Xq − Xq)(Xb − Xb)] E[(Xb − Xb)

2]
]

, (B.2)

where

Xb = ∂ lnL(q, b)

∂b
= n

b
−

∑
s
q+1
i and X̄b = 1

n

∑
Xb,

Xq = ∂ lnL(q, b)

∂q
= n

1 + q
+

∑
ln si − b

∑
ln sis

q+1
i and X̄q = 1

n

∑
Xq. (B.3)

The estimator functions for minimum variation are defined as

f1: q −
(

s
q+1
i − 1

b

)
and f2: b −

(
b ln sis

q+1
i − ln si − 1

1 + q

)
. (B.4)

Now, with replacing the above relation in (B.1), we have

covθ

(
T (X)

) =
[

E[(f1 − f1)
2] E[(f1 − f1)(f2 − f2)]

E[(f1 − f1)(f2 − f2)] E[(f2 − f2)
2]

]
.

Consequently, the final relation to determine the CRLB for Brody distribution is prepared as[
E[(f1 − f1)

2] E[(f1 − f1)(f2 − f2)]
E[(f1 − f1)(f2 − f2)] E[(f2 − f2)

2]
]

� 1

E[(Xq − Xq)2]E[(Xb − Xb)2] − (E[(Xq − Xq)(Xb − Xb)])2

×
[

E[(Xb−Xb)
2]

b4 −E[(Xq−Xq)(Xb−Xb)]
b2(1+q)2

−E[(Xq−Xq)(Xb−Xb)]
b2(1+q)2

E[(Xq−Xq)2]
(1+q)4

]
. (B.5)

Appendix C

In this section similar to Appendices A and B, we carry out the MLE-based determination for
Berry–Robnik distribution

P(s) =
[
q + 1

2
π(1 − q)s

]
e−qs− 1

4 π(1−q)s2
. (C.1)
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The likelihood function is assumed as

L(q) =
n∏

i=1

P(si) =
n∏

i=1

[
q + 1

2
π(1 − q)si

]
e−qsi− 1

4 π(1−q)s2
i ,

lnL(q) =
n∑

i=1

ln

[
q + 1

2
π(1 − q)si

]
−

n∑
i=1

qsi + 1

4
π(1 − q)s2

i . (C.2)

Now, one can propose estimators as

d lnL(q)

dq
=

∑ 1 − 1
2πsi

q + 1
2π(1 − q)si

−
∑(

si − 1

4
πs2

i

)
→ F(q), (C.3)

and by Newton–Raphson iteration method [11], we can get final result as

qnew = qold − F(qold)

F ′(qold)
, (C.4)

qnew = qold −
∑ 1− 1

2 πsi

qold+ 1
2 π(1−qold)si

− ∑
si + 1

4πs2
i∑ −(1− 1

2 πsi)
2

(qold+ 1
2 π(1−qold)si )

2

. (C.5)

On the other hand, one would calculate the CRLB for Berry–Robnik distribution as

Var(θ̂) � 1

MF(θ)
, θ → q, (C.6)

where

F(θ) =
∑ 1

P(s)

[
d lnP(s)

dθ

]2

and M = number of sample, (C.7)

and

f1 = 1 − 1
2πsi

q + 1
2π(1 − q)si

and Var(θ) = 1

n

∑
(f1 − f 1)

2.

Appendix D. Abul-Magd’s distribution

P(s, q) =
[

1 − q + q(0.7 + 0.3q)
πs

2

]
exp

(
−(1 − q)s − q(0.7 + 0.3q)

πs2

4

)
.

The likelihood function is supposed as

L(q) =
n∏
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P(si) =
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1 − q + q(0.7 + 0.3q)

πsi

2

]
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. (D.2)
i=1
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Now, one can propose estimators as

d lnL(q)

dq
=

∑ −1 + (0.7 + 0.6q)
πsi
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1 − q + q(0.7 + 0.3q)
πsi
2
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i

4
→ F(q). (D.3)

And we can attain the final relation by using of Newton–Raphson iteration method [11]:
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As explained for Berry–Robnik distribution, one can determine CRLB for Abul-Magd’s distri-
bution as;

Var(θ) � 1

MF(θ)
θ → q

where

F(θ) =
∑ 1

P(s)

[
d lnP(s)

dθ

]2

and M = number of sample (D.5)

and

f1 = −1 + (0.7 + 0.6q)
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and

Var(θ̂) = 1
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2.
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