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1. Introduction

A well-known fact is that in four dimensions a quantum theory of Einstein-Hilbert
gravity displays perturbatively non-renormalizable divergences starting at two loops [1,2].
This happens because Newton’s constant has negative mass dimension, which in turn
requires a re-interpretation of the perturbative series as an effective expansion in inverse
powers of the Planck mass, making the theory an effective IR model, rather than a UV

universe7060162 Complete one [3].

It was suggested by Weinberg that the UV limit of metric gravity could still be mean-
ingful if the theory was asymptotically safe, namely, if it had an ultraviolet fixed point
with a finite number of relevant directions in its renormalization group flow [4]. Since its
inception, the idea of asymptotically safe gravity was linked to the proposal of continuing
two-dimensional gravity, which is asymptotically free, in d = 2 + € dimensions [5], where
it could be asymptotically safe [6].

The proposal was early on investigated perturbatively continuing from two dimen-
sions [7,8], but, given the obvious limitations of the e-expansion, the main tool to explore
the conjecture soon became the non-perturbative functional renormalization group, start-
ing from the pivotal work of Reuter [9]. One difficulty, which is caused by the use of
the average effective action of the functional approach, is that it is sometimes difficult to
eliminate parametric and gauge dependences from the action, see for example [10], making
the physical interpretation of the results unclear. To this day, the possibility that quantum
gravity is asymptotically safe is still a conjecture, and most theoretists working on quantum
gravity have strong opinions on the matter, either in favor or against it [11,12].

The discussion on the early approach to the conjecture brings forward a dilemma: on
the one hand, using perturbation theory, we have that gravity in d = 2 + € is a well-defined
theory with no gauge or parametric dependence on-shell, but we are limited to ¢ < 1,
so we cannot access the physically interesting four dimensional theory located at e = 2
(a meaningful resummation would require many more orders than the available ones).
On the other hand, the non-perturbative approach has access to d = 4 directly, but has
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general scheme and background/gauge dependences and no obvious way to eliminate
them. The natural question is, which method should one choose? Our suggestion is simple,
both. The seach for the ultraviolet completion of metric gravity should be pursued on
both the perturbative and non-perturbative sides, and both sides should learn lessons from
each other.

If we are to accept the idea that the UV complete theory of quantum gravity ind = 4
comes from the model in d = 2 + €, which is an idea based entirely on perturbation theory,
then we might ask whether there are obstructions to the continuation of this solution to
€ = 2. In this paper, we discuss possible mechanisms that could either allow or prevent
the e-expansion from reaching the physical case d = 4. One natural mechanism is that of
collision of fixed points, which is difficult to capture perturbatively, unless all involved
players are in the weak-coupling regime. For this reason, it is important to have an idea of
all the possible critical theories that are described by a metric effective action.

In the next two sections we use general arguments to discuss metric-based diffeo-
morphisms invariant theories that can be constructed perturbatively at a given critical
dimension d.,. We also argue if and how these theories can be continued either below or
above their critical dimension to the physically interesting case d = 4.

2. The Diffeomorphisms Group and Its Siblings

The first ingredient of our construction requires the choice of the symmetry group.
There are in principle several possible options of symmetry groups that lead to sensible
gravitational actions. A discussion on some possibilities and the degrees of freedom that
they propagate can be found in [13]. In order to contain the proliferation of possibilities,
we mostly limit ourselves to the diffeomorphisms group and close relatives.

Einstein’s general relativity is an example of theory which is invariant under general
diffeomorphisms. Infinitesimally, the general transformation can be parametrized locally
with a vector field ¢#, so that coordinates change nonlinearly as x# — x'# = x# + ¢#(x).
The metric transforms as

5§gy1/ = v}tgv + vv‘:y . 1

These infinitesimal transformations generate the algebra of the diffeomorphisms group, de-
noted Diff, which is isomorphic to the one of vector fields with Lie brackets as internal commutator

(621,02, = 01z, 2)

where [¢1, &) = &Y0,¢5 — £450,¢] are the Lie brackets of two vectors.

If one chooses to rewrite the metric as a conformal factor times another metric,
Suy = @2 Suv, the symmetry is generally enhanced by a Weyl factor related to the
combined rescaling of the two terms. By requiring that transformations on g, preserve
the volume form /g, it is possible to break the enhanced symmetry down to a subgroup,

Diff*, for which

* ~ = = 2 ~ & an * d—2 « o«
0c8uv = Vv + Vilu — Egyvvaér , S ¢Mougp + 4 P Vi, ®3)

where indices are lowered with ¢, on the right hand side. The subgroup preserves
the volume, therefore g, is a unimodular metric, while ¢ is referred to as the dilaton.
The interesting part is that this symmetry group is isomorphic to Diff itself, Diff ~ Diff" as
seen from proving that

198,08, ] = 0 - )

A Diff* transformation can be seen as a volume preserving diffeomorphism combined to a
conformal transformation, which together return a general diffeomorphism on the original



Universe 2021, 7, 162

30f18

metric. They propagate the same degrees of freedom, but the two groups generally differ
when considered in a path-integral.

Another possiblity would be to not break the Weyl factor and construct a theory that
is invariant under the full conformal group, Conf = Diff x Weyl, which would require
the theory to be invariant under both Equation (1) and the local rescalings of the form
g — gy Ina conformally invariant theory one does not naturally have scales, such as
masses, therefore, in order to reproduce the physical world that includes Newton’s constant
for gravity, one should invoke a spontaneous breaking mechanism at lower energies [14].
One point has to be made on the conformal group, and in particular on the Weyl subgroup,
as it does not seem to have a nonzero Noether current in simple scalar models, which
could make one question its role in the construction of a dynamical theory [15]. This is a
particularly delicate issue that deserves more attention.

