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Abstract

The current approach to data analysis for the Laser Interferometry Space Antenna

(LISA) depends on the time delay interferometry observables (TDI) which have to be

generated before any weak signal detection can be performed. These are linear combi-

nations of the raw data with appropriate time shifts that lead to the cancellation of the

laser frequency noises. This is possible because of the multiple occurrences of the same

noises in the different raw data. Originally, these observables were manually generated

starting with LISA as a simple stationary array and then adjusted to incorporate the

antenna’s motions. However, none of the observables survived the flexing of the arms

in that they did not lead to cancellation with the same structure.

The principal component approach is another way of handling these noises that was

presented by Romano and Woan which simplified the data analysis by removing the

need to create them before the analysis. This method also depends on the multiple

occurrences of the same noises but, instead of using them for cancellation, it takes ad-

vantage of the correlations that they produce between the different readings. These

correlations can be expressed in a noise (data) covariance matrix which occurs in the

Bayesian likelihood function when the noises are assumed be Gaussian. Romano and

Woan showed that performing an eigendecomposition of this matrix produced two dis-

tinct sets of eigenvalues that can be distinguished by the absence of laser frequency

noise from one set. The transformation of the raw data using the corresponding eigen-

vectors also produced data that was free from the laser frequency noises. This result led

to the idea that the principal components may actually be time delay interferometry

observables since they produced the same outcome, that is, data that are free from

laser frequency noise. The aims here were (i) to investigate the connection between the

principal components and these observables, (ii) to prove that the data analysis using

them is equivalent to that using the traditional observables and (ii) to determine how

this method adapts to real LISA especially the flexing of the antenna.

For testing the connection between the principal components and the TDI observ-

ables a 10× 10 covariance matrix containing integer values was used in order to obtain

an algebraic solution for the eigendecomposition. The matrix was generated using fixed

unequal arm lengths and stationary noises with equal variances for each noise type.



Results confirm that all four Sagnac observables can be generated from the eigenvec-

tors of the principal components. The observables obtained from this method however,

are tied to the length of the data and are not general expressions like the traditional

observables, for example, the Sagnac observables for two different time stamps were

generated from different sets of eigenvectors. It was also possible to generate the fre-

quency domain optimal AET observables from the principal components obtained from

the power spectral density matrix. These results indicate that this method is another

way of producing the observables therefore analysis using principal components should

give the same results as that using the traditional observables. This was proven by

fact that the same relative likelihoods (within 0.3%) were obtained from the Bayesian

estimates of the signal amplitude of a simple sinusoidal gravitational wave using the

principal components and the optimal AET observables.

This method fails if the eigenvalues that are free from laser frequency noises are

not generated. These are obtained from the covariance matrix and the properties of

LISA that are required for its computation are the phase-locking, arm lengths and

noise variances. Preliminary results of the effects of these properties on the principal

components indicate that only the absence of phase-locking prevented their production.

The flexing of the antenna results in time varying arm lengths which will appear in

the covariance matrix and, from our toy model investigations, this did not prevent

the occurrence of the principal components. The difficulty with flexing, and also non-

stationary noises, is that the Toeplitz structure of the matrix will be destroyed which

will affect any computation methods that take advantage of this structure. In terms of

separating the two sets of data for the analysis, this was not necessary because the laser

frequency noises are very large compared to the photodetector noises which resulted

in a significant reduction in the data containing them after the matrix inversion. In

the frequency domain the power spectral density matrices were block diagonals which

simplified the computation of the eigenvalues by allowing them to be done separately

for each block. The results in general showed a lack of principal components in the

absence of phase-locking except for the zero bin. The major difference with the power

spectral density matrix is that the time varying arm lengths and non-stationarity do

not show up because of the summation in the Fourier transform.
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Chapter 1

Introduction

1.1 Gravity

Gravity, for both Newton and Einstein, is a property of matter/energy relating to its

mass that causes objects to move closer to one another but they differ in how this

motion is produced. In the classical view, as defined by Newton’s Law of Universal

Gravitation, this motion is due to an attractive force that is created by the objects

mass. This force is gravity and it is transmitted through gravitational fields that are set

up by matter/energy in the surrounding space. In General Relativity on the other hand,

this motion is due to the deformation of the space surrounding matter that produces a

positive curvature towards its centre of mass. This curved space results in the deflection

of the path of other objects creating motion that mimics an attractive force. This motion

in the curved space is gravity and the gravitational field is the curvature of space [17].

In Einstein’s view of gravity, this curvature is not only caused by matter nor does it

only affect space. The Special Theory of Relativity coupled space with time and matter

with energy [14, 27]. In this theory matter and energy are equivalent as shown by

Einstein’s the energy-momentum equation (E2 = m2
0c

4 + p2c2) so that spacetime/space

can be also distorted by energy [14]. Time and space exist as a 4-dimensional continuum

called a Minkowski spacetime which means that both could be distorted.

Newton’s gravity involves motion under the influence of forces while for Einstein it

is about motion in curved space therefore, it is dependent on the geometry of space; it is

a geometric theory [17]. The curvature of space/spacetime is defined by Einstein’s field

equation relating the curvature tensor G to the source of distortion, the stress-energy-

momentum tensor T which can be written as

G =
8πG

c4
T (1.1)

where G is the universal gravitational constant and c is the speed of light [13]. In curved

spacetime the shortest straightest path is along a geodesic and motion along these paths

1
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Figure 1.1: The effects of the cross and plus polarisations of a gravitational wave on a ring of free
particles

is described by the geodesic equations [17]. Significant curvature is produced from very

dense sources which are very large masses packed in small volumes [13]. This can be

easily seen from the differential form of Gauss’s law where the field strength/intensity

is defined as the gravitational flux through a surface which is

∇ · g=−4πGρ (1.2)

where ρ is the mass density and G is the gravitational constant [55]. So that the more

densely packed objects will have stronger fields or, for Einstein, greater curving power.

1.2 Gravitational waves

The prediction of gravitational waves by Einstein came from the weak field approxi-

mation of the field equations, nearly flat spacetime, for which the solution is a wave

equation. They travel at the speed of light and transport energy as gravitational radi-

ation. The properties according to General Relativity are that they are transverse and

have two independent polarizations. Their transverse nature is manifested in how space-

time is distorted which is in a plane perpendicular to the direction of their propagation.

They are also area preserving in the transverse plane in that the stretching of spacetime

in one direction will cause a corresponding squeezing in a direction perpendicular to the

other producing two types of polarizations, h+ and h×, that are 45◦ to each other. The

effects of the different polarisations on a ring of particles is shown in Figure 1.1.

The first evidence for their existence was indirectly obtained from measurements of

changes in the orbits of pulsars in binary systems which, according to general relativity,
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Figure 1.2: The orbital decay of the binary pulsar PSR B1913+16 comparing the observations (points)
and theoretical values (line) based on General Relativity. Weisberg, Nice and Taylor [80]

decreases because of gravitational damping with energy being lost through gravitational

radiation. This was first observed by Taylor and Weisberg [64] from observations of

PSR B1913+16 a binary system containing a pulsar discovered by Hulse and Taylor

[35]. Figure 1.2 shows the results of over thirty years of observations of this binary

presented by Weisberg, Nice and Taylor [80]. The theoretical model used to determine

the decay rate was based on General Theory of Relativity which produced a 0.997±0.002

agreement with the observed decay rate supporting this theory of gravity.

The actual observation of gravitational waves was made by the two LIGO detectors

at Livingston and Hanford of the coalescence of a binary system consisting of two black

holes on September 14, 2015 [3, 1]. The plots of the waveforms are given in Figure 1.3

showing the system’s inspiral, merger and final ring-down into a single black hole. From

just this observation came proof of gravitational waves, the existence of black holes

and, the fact that the waveforms match that predicted by General Theory of Relativity,

support for this theory of gravitation. Confirmation came from the observation of

another binary black hole coalescence on December 26, 2015 by these detectors [2].

1.2.1 Sources of gravitational waves

Gravitational waves are the propagating oscillations of the gravitational fields [57]. The

gravitational field is determined by the distribution of the mass-energy of the source
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Figure 1.3: The gravitational waves produced from the merger of a pair of black holes GW150914
observed by two LIGO detectors. Abbott et. al. [3]

and its strength will only change if there is a change in this distribution through a

loss/gain or from accelerated motion. For single sources this can be achieved through

asymmetric spinning or from symmetric spinning with structural asymmetry. Examples

of this type are spinning neutron stars which will produce continuous gravitational wave

(Figure 1.4a). Single sources can also produce gravitational waves from non-spherical

collapses or explosions such as core collapse of white dwarfs or the supernovae [52] with

sample waveform as shown in Figure 1.4c. Continuous and burst waveforms are also

produced by binary systems with the former being obtained when these systems are in

stable orbits [52]. Bursts from binaries can be produced by those with extreme mass

ratios, such as a super-massive black holes with a compact object, that are in highly

eccentric orbits [12]. Inspirals, like the one shown in Figure 1.4b, can be obtained from

the coalescence and merger of compact binaries such as two black holes or two neutron

stars. There will also be stochastic gravitational waves (Figure 1.4d) produced for the

superposition of incoherent sources from distant merges of neutron stars or supermassive

black holes or from the cosmological background [52].

1.3 Space-based gravitational wave detectors

Blair et. al. [13] indicated that the minimum length for a detector baseline to achieve

optimum sensitivity is half the wavelength of the gravitational signal being observed.
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(a) (b)

(c) (d)

Figure 1.4: Examples of the types of waveforms expected from some of the gravitational waves sources.
(LIGO Science Collaboration [40])

For the frequency ranges in gravitational wave spectrum shown in Figure 1.5 this gives

lengths of approximately 15×1020 km to 15 km. Currently, the longest detector is LIGO

which is a Michelson-type laser interferometer with physical lengths of 4 km which is less

than a third the lowest wavelength. The restriction on the arm length is largely due to

physical limitations caused by the curvature of the Earth but also includes building and

operational costs, vacuum system maintenance and the alignment of the interferometer

[13, 25]. The other main problem affecting ground-based detectors are seismic noises

due to vibrations and fluctuations in the gravity-gradient in the Earth’s surface [50].

Isolators can compensate for the vibrations but gravity-gradient noises, which are due

to random gravitational forces associated with the changes in the mass density in the

detectors surroundings, cannot be shielded and is the limiting noise source below 10 Hz

[58]. Reducing the effects from these noises is accomplished by locating the detectors in

seismically quieter sites which can increase sensitivities to 1 Hz [50]. The underground

location for KAGRA detector takes advantage of the decrease in the seismic waves with

depth. Even with these limitations, the first observations of gravitational waves was

produced by the LIGO ground-based observatories at Livingston and Hanford. There

is a suggestion for a 40 km ground-based interferometers from Dwyer et. al. [25] using

the natural depressions in areas that are bowls, such as the Carson Sink, to compensate

for the Earth’s curvature and to help reduce the amount of excavation. However, for

really long baselines and observations below 1 Hz the only option is space which also



6 Chapter 1. Introduction

Figure 1.5: The gravitational wave spectrum and detectors. (From LIGO Science Collaboration:
http://www.ligo.org/science/faq.php)

has the advantage of operating in a natural vacuum. The baselines can be formed

either between Earth and a space-based test mass or entirely between space-based test

masses. For the Earth-space combination the space test mass can either be spacecraft

or pulsars. The former involves Doppler tracking using microwave signals to monitor

changes in the separation between the Earth and the spacecraft for the passage of a

gravitational wave and the frequency band for this type is 10−4 Hz to 1 Hz [65, 57]. For

the Earth-pulsar combination the arrival times of the pulses are monitored for changes

which could be caused by the passage of a gravitational wave crossing their path. This

method is limited by the fact that the pulsar periods are not constant and only give

stable values after being averaged over a long period of time. The most stable of these

systems are the millisecond pulsars [57]. An example of the baseline for this combination

is 1.7×1015 km for the millisecond pulsar PSR J0437–4715. The frequency range for this

type of observation is about 10−7 Hz to 10−9 Hz which is the middle of the spectrum

given in Figure 1.5 [65]. The space-based option involves using satellites that track

each other using lasers. The passage of a gravitational wave will change the separations

between them which will be monitored by the satellites using laser interferometry. Their

operating frequency band is 10−4 Hz to 10−1 Hz [57]. The first detector of this type is the
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(a)

(b)

Figure 1.6: Schematic diagram showing the location and orbit of LISA (a) and its annual motion (b)
(European space agency. Pre-Phase A Report [10]

Laser Interferometer Space Antenna (LISA) which was a joint project between NASA

and ESA. Our investigations will be based on this detector which will be discussed in

the next section.

