

Horizontal Gauge Symmetry and Masses of Neutrinos

Tsutomu YANAGIDA

Department of Physics, Tohoku University, Sendai 980

Recently several authors have studied a possible unification of electronic and muonic matter by adding the horizontal local-symmetry, $SU_F(2)$,^{1)~3)} to the weak and electromagnetic $SU(2) \times U(1)$.⁴⁾ As a consequence of gauging the symmetry, the conservation of muon number is violated. The exchange of horizontal gauge bosons, S_μ^a , also induce the superweak type of CP-nonconservation.¹⁾ From the data on CP-violation in $K_L^0 \rightarrow 2\pi$ decay, the effective coupling constant, G_S , of S_μ^a with leptons and quarks is determined as $G_S \sim 10^{-15} \text{ GeV}^{-2}$ unless the accidental cancellation occurs.¹⁾ The strength is enough weak to avoid unwanted flavour-changing transitions.

If there exist six leptons and six quarks, we extend the horizontal $SU_F(2)$ to $SU_F(3)$. The weak- $SU(2)$ doublet-and singlet-fermions transform as triplets under the horizontal $SU_F(3)$. The triangle anomalies⁵⁾ appearing in the lepton sector can be removed by assuming right-handed neutrinos. *)

The purpose of this short note is to point out the possibility that the spontaneous breakdown of the symmetry generates the masses of right-handed and left-handed neutrinos and each neutrino becomes a massive Majorana particle. The mass of each particle may be $m_\xi \sim 10^5$ GeV and $m_\zeta \sim 10 \sim 10^4$ ev, respectively.

The assignment for leptons is the following:

Here the first two values in each parenthesis denote the representation dimensions of $SU_F(3) \times SU(2)$ and the last one the $U(1)$ hypercharge.

In order to make the horizontal gauge bosons, S_{\parallel}^a ($a = 1 \sim 8$), heavy sufficiently we introduce a Higgs scalar, $\chi_{ij} = (6, 1, 0)$. Another Higgs scalar, $\phi^a = (8, 2, -1)$ is also assumed to break the symmetry $SU(2) \times U(1)$ surviving down to the electromagnetic one.

*) It is possible to assign fermions as triplets of $SU_F(2)$. In this case the anomalies are not generated without right-handed neutrinos (see Ref.2)).

The general form of the neutrino's mass term is given by

$$\mathcal{L}_{\text{mass}}^{\nu} = \frac{1}{2} G_{\chi}^{\nu} \overline{(\nu_R^i)^c} \langle x_{ij} \rangle \nu_R^i + G_{\phi}^{\nu} \bar{\psi}_L \langle \phi^a \rangle \lambda^a \nu_R + \text{h.c.}, \quad (2)$$

where $(\nu_R^i)^c$ denotes the charge-conjugated field of ν_R^i and $(\nu^1 \nu^2 \nu^3)_R$ corresponds $(\nu_e \nu_{\mu} \nu_{\tau})_R$. Eq(1) represents a 6×6 mass matrix among six Majorana particles, $\xi^i = \nu_R^i + (\nu_R^i)^c$ and $\zeta^i = \nu_L^i + (\nu_L^i)^c$ ($i = 1 \sim 3$).

The masses of these neutrinos are roughly obtained as

$$m_{\xi} \sim G_{\chi}^{\nu} \langle \chi \rangle, \quad (3)$$

$$m_{\zeta} \sim \frac{G_{\phi}^{\nu} \langle \phi \rangle}{G_{\chi}^{\nu} \langle \chi \rangle} \cdot G_{\phi}^{\nu} \langle \phi \rangle, \quad (4)$$

where $\langle \chi \rangle$ and $\langle \phi \rangle$ are vacuum-expectation values averaged and $\langle \phi \rangle / \langle \chi \rangle \sim 10^{-5}$.¹⁾ To estimate magnitudes of these masses we tentatively assume that all Yukawa coupling constants are same order, $G_{\chi}^{\nu} \sim G_{\phi}^{\nu} \sim G_{\phi}^{\ell}$, where G_{ϕ}^{ℓ} is the coupling constant for leptons, $\ell = (e \mu \tau)$. Then we find $m_{\xi} \sim 10^5$ GeV and $m_{\zeta} \sim 10 \sim 10^4$ ev. Neutrino oscillations are also expected, but the oscillation length depends on the details of the mass matrix.

Finally we stress that the present scheme of the symmetry breaking is a realistic one in the sense that the Higgs scalars ϕ^a and χ_{ij} can be considered as bound states of fermion-antifermion ($\bar{\psi}_R \psi_L + \bar{\ell}_R \ell_L + \dots$) and fermion-fermion ($\nu_R \nu_R$), respectively.⁶⁾ It is, therefore, due to the large violation of the horizontal symmetry that right-handed neutrinos disappear at low energy regions.

References

- 1) T. Maehara and T. Yanagida, *Prog. Theor. Phys.* 60 (1978), 822; 61 (1979), No.5.
- 2) F. Wilzek and A. Zee, *Phys. Rev. Letters* 42 (1979), 421.
- 3) K. Akama, Y. Chikashige and T. Matsuki, *INS-Report-288* (1977).
H. Terazawa, Y. Chikashige and K. Akama, *Phys. Rev. D15* (1977), 480.
- 4) S. Weinberg, *Phys. Rev. Letters* 19 (1967), 1264.
A. Salam, in *Elementary Particle Physics*, edited by N. Svartholm (Stockholm, 1968), P367.
- 5) C. Bouchiat, J. Iliopoulos and Ph. Meyer, *Phys. Letter* 38B (1972), 519.
D. Gross and R. Jackiew, *Phys. Rev. D6* (1972), 477.
- 6) Y. Nambu and G. Jona-Lasinio, *Phys. Rev.* 122 (1961) 345; 124 (1961) 246.