The symmetries that we described here are but two of a more general list of examples
discussed in Ref. [13]. In fact, specific breaking patterns of the conformal group actually
generate the aforementioned Diff and Diff* [13,16], so we could reasonably expect them as
outcomes of obtaining Planck mass at low energies from conformal symmetry. Another
natural symmetry that emerges in this context is the group of volume preserving diffeomor-
phisms, that is the symmetry of unimodular gravity which has been introduced to relax
the tension between the values of cosmological and Newton’s constants (see for example
Refs. [17,18]).

3. Guiding Principles and Illustrative Examples

Now we articulate the guiding principles, inspired by the application of the renormali-
ation group to the theory of critical and multicritical phenomena in a Ginzburg-Landau
description, that we are then going to apply to the case of metric-based theories. Some of
the following ideas might be familiar to all readers, in that they are based on the textbook ex-
amples of ¢* and Yang-Mills gauge theories. Some others might be less familiar, especially
those based on less-traditional examples, so we hope that they are met by open-minded
readers. Rather than appliying directly any idea to the metric case, we prefer to discuss the
principles using as many examples coming from the field-theoretical approach to statistical
mechanics as possible.

Guiding principle 1: The theory admits a critical dimension d. at which a certain finite
set of operators O; are canonically marginal.

Notice that we do not assume here that d. equals four, even though it may do so.
The idea behind this principle is that from the set of operators O; we can construct an
action S = Sgee + [ dx Y; ¢;0;, which is parametrized by the set of couplings g; that, by
definition, have zero mass dimension [g;] = 0. The first term, Sg, is some opportune free
action that has no coupling, which can be used to fix the canonical dimensions of the fields,
and consequently of the couplings g;. The operators O; could be all possible operators
compatible with a given symmetry for the model. On this couplings’ basis, the theory is
power counting renormalizable at d = d,, that, to state the obvious is not necessarily equal
to four. We also do not assume that d, is the upper critical dimension of the theory, which
instead we denote d,. The upper critical dimension d,, is defined as the dimension above
which the theory is Gaussian. It might as well be d. < d,,, as we discuss below. There
can even be a lower critical dimension, but we assume that it is sufficiently low in all the
examples below.

Guiding principle 2: The operators O; govern a well-defined renormalizable per-
turbative expansion at the critical dimension d = d., which expresses everything as an
expansion in powers of the couplings g;.

This is the essential requirement of perturbative renormalizability of S at the critical
dimension. Since the theory is perturbatively renormalizable all divergences are local and
have the structure of the operators O;. Divergences can be eliminated through the intro-
duction of the finite number of counterterms order-by-order in the perturbative expansion.
Generically, we expect that, if we use the method of dimensional regularization and the
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modified minimal subtraction scheme MS, all counterterms will result in renormalized
couplings g;, denoted with the same symbol as the bare ones for simplicity, which make the
path integral finite. If y is the scale of dimensional regularization at which the divergences
are subtracted, then the couplings will flow with beta functions ud,g;(#) = Bi(g). With
only one exception given in Section 5, all the beta functions discussed in this paper should
be understood as being derived using minimal subtraction and dimensional regularization
methods. We also reserve the symbol j for the running of the couplings at d = d..

Guiding principle 3: The renormalized theory can be continued to a finite interval of
d which includes d..

The continuation of the renormalized theory in d = d. to another dimension could
begin with an e-expansion in d = d. — €, however the emphasis on the latter principle is on
the word “finite”, so it is assumed that the theory can be meaningfully extended to finite
values of €. This finite value, say d,, can still be very small, though not infinitesimal; in
fact, it might not even intercept any physically interesting value for 4, which is a possibility
that we have to deal with, in some way.

Even though we are interested in finite extensions away from d_, still the e-expansion
gives us particularly strong insights on how and where the theory could be extended in
d. To elaborate on this point, consider the action S, which is traditionally extended to
d = d. — e dimensions as S = Sgee + f dix ¥ u%€g;0;, where we include the scale y and
some positive contants 4; in such a way that the couplings remain dimensionless. For
infinitesimally small €, this implies that the couplings now obey the new scale transfor-
mations, 19,8;(it) = —ajeg; + Pi(g) (no summation over i), that now include a scaling
term.

Here and in the following, we reserve the symbol B;(g) for the beta function of the
coupling g; at the critical dimension, while the general beta function in 4 dimensions is
denoted 9,,g;(1). For example, a scalar ¢*-theory with coupling A has d. = 4 and requires
the subtraction from the bare coupling of a counterterm of the form é)@ u~€ for some
positive constant A when the theory is regularized in d = 4 — € dimensions [19]. In the loop
expansion, A is determined from three one-loop diagrams with four external legs pairwise
inserted in the loops. The scale u appears as a byproduct of continuing the theory away
from d = 4, where the coupling is no longer dimensionless, but, instead, has dimension
#€ (a; = 1 in the notation of the main text). The independence of the bare coupling from
the scale y implies that the renormalized coupling runs as 4d,A = AA% when d = 4 (both
sides are correctly dimensionless at the upper critical dimension), which defines 8, = AA2.
Instead, in d = 4 — ¢, it is customary to measure A in units of y in order to still have a
dimensionless coupling. This is achieved through the replacement A — u€A, as shown
in the main text. The counterterm in the new units becomes é)\z u€ and the requirement
that the bare coupling is independent of y translates to a running of the renormalized one,
pouA = —eA + AA2 = —eA + B, which correctly interpolates the limit d = d_ for € — 0.