1.4 Laser Interferometer Space Antenna - LISA

The first detailed design and mission plan for LISA was laid out in the early Pre-Phase

A reports [10, 29, 21, 11]. In this design the antenna consists of three satellites in

their own free fall orbit around the Sun with inclinations and eccentricities that keep

the spacecraft in a triangular formation that trials the Earth by 20◦. The separation

between each spacecraft is 5× 109m. The yearly motion of the antenna causes its plane

to rotate about the centre of mass which is on located on the ecliptic and tilted at

60◦ [10]. Schematic diagrams showing its location relative to the Sun and the Earth

and its rotational motion are given in Figure 1.6. The three spacecraft are identical in

design containing two optical benches arranged in a Y-shape as shown in Figure 1.7a.

Within each bench is a proof mass, a laser, beam splitters, photodetectors, a reference
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(a) (b)

Figure 1.7: Schematic diagrams of LISA showing (a) the positioning and orientation of the optical
benches in each satellite (Pre-Phase A Report [10]) and (b) the original design of LISA’s optical bench
(Larson [39]).

cavity for stabilising the laser, a phase modulator for conveying clock information and

for data exchange between the spacecraft, and a telescope. A schematic of this is given

in Figure 1.7b. The proof masses are in their own drag-free orbits. LISA is a nearly

omni-directional detector and its configuration allows it to act as a multidetector where

it can function as three independent interferometers which can be used to detect the

different polarisations of a gravitational wave [10].

1.4.1 Design changes - the split configuration

In LISA the changes in each arm are measured by the two spacecraft located at the

each end. The end of the arms are defined by the proof masses (mirrors) but how these

measurements are obtained differ from the conventional Michelson interferometer. In

the Pre-phase A design of LISA this measurement is between a proof mass at one end

and optical bench at the other. This is illustrated in Figure 1.7b where the beam being

transmitted to the distant spacecraft (red) is not reflected off the proof mass but the

incoming beam (green) is reflected off the proof mass before it goes to the photodetector.

There are also measurements taken between the two optical benches on each spacecraft

where the opposite occurs. The beam going to the other bench (red) is first reflected

off the local proof mass before being transmitted and the beam being received from

the other bench (green) goes directly to the photodetector. The distance measurement

is therefore split into a long-arm measurement from optical bench of the transmitting
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Figure 1.8: A schematic of the split configuration showing the three different measurements s1(t),
ε1(t) and τ1(t). In the diagram L, M, BS and PM represent the laser, mirrors, beam splitters and
proof masses, respectively. Also, PD, S/C and OB indicate the photodetectors, spacecraft and optical
benches, respectively. Based on diagram from Otto, Heinzel and Danzmann [46].

spacecraft to the proof mass on the receiving spacecraft plus the short-arm measurement

on the transmitting spacecraft between the optical bench and its local proof mass.

In the final design before LISA became an ESA-only project the measurements were

divided into three sections consisting of one long-arm and two short-arm measurements.

The laser beam in the long-arm measurement no longer interacts with either of the proof

masses. This design change is illustrated in Figure 1.8 showing the new configuration

which is the baseline from 2006 [46]. As illustrated in Figure 1.8 there are three sets of

optical bench readings that are needed for the science data. These readings are:

Spacecraft to spacecraft measurements si(t): These are the readings between the

spacecraft at the end of each arm which are called the inter-spacecraft or long

arm measurements. They are the result of the incoming light from the distant

spacecraft being interfered with the local light on the receiving optical bench

which is recorded at photodetector PD1 in Figure 1.8.

Proof mass to proof mass measurements εi(t): These are the internal measure-

ments between the two proof masses of the optical benches on each spacecraft

which called the intra-spacecraft readings. There are due to the local light on one

optical bench being interfered with the light from the other optical bench. They

monitor the test mass motion and are recorded at photodetector PD2 in Figure

1.8.

Laser with laser τi(t): These are the reference interferometer measurements obtained
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from the interference of the lasers on the two optical benches on each spacecraft

and recorded at photodetector PD3 in Figure 1.8.

1.4.2 Current status

The transfer of the LISA mission to ESA in 2011 resulted in changes in the name,

design and mission. The name change reflected the different design of the two options

namely, evolved LISA (eLISA) which was a smaller scale of the original LISA and the

New Gravitational Wave Observer (NGO). NGO is a reduced version of LISA with the

same number of spacecraft but with only two arms and with reduced lengths of 1× 109

m. The final name is eLISA with the design specifications of NGO which is shown in

Figure 1.9. The predicted launch date is in 2034.

1.4.3 LISA Pathfinder - LPF

Before launching LISA some of its technology are being tested by the LISA Pathfinder

(LPF) which was launched on December 3, 2015. This is a scaled down version of

LISA with only one spacecraft with two test masses each suspended in their vacuum

container and are separated by 38 cm [41]. The mission objectives obtained from ESA

LISA Pathfinder fact sheet web page are to:

• Demonstrate drag-free and attitude control in a spacecraft with two free test

masses.

• Test feasibility of laser interferometry with picometre resolution at low frequency

– approaching 10−12m/
√

Hz in the frequency band 1-30 mHz.

• Test the endurance of the different instruments and hardware in the space envi-

ronment

LISA pathfinder arrived at its location at the first Sun-Earth Lagrangian point L1

on January 23, 2016 and the test masses were released into their own free fall orbits on

February 13 and 17 and started its science phase on March 1, 2016 [28].
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Figure 1.9: Schematic of eLISA orbit showing the reduction in the number of arms and their lengths.
Amaro-Seoane et. al. [49]

1.5 LISA data analysis: current approach

The two issues affecting LISA that are critical to its success in producing science are the

overwhelming laser frequency noises and the large number of sources that will occur in

its data. Interestingly, these are associated with the same properties of LISA that give

it the advantages over the ground-based detectors. Being in space allows it to have long

arms for observing in the low frequency band which is implemented using free-falling

spacecraft in orbit around the Sun. However, the long arms introduce significant travel

times between the spacecraft which, combined with its orbital motion and the perturba-

tions from planets, causes unequal time varying arm lengths that create problems with

the laser frequency noise cancellation. The level of this noise is expected to be about

107 greater than that of large proportion of its signals. The low frequency bandwidth

in which it operates is densely populated by a large number of sources consisting of

approximately 2 × 108 binaries of which several million will occur in its bandwidth in

the 0.1 mHz to 3 mHz region [18, 75, 30].

The current approach to resolving these problems resulted from the need to show

that the LISA project was viable in that it could still produce useful information. This

led to the development of a kind of divide and conquer approach in which problems

were tackled separately with the Mock LISA Data Challenges for handling the source

problem and the development of the time delay interferometry observables for laser

frequency noise cancellation.
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1.5.1 Source confusion

Of the millions of sources occurring in LISA’s bandwidth only about 104 will be re-

solvable [8, 30]. This presents two major challenges referred to as source confusion and

source confusion noise. The former is related to the overlapping of the sources caused

by cross-correlations of their signals occurring strongly below 2 mHz [22]. The confusion

noise is related to the unresolved sources which will produce a background noise. The

challenge is to untangle the signals and determine the confusion noise level in order to

distinguish it from the instrumental noises.

The Mock LISA Data Challenges (MLDC) have different levels and goals. The levels

presented an approach to the analysis problem that was similar to the laser noise can-

cellation in that they started with simple models of LISA data and gradually introduced

more of the complexities the data. For example, the first challenge data sets had a single

signal or small set of overlapping ones embedded in Gaussian noise with no confusion

noise with the main goal of developing the data analysis tools. The main site for the

challenges is AstroGravS a service provided by NASA [32] containing all the challenges

and links to papers. Overviews are provided by Arnaud et. al. [8, 9].

One outcome in terms of the signal extraction was the realisation that correlations

between the signals meant that a global solution was required where all the signals were

fitted using a filter bank consisting of models of every type of source occurring in the

data [19]. The framework for this was shown to be Bayesian presented by Umstätter et.

al. [75, 76] where they were able to also define a confusion noise limit and determine

the number of signals which was also an unknown.

1.5.2 Laser frequency noise

The ability of a laser to maintain the same frequency over a specified time period

determines its frequency stability and the random fluctuation of its stability is called

frequency or phase noise [38]. In LISA the problem occurs because these frequency

fluctuations occur at levels of 1.0 × 10−13/
√

Hz in the millihertz band while its goal is

to observe signals at levels of 10−20/
√

Hz) or lower [69]. The simple illustration of the

problem is given in Figure 1.10 using examples of the two levels of noises and a single

sinusoidal signal. The effects of the individual noises on the signal are shown in plots
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Figure 1.10: Sample plots to show the effects of the primary (middle left) and secondary (bottom left)
noises on a simple sinusoidal signal (top left). The combinations of the individual noises with the signal
are given in the top and middle panels on the right. The bottom right plot is the combination of both
noises and the signal.

on the right where only in the top plot, which is a combination of the signal with the

secondary noise, is the signal is still visible. The laser noise totally overwhelms both the

signal and the secondary noises in the middle and bottom plots. The goal was to find

a way to cancel the laser frequency noises or reduce them to the level of the secondary

noises. This noise is also present in ground-based laser interferometer detectors but the

symmetry (fixed with equal lengths) and shortness of their arms (≈ 10−5 s for 4 km

arms) allows cancellation by directly differencing the readings because the delays, and

hence noise, are the same in each arm. The very long arms of LISA (5×109 m) result in

significant light travel times of about 16.7s between the space craft and the variations in

their lengths cause differences of up to 1% (5× 107 m) [36] which rules out this method

of noise cancellation for LISA.

