

1 Probing the linear polarization of gluons in unpolarized hadrons at EIC

Daniël Boer¹, Stanley J. Brodsky², Piet J. Mulders³, Cristian Pisano⁴

¹ Theory Group, KVI, University of Groningen, The Netherlands

² SLAC National Accelerator Laboratory, Stanford University, USA

³ Department of Physics and Astronomy, Vrije Universiteit Amsterdam, The Netherlands

⁴ Dipartimento di Fisica, Università di Cagliari, and INFN, Sezione di Cagliari, Italy

Abstract

Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this TMD distribution of linearly polarized gluons is through $\cos 2\phi$ asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future EIC or LHeC experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.

Linearly polarized gluons in an unpolarized hadron, carrying a light-cone momentum fraction x and transverse momentum \mathbf{p}_T w.r.t. to the parent's momentum, are described by the TMD $h_1^{\perp g}(x, \mathbf{p}_T^2)$ [1, 2, 3]. Unlike the quark TMD $h_1^{\perp q}$ of transversely polarized quarks inside an unpolarized hadron (also frequently referred to as Boer-Mulders function) [4], $h_1^{\perp g}$ is chiral-even and T -even. This means it does not require initial or final state interactions (ISI/FSI) to be nonzero. Nevertheless, as any TMD, $h_1^{\perp g}$ can receive contributions from ISI or FSI and therefore can be process dependent, in other words, non-universal, and its extraction can be hampered in nonfactorizing cases.

Thus far no experimental studies of $h_1^{\perp g}$ have been performed. As recently pointed out, it is possible to obtain an extraction of $h_1^{\perp g}$ in a simple and theoretically safe manner, since unlike $h_1^{\perp q}$ it does not need to appear in pairs [3]. Here we will discuss observables that involve only a single $h_1^{\perp g}$ in semi-inclusive DIS to two heavy quarks or to two jets, which allow for TMD factorization and hence a safe extraction. The corresponding hadroproduction processes run into the problem of factorization breaking [5, 3].

We first consider heavy quark (HQ) production, $e(\ell) + h(P) \rightarrow e(\ell') + Q(K_1) + \bar{Q}(K_2) + X$, where the four-momenta of the particles are given within brackets, and the heavy quark-antiquark pair in the final state is almost back-to-back in the plane perpendicular to the direction of the exchanged photon and hadron. The calculation proceeds along the lines explained in Refs. [2, 6]. We obtain for the cross section integrated over the angular distribution of the back-scattered electron $e(\ell')$:

$$\frac{d\sigma}{dy_1 dy_2 dy dx_B d^2 \mathbf{q}_T d^2 \mathbf{K}_\perp} = \frac{\alpha^2 \alpha_s}{\pi s M_\perp^2} \frac{(1 + y x_B)}{y^5 x_B} \left(A + \frac{\mathbf{q}_T^2}{M^2} B \cos 2\phi \right) \delta(1 - z_1 - z_2). \quad (1)$$

This expression involves the standard DIS variables: $Q^2 = -q^2$, where q is the momentum of the virtual photon, $x_B = Q^2/2P \cdot q$, $y = P \cdot q/P \cdot \ell$ and $s = (\ell + P)^2 = 2\ell \cdot P = 2P \cdot q/y = Q^2/x_B y$. Furthermore, we have for the HQ transverse momenta $K_{i\perp}^2 = -\mathbf{K}_{i\perp}^2$ and introduced the rapidities y_i for the HQ momenta (along photon-target direction). We