To better understand the implication of the new running, we momentarily restrict our
attention to a single coupling g, which has a polynomial beta function 5. We also assume
that the leading term of the beta function in d = d. is B ~ ¢? and that ¢ > 0 is required for
boundedness, although these requirement can be dropped with minor modifications on
the final arguments. The important point is that, according to the sign of g, the model can
be either asymptotically free (8 < 0) or Landau-trivial (§ > 0). This happens because for
€ # 0, according to the signs of B and €, there can be an interesting scale invariant fixed
point g* defined implicitly as a solution of aeg* = B|g—g.

e If > 0, thatis, if the theory is Landau-trivial at d = d., we have that ¢* ~ O(e) isa
physically interesting fixed point for € > 0, implying that the theory could be extended
nontrivially to d < d.. In this case, d. coincides with the upper critical dimension,
dc = dy. The natural interpretation is that the fixed point ¢* is infrared, because it
governs the scale dependence of the model at low energies, u — 0, that can be seen
from a simple stability analysis. When d = d. the model is trivial, meaning that the
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IR is governed by the Gaussian point, with at most logarithmic corrections to scaling.
An example of Landau-trivial theory would be ¢* in d, = 4;

e If B < 0, that is, if the theory is asymptotically free, we have that g* is physical
for —e > 0. This suggests that the theory can be extended nontrivially to d > d,,
mirroring the previous case, at least from a formal point of view. In this case, we
can assume that d, > d., however we do not know if d;, is big enough to include
interesting physical values. The mirroring continues in that the fixed point g* is
ultraviolet, because it governs the scale dependence of the model at high energies,
i ~ co. An example of asymptotically free theory would be a SU(N) gauge theory in
de =4.

A well-known example of a theory for which f > 0 and that can be continued below its
critical dimension is the Wilson-Fisher O(N) model with ¢* interaction, also known as the
linear sigma model (LSM) [20]. In fact, the <p4 interaction is Landau-trivial at d. = 4, but has
a nontrivial fixed point for 2 < d < 4, which encapsculates the large-scale behavior of a
universality class of models which includes the three-dimensional lattice Ising model for
N = 1. An example of theory for which § < 0 and that can be continued above its critical
dimension is the O(N) nonlinear sigma model (NLSM) [21]. The NLSM is asymptotically
free in d. = 2 and can be continued to d > 2 to describe a critical point which is believed
to be the same as the LSM universality class for N > 2. One intuitive way to understand
why they should belong to the same universality class is to realize that the NLSM can
be interpreted as a LSM in which the radial mode p ~ Y; ¢? has been integrated-out, or,
alternatively, the LSM can be interpreted as a NLSM in which the radial mode reappears
as a bound state [22]. The relation between LSM and NLSM can be visualized in Figure 1.
Since the two models share the same universality, it is implied that they should share the
upper critical dimension, which in the case of the Wilson-Fisher is d,, = 4. There is thus a
finite interval of existence for the critical point of the NLSM above d. = 2, even though a
naive extrapolation of the leading order of the e-expansion would suggest otherwise.

In fact, the examples of LSM versus NLSM illustrate a number of interesting points.
The first one is that different models may share the same universality class at a critical
point, which is a well-known fact of the theory of critical phenomena. Another one is
that, from the point of view of the renormalization group, infrared and ultraviolet are
relative concepts. Loosely speaking, one could imagine the critical point of the LSM in
2 < d < 4 as lying on an RG phase diagram parametrized by mass and self-interaction.
The RG flow would then swing close to the fixed point, because there are a relevant and an
irrelevant directions, approximately identified with mass and self-interaction, respectively.
The swung trajectories are then collected by the RG and driven to some infrared phase with
macroscopic interpretation (for example zero or non-zero magnetization in the case of the
sigma models), giving to the fixed point a natural infrared interpretation. However, in the
same plane it is possible to identify the unique trajectory that departs from the critical point
towards the infrared, that is, the infrared-relevant direction. In this case, the fixed point
has a natural ultraviolet interpretation in agreement with the point of view of the analysis
of the NLSM.

This picture that we just described is shared qualitatively by other models [23]. An-
other interesting and rather general aspect is that for models with a sufficiently large
number of scalar degrees of freedom, but presumably for many other models too, it can
actually be shown that there is no absolute infrared fixed point in the most general RG
space of theories [24].

All the above considerations can be generalized to the case of multiple g; couplings if
the opportune care is given. In general, the action S will have to satisfy some positivity
conditions on the couplings in order to generate a meaningful path-integral. Furthermore
some additional constraints could be imposed on the basis of unitarity for Lorentzian
models, reflection positivity for Euclidean models [25], and stability. On the basis of
accumulated experience, we expect that a general solution, which comes from the set of
fixed point equations, can be either continued above or below d., or maybe even both. For
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a meaningful theory of gravity the crucial question is, for obvious reasons, whether it can
be continued to d = 4.

Scr T SA

A FP
AN

GFP

m 1/2

Figure 1. RG diagram illustrating the relation between the linear and nonlinear sigma models;
the trajectories represent lines of constant physics at large scales. The couplings are a quartic self
interaction of the linear model and a squared mass in units of the RG scale, and their RG system
has a nontrivial fixed point (FP) that is distinguished from the Gaussian fixed point (GFP). The
fixed point controls the infrared behavior of the linear sigma model, as can be seen from the red
trajectory that spawns from the point S, that represents a given “bare” theory characterized by a
microscopic scale a or an ultraviolet energy A ~ a~!. The fixed point drives the red trajectory to
some infrared limit, located on the right in this example, that is representative of a macroscopic phase
(e.g., broken or unbroken symmetry). In statistical mechanical models, S5 can be tuned to a critial
value S¢; (for example moving it towards the left in the picture), so that the trajectory would fall
towards the fixed point itself following the orange trajectory and the theory becomes scale invariant
by construction. The tuning is often achieved by changing the temperature to its critical value,
T — T, in the thermodynamical limit and under the assumption that the parameters of S5 depend
on T. The same fixed point, however, is seen as an ultraviolet one for the theories located on the
blue trajectory, which represent the nonlinear sigma model. In the infrared limit the red and blue
trajectories are taken to the same macroscopic phases, because they follow the same RG directions
asymptotically, and thus belong to the same universality class. One important message is that the
two models, linear vs. nonlinear, see the same fixed points in two rather different lights, infrared vs.
ultraviolet, however it is perfectly legitimate to talk about the notion of universality class for both
models. A useful remark for gravity is the following: an asymptotically safe trajectory for gravity
would be the blue curve, since it is ultraviolet complete, while the rest of the RG diagram could
represent any lattice-based attempt to find the continuum limit of gravity based on some lattice scale
a ~ A1 (e.g., any approach based on Regge’s discretization [26,27], such as EDT or CDT [28,29]),
in which case the ultraviolet critical point for quantum gravity is seen as a standard fixed point
associated to a second order phase transition in the lattice (see also the appropriate discussion on
Section 5).