1.5.3 Time delay interferometry

Time delay interferometry (TDI) is a post processing technique that was introduced

by Armstrong, Estabrook and Tinto [6, 26, 69, 7, 70, 68] for canceling the laser fre-

quency noise which was based on earlier works for noise cancellation in an unequal-arm

Michelson interferometer [31, 66, 67]. The process involves using linear combinations
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Figure 1.11: Schematic of LISA showing the labeling of the spacecraft (S/C i), optical benches and
arms (Li). The optical benches are labeled with primed i′ and unprimed (i) integers.

of the individual data streams with appropriate time shifts to cancel the laser noises

and relies on multiple occurrences of the same noise in the readings from the differ-

ent optical benches. Each spacecraft has two optical benches giving six inter-spacecraft

measurements of fractional frequencies yi(t), obtained from beating the laser from a dis-

tant spacecraft with the local laser on the receiving spacecraft, and six intra-spacecraft

readings zi(t), from beating the two lasers on each spacecraft [6]. These are illustrated

in Figure 1.12. For a simple drag-free model of LISA with static arms and no orbital

or rotational motion, the inter-spacecraft (yi) and intra-spacecraft (zi) readings for the

laser frequency noises can be written as

ylaseri (t) = Cj′(t−Dk)− Ci(t),

zlaseri (t) = Ci′(t)− Ci(t), (1.3)

where Ci and Cj′ are the laser frequency noises in the receiving and transmitting space

craft, respectively [6]. Dk is the light travel time in the arm between the spacecraft

which is equal to Lk/c where Lk is the arm length and c is the speed of light. Using

the readings for the photodetectors at the ends of arm L3 in Figure 1.11 which are y1(t)

and y2′(t) with laser noise contributions [C2′(t−D3)−C1(t)] and [C1(t−D3)−C2′(t)],

respectively, the equations for these noises are

ylaser1 (t) = C2′(t−D3)− C1(t),

ylaser2′ (t) = C1(t−D3)− C2′(t), (1.4)

which show the same noises occurring in the two readings but at different times of

(t−D3) and t. These noises also occur in the internal readings for the same two optical



15 Chapter 1. Introduction

(a)

(b)

Figure 1.12: Schematic diagram illustrating the Pre-phase A optical bench measurements using space-
craft 1 and 2 showing (a) the inter-spacecraft readings between spacecraft 1 and 2 (red and green lines)
and (b) and the intra-spacecraft readings between optical benches 1 and 1′ on spacecraft 1 (orange and
blue lines).

benches z1(t) and z2′(t) which are

zlaser1 (t) = C1′(t)− C1(t),

zlaser2′ (t) = C2(t)− C2′(t), (1.5)

where the noises all occur at the same times t [26].

How these multiple occurrences are used to cancel laser phase noises can be shown

using the laser frequency noises C1 and C2′ in the previous equations. Laser frequency

noise C1 occurs at time t in y2′ and z1 in Equations 1.4 and 1.5. Subtracting zlaser1 (t)

from ylaser1 (t) gives

ylaser1 (t)− zlaser1 (t) = [C2′(t−D3)− C1(t)]− [C1′(t)− C1(t)]

= C2′(t−D3)− C1′(t), (1.6)

where this noise is canceled leaving two other noises C2′(t − D3) and C1′(t). Laser

frequency noise C2′ also occurs in the internal readings zlaser2′ of spacecraft 2 but at a
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different time. Shifting this reading by D3 to match that in Equation 1.6 gives

zlaser2′ (t−D3) = C2(t−D3)− C2′(t−D3), (1.7)

which when added to Equation 1.6 gives the required cancellation which is

ylaser1 (t)− zlaser1 (t) + zlaser2′ (t−D3) = C2′(t−D3)− C1′(t) + C2(t−D3)− C2′(t−D3)

= C2(t−D3)− C1′(t). (1.8)

The cancellation of C2′ could have been done by shifting ylaser2′ (t) by D3 instead giving

ylaser2′ (t−D3) = C1(t−D3 −D3)− C2′(t−D3)

= C1(t− 2D3)− C2′(t−D3), (1.9)

and then adding this to Equation 1.6 to obtain

ylaser1 (t)− zlaser1 (t) + ylaser2′ (t−D3) = C2′(t−D3)− C1′(t) + C1(t− 2D3)− C2′(t−D3)

= C1(t− 2D3)− C1′(t). (1.10)

This process is repeated until all the laser frequency noises are canceled and the data

that are obtained are the time delay interferometry combinations or observables. For

the conventional time delay observables this was done manually using trial and error.

The various possibilities for combining the raw data for canceling the noises resulted

in combinations with different structures some resembling certain types of interferome-

ters and were named accordingly, for example, the Michelson and the Sagnac combina-

tions. In a Michelson interferometer a single beam is split between two perpendicular

arms and reflected off mirrors at the ends of the arms back to the splitter where they are

recombined with the final phase measurements being the difference of the readings in

the two arms. In a Sagnac the mirrors are arranged so that the optical path is a closed

ring. Two beams obtained from splitting a single laser are directed along clockwise

and counter-clockwise paths and then recombined at the splitter. In the Michelson and

Sagnac time delay interferometry observables the individual terms occur in a pattern

matching these differences. This is illustrated in Figure 1.13 with a few other combina-

tions. The arrows indicate the direction of the measurements in the combinations with

the recording optical benches located at the arrowhead.

The first set of time delay interferometry combinations were based on a simple model

of LISA which are the first (1st) generation TDIs. Those that include the rotational
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Figure 1.13: Diagrams illustrating some of the time delay interferometry combinations including the
Michelson and Sagnac. The readings used for each combination and the direction of their measurements
are indicated by the arrows. Reproduced from Larson [39] with labels added to show the arms and
spacecraft.

motion of the antenna but not the flexing of the arms are the modified TDIs or TDI 1.5

[59, 20, 70]. The 2nd generation TDIs incorporate all the motions of LISA [60, 20, 70].

Some of the combinations retain the structure of their inter-spacecraft readings when

the orbital motion effects are taken into account. For those that do not, a new set of

generalised combinations with similar names were obtained but not all resulted in the

cancellation of the noises [60].

1.5.3.1 The effects of LISA’s motions on time delay interferometry

Recall that the problem with the laser frequency noises is that the inequality of LISA’s

arm lengths rules out the possibility of cancellation by the direct differencing of the

readings from the different arms as used in ground-based interferometer detectors. Any

behaviour of LISA that directly changes the arm lengths will affect the laser frequency

noise cancellation which will in turn affect the time delay interferometry combinations.

In the Pre-phase A model of the optical bench [10], the ends of the arms, and their

lengths, are determined from the positions of the proof masses and optical benches.

The inter-spacecraft reading yi(t) is made between the receiving (local) optical bench

and the proof mass of the transmitting spacecraft which will be affected by the non-

inertial motions of the proof masses and optical benches. Recall that the first generation

inter-spacecraft and intra-spacecraft readings for the laser frequency noises have simple
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structures which are

ylaseri (t) = Cj′(t−Dk)− Ci(t),

zlaseri (t) = Ci′(t)− Ci(t).

With the optical bench and proof mass noises these become

ylaseri (t) = Cj′(t−Dk)− Ci(t)− n̂k · ~Vj′(t−Dk) + 2n̂k · ~vi(t)− n̂k · ~Vi(t),

zlaseri (t) = Ci′(t)− Ci(t)− 2n̂j · [~vi′(t)− ~Vi′(t)], (1.11)

where n̂i is a unit vector along arm i measured in the counter-clockwise direction and,

~vi(t) and ~Vi(t) are the random velocities associated with proof mass i and optical bench

i, respectively [26]. The effects of the rotational motion of LISA is to cause the light

travel times in each arm to be dependent on the direction of measurement that is,

Dk′ 6= Dk where k′ and k indicates the clockwise and counter-clockwise directions in

arm k, respectively.

The offsets in the inter-spacecraft readings now have to account for this difference, for

example, the optical benches at the end of arm k will contain the same laser frequency

noises but with offsets measured in the opposite directions. If yi(t) and yj′(t) represent

these readings then their directionally dependent versions, excluding the acceleration

noises, will be

ylaseri (t) = Cj′(t−Dk)− Ci(t),

ylaserj′ (t) = Ci(t−Dk′)− Cj′(t). (1.12)

The flexing or breathing of the arms caused by perturbations from nearby objects

makes the arm lengths time dependent which will occur as Dk(t), for example, for yi(t)

with flexing becomes

ylaseri (t) = Cj′ [t−Dk(t)]− Ci(t). (1.13)

Note that the time dependent version will cover the rotational effects. The two were

separated to illustrate the different motions associated with the different generations of

the time delay interferometry observables. For the second generation observables the

order that the offsets occur is important. An alternate way of writing the equations

for the observables uses a compact notation where the time shifts are subscripts, for

example, yi(t−Dk) is replaced with yi,k. For the second generation equations both the
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Figure 1.14: Schematic of LISA showing the directional dependence of the arm lengths with the clock-
wise and counter-clockwise directions labeled Li′ and Li, respectively. The spacecraft are indicated by
S/C i with their corresponding optical benches by i and i′.

comma and semicolon are used as separators [60, 70] with the following meaning

y,i = y[t−Di(t)],

y;ij = y
{
t−Dj(t)−Di

[
t−Dj(t)

]}
,

y;ijk = y
(
t−Dk(t)−Dj

[
t−Dk(t)

]
−Di

{
t−Dk(t)−Dj[t−Dk(t)]

})
. (1.14)

In the following sections brief overviews of the Sagnac and the Michelson combinations

illustrating how their structure changes with the motions of LISA are given. No ex-

planation will given for why this occurs as this will be done in Chapter 2. The aim

here is to introduce the current approach to handling the laser frequency noises for

understanding where the possibilities are for improvements in the data analysis. The

compact notation will be used in the next section.

1.5.3.2 The Sagnac combinations

The Sagnac observables consists of two kinds which are the six-pulse (α, β, γ) and

the fully symmetric (ζ) combinations. The simplest forms of these combinations for

stationary static model of LISA, not motion effects, using α and ζ combinations are

α(t) =
[
y1′(t) + y3′(t−D2) + y2′(t−D1 −D2)

]
− [y1(t) + y2(t−D3) + y3(t−D1 −D3)

]
,

ζ(t) =
[
y1′(t−D1) + y3′(t−D3) + y2′(t−D2)

]
−
[
y1(t−D1) + y2(t−D2) + y3(t−D3)

]
, (1.15)
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where the terms within them are grouped to show the differencing of readings in different

directions. For synthesizing the Sagnac structure, the α, β and γ combinations are

obtained by using spacecraft 1, 2 and 3 as beam splitters, respectively. Six-pulse refers

to the fact that the gravitational wave signal will have a six-pulse response in these

combinations corresponding to the six different times occurring in them [6]. These

combinations have three time patterns occurring in them which are t, (t − Di) and

(t−Di−Dj) which distinguishes them from the fully symmetric Sagnac ζ where all the

readings have been shifted by one offset, (t − Di). Also, the ζ Sagnac has no central

spacecraft (beam-splitter) and has a very low response to gravitational wave signals.

With the compact notation these can be written as

α = [y1′ + y3′,2 + y2′,12]− [y1 + y2,3 + y3,13],

ζ = [y1′,1 + y3′,3 + y2′,2]− [y1,1 + y2,2 + y3,3].