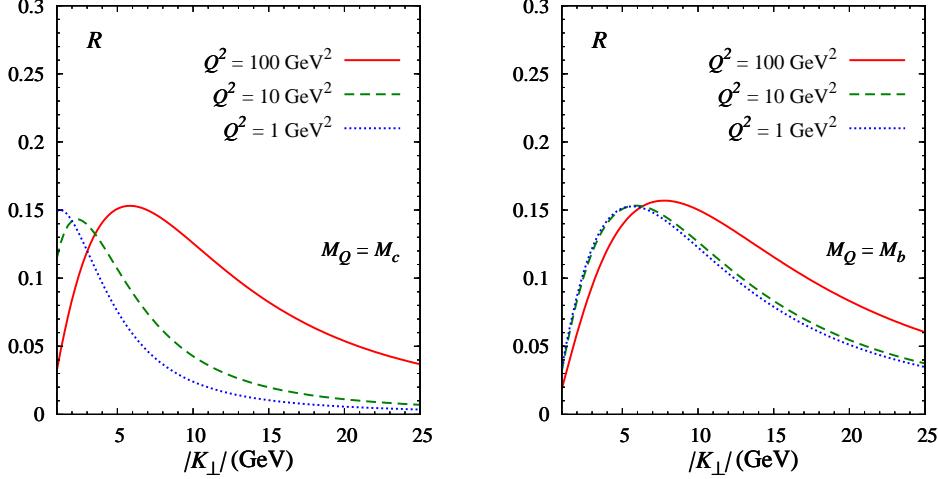


Figure 1: Upper bounds of the asymmetry ratio R in equation (3) as a function of $|\mathbf{K}_\perp|$ at different values of Q^2 , with $y = 0.01$ and $z = 0.5$.

denote the proton mass with M and the heavy (anti)quark mass with M_Q . For the partonic subprocess we have $p + q = K_1 + K_2$, implying $z_1 + z_2 = 1$, where $z_i = P \cdot K_i / P \cdot q$. We introduced the sum and difference of the HQ transverse momenta, $K_\perp = (K_{1\perp} - K_{2\perp})/2$ and $q_T = K_{1\perp} + K_{2\perp}$, considering $|q_T| \ll |K_\perp|$. In that situation, we can use the approximate HQ transverse momenta $K_{1\perp} \approx K_\perp$ and $K_{2\perp} \approx -K_\perp$ denoting $M_{i\perp}^2 \approx M_\perp^2 = M_Q^2 + \mathbf{K}_\perp^2$. The azimuthal angles of \mathbf{q}_T and \mathbf{K}_\perp are denoted by ϕ_T and ϕ_\perp respectively, and $\phi \equiv \phi_T - \phi_\perp$. The functions A and B depend on $y, z (\equiv z_2), Q^2/M_\perp^2, M_Q^2/M_\perp^2$, and \mathbf{q}_T^2 . The angular independent part A involves only the unpolarized TMD gluon distribution f_1^g , while the magnitude B of the $\cos 2\phi$ asymmetry is determined by $h_1^{\perp g}$. Since $h_1^{\perp g}$ is completely unknown, we estimate the maximum asymmetry that is allowed by the bound [3]

$$|h_1^{\perp g(2)}(x)| \leq \frac{\langle p_T^2 \rangle}{2M^2} f_1^g(x), \quad (2)$$

where the superscript (2) denotes the $n = 2$ transverse moment (defined as $f^{(n)}(x) \equiv \int d^2 \mathbf{p}_T (p_T^2/2M^2)^n f(x, \mathbf{p}_T^2)$). The maximal (absolute) value of the asymmetry ratio

$$R = \left| \frac{\int d^2 \mathbf{q}_T \mathbf{q}_T^2 \cos 2(\phi_T - \phi_\perp) d\sigma}{\int d^2 \mathbf{q}_T \mathbf{q}_T^2 d\sigma} \right| = \frac{\int d\mathbf{q}_T^2 \mathbf{q}_T^4 |B|}{2M^2 \int d\mathbf{q}_T^2 \mathbf{q}_T^2 A} \quad (3)$$

is depicted in figure 1 as a function of $|\mathbf{K}_\perp|$ (> 1 GeV) at different values of Q^2 for charm (left panel) and bottom (right panel) production, where we have selected $y = 0.01$, $z = 0.5$, and taken $M_c^2 = 2$ GeV 2 , $M_b^2 = 25$ GeV 2 . Such large asymmetries, together with the relative simplicity of the suggested measurement (polarized beams are not required), would probably allow an extraction of $h_1^{\perp g}$ at EIC (or LHeC).