The e-expansion, if combined with the sign of the perturbative beta function at d,,
guarantees that a fixed point can be continued at least to some infinitesimally small value
d =d. — e and |e| < 1. From our point of view this in enough to begin speculating on the
continuation of perturbative fixed points as reasonable candidates of quantum theories of
gravity. We also want to conjecture on which could be the actual mechanisms that prevent
a theory from being useful for finite values of €. In the assumption that fixed points do not
simply “come and go”, but that there must be a mechanism that makes them appear and
disappear, we are led to including another guiding principle.
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Guiding principle 4: Distinct critical points do not simply exist in a vacuum: they
can collide with each other, resulting, for example, in complex conjugate pairs as a function
of the parameters of the theory.

This is by far our most speculative statement, so we are urged to try and justify it.
There is a well-known statistical model, the lattice g-states Potts model, which is believed
to display an annihilation of fixed points as a function of the number of states g [30]. In the
continuum, the universality class of the Potts model is described by the Landau-Potts
model, which is a scalar model with ¢? interaction constructed to be invariant under S,
symmetry. The Landau—Potts theory admits a perturbative expansion in d; = 6, and an
e-expansion in d; = 6 — €. Likewise the ¢* theory, the critical point exists and can be
continued up at least to d = 2. In the range 2 < d < 6, it is assumed to satisfy a condition in
the number of states, that is, there must be a critical value of the number of states, g., which
separates a second order phase transition for g4 < g, from a first order phase transition for
q> e

For example, in d = 2 it is well-known that the critical value of q is 4. = 4 [30]. It has
been conjectured that in arbitrary d, the critical value of the number of states must be d
dependent, thus drawing a curve g. = q.(d) in the (g, d) plane [31]. The different order
of the phase transition stems from the presence or absence of the nontrivial fixed point
as a function of g: if there is a nontrivial real fixed point the standard argument of phase
transitions is that there is a second order phase, if instead there is only the Gaussian fixed
point the system undergoes a first order phase transition.

Perhaps more interesting is the mechanism with which the theory’s transition changes
from second to first order as a function of g, which is well-established in d = 2 and
conjectured to hold in any dimension. There are actually two fixed points, a critical
and a multicritical one, that are distinct for ¢ < g, but that collide at § = g, and then
become a complex conjugate pair for g > g, leaving only the Gaussian fixed point. This
mechanism has the added value of explaining why, for some values of g close to and above
ge, the transition is weakly first order: if the two fixed points just collided the complex
conjugate pair that is left makes the transition almost second order because it is still “close”
to the real axis, in some sense that must be made precise [30].

Several analyses of perturbative renormalization groups see fixed points that collide
for some parametric value. An example could be the analysis of the hypercubic model in
d = 4 — €, which has the symmetry group of the hypercube Hy, in which it is easy to see
that a fixed point with genuine hypercubic symmetry and the isotropic fixed point with
O(N) symmetry collide at a value N.. In the hypercubic example, the critical value N, can
be determined as a function of €, hence of the dimension, and, from careful analysis, is
very close to N, ~ 3 for d = 3 (perturbatively, it is N = 4 atd = d. = 4, and it is a difficult
to estimate that N; < 3 in d = 3 from perturbation theory) [32]. The hypercubic example
is interesting, but somehow simplifies the general case because both the O(N) and Hy
critical points “live” in the same perturbative RG diagram, meaning that their perturbative
series can be described by the same set of RG beta functions.

Returning to the example of the Potts model, we see that the annihilation of fixed
points is even less simple in this case, precisely for the reason that we have just mentioned.
While the Landau-Potts theory is governed by the ¢ interaction in d = 6 — €, the multicrit-
ical parter, with which the standard Potts annihilates, is not. A reasonable conjecture is that,
in a Landau free-energy description, such multicritical model is described by a higher order
interaction, with the simplest candidate pushed forward being ¢° in d = 10/3 — €. The point
is that the critical and multicritical models have different d., 6 and 10/3, respectively, so it is
impossible to see them in the same perturbative RG diagram. In fact, they are governed
by two different perturbative series, or, in other words, they can at most appear in the
strongly-interacting regime of each other [31].

We stress that there are several other interesting examples of colliding fixed points in
gauge theories (e.g., see [33], which we return to in Section 5 from an unusual perspective.
These mechanisms generally lead to conformal windows that depend on the number of
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flavors, but we anticipate that these ideas resonate also with part of the discussion that we
are going to give in Section 4.1, where the number of flavors is replaced by the dimension
of the system. Among these, we find particularly important the discussions that lead to the
dynamical symmetry breaking in three-dimensional QED [34,35] and the chiral symmetry
breaking of QCD with many flavors [36].

4. The Candidate Metric Theories

For the construction of the possible candidate metric theories that satisfy the first
guiding principle, we assume that the only field at our disposal is the metric gy, that
the connection is the Levi—-Civita one, and that the theory must be covariant either under
Diff or Diff*. We also choose to work with covariant tensors that are constructed from the
metric, namely the Riemannian curvatures, and that can be defined unambiguously in any
dimension, for obvious reasons.

If we engineer coordinates to be dimensionless, then the metric tensor has mass
dimension negative two, canonically, like a length square. The Riemann tensor with three
indices down and one up, Ry," g, is dimensionless; likewise the Ricci tensor is dimensionless
Ry = Rqy®v; finally the curvature scalar has mass dimension two being contracted with
an inverse metric, R = ¢""Ry,,. These three tensors, together with the covariant derivative
V., are the covariant quantities that we have at our disposal to construct an action.