Accounting for the accelerations of the proof masses and optical benches requires

the intra-spacecraft readings for the laser frequency noise cancellation. From Estabrook

et. al. [26], including the acceleration noise changes α and ζ in Equation 1.15 to

α = [y1′ + y3′,2 + y2′,12]− [y1 + y2,3 + y3,13]

+
1

2

{
[z1 − z1′ ] + [z1 − z1′ ],123 + [z2 − z2′ ],3 + [z2 − z2′ ],12

+ [z3 − z3′ ],2 + [z3 − z3′ ],13

}
, (1.16)

and

ζ = [y1′,1 + y3′,3 + y2′,2]− [y1,1 + y2,2 + y3,3]

+
1

2

{
[z1 − z1′ ],1 + [z1 − z1′ ],23 + [z2 − z2′ ],2 + [z2 − z2′ ],13

+ [z3 − z3′ ],3 + [z3 − z3′ ],12

}
, (1.17)

where the structure of the inter-spacecraft readings do not change. However, including

the effects of the rotational motion which causes the directional dependence of the arm

lengths breaks the symmetry of the Sagnac in that there are no combinations that will

retain the same structure with respect to the inter-spacecraft readings [20, 26]. However,

there are other generalised or modified Sagnac combinations αi and ζi [26, 60, 59] with

three combinations for each with roughly similar structure but with twice the number
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of terms. Examples of these generalised combinations from Shaddock [59] are

α1 = [y1′ + y3′,2′ + y2′,1′2′ ]− [y1 + y2,1 + y3,31]

− [y1′ + y3′,2′ + y2′,1′2′ ],231 + [y1 + y2,1 + y3,31],2′3′1′

− 1

2

{
[z1′ − z1]− [z1′ − z1],2′313′1′2 + [z2′ − z2],1 + [z2′ − z2],1′2

+ [z2′ − z2],12′3′1′ − [z2′ − z2],1′2′231 + [z3′ − z3],2′ + [z3′ − z3],31

− [z3′ − z3],2′231 − [z3′ − z3],312′3′1′
}
,

ζ1 = [y1,11′ + y2,2′1′ + y3,31]− [y1′,11′ + y3′,31 + y2′,2′1′ ]

+ [y1′,123 + y3′,33′2′ + y2′,2′23]− [y1,1′3′2′ + y2,2′23 + y3,33′2′ ]

− 1

2

{
[z3′ − z3],31 + [z3′ − z3],1′2′1 − [z3′ − z3],3′32′ − [z3′ − z3],232′1

+ [z2′ − z2],1′1 + [z2′ − z2],1′2′ − [z2′ − z2],232′ + [z2′ − z2],31′1

− [z2′ − z2],3′232′ − [z2′ − z2],3′31′2′
}

(1.18)

with the terms grouped to show a Sagnac-type arrangement. The second generation

combination includes the flexing of the antenna which for the generalised α1 is

α1(t) = [y1′ + y3′;2′ + y2′;1′2′ ]− [y1 + y2;3 + y3;13]

− [y1 + y2;3 + y3;13

]
;3′1′2′

+ [y1′ + y3′;2′ + y2′;1′2′ ];213

− 1

2

{
[z1′ − z1] + [z1′ − z1];2133′1′2′ − [z2′ − z2];3 − [z2′ − z2];1′2′

+ [z2′ − z2];33′1′2′ + [z2′ − z2];1′2′213 − [z3 − z3];2′ − [z3′ − z3];13

+ [z3′ − z3];2′213 + [z3′ − z3];133′1′2′
}
, (1.19)

where the order of the offsets are important [20, 77]. Shaddock [59] indicates that this

combination does not lead to perfect cancellation of the laser frequency noises which is

also true of the generalised ζ1 combination [70]. The level of the residual noises remains

to a first order in the systematic velocities [60].

1.5.3.3 The Michelson combinations

The unequal arm Michelson observables consists of the three combinations X, Y and

Z centred on spacecraft 1,2 and 3, respectively. The simple form of the X combination
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Figure 1.15: Schematic of LISA showing the spacecraft, optical benches and arms that are used in the
Michelson X observable.

for static arms and no antenna motion, can be written as

X(t) =
{[
y1′(t) + y3(t−D2)]−

[
y1(t) + y2′(t−D3)

]}
+
{[
y1(t− 2D2) + y2′(t−D3 − 2D2)

]
−
[
y1′(t− 2D3) + y3(t−D2 − 2D3)

]}
, (1.20)

and the compact form is

X =
{[
y1′ + y3,2]−

[
y1 + y2′,3

]}
+
{[
y1,22 + y2′,322

]
−
[
y1′,33 + y3233

]}
.

The are four groups of readings consisting of sums of the contributions from the optical

benches at the ends of the arms adjacent to the spacecraft 1 which can be seen in Figure

1.15. The sum in each group simulates reflection at the end of the arm. For example,

the first term of the equation is the sum of the readings at the end of arm L2 which are

y1′ of spacecraft 1 and y3 of spacecraft 3. These can be interpreted as the transmission

of a beam from optical bench 1′ from an earlier time (t−D2) to optical bench 3 and then

back to optical bench 1′ arriving at time t. Similarly, the second term is a sum of the

readings along arm L3 so that the first line in the equation is the subtraction of the left

readings from the right. This also occurs in the second line but for earlier times and with

right subtracted from left. One advantage of these combinations is that they require

only the four optical benches while the Sagnac combinations use all six optical bench

readings. This would allow LISA to operate if some of the benches are not functional.

Like the Sagnac, accounting for the spacecraft motions effects, the drag-free case, the
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combination gains contributions from the intra-spacecraft readings becoming

X =
{

[y1′ + y3,2]− [y1 + y2′,3]
}

+
{

[y1 + y2′,3],22 − [y1′ + y3,2],33

}
+

1

2

{
[z1 − z1′ ]− [z1 − z1′ ],22 − [z1 − z1′ ],33 + [z1 − z1′ ],2233

}
, (1.21)

where the structure of the inter-spacecraft readings remain the same. With rotation

Equation 1.21 becomes

X =
{

[y1′ + y3,2′ ]− [y1 + y2′,3]
}

+
{

[y1 + y2′,3],22′ − [y1′ + y3,2′ ],3′3
}

+
1

2

{
[z1 − z1′ ]− [z1 − z1′ ],22′ − [z1 − z1′ ],3′3 + [z1 − z1′ ],22′3′3

}
, (1.22)

where the only difference is that there are now primed and unprimed offsets to indicate

the directional dependence of their measurement. However, like the Sagnac, the flexing

of the arms does change the structure of the Michelson combinations requiring more

terms with more complex offsets due to their dependence on time. The generalised Xi

combinations have twice the number of terms for example, the X1 given by Shaddock

et. al. [60] is

X1 =
{

[y1′ + y3;2]− [y1 + y2′;3′ ]
}

+
{

[y1 + y2′;3];22′ − [y1′ + y3;2′ ];3′3
}

+
{

[y1 + y2′;3];3′322′ − [y1′ + y3;2′ ];22′3′3

}
+
{

[y1′ + y3;2′ ];3′33;322′ − [y1 + y2′;3];22′22′3′3

}
+

1

2

{
[z1 − z1′ ]− [z1 − z1′ ];22′ − [z1 − z1′ ];3′3 + [z1 − z1′ ];22′22′3′3

+ [z1 − z1′ ];3′33′322′ − [z1 − z1′ ];22′3′33′322′
}
. (1.23)

The difference with the generalised Michelson combination compared with the gener-

alised Sagnac is that it cancels laser frequency noise several orders of degrees below the

secondary noises [60].

1.5.4 Time delay interferometry combinations for different sig-

nal responses

In the previous section we saw that it was possible to synthesize two different types

of interferometers, the Michelson and Sagnac, illustrating how LISA can operate as

these two different types of detectors simultaneously. Also, each configuration has dif-

ferent options depending on which spacecraft acted as the beam splitter which increases

the number of detectors it can synthesize simultaneously. This offered the possibility

of improving the responses to gravitational waves from combinations of the different
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“detectors” that would improve the signal to noise ratio.

1.5.4.1 Improving LISA’s sensitivity

Prince. et. al. [51] used this approach to produce combinations that provided optimal

sensitivity which are the A, E and T . These are based on the Sagnacs and generated

in the frequency domain. The equations for these are

Ã(f) =
1√
2

[
γ̃(f)− α̃(f)

]
,

Ẽ(f) =
1√
6

[
α̃(f)− 2β̃(f) + γ̃(f)

]
,

T̃ (f) =
1√
3

[
α̃(f) + β̃(f) + γ̃(f)

]
, (1.24)

where ∼ represents the Fourier transform and for Ã this is

Ã(f) = F [A(t)] =

∫ ∞
−∞

A(t)e−2πiftdt. (1.25)

In the previous section the antenna motions destroyed the Sagnacs and their gener-

alised counterparts contain residual laser frequency noises. This means that the AET

which are linear combinations of the first generation Sagnac will also be affected by

the orbital motion. Also shown was that the Michelson combinations even though their

structure also changed with the flexing leading to their generalised counterparts they

were still able to eliminate the laser frequency noises. This led to AET being recreated

in terms of these with one set of these as used by Adams and Cornish [4] being

Ã(f) =
1

3

[
2X̃(f)− Ỹ (f)− Z̃(f)

]
,

Ẽ(f) =
1√
3

[
Z̃(f)− Ỹ (f)

]
,

T̃ (f) =
1

3

[
X̃(f) + Ỹ (f) + Z̃(f)

]
, (1.26)

where they have similar structure with some rearrangement in Ã and Ẽ except for T̃

which is the sum of all three. Nayak et. al. [42] used the same approach to produce

another set of observables that increased the sensitivity of LISA. These were generated

in the frequency domain and also based on the Sagnac α, β and γ observables. The
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combination they produced were

Y (1) =
1

6

[
α + β − 2γ

]
,

Y (2) =
1√
2

[
β − α

]
,

Y (3) =
1

3

[
α + β + γ

]
, (1.27)

showing slight differences from those in Equation 1.24.

1.5.4.2 Zero signal solution

The approach was also used to produce combinations with null responses to gravita-

tional waves which would be useful in isolating the instrumental noises and would also

be helpful in separating it from the source confusion noise. The first generation ζ com-

bination whihc has a low response offered this opportunity but does not survive LISA’s

orbital motion. Cornish and Hellings [20] produced a ∆ζ combination that had the

same properties when accounting for the rotational motion but it did not survive the

flexing of the antenna.

One combination that achieves this is the zero-signal solution η with the ability to

identify a signal’s location using only two of its parameters which is independent of

assumptions about the signal waveform. It is an improvement on the ζ combination in

terms of its ability to discriminate gravitational wave background noise from instrumen-

tal noise [72, 71]. This combination was also generated in the frequency domain using

the first generation Sagnac and is given by

η̃(f) ≡
[
β+(f, θ, φ)γ×(f, θ, φ)− β×(f, θ, φ)γ+(f, θ, φ)

]
α̃(f),

+
[
γ+(f, θ, φ)α×(f, θ, φ)− γ×(f, θ, φ)α+(f, θ, φ)

]
β̃(f),

+
[
α+(f, θ, φ)β×(f, θ, φ)− α×(f, θ, φ)β+(f, θ, φ)

]
γ̃(f), (1.28)

where θ and φ are the two parameters describing the sources location. The + and ×

terms in the brackets represent the antenna pattern functions of α, β and γ for the plus

and cross polarisations, respectively. Being formulated using the Sagnac they will be

sensitive to the orbital motions but this could possibly be handled in the same way as

the optimal TDIs by using the Michelson-type combinations.
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1.5.5 Computational approaches for time delay interferometry

Manually generating the time delay interferometry combinations is slow and inefficient

giving only a small set of possible combinations. The next obvious step is a computer-

based generation of these observables and two methods were presented for this which

are the algebraic approach introduced by Dhurandhar, Nayak and Vinet [24] and the

geometric approach by Vallisneri [77]. An overview of their methods and how they

adapt to the motions of LISA is presented this section.