If one keeps the lepton plane angle ϕ_ℓ , there are other azimuthal dependences, such as a $\cos 2(\phi_\ell - \phi_T)$. The bound on its asymmetry ratio R' is shown in figure 2 in the same kinematic region as in figure 1. One can see that R' can be larger than R , but only at smaller $|\mathbf{K}_\perp|$. R' falls off more rapidly at larger values of $|\mathbf{K}_\perp|$ than R . We note that it is essential that the individual transverse momenta $K_{i\perp}$ are reconstructed with an accuracy

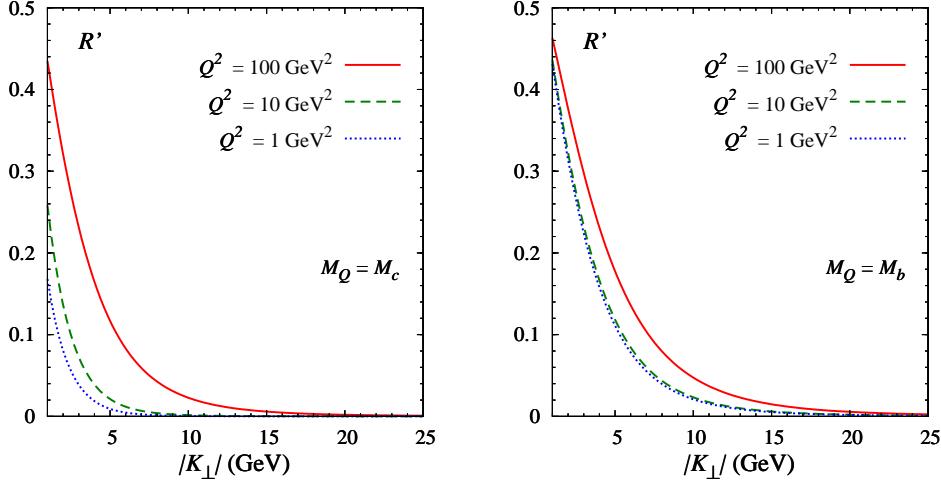


Figure 2: Same as in figure 1, but for the upper bounds of the $\cos 2(\phi_\ell - \phi_T)$ asymmetry.

δK_\perp better than the magnitude of the sum of the transverse momenta $K_{1\perp} + K_{2\perp} = q_T$. This means one has to satisfy $\delta K_\perp \ll |q_T| \ll |K_\perp|$, which will require a minimum $|K_\perp|$.

The cross section for the process $e h \rightarrow e' \text{jet jet } X$ can be calculated in a similar way and is analogous to equation (1). In particular, the explicit expression for B can be obtained from the one for HQ production taking $M_Q = 0$, while A now depends also on x_B and receives a contribution from the subprocess $\gamma^* q \rightarrow gq$ as well, not just from $\gamma^* g \rightarrow q\bar{q}$. Therefore, the maximal asymmetries (not shown) are smaller than for HQ pair production.

Acknowledgments

C.P. is supported by Regione Autonoma della Sardegna (RAS) through a research grant under the PO Sardegna FSE 2007-2013, L.R. 7/2007, “Promozione della ricerca scientifica e dell’innovazione tecnologica in Sardegna”. This research is part of the FP7 EU-programme Hadron Physics (No. 227431). SLAC-PUB-14359.

References

- [1] P.J. Mulders and J. Rodrigues, Phys. Rev. D **63**, 094021 (2001) [arXiv:hep-ph/0009343].
- [2] D. Boer, P.J. Mulders and C. Pisano, Phys. Rev. D **80**, 094017 (2009) [arXiv:0909.4652 [hep-ph]].
- [3] D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, arXiv:1011.4225 [hep-ph].
- [4] D. Boer and P.J. Mulders, Phys. Rev. D **57**, 5780 (1998) [arXiv:hep-ph/9711485].
- [5] T.C. Rogers and P.J. Mulders, Phys. Rev. D **81**, 094006 (2010) [arXiv:1001.2977 [hep-ph]].
- [6] D. Boer, P.J. Mulders and C. Pisano, Phys. Lett. B **660**, 360 (2008) [arXiv:0712.0777 [hep-ph]].