It is easy to see that operators constructed with n powers of the curvatures, such as for
example R” have dimension 2n, while all lower powers of the curvatures could be studied
as composite operators [37]. If we take into account the invariant volume element, /g,
then the couplings multiplying an n-th power of the curvatures have canonical dimension
d — 2n. To satisfy the first principle, we seek for canonically dimensionless couplings at d.,
which imply the solutions d. = 2n. The application of the first principle thus leaves us with
the even natural numbers as candidate theories to look forward to. In the next sections
we briefly review the work that has been done for the first few examples and collect some
additional ideas.

4.1. Gravityind =2+ €

We have that the only available local operator built from the metric of dimension two
is the curvature scalar, so in two dimensions the gravitational coupling itself, the Newton’s
constant, becomes dimensionless and must be used to construct a perturbative expansion.
In the simplest units, the action is

Slg] = —é/dzx\/gl{, ©)

and it is easy to see that the perturbative coupling is G by expanding the metric around a
flat background, gy = 6y + V/Ghyy. However, in two dimensions several things happen
at the same time: the curvature becomes a topological invariant when integrated, the action
is conformally invariant modulo boundary terms, and the Lagrangian is zero on-shell. The
handling of these problems results in a rather different way of treating the conformal mode
between the Diff and Diff* realizations. In the first case, the action (5) is complemented with
a cosmological constant term that is renormalized simultaneously and allows to go on-shell
consistently. In the second case, the conformal mode is separated and the corresponding
scalar-tensor theory is renormalized. The Conf invariant result can be evinced easily from
String Theory in that it is related to the leading contribution to the string’s dilaton effective
action in a non-critical dimension.

Either way, at the leading order the beta function for Newton’s constant is of the form

Cg 2
6
e 247IG’ ©)

and cg = —19 for Diff [7], ¢g = —25 for Diff* [38], and cg = —26 for Conf [39-41], which
can be obtained from the coupling of (5) to an additional scalar. The Newton’s constant
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is obviously asymptotically free in d = 2 for the pure gravity model, while there is a
conformal window if matter fields are included in the problem. In d = 2 + ¢, following the
discussion of the previous section, the theory is asymptotically safe because it has a fixed
point, G* ~ O(e), however we do not know how far this fixed point can actually extend.

The combination of functional renormalization group (FRG) and background ap-
proach, with some approximations, seems to suggest that such fixed point exists up to
d = oo [42]. This fact, however, is not backed by a computation that discusses all possible
parametrization dependences in the construction [10], so we argue that it is an artifact of
the approximation made in background projection (in fact, the same effect can be seen in
the application of FRG to the NLSM [43], but we know that the NLSM universality class
has upper critical dimension equal to four). In a previous work, we have discussed that
there should be a conformal window in d, which could be thought of as a parameter analog
to N in SU(N) gauge theories, and we have also given a reliable estimate for the size of
the window in the case of Diff symmetry that agrees with previous cutoff-based work. The
d-dependent beta function becomes

~ 36+3d — d?

2 7
487 G @)

,BG =eG
and we find that the fixed point exists for d < 7.5, modulo further corrections from higher
loops, which seems reasonably bigger than four to justify the conjecture of asymptotic
safety in d = 4 [44]. It would be interesting, and certainly fruitful for the entire discussion
of this paper, to formalize the continuation to arbitrary continuous dimension d. A possible
starting point, at least for the Euclidean theory, could be the method discussed in Ref. [45],
in which it is made sense of O(n) “symmetry” for arbitrary values of n, however it is still
an open problem to generalize that method to gauge symmetries.

It is natural to ask which is the mechanism that would make this fixed point disappear.
In the NSLM example the fixed point collides with the Gaussian one at d = 4, so the
same could happen to the asymptotically safe fixed point of d = 2 + € gravity. Another
possibility, that we would like to push forward here, is that this fixed point collides and
annihilates with the one of a higher derivative generalization of (5). This last possibility is
of course purely conjectural, but it is the reason why we spend some words on the next
two higher derivative models of gravity.

4.2. Higher Derivative Gravity in d = 4

In four dimensions the couplings multiplying operators that are quadratic in the cur-
vatures are dimensionless, and thus suitable to construct a perturbatively renormalizable
quantum theory. The action is often parametrized as

S@Li/&h@&;@—;c+éW}, ®)

where we have defined the square of the Weyl tensor C? and the four-dimensional Euler
density G; we have also neglected the boundary term OR. The conformal limit of (8) is
obtained by taking ¢ — co. This model was shown to be renormalizable a long time ago
already [46], but, most importantly, it was shown that is can be asymptotically free [47,48]
if ¢ < 0. Notice that earlier computations included some mistakes, we refer the reader to
more recent papers, such as [49,50], for the correct results. The problem is that the same
interaction is required to be positive, ¢ > 0, by physically motivated constraints [49] which
are relevant also for cosmology [51]. As it stands, for physical parameters, the model
described by (8) is thus asymptotically free in A, but Landau-trivial in ¢ (the integration of
the perturbative beta function would hit a Landau pole at a finite energy).

Nevertheless, the action (8) has all the features that would make a natural complement
to the Standard Model of particle physics, in fact it compares well with the curvature square
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terms that give dynamic to the gauge fields, but also it is asymptotically free, at least in
part. For these reasons, the model was revived several times over the years [52-54].

Among its features, we notice that it has been proposed as an ultraviolet completion
of quantum gravity and the standard model in the agravity proposal [53], which essentially
suggests a regime beyond Planckian energies, E, in which the renormalization group is
controlled by (8) for E 2 Mp; and its conformal version for E > Mp,. The decoupling of
conformal models in the ultraviolet is the mechanism that the agravity proposal has to
avoid the perturbative Landau-pole. However, the action (8) has an additional problem in
that it violates unitarity, unless some clever prescription generalizing the Wick rotation is
chosen to project away negative norm ghost modes [54], or a new symmetry is imposed on
the spectrum [55].