1.5.5.1 Algebraic time delay interferometry

The algebraic approach is based on computational commutative algebra and provides a

mathematical foundation for the time delay interferometry [24, 43, 44, 68]. Starting with

the first generation assumption of a stationary static LISA array where all motion effects

are ignored, recall that the laser frequency noises contributions to the inter-spacecraft

measurements can be written as

yi(t) = Cj(t−Dk)− Ci(t), (1.29)

where Dk = Li/c represent the light travel time, offset, in arm k with length Lk. c is

the speed of light. Their approach was to focus on the delays in the three arms of the

antenna and form a polynomial with them. This is done by first replacing the shifted

time (t−Dk) with a shift operator Ek given by

Ekf(t) = f(t−Dk). (1.30)

Using this notation and ignoring the time component Equation 1.29 becomes

yi = EkCj − Ci. (1.31)

They grouped the six optical bench readings into two sets of readings of U i and V i

that represent those in each arm for the clockwise and counter-clockwise directions,

respectively. Here i represents the number of the recording optical bench. For example,

for spacecraft 1, the optical bench readings and corresponding U and V representations

are

y1 = E3C2 − C1, V 1 = C1 − E3C2,

y1′ = E2C3 − C1, U1 = E2C3 − C1, (1.32)
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where the counter-clockwise reading is the negative of the y1 that is, V 1 = −y1. The

other four combinations are

U2 = E3C1 − C2, U3 = E1C2 − C3,

V 2 = C2 − E1C3, V 3 = C3 − E2C1. (1.33)

Their aim was to find linear combinations of these with appropriate offsets applied

to each U i and V i that will lead to cancellation of the laser noise. The total delay,

the number of offsets to apply to t, would be a linear combination of the offsets Di

which they expressed as k1D1 + k2D2 + k3D3 where ki is an integer applied to the

corresponding offset Di. Using their shift notation this is Ek1
1 E

k2
2 E

k3
3 which, for the

static arms assumption, is a polynomial in the three variables (E1, E2, E3). Using pi and

qi to represent the polynomials associated with V i and U i, respectively, they rephrased

the problem of laser frequency noise cancellation as finding linear combinations of these

that will sum to zero which they gave as

3∑
i=1

[
piV

i + qiU
i
]

= 0. (1.34)

This provided a mathematical formulation of the laser frequency noise cancellation

problem. In order to obtain a complete set of solutions they avoided those that would

lead to higher order polynomials and aimed for a simpler set that formed what they

termed “the first module of syzygies”. They also pointed out that to satisfy Equation

1.34 all the coefficients of the laser frequency noises must cancel independently resulting

in a set of only three equations to be solved which they gave as

p1 − q1 + E12q2 − E13p3 = 0,

p2 − q2 + E23q3 − E21p1 = 0,

p3 − q3 + E31q1 − E32p2 = 0. (1.35)

They obtained a set of six independent generators dI which are those in the second

column of Table 1.1 [43] that can produce a complete set of solutions to Equation 1.34.

The elements for the noise canceling combinations or modules are linear combinations

of these set of generators [43, 44] which can be obtained from

X =
6∑
I=1

α(I)d
I , (1.36)

where α(I) are polynomial coefficients in Ei. These generators provide the coefficients
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Table 1.1: The generators for the TDI variables (noise canceling modules) using the algebraic approach.
The coefficients p and q are associated with the long arm data stream which include laser phase noise
and signal. Ei is a delay operator representing time offset in the arm i [43].

Generator Coefficients
p1, p2, p3, q1, q2, q3 r1, r2, r3

d1 E3(1− E3′E2), (E1E3 − E3′ ), (1− E3′E2), 0, 0, (1− E1E3E2) E3(E3′E2 − 1), E1E3(E3′E2 − 1), (E3′E2 − 1)

d2 E3′ (1− E3E1′ ), 0, (E1 − E1′E3′ ), (E3′ − E1E3), 0, E1(1− E3E1′ ) E3′ (E3E1′ − 1), E1E3′ (E3E1′ − 1), E1(E3E1′ − 1)

d3 0, (1− E1′E3), (E2 − E2′E1′ ), (E2′ − E3E2), (1− E3E1′ ), 0 E2′ (E3E1′ − 1), (E3E1′ − 1), E2(E3E1′ − 1)

d4 (E2′ − E3E2), (E2′E1 − 1), E2(E1E2′ − 1), 0, (E1E3E2 − 1), 0 E3E2E1(1− E2′E1), (1− E2′E1) E2(1− E2′E1

d5 (E3′E2 − 1), (E1′E3′ − E1), 0, (E3′E2 − 1), 0, (E1E2 − E1′ ) (1− E3′E2), E1(1− E3′E2), E1′ (1− E3′E2)

d6 (E3 − E2′E3′ ), 0, (1− E2′E1), 0, (E3′ − E1E3), (1− E2′E1) E3(E2′E1 − 1), E3′ (E2′E1 − 1), (E2′E1 − 1)

for pi and qi in Equation 1.34. Using this method the coefficients needed to obtain the

Sagnac α, ζ and Michelson Z combinations with no motion effects given in their first

paper [24] are

α = X3 = (1, E3, E1E3, 1, E1E2, E2),

ζ = X2 = (E1, E2, E3, E1, E2, E3),

Z = X1 = (E1E3 − E2, 0, E2
3 − 1, 0, E1E2 − E1, E

2
3 − 1). (1.37)

These are the offsets to apply to the U i and V i terms in Equation 1.34. Using the

Sagnac ζ as an example, to derive the traditional expression insert the corresponding

coefficients from Equation 1.37 into Equation 1.34 which gives

ζ = E1V
1 + E2V

2 + E3V
3 + E1U

1 + E2U
2 + E3U

3. (1.38)

Next the U i and V i terms are replaced with their corresponding optical bench readings

yi(t) giving

ζ = −E1y1(t)− E2y2(t)− E3y3(t) + E1y1′(t) + E2y2′(t) + E3y3′(t). (1.39)

The shift operator Ei is expanded to give

ζ = [y1′(t−D1) + y3′(t−D3) + y2′(t−D2)]

− [y1(t−D1) + y2(t−D2) + y3(t−D3)], (1.40)

which is the equation for the Sagnac ζ combination.

The algebraic approach survived the optical bench and orbital motion effects. Like

the conventional Michelson the directional dependence of the arm lengths that occurs

with the orbital motion is incorporated into the shift operator Ei. They used the double

notation ij for this but here this is replaced with the prime notation i′ to indicate the
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counterclockwise direction. They introduced three more offsets to account for this which

increased the size of the polynomial to six variables (E1, E1′ , E2, E2′ , E3, E3′). They

adjusted the expressions for U and V to include the motion and added an extra term

Zi for the internal readings z between the optical benches on a spacecraft which were

needed to the noise cancellation. This gave a new set of nine equations which are

U1 = E2′C̃3 − C̃1′ , U2 = E3′C̃1 − C̃2′ , U3 = E1′C̃2 − C̃3′ ,

V 1 = C̃1 − E3C̃2, V 2 = C̃2 − E1C̃3, V 3 = C̃3 − E2C̃1,

Z1 ≡ C̃1 − C̃1′ , Z2 ≡ C̃2 − C̃2′ , Z3 ≡ C̃3 − C̃3′ , (1.41)

where C̃i is the combination of the optical bench motions ∆i and the laser noises. For

example, for the noises in spacecraft 1 this is

C̃1 = C1 − ~∆1, C̃1′ = C1′ + ~∆1′ . (1.42)

The intra-spacecraft readings and corresponding Zi for spacecraft 1 are

z1 = C1 − C1′ + η1 − 2~∆1, z1′ = C1′ − C1 + η1 + 2~∆1′ , (1.43)

where Z is given by

Z1 =
1

2
(z1 − z1′) ≡ C̃1 − C̃1′ . (1.44)

The new equation to solved for obtaining laser frequency noise cancellation was

3∑
i=1

[
piV

i + qiU
i + riZ

i
]

= 0, (1.45)

where ri is the polynomial associated with Zi. The conditions for the noise cancellation

now involves six equations which are

p1 + E12q2 + r1 = 0, E13p3 + q1 + r1 = 0,

p2 + E23q3 + r2 = 0, E21p1 + q2 + r2 = 0,

p3 + E31q1 + r3 = 0, E32p2 + q3 + r3 = 0, . (1.46)

The number of generators was the same but the number of coefficients now included

extra terms for r given in column three of Table 1.2 and the set of generators became

dI(pi, qi, ri). The noise canceling combinations are obtained by using Equation 1.36 as

shown previously.

This method depends on forming polynomials with the offsets in each arm and with
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Table 1.2: The coefficients for the Sagnac α and ζ and Michelson X adjusted for optical bench and
orbital motions [43].

TDI Coefficients
[p1, p2, p3, q1, q2, q3, r1, r2, r3]

α1

[
(1− E3′E2′E1′ ), E3(1− E3′E2′E1′ ), E3(E1(1− E3′E2′E1′ ), (1− E3E2E1), E2′E1′ (1− E3E2E1), E2′ (1− E3E2E1),
E3′E3E2E2′E1′E1 − 1, E3(E3′E2′E1′ − 1) + E2′E1′ (E3E2E1 − 1), E2′ (E3E2E1 − 1) + E3E1(E3′E2′E1′ − 1)

]
ζ1

[
E1′ (E3′E2′ − E1), E2′ (E3E2 − E1′ ), E3(E3′E2′ − E1), E1′ (E3E2 − E1′ ), E2′ (E3E2 − E1′ ), E3(E3′E2′ − E1),

(E1′E1 − E3′E3E2E2′ ), E2′ (E1′ − E3E2) + E3E1′ (E1 − E3′E2′ ), E3(E1 − E3′E2′ ) + E2′E1(E1′ − E3E2)
]

X
[
(1− E3E1′ ), 0, E1′ (E2′E1 − 1), (1− E2′E1), E1(E3E1′ − 1), 0, (E2E2′ − 1)(1− E3′E2), 0, 0

]

the simple static array this results in three values and with rotation this requires six.

The flexing introduces a time dependency and hence the possible values for these offsets

are no longer a fixed number. So forming polynomials of these is no longer a simple

matter and hence it does not easily adapt to that case [77, 68].

1.5.5.2 Geometric time delay interferometry

This method was presented by Vallisneri [77] and is based on a physical interpretation of

the time delay interferometry observables as synthesized interferometric measurements.

He arranged the laser noise cancellation at a bench for a particular time t into four

basic groups based on the beams arrival and departure at the optical benches. He gave

three possible types of combinations for the two beams consisting of both simultane-

ously arriving at a bench, both simultaneously departing from a bench, and one arriving

and one departing simultaneously as illustrated in Figure 1.16a. He indicated the di-

rection of the measurements using arrows with the arrowhead terminating where they

are taken. At points where the same parts of the arrows met, that is, two tails or two

heads, the measurements are subtracted and for a combination of a head and a tail the

measurements are added. According to Vallisneri, laser frequency noise cancellation is

obtained by forming a closed loop of these measurements. This was formed by lining up

the arrows which represent the fractional frequency measurements y as head-to-head,

tail-to-tail or head-to-tail. Figure 1.16b gives his illustration one the Michelson time

delay interferometry combination using this method. These loops were enumerated com-

binatorially using an exhaustive search and he pointed out that the generation of the

combinations with 24 links took 104 CPU hours [77]. The shortest combinations that he

obtained for a real LISA model had 16 link terms. He listed all the second generation

TDI combinations with 16 links which contained types resembling the Michelson (X),
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Beacon (P), Monitor (E), and Relay (U) observables. One example of the Michelson

X-type observables is

X1 = y132;322′22′3′3 + y231;22′22′3′3 + y123;2′22′3′3 + y321;22′3′3 + y123;2′3′3 + y321;3′3

+ y132;3 + y231 − y32′1 − y123;2′ − y231;22′ − y132;322′ − y231;3′322′ − y132;33′322′

− y321;3′33′22′ − y123;2′3′33′322′ , (1.47)

where yijk is called a link and it indicates a reading taken in the direction from i to j

to k as recorded by optical bench k over arm j. Transforming this to the match the

structure of the Michelson previously used this becomes

X1 =
{

[y1 + y2′;3]− [y1′ + y3;2′ ]
}

+
{

[y1′ + y3;2′ ];3′3 − [y1 + y2′;3];22′
}

+
{

[y1′ + y3;2′ ];22′3′3 − [y1 + y2′;3];3′322′
}

+
{

[y1 + y2′;3];22′22′3′3 − [y1′ + y3;2′ ];3′33′322′
}
. (1.48)

This approach is similar to the conventional method of generating the time delay

interferometry observables in that it finds ways of combining the measurements based

on their structure that leads to laser frequency noise cancellation. The conventional

approach is done manually and uses instinct to determine how to combine them to

obtain the laser noise cancellation. The geometric method replaced instinct with a set of

rules for combining the basic measurements that became the basis for a computer-based

search for the required combinations. So it can be thought of as a computerisation of the

conventional approach using a set of rules instead of instinct. The geometric method,

unlike the others, had no problems with accounting for the real motions of LISA as this

was one of its goals. The other goal was to produce all possible laser noise canceling

combinations.

1.5.6 Summary

This section dealt with the two main problems affecting LISA’s data which are the

overwhelming size of its laser frequency noises and the very large number of overlap-

ping sources. The source confusion problem was dealt with by the Mock LISA Data

Challenges (MLDC) while the laser frequency noises were handled by the time delay

interferometry observables which are linear combinations of LISA’s raw data that result

in their cancellation. The original time delay interferometry observables were manually
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(a)

(b)

Figure 1.16: The geometric TDI approach of Vallisneri. (a) Illustrates the four different possible ways
of canceling the laser phase noise at time t. (b) Illustrates now the method reproduces the cancellation
in Michelson TDI observable. Reproduced from Vallisneri [77]

generated and based purely on instinct resulting in a small number of the possible com-

binations. This was improved on by the computer-based solutions using the algebraic

and geometric approaches to the problem. The algebraic approach formulated the prob-

lem as a polynomial consisting of the delays in the arms which was viable for static case

producing, at most, six variables. However, it did not adapted easily to time varying

arm lengths. The geometric approach could be thought of as a computerisation of the

manual process in the sense that it obtains the laser noise cancellation by searching

for ways of combining the raw data using a set of rules to guide the search instead of

instinct. Unlike the algebraic approach, it could produce the required observables even

for time varying arm lengths which was one of its goals.

1.6 Simplifying LISA data analysis

The solutions given in the previous section showed that LISA, regardless of these crip-

pling problems, was still a viable project. However, this led to a divide-and-conquer

approach which may not be necessary for doing LISA data analysis and the comput-

erisation of the generation of the time delay interferometry observables pointed to the

possibility of linking the two techniques. This could lead to not only a simpler analysis

process but may also provide a more efficient method of obtaining astronomy from the

raw data with its numerous sources and overwhelming laser phase noises.

Recall that the reason these observables was that they are necessary in order to
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provide the required sensitivity for obtaining useful information from LISA data [24].

However, explicitly generating these observables may not be the only way to meet this

criterion. In trying to find a better approach a question to ask is whether there is

another way of doing the analysis without having to create these observables. In other

words, is there a process that would transform the raw data which are overwhelmed

with laser frequency noise to forms that are free from these noises? Romano and Woan

[54] presented such an approach which is based on eigendecomposition and principal

components.

1.6.1 Data transformation using eigenvectors

Consider data generated from two variables x and y that have a linear relationship as

shown in Figure 1.17a. This data can be transformed to a new basis that results in no

correlations as shown in the Figure 1.17b. This kind of transformation re-expresses the

data in terms of axes that are aligned with the spread of the values in the plots [61, 37].

In the figure the large spread in the values is indicated by the arrow labeled v1 with

arrow v2 indicating a smaller spread in a direction that is perpendicular to v1 which is

assumed to be due to measurement noise [61, 37]. This spread of the values for each

variable about a mean value can be expressed with a single value called the variance

which can be determined from

var(x) =
1

N

N∑
i=1

(xi − µx)2, var(y) =
1

N

N∑
i=1

(yi − µy)2, (1.49)

where µx and µy are the means of x and y, respectively. The linear relationship between

the two variables can also be described by a single value called the covariance which

can be obtained from

cov(x, y) = cov(y, x) =
1

N

N∑
i=1

(xi − µx)(yi − µy). (1.50)

These values can be conveniently expressed in a 2× 2 covariance matrix, Cxy(τ), which

can be written as

Cxy(0) =

 var(x) cov(x, y)

cov(x, y) var(y)

 . (1.51)

τ is a lag term indicating how the covariances are measured which is zero in this matrix.

This assumes that the only non-zero covariances that exists between these variables are
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(a) (b)

Figure 1.17: Scatter plot showing correlated (a) and uncorrelated (b) data. The arrows v1 and v2
indicate the directions of the large and small variances respectively in directions that are perpendicular
to each other.

when they are aligned exactly that is, it is a comparison between x1...xn and y1...yn.

This will be explained in more detail in Chapter 3. It turns out that a certain type of

decomposition of the covariance matrix results in a set of vectors that align with the

variances in the data. These are known as eigenvectors and the number of these is equal

to the size of the matrix. Since the eigenvectors are aligned with the variances in the

data their magnitudes, known as eigenvalues, express the variances in the data. The

data can be transformed to the new basis through the eigenvectors [61, 37].

1.6.2 Principal component analysis

The fact that the magnitudes of the eigenvalues are related to the variances in the

data allows them to be used to determined which of the variables provides important

information. Principal component analysis sorts these eigenvalues in descending order

of their magnitudes and applies a rank according to the order in which they occur. The

largest eigenvalue, associated with the largest variance, is the first principal component

and so on. A subset of these principal components can be used to define the data [37].

So the question is whether the eigenvectors can be used to transform the raw data

that is overwhelmed with laser phase noise to ones that do not contain the noise. In

the data analysis process it is the noise in the LISA’s raw data that are used in the

statistical inference. The total noise is a combination of correlated and uncorrelated
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instrumental noises. The raw data, because they are the outcome of the beating of the

lasers of the two optical benches at the end of each arm, will contain common laser

frequency noises which will result in correlations occurring between the different data.

The number and type of correlations will depend on whether the lasers are allowed

to operate independently or phase locked in order to simulate splitting and reflection.

The independent noises are those associated with the photodetectors which will be the

limiting noises of the antenna. The covariance matrix of the raw data will capture these

correlations. The correlations between the laser noises exist at different time offsets so

that the covariance matrix will have to account for correlations occurring between the

different times of the data. The size of the matrix will reflect the size of the data and

so will the number eigenvalues and eigenvectors. After the transformation to the new

basis, the data will reflect the characteristic of the eigenvalues with largest containing

laser frequency noises while the smallest expected to only contain the photodetector

noise.

1.6.3 Principal component example for LISA data - toy model

The technique will be illustrated using the simple model of LISA used in Romano and

Woan [54] and will use phase shifts measurements as used in that paper. In their

toy example each optical bench data consisted of a common laser phase noise term p,

an independent photodetector noise term ni and a gravitational wave signal hi. The

readings for two photodetectors s1 and s2 can be written as

s1(t) = p(t) + n1(t) + h1(t), s2(t) = p(t) + n2(t) + h2(t). (1.52)

Rearranging these in terms of the instrumental noises gives

s1 − h1 = p+ n1, s2 − h2 = p+ n2, (1.53)

where the times have been ignored since all terms have the same value. With this

simple model the correlations in the data are due to the same noise occurring in the

two readings existing at the same time t requiring only the zero lag covariances giving a

2× 2 covariance matrix. Assuming that the laser frequency noises have zero means and

variances σ2
p and that the independent photodetector noises also all have zero means but

with variances of σ2
n, then the variances and cross-covariance of the two photodetector



36 Chapter 1. Introduction

readings are

var(s1) = 〈(p+ n1)(p+ n1)〉 = 〈p2〉+ 〈n2
1〉 = σ2

p + σ2
n,

var(s2) = 〈(p+ n2)(p+ n2)〉 = 〈p2〉+ 〈n2
2〉 = σ2

p + σ2
n,

cov(s1, s2) = 〈(p+ n1)(p+ n2)〉 = 〈p2〉 = σ2
p, (1.54)

and the covariance matrix is

C =

σ2
p + σ2

n σ2
p

σ2
p σ2

p + σ2
n

 . (1.55)

The eigenvalues for this matrix are easy to compute which will be illustrated in Chapter

4. Here, only the values will be given which are 2σ2
p+σ2

n and σ2
n. The eigendecomposition

of the covariance matrix will transformed it into another matrix C ′ with these two values

occurring the main diagonal giving

C ′ =

2σ2
p + σ2

n 0

0 σ2
n

 . (1.56)

The absence of off diagonal terms indicates that there will no longer be any correlations

between the two sets of data when they are expressed in the new basis defined by

the eigenvectors. The eigenvectors for these eigenvalues are (1, 1) and (1,−1). The

method for generating these will also be shown in Chapter 4. The correlated data are

transformed to the new basis using a matrix of these eigenvectors by1 1

1 −1

s1 − h1

s2 − h2

 =

(s1 − h1 + s2 − h2)

(s1 − h1 + s2 − h2)


=

(s1 + s2)− (h1 + h2)

(s1 − s2)− (h1 − h2)

 . (1.57)

To see the effects of the transformation on the noises in the data substituting for s1 and

s2 using Equation 1.52 gives

s1 + s2 = p+ n1 + h1 + p+ n2 + h2

= 2p+ (n1 + n2) + (h1 + h2),

s1 − s2 = p+ n1 + h1 − p− n2 − h2

= (n1 − n2) + (h1 − h2), (1.58)

where the transformed data have different noise contributions. The one that is required

is s1 − s2 which does not contain any laser frequency noise. Recall that the time delay



37 Chapter 1. Introduction

interferometry observables are linear combinations of the raw data that lead to the

cancellation of laser phase noises. In this example the difference of the two readings

(s1−s2) does exactly that and is therefore a simple time delay interferometry observable.

So that the principal component approach can be used to generate these observables.

The difference between this and the other computer-based approach is that the time

delay interferometer observables are generated from the data using the data covariance

matrix. The eigendecomposition of this matrix produces the eigenvectors needed for

transforming the data into those that lead to the cancellation of the laser frequency

noises.

This technique should be able to handle real LISA data since it uses the data and its

covariance matrix which will also incorporate the real behaviour of LISA. The covariance

matrix will be generated algebraically and its computation is based on knowledge of the

arm lengths which is also true for the conventional time delay interferometry observables

[77, 78]. The other contributions to the covariance matrix are the instrumental noise

variances. These will not be available during the measurements and will be based on

assumptions made about the noises.

The technique simplifies the data analysis by using the eigendecomposition of the

data covariance matrix in order to obtain the data with the required sensitivity. A

potential limitation will be the ease of computing the eigenpairs (eigenvalue with its

eigenvector). The more realistic inter-spacecraft readings for LISA will contain two sets

of laser frequency noises at different times which can be written as

si(t) = pj[t−Dk]− pi(t) + ni(t), (1.59)

leading to correlations between the noises at different times requiring a covariance matrix

that will account for the cross-correlations between the different times and hence will

no longer be a simple 2 × 2 matrix but one that is the size of the data. The effects of

the size of the matrix on the computation times using algebraic and numeric methods

will investigated in Chapter 6.

The whole point of LISA is to obtain information about gravitational wave sources in

its data which is obtained through statistical inference based on the instrumental noises

in its data [54]. With the conventional time delay observables this is done on the previ-

ously generated observables. The fact that the principal component approach directly
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acts on the data means that the “generation” of these observables can be incorporated

into the inference which will be illustrated in the next section.