The RG behavior of (8) is known at the leading one loop order for the standard
Diff realization, but also for the Conf one in which there is no R? term [56]. It would be
interesting to extend these results to the next-to-leading order; furthermore, to the best
of our knowledge, nobody has studied in depth the Diff* realization [57], even though
the structure of the conformal anomaly in four dimensions is known to an extent similar
to the previous case [58]. Since the couplings in (8) all have Gaussian fixed points, it is
customary to introduce the ratios w = —3A/¢ and 8 = A/p, so that the perturbative series
is controlled only by A (also seen through the expansion Suv = 51” + \/th). For the
standard diffeomorphisms symmetry, we have the beta functions

By— - 1133 , Bo = — 1 25+1098w+200w2/\

AT T @210 YT (4n)2 60 ' )
_ 1 7(56-1719)
Po = (47)2 90 '

instead for the conformal model (§ — o)
1 199 , 1 2617960
=— — = A
P (4m)2 15"’ Pe (An)2 60 (10

For A = 0 all betas are automatically zero, however the true fixed points are obtained by
solving the system as A goes to zero, so in units of a different RG “time”, dji = Adu. A
simple analysis shows that the first system has two nontrivial negative roots for w, one
of which is clarly unphysical [59], while the other one is argued to lead to an ill-defined
Newtonian potential [49]. This means that the physically interesting action is supposed to
have w > 0, where only A is asymptotically free, but ¢ is Landau-trivial [53]. Nevertheless,
the RG system induces nontrivial fractal properties for the effective structure of spacetime
at small distances [60].

In relation to the discussion of the previous model in d = 2, it would be tempting to
ask whether the fixed points of the higher derivative model have an interplay with the one
whichis O(€) ind = 2 + €. The answer is that we do not know, but evidence based on FRG
methods suggest that this is not the case, since both two- and four-dimensional fixed points
can be seen in the same RG diagram if quadratic divergences are taken into account [59],
though a more scheme independent statement would be desirable. Before concluding, it
is interesting to notice that both SU(N) gauge theories and general NLSMs admit very
similar higher derivative generalizations, see for example [61,62]. These higher derivative
generalizations are also asymptotically free, at least in some couplings, and require a similar
rescaling of the RG time by a single coupling, say A, which is thus required to control the
perturbative series.

4.3. Cubic Gravity ind = 6

We are approaching terra incognita, because very little has been done in dimensions
higher than four in relation to the purposes of the guiding principles that we stated. In six
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dimensions there are ten distinct operators that are constructed from three powers of the
curvatures, modulo total derivatives. We can parametrize the action as

Slg) = / d6x\/§{a1RDR +8yR, OR y + a3R® + a4 RR, RMY + asR VR, R,
+ LZ6R;WR‘X/5CVWX[; + Ll7RCw,aﬁC}wa‘B + agR’Wwaﬁ,wa‘ﬁv (11)
+ a9cyv“ﬁcaﬁpecpew + alocyvzvﬁcapﬁecpygv} ’

and the couplings 4; fori = 1,---,10 are correctly dimensionless in d = 6. This action
is power counting renormalizable, so it is realistic to assume that the couplings g; are
sufficient to remove the divergences at least at one loop in the perturbative expansion,
if not at all orders like in the previous case.

To state the obvious, the action (11) evidently is much longer and more complicate
than the two and four dimensional counterparts. In fact, we believe that it has not been
renormalized at one loop for the Diff or Diff* realizations, yet. Nevertheless, it has been
considered in the Conf case using functional RG methods and background field approach
in Ref. [63]. The conformally invariant action includes the manifestly invariant operators
multiplying a9 and a9, but also a linear combination of the others [63], which can be
related to a six dimensional Q-curvature. The Q-curvature needed here is often denoted
Qe,6, or Qg 4 for the dimensional continuation [64]. In general Q,, , is the tensor defined
as the constant part of an operator Py, , with leading part Py, = 07 + --- and that

7

transforms as Py, — e_HTmUPm,ne%‘f for gy — ez”gw. Since the operator has “nice’
transformation properties under Weyl rescalings, it is possible to construct an interesting
curvature from its constant part, Q. = Py,»1, and couple it to topological charges. In
the examples of the previous sections, one can find relations of the monomials with Q, 4
and Q44 (modulo boundary terms), which is a proof of concept for the utility of these
curvatures in the context of critical models of quantum gravity. However the Einstein’s
backgrounds for the metric that have been chosen in Ref. [63] are not enough to uniquely
assign a beta function to the three couplings left, resulting in an incomplete RG flow, but the
result is still impressive given the tensorial nature of the action.

An interesting aspect of (11) is that it contains the notorious Goroff-Sagnotti term,
Rw“ﬁRkﬁpeRwV", which is used to argue the perturbative non-renormalizability of the
traditional Einstein—Hilbert action in dimension d = 4 [1]. The Goroff-Sagnotti term
appears as a non-subtractable divergence when renormalizing (5) at two loops ind = 4,
and it was included in functional truncations for the first time in Ref. [65]. Its tensor
structure appears by expressing the Weyl tensor in terms of the Riemann tensor in the
last two monomials. It is also necessary to realize that in d = 4 a totally antisymmetric
expression with more than four indices is necessarily zero (one can have at most four
antisymmetric indices through the tensor €,,59) so we can prove that R¥," ﬁR"‘pﬁgRP ;191, =
IR PRy Ry

A complete RG analysis of (11) would be an important theoretical achievement, which
could have strong implications as suggested by our discussion, through a potential inter-
play with the lower dimensional universality classes in their strongly interacting regimes,
and which we hope is undertaken in the future.

4.4. A Final Remark: Unitarity

The discussion that we have presented in this section is based on the guiding principles
that we have listed in Section 3. The core of our idea is to use the four guiding principles
constructively, but the resulting theories have to be tested for their physical validity.
The guiding principles themselves are based on ideas coming from the theory of critical
phenomena and are expressed in the language of the renormalization group. One particular
aspect of the theory of critical phenomena, especially when applied to low dimensional
condensed matter systems, is that it is not essential that the considered models are unitary.
In fact, a critical phenomenon can manifest in the mesoscopic description of systems
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that otherwise have a physical built-in cutoff (for example, the scale of their microscopic
components). Such systems do not have to be unitary, or, equivalently, reflection-positive
in case that they are Euclidean, because they are supposed to have a unitary completion
from their fundamental constituents.