1.6.3.1 Using the principal components in the data analysis

The framework used for the inference in Romano and Woan [54] is Bayesian and in this

framework parameters can be assigned probabilities. This will be explained in Chapter

5. The uncertainty in the estimates of the parameters a is obtained from the posterior

probability which is defined by Bayes’ theorem as

p(a|d,M)=
p(a|M) p(d|a,M)

p(d|M)
, (1.60)

where d is the data, M is the signal model and p(a|M), p(d|a,M) and p(d|M) are the

prior, likelihood and evidence, respectively. For parameter estimation the evidence (the

denominator) will be a constant since it is computed for all the values of the parameters

using the same model and data. Its effect will be to normalise the posterior probability

therefore, it can be ignored. The prior describes the distribution of the values of the

parameters. If we assume equal probabilities for all values for the parameters by using

a uniform prior then this will also be a constant which can be ignored. With these

assumptions Equation 1.60 can be simplified to a proportionality between the posterior

probability and the likelihood that is

p(a|d,M) ∝ p(d|a,M). (1.61)

The data appear in the likelihood as noise. If the laser phase noise and the photodetector

noises are assumed to be Gaussian which is completely defined by the covariance matrix,

then the likelihood function for the noises in the two detectors s1 and s2 can be defined

as

p(s− h) =
1

(2π)N/2|C|1/2
exp
(
− 1

2
[s− h]TC−1[s− h]

)
, (1.62)

where |C| is the determinant of the matrix and is a constant. The covariance matrix

occurs in the exponential term along with the data as

Q = [s− h]TC−1[s− h], (1.63)
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which is where the principal components will enter inference. The eigendecomposition

of the covariance matrix used by the principal component approach can be written as

CV = V Λ, (1.64)

where Λ is a diagonal matrix containing the eigenvalues and V is the corresponding

matrix of eigenvectors. Rearranging this equation to obtain C gives

C = V ΛV −1, (1.65)

and its inverse is

C−1 = V −1ΛV. (1.66)

Inserting this into the Equation 1.63 gives

Q = [s− h]TV −1ΛV [s− h], (1.67)

where the product of the eigenvector and the data occurs as V [s−h] which is the basis

transformation shown in Equation 1.57 that produced the laser noise free data.

Another point to note is that the inverse transforms the principal components. The

large values will now become the small. For example, with the noise variances given by

σ2
p = 100 and σ2

n = 1 the inverse becomes

C−1 =

 1
201

0

0 1
1

 =

0.005 0

0 1

 . (1.68)

The effect on the data is(s1 + s2)− (h1 + h2)

(s1 − s2)− (h1 − h2)

T 0.005 0

0 1

(s1 + s2)− (h1 + h2)

(s1 − s2)− (h1 − h2)


= 0.005

[
(s1 + s2)− (h1 + h2)

]2
+
[
(s1 − s2)− (h1 − h2)

]2
= 0.005

[
(2p+ (n1 + n2)

]2
+
[
n1 − n2

]2
, (1.69)

which diminishes the contributions from the terms containing the laser noise. The

greater the separation between the variances of the two types of noises the smaller will

be the contribution from this term. The laser frequency noise is expected to be 107

times greater than the detector noise which will result in even smaller values for these

in the inverse.
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1.6.3.2 Eigendecomposition in the frequency domain

As mentioned previously, the simple model only had common noises at the current time

p(t) which resulted in a simple 2× 2 covariance matrix. LISA’s raw data includes laser

noises from two different sources with two different times t and t−Di. This changes the

covariance matrix which now has to include the covariances occurring at different times

because of the time offset and is reflected by including a lag term τ . The covariance

matrix C(τ) will now depend on the size of the data and the number of eigenvalues will

reflect this. So even for a day’s data sampled at 1 Hz the number of eigenvalues for

the six optical benches will be ≈ 5 × 105 requiring the decomposition of a very large

covariance matrix.

There are methods for generating the eigenvalues that take advantage of the structure

of the covariance matrix. For the simple model the structure of the matrix in the time

can be defined as a symmetric block banded Toeplitz matrix. In the simplest case this

matrix contains sub- and super-diagonals separated from the main by an offset related

to the time delay in the data. The separation of the outermost diagonal is defined by

the bandwidth. Trench [74, 73] presented a method for generating the eigenvalues that

is based on this bandwidth instead of the size of the matrix which could be useful for

the time domain covariance matrix.

The frequency domain offers the potential to simplify this as, for the toy model,

there are no correlations between frequencies producing a covariance matrix with values

occurring in blocks along the main diagonal. The size of the blocks reflect the number of

optical benches and for the simple two detector model will be 2. The eigendecomposition

of a block diagonal matrix is equal to the eigendecomposition of the individual blocks

and so is the inverse. How trivial this is depends on the size of the blocks. For LISA

this will reflect the number of optical benches and will therefore be 6 × 6. This offers

the potential to simplify the process by changing it to a block-wise decomposition of

smaller matrices. This partitioning of the decomposition also allows the possibility for

parallel computation of the eigenpairs.
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1.6.4 The scope of this thesis

Romano and Woan [54] applied the method to a simple model for LISA assuming

unequal but fixed arm lengths and times were restricted to integer values. The noises

were assumed to be stationary with each type having the same values for the variances

of σ2
p for the laser and σ2

n for the photodetector noises. They used a small covariance

matrix with only five values for the times from which they obtained nine degenerate

eigenvalues that were free from laser phase noise. The degeneracy was due to the equality

of the photodetector noise variances. Using a few of the eigenvectors associated with

these eigenvalues they were able to generate one Sagnac combination which hinted at a

possible link between the eigenvectors and time delay interferometry combinations. In

this thesis we not only prove this connection but also that the two approaches to LISA

data analysis are equivalent in that they provide the same outcome in terms of the data

sensitivity and results for the signal extraction.

1.6.5 Outline

In all the literature about the conventional time delay interferometry observables, be-

cause they were manually generated, they are just listed. To our knowledge there are

no illustrations of the process of deriving them or explanations of how they work, there-

fore, we begin by doing this in Chapter 2 using the Sagnac and Michelson time delay

interferometry combinations. The effects of LISA’s orbital motion on the generation of

the time delay interferometry observables is also included to illustrated why the Sag-

nacs fail to cancel the laser phase noises while the Michelson still cancels them under

these conditions. The principal component analysis is performed on the covariance and

power spectral density matrices of the instrumental noises in the raw data and Chapter

3 shows how these are generated. The conventional way to do analysis on LISA data

is through the time delay interferometry observables which have to be generated first

before any inference can be performed. This method also uses these matrices, therefore,

Chapter 3 will include a covariance analysis of the AET observables for a comparison

with the results using the principal components. The principal components are obtained

through the eigendecomposition of the noise covariance and power spectral density ma-

trices which is explained in Chapter 4 using the conventional characteristic equation
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method. We also compare the algebraic and numeric computation of the eigenpairs in

terms of their computation times and results. In this chapter we prove the relationship

between the laser noise free eigenvectors and the time delay interferometry observables

in the time and frequency domains. We illustrate the advantage of using the principal

component approach in the analysis using a Bayesian approach which is done in Chapter

5. In the same chapter we also include the analysis using the time delay interferometry

observables and compare the results from both methods. In Chapter 6 the results of the

investigations of a more realistic model of LISA data are presented specifically those re-

lated to the noise variances, arm lengths and laser phase-locking as these directly affect

the covariance matrix. The aim is to see how the principal components approach han-

dles real LISA data and in doing so determine which of the properties of LISA has the

most effect on the eigenvalues. We are particular interested in finding out what would

break the method which would mean the prevention of the splitting of the eigenvalues

to produce those that are free from laser phase noises which is essential for its success.

Our conclusions are presented in Chapter 7.



Chapter 2

Understanding time delay interferometry

This chapter contains the author’s interpretation of the cancellation of laser noise using

time delay interferometry and how it is used to generate the Sagnac and unequal-

arm Michelson observables. The effect of the phase-locking of the lasers on the noise

cancellation in these observables is also shown. To illustrate how these observables

adapt to real LISA the cancellation is performed with the directional dependence of the

arm lengths caused by the rotational motion. This is then used to explain the breaking

of the Sagnac observables by the motion of the antenna.

2.1 Laser phase noise cancellation in an unequal-

arm Michelson interferometer

One way to understand the laser phase noise problem in LISA and the time delay

interferometry approach to canceling this noise is to illustrate what happens in a simple

Michelson interferometer when the arms have equal and unequal lengths. Figure 2.1

is a schematic of a conventional Michelson interferometer consisting of a single laser, a

beam splitter, a photodetector and two mirrors. The beam from the laser arriving at

the beam splitter is divided equally and diverted to the two perpendicular arms. At the

end of these arms the beams are reflected by the mirrors back towards the beam splitter

where they are redirected towards the photodetector. Since the beam is only separated

at the splitter, the optical path lengths will only be measured from that position to the

photodetector. The lengths of the arm lengths are given by Li and the corresponding

light travel times are Di = Li/c and c is the speed of light.

The laser phase noise pi associated with a particular arm that arrives at the pho-

todetector (PD) at time t is the same noise that left the laser at a time t minus the

total travel time in that arm Di where i = {I, II} is the arm number. The total travel

43
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Figure 2.1: Schematic of a conventional Michelson interferometer with orthogonal arms (I, II), a beam
splitter (S), two mirrors (M1, M2) and a photodetector (PD). The beams are separated for illustration.

times in the arms are

DI = 2D1 +D3, DII = 2D2 +D3. (2.1)

With equal arm lengths (D1 = D2 = D) the total times become

DI = DII = 2D +D3, (2.2)

which are the same so that the laser noise arriving at the photodetector for time t will

be the same and the phase measurements will be

slaserI (t) = p(t−DI) = p(t− 2D −D3),

slaserII (t) = p(t−DII) = p(t− 2D −D3). (2.3)

Since they are the same they can be canceled by differencing the two readings giving

slaser(t) = slaserI (t)− slaserII (t)

= p(t− 2D −D3)− p(t− 2D −D3)

= 0. (2.4)

With unequal arm lengths the difference in the optical path lengths means that phase

measurements recorded at the photodetector at the same time are

slaserI (t) = p(t−DI) = p(t− 2D1 −D3),

slaserII (t) = p(t−DII) = p(t− 2D2 −D3), (2.5)

which will contain different noises because of the different offsets of D1 and D2. This

means that the direct differencing of the readings for the same time t used with equal
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(a) (b)

Figure 2.2: Schematic of an unequal-arm Michelson interferometer with a beam splitter (S), mirrors
(M1, M2) and photodetector (PD). The arm lengths are L1 and L2. This difference in arm lengths
causes a difference in the arrival times at the photodetector with the beam from the shorter arm arriving
before the other.

arm lengths will no longer cancel the laser noise.

2.1.1 Unequal arm laser noise cancellation

The inequality of the arm lengths changes the noises that arrive at the photodetector

for a particular time t because they alter the arrival times in each arm. The same noises

still exist in the two arms but are just shifted by the difference between their lengths.

The noise cancellation can still be achieved but by slightly different methods. The two

possible ways of doing this require recording the readings separately in order to track

the noise and then difference them.

The first method is to difference the shifted readings of the two arms by a time that

is equal to the difference in the arm lengths. This is illustrated in Figure 2.2 where

arm I is longer than arm II. In this case when the noise in the arm II (shorter) has

arrived at the photodetector the same noise in arm I has only reached a point A which

is a distance ∆L from the detector (Figure 2.2a). The noise in arm I will arrive at the

detector at a later time (t + ∆D). To cancel the noise, either difference the reading in

Arm I at time t with that in Arm II recorded at an earlier time later time (t − ∆D)
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(Figure 2.2b) or difference the reading in Arm II at time t with that of Arm I taken at

an later time (t+ ∆D) (Figure 2.2a). For the first case the laser phase noises are

slaserI (t) = p(t), slaserII (t−∆D) = p(t−∆D), (2.6)

and their difference is

slaserI (t)− slaserII (t−∆D) = p(t)− p(t−∆D)

= 0, (2.7)

which will result in cancellation. The times will be different but the laser noises will

now be the same. The aim is not to have the same times just the same noises.

The second method is to simulate equal arm lengths by making the light travel time

in each optical path the same. This can be done by offsetting each reading by the light

travel time in the opposite arm. For example, the total time in Arm I is (2D1 + D3)

and in Arm II it is (2D2 + D3) where they differ by twice the times in their respective

arms. To equalize the times add the times of the opposite arm so that the times will be

(2D1 +D3 + 2D2) for Arm I and (2D2 +D3 + 2D1) for Arm II. The phase readings for

each arm will be at times t minus these offsets which are

slaserI [t− (2D1 +D3 + 2D2)] = p(t− 2D1 −D3 − 2D2),

slaserII [t− (2D2 +D3 + 2D1)] = p(t− 2D2 −D3 − 2D1), (2.8)

where the same times result in the same noises. This has the advantage of having same

noises with the same times. Practically, since both these methods rely on the differencing

of readings taken at earlier and later times they are post-processing techniques. Both

methods are used in the time delay interferometry observables.