On the other hand, ultraviolet complete theories of gravity, such as for example the
conjectured asymptotically safe Einstein gravity, are not supposed to either have or need
a further ultraviolet completion. This is an especially delicate issue, because unitarity is
not always easy to prove, both inside and outside perturbation theory. We touched very
briefly the problem of unitarity for the higher derivative model in Section 4.2, but there is
an extensive literature which recently has seen the influx of new ideas [25,54,55]. We do
not explore this issue further, but we dare add a fifth principle, upon which one should test
the aforementioned theories (kindly suggested by a helpful referee).

Guiding principle 5: Any constructed critical theory that also wants to be an ultravi-
olet completion should be unitary.

5. A Toy-Model: Gauge Theory ind > 4

Now that we have listed the first few potential candidates for a universal theory of
metric quantum gravity following the reasonable guiding principles for their constructions
at a given critical dimension, it is time to collect ideas on what could be done with them.
Since its early inception, the idea of an asymptotically safe, ultraviolet complete, theory
of quantum gravity in d = 4 has been associated with the continuation to € = 2 of the
Einstein—Hilbert action in d = 2 + € of Section 4.1. The most notable exceptions, in this
sense, would be some early work of Niedermaier on the conjecture, incorporating the
perturbative RG of higher derivative gravity given in Section 4.1 as well as powerlaw
divergences to “see” a nontrivial RG for the lower derivative terms that are in a strong
coupling regime [66], and the works of Falls discussing universal physical properties of
asymptotic safety [44,67,68].

Using the continuation of the theory in d = 2 + € as a working hypothesis, we think
that the paramount problem is to assess its existence in d = 4 and, more generally, in d > 2.
The natural general question becomes: is it possible to extend an asymptotically free theory
in a certain critical dimension d. and obtain an asymptotically safe theory for some natural-
valued dimension d > d.? We have already given a known example, in the form of the
NLSM, which is asymptotically free in d. = 2, but also belongs to the same universality
class as the linear model, that is nontrivial up to d = 4. In fact, the NLSM has been used as
a toy-model for asymptotic safety in the past using functional methods [43,62], however
some conclusions seem unnatural; for example in Ref. [43] it is predicted that the NLSM
has a nontrivial critical point for all 4 > 2 in contrast with the above argument. This is
most likely caused by the lack of control of the operator expansion and cutoff parametric
dependence, which generally affects the application of functional methods to theories with
nonlinearly realized symmetries like the NLSM. The problem is shared, of course, by all
metric theories of gravity that we listed.

As mentioned before, there are indications, based both on perturbation theory and
Wilsonian methods that there should be a conformal window for the existence of the
critical point of d = 2 4 € gravity, and that this window should extend above d = 4,
thus validating the conjecture [10,16,44]. In particular, Refs. [16,44] predict the conformal
window d < 7.685 from the leading order of perturbation theory, using two separate
methods. The result might be subject to radiative corrections, but it is further validated
by qualitatively agreeing with the functional approach with minimal dependence on the
cutoff of Ref. [10].

It would be desirable, at this point, to have a toy-model, other than the NLSM, which
exihibits similar properties as the conjectured ones for gravity. The reason is that the NLSM
is not entirely a perfect guiding principle, because we know that its universality is captured
by the one of the linear model for 4 > 2. The toy-model should also be under better control
than 2d gravity, meaning that it should be known to a higher extent as a quantum field
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theory, both perturbatively and nonperturbatively. A simple candidate that fullfills all
the requisites is a SU(N) gauge theory: it is asymptotically free in d = d. = 4, where its
perturbative series is known to a reasonable amout of loops and where the growth of the
coupling towards the infrared makes the model approach a strongly-interacting phase. We
could argue that it should be asymptotically safe in d = 4 + ¢, at least for reasonably small
values of €.

Earlier works have suggested, on the basis of the perturbative series, that the Yang—
Mills gauge theory is asymptotically safe above d = 4, therefore it has a second order
phase transition, but also that the conformal window might extend up to d ~ 6 [69,70].
The critical properties change in such a way to suggest that the transition might become
first order at the effective upper critical dimension d ~ 6 [69]. To corroborate the end of
the conformal window comes the picture suggested in Ref. [71], where it is shown, using
functional RG methods, that, for small €, there is always an ultraviolet fixed point, but also
another nonperturbative fixed point besides it. For increasing values of d, and therefore of
€, the two fixed points collide leaving us with no zeroes for the beta function at d ~ 6.

To explain what is going on in Ref. [71] from a different perspective, imagine that in
d = 4 + € the square of the dimensionless gauge coupling has a beta function of the form

poug” = eg” + Py, (12)

for some nonperturbative beta function f,» ind = dc = 4. The nonperturbative beta

contains the leading order of perturbation theory, B, = —Agt+---and A = %, but
also hides in the dots additional nonperturbative information coming from the strong
coupling regime. If we only use the perturbative part, there is always a solution g2 ~ O(e)
of 1d,g* = 0. However, if the nonperturbative part contributes so that Bgr — oo for

g2 — 400, we must have at least another fixed point, and, for increasing €, this latter fixed
point will collide with the perturbative one. Here we implitictly assume that there are no
singularities in the beta function, so the form is different from the one given in [72,73],
for example. An illustration of the behavior of the beta function is given in Figure 2.

The presence of a new fixed point is reminiscent of the Banks-Zaks one [33,74] and,
as such, it leads to a more complicate phase-diagram, but with d as “parameter” this time.
The collision would also explain why at d = d,, =~ 6 there should be the onset of a first
order transition, in fact the two fixed points should collide and form a complex conjugate
pair, so we would expect that, slightly above the effective upper critical dimension d,,, there
is a weak first order transition (it is still affected by the complex pair of fixed point that are
close to the real axis). More precisely, the transition should become infinite order exactly at
d = d,—sufficiently far away and above the effective critical dimension the transition to
properly become first order.

In order to validate or disprove the possibility that a SU(N) gauge theory ind > 4 is
asymptotically safe, the natural option would be to perform lattice simulations of some
discretized action with N = 2 and d = 5, which is the simplest configuration that is
reasonably expected to have an ultraviolet fixed point and hence a second order critical
point. The use of the lattice Wilson’s action with the traces of plaquettes in the fundamental
representation seems to lead only to a first order phase transition, but it could be argued
that the inlusion of another bare parameter could be enough to see that the first order
point actually belongs to a first order line that terminates in a second order point. The idea
was explored early on in Ref. [75], but there was no clear signal of second order behavior,
though this could be related to the size of the lattices being a bit small for today’s standards.
The problem has been readdressed recently in Ref. [76], in which some signals of second
order behavior are seen, though more work has to be done in this direction.
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Figure 2. Conjectured behavior of the beta function of the Yang-Mills coupling in various dimensions
d, for which the slope at g = 0 is proportional to € = d — 4. The blue function is the asymptotically
free beta function of standard four dimensional Yang-Mills. For an interval of dimensions between
the critical value, d = 4, and a speculative upper critical value, d;, the model admits two nontrivial
fixed points, which are highlighted with dots in the figure. One is of ultraviolet nature, while the
other one is infrared and assumed to be associated to a multicritical theory in the main text. Any
change in d corresponds to a change in the initial slope of the beta function, so at d = d,, the two fixed
points collide and above d,, the curve is not able to intercept the horizontal axis any longer [71].

One interesting aspect of the search for the critical point in d = 5 lattice SU(2)
Yang-Mills gauge theory is that it shares striking similarities with the search for the
lattice gravitational critical point performed both with Euclidean and causal dynamical
triangulations (EDT and CDT) [28,29]. In fact, in both cases it is known that the Regge
discretization with fixed triangles and total spacetime volume of the Einstein—Hilbert
action leads to a first order behavior if the only bare parameter is (related to) the Newton’s
constant. However, if another bare parameter is added to the discretized action, a measure
term in the case of EDT and a parameter measuring microscopic causality in CDT, then
there are signs of more complicate phase behaviors, which can include a first order line
(interpolating with the first order point of the case with only Newton’s constant) that
terminates in a second order critical point. See also the comment given at the end of
the caption of Figure 1 for further points on the relation between lattice simulations and
quantum gravity.

These examples open up the possibility that it might simply be necessary to include
one additional bare parameter to see the critical point of either gravity or gauge theory
above their respective critical dimensions. It is tempting to speculate that the new operators
that are introduced with the new bare parameter are those responsible for the second order
behavior and, in the RG description, must be related to the nature of the second nontrivial
fixed point. We know that the new operators must be in the strong coupling regime,
but they could still be related to a multicritical generalization of the Yang-Mills gauge
theory that has a critical dimension different than four. A candidate for such multicritical
generalization has already appeared in the literature and has higher derivative interactions
of the gauge field with critical dimension d. = 6 [61,77]. This candidate can be found by
following the same logic of our guiding principles, but applying it to the gauge degrees
of freedom, rather than to the metric. An interesting aspect of this idea is that a higher
multicriticality should emerge from the competition of derivative interactions of various
orders, which is known to lead to critical field theories in the scalar case [78,79]. Some of
us plan to come back to this topic soon.

6. Conclusions

We have tried to push-forward five reasonable guiding principles to attempt a classifi-
cation of critical theories which depend on a metric. The principles are inspired by ideas
coming from the application of field-theoretical methods in statistical mechanics and are
motivated by several examples. The resulting classification begins as perturbative, in the
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sense that we classify critical theories on the basis of a critical dimension that is assumed
to allow for a perturbative definition of the field theory in its proximity, but becomes
non-perturbative when we argue that these critical theories could be extended away from
their critical dimensions (and how).

Our main purpose is twofold. On the one hand, we want to suggest reasonable
candidate universality classes that can be relevant for the conjecture of asymptotic safety,
but also, on the other hand, we simply want to promote the role of more perturbative and
universal arguments in the literature of asymptotic safety. In recent years, the discussion
on the conjecture has been mainly based on the application of functional RG methods and
the Wetterich Equation [80], or, more appropriately, its background version, which could
be called the Reuter Equation [9].

The main candidate for the critical model behind the conjecture is of course the
extension to € = 2 of Einstein—Hilbert gravity in d = 2 + ¢, which is known since the
inception of the idea of asymptotic safety itself. In an earlier work [16], we discussed
that the perturbative renormalization of this theory can be done close to two dimensions,
but all other instances of the dimensionality can be continued analytically, confirming
the presence of a conformal window in d for the existence of the fixed point that can be
computed perturbatively and should include the physical case d = 4 [44].

However, we believe that, in such context, it is important to explain why there should
be a conformal window. In this contribution we have discussed a number of conjectures
and similar open problems that emerge from our analysis. In particular, we have discussed
how the conformal window could be caused by an interplay, happening in the strong-
coupling regime, between fixed points which have different critical dimensions (so they
cannot be perturbative at the same time). Our arguments in this direction are admittedly
very conjectural, but have been presented here in the hope of stimulating further research
and discussions on these topics.

Even if very conjectural, our discussion has left out several important contributions
that are not covered by our classification, but still are important in the ecosystem of the
application of perturbative and field-theoretical methods to quantum gravity. A promi-
nent approach could be the one of Ref. [81] in which, following the results of [82-84] a
construction of a nonlocal super-renormalizable theory in d = 4 is attempted, that of
course differs from our suggested perturbatively (power-counting) renormalizable models.
Similar ideas have appeared in [85,86]. We have not discussed changing the degrees of
freedom either, for example introducing a scalar field, which is known to be related to f(R)
gravity [87]. The finite parts of the quantum effective action of any theory of quantum grav-
ity is well-known to include nonlocal form factors in the curvatures, both in two [88] and
four dimensions [89,90], which become very important in a cosmological setting [91,92].
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