2.2 Laser noise cancellation using time delay inter-

ferometry

The structure of LISA enables it to simulate different types of interferometers such

as the Michelson and the Sagnac. The Michelson interferometer compares readings

in two arms while the Sagnac compares readings along two closed paths in opposite

directions. One way to approach the laser cancellation is to simulate what occurs in
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Figure 2.3: A schematic diagram of LISA showing the notation used in the labeling the arms, optical
benches and spacecraft.

these interferometers. Initially, the combinations are generated for a stationary rigid

LISA array with three arm lengths of L1, L2 and L3 as shown in Figure 2.3. The lasers

on each spacecraft are assumed to be phase-locked to each other resulting in only three

independent laser phase noises p1, p2 and p3.

Both these assumptions will be relaxed by removing the phase-locking and introduc-

ing a rotational motion in the antenna to see the effects on the cancellation of the noise

and the creation of the observables. The rotational motion introduces a directional

dependence of the arm lengths. The observables that will be generated are the Sagnac

ζ and α and the Michleson X.

2.2.1 Fully symmetric Sagnac

Before even simulating either of the interferometers, an examination of the structure of

the optical bench readings can give a idea of how to approach the cancellation. The

readings for each optical bench is a combination of laser beam received from the other

spacecraft at the opposite end of adjacent arm and its local beam. This means that

there are two laser phase noises occurring in each reading with times separated by the
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light travel times in the arms. The readings for all six benches are

s1(t) = p2(t−D3)− p1(t),

s1′(t) = p3(t−D2)− p1(t),

s2(t) = p3(t−D1)− p2(t),

s2′(t) = p1(t−D3)− p2(t),

s3(t) = p1(t−D2)− p3(t),

s3′(t) = p2(t−D1)− p3(t). (2.9)

The phase readings si with the same numbers are for the same spacecraft with the primed

and unprimed numbering indicating the right and left optical benches, respectively. The

phase-locking of the lasers on each spacecraft means that the phase noises for their

two optical benches are the same and these are reflected in the noises at the current

times pi(t). So that they can be canceled by differencing their readings. Following the

convention of subtracting left from right the differenced readings for each spacecraft are

s1′(t)− s1(t) = p3(t−D2)− p1(t)− p2(t−D3) + p1(t)

= p3(t−D2)− p2(t−D3),

s2′(t)− s2(t) = p1(t−D3)− p2(t)− p3(t−D1) + p2(t)

= p1(t−D3)− p3(t−D1),

s3′(t)− s3(t) = p2(t−D1)− p3(t)− p1(t−D2) + p3(t)

= p2(t−D1)− p1(t−D2). (2.10)

The remaining noises contain two copies of the same noises but with different offsets

and with opposite signs. Summing the readings in Equation 2.10 and grouping the same

noises gives

[s1′(t)− s1(t)] + [s2′(t)− s2(t)] + [s3′(t)− s3(t)]

= p1(t−D3)− p1(t−D2) + p2(t−D1)− p2(t−D3)

+ p3(t−D2)− p3(t−D1). (2.11)

This is where the method of equalising the times in the readings by offsetting the
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Table 2.1: The noises remaining in Equation 2.11 with their parent optical benches and the offsets
needed to cancel them in each reading.

Phase noise Parent Shifted Shifted
optical bench phase noise optical bench reading

p1(t−D3) s2′ (t) p1(t−D3 −D2) s2′ (t−D2)
p1(t−D2) s3(t) p1(t−D2 −D3) s3(t−D3)

p2(t−D1) s3′ (t) p2(t−D1 −D3) s3′ (t−D3)
p2(t−D3) s1(t) p2(t−D3 −D1) s1(t−D1)

p3(t−D2) s1′ (t) p3(t−D2 −D1) s1′ (t−D1)
p3(t−D1) s2(t) p3(t−D1 −D2) s2(t−D2)

different light arms is used. For example, for noises p1(t − D3) and p1(t − D2) this

requires offsetting the first by D2 and the second by D3. This means offsetting the

optical bench readings where the noises originated which, for laser noises p1(t−D3) and

p1(t−D2), are s2′ and s3, respectively. The remaining noises in Equation 2.11 and their

parent readings are given in Table 2.1. Applying the shifts as shown in the table gives

s1(t−D1) = p2(t−D3 −D1)− p1(t−D1),

s1′(t−D1) = p3(t−D2 −D1)− p1(t−D1),

s2(t−D2) = p3(t−D1 −D2)− p2(t−D2),

s2′(t−D2) = p1(t−D3 −D2)− p2(t−D2),

s3(t−D3) = p1(t−D2 −D3)− p3(t−D3),

s3′(t−D3) = p2(t−D1 −D3)− p3(t−D3). (2.12)

This not only shifts the noises we are trying to cancel but also shifts the local noises

noises that were canceled. Luckily the local phase noises will still have the same times

needed for their cancellation. The process of first differencing the readings on the same

spacecraft with these new offsets is repeated and then summed to obtain

[s1′(t−D1) −s1(t−D1)] + [s2′(t−D2)− s2(t−D2)] + [s3′(t−D3)− s3(t−D3)]

= p3(t−D2 −D1)− p1(t−D1) + p2(t−D1 −D3)− p3(t−D3)

+ p1(t−D3 −D2)− p2(t−D2)− p2(t−D3 −D1) + p1(t−D1)

− p3(t−D1 −D2) + p2(t−D2)− p1(t−D2 −D3) + p3(t−D3)

= 0, (2.13)

where all the laser noises have been canceled. Grouping the terms in the above combi-
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nation in terms of signs gives

[s1′(t−D1) + s3′(t−D3) + s2′(t−D2)]

−[s1(t−D1) + s2(t−D2) + s3(t−D3)], (2.14)

which simulates a Sagnac interferometer. The switching of s2′(t) and s3′(t) is to show the

direction of the path. This arrangement is the fully symmetric Sagnac ζ. The process

shows that LISA naturally simulates a Sagnac interferometer. The final equation is

ζ(t) = s1′(t−D1) + s3′(t−D3) + s2′(t−D2)

− s1(t−D1)− s2(t−D2)− s3(t−D3). (2.15)

This process could have been achieved by simulating a Sagnac interferometer from

the outset where the readings are combined as the total paths measured in opposite

directions. This is done by differencing the sums of the clockwise and counter-clockwise

readings to obtain

s1′(t)+s3′(t) + s2′(t)− s1(t)− s2(t)− s3(t)

= p3(t−D2)− p1(t) + p2(t−D1)− p3(t) + p1(t−D3)− p2(t)

− p2(t−D3) + p1(t)− p3(t−D1) + p2(t)− p1(t−D2) + p3(t)

= p1(t−D3)− p1(t−D2) + p2(t−D1)− p2(t−D3)

+ p3(t−D2)− p3(t−D1), (2.16)

which is the same result as in Equation 2.11. To cancel the noises follow the same

process that was used for that equation.

2.2.1.1 Laser noise cancellation without phase-locking

The phase-locking of the lasers on each spacecraft had the advantage of allowing the

cancellation of their local laser noises by differencing their inter-spacecraft optical bench
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readings. With independent lasers the inter-spacecraft readings are

s1(t) = p2′(t−D3)− p1(t),

s1′(t) = p3(t−D2′)− p1′(t),

s2(t) = p3′(t−D1)− p2(t),

s2′(t) = p1(t−D3′)− p2′(t),

s3(t) = p1′(t−D2)− p3(t),

s3′(t) = p2(t−D1′)− p3′(t), (2.17)

where there are no longer any common noises between the optical benches on the same

spacecraft and differencing them will not be useful in canceling any noises. One way

to proceed is to try to recover the combination that was derived with phase-locking by

starting with that equation which is

ζ(t) = s1′(t−D1) + s3′(t−D3) + s2′(t−D2)

− s1(t−D1)− s2(t−D2)− s3(t−D3), (2.18)

where the new phase readings are

s1(t−D1) = p2′(t−D3 −D1)− p1(t−D1),

s1′(t−D1) = p3(t−D2 −D1)− p1′(t−D1),

s2(t−D2) = p3′(t−D1 −D2)− p2(t−D2),

s2′(t−D2) = p1(t−D3 −D2)− p2′(t−D2),

s3(t−D3) = p1′(t−D2 −D3)− p3(t−D3),

s3′(t−D3) = p2(t−D1 −D3)− p3′(t−D3). (2.19)

Substituting these into Equation 2.18 and rearranging the terms to match the times

instead of the noises gives

s1′(t−D1) + s3′(t−D3) + s2′(t−D2)− s1(t−D1)− s2(t−D2)− s3(t−D3)

= p1(t−D1)− p1′(t−D1) + p1(t−D3 −D2)− p1′(t−D2 −D3)

+ p2(t−D2)− p2′(t−D2) + p2(t−D1 −D3)− p2′(t−D3 −D1)

+ p3(t−D3)− p3′(t−D3) + p3(t−D2 −D1)− p3′(t−D1 −D2).

(2.20)
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The noises are different on each spacecraft but have the same times, for example, p1(t−

D1) and p1′(t−D1). Canceling the noise now requires the measurements taken between

the two optical benches on each spacecraft, the intra-spacecraft readings τi, which are

τi(t) = pi′(t− di)− pi(t), τi′(t) = pi(t− di)− pi′(t). (2.21)

Ignoring the times di which are very small (< 10−8s), the readings for all six optical

benches can be written as

τ1(t) = p1′(t)− p1(t),

τ1′(t) = p1(t)− p1′(t),

τ2(t) = p2′(t)− p2(t),

τ2′(t) = p2(t)− p2′(t),

τ3(t) = p3′(t)− p3(t),

τ3′(t) = p3(t)− p3′(t). (2.22)

The only non-zero option is to subtract the readings associated with each spacecraft

giving

τ1(t)− τ1′(t) =
[
p1′(t)− p1(t)

]
−
[
p1(t)− p1′(t)

]
= 2p1′(t)− 2p1(t),

τ2(t)− τ2′(t) =
(
p2′(t)− p2(t)

)
−
(
p2(t)− p2′(t)

)
= 2p2′(t)− 2p2(t),

τ3(t)− τ3′(t) =
(
p3′(t)− p3(t)

)
−
(
p3(t)− p3′(t)

)
= 2p3′(t)− 2p3(t), (2.23)

where there are now two copies of each of the noises. To cancel all the noises in Equation

2.20 the internal readings are offset by the appropriate times giving

τ1(t−D1)− τ1′(t−D1) = 2p1′(t−D1)− 2p1(t−D1),

τ2(t−D2)− τ2′(t−D2) = 2p2′(t−D2)− 2p2(t−D2),

τ3(t−D3)− τ3′(t−D3) = 2p3′(t−D3)− 2p3(t−D3), (2.24)
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and

τ1(t−D2 −D3)− τ1′(t−D2 −D3) = 2p1′(t−D2 −D3)− 2p1(t−D2 −D3),

τ2(t−D1 −D3)− τ2′(t−D1 −D3) = 2p2′(t−D1 −D3)− 2p2(t−D1 −D3),

τ3(t−D1 −D2)− τ3′(t−D1 −D2) = 2p3′(t−D1 −D2)− 2p3(t−D1 −D2).

(2.25)

The noises occur in these are twice that required for cancellation. Summing the halves

of these differences gives

1

2

[
τ1(t−D1)− τ1′(t−D1)

]
+

1

2

[
τ2(t−D2)− τ2′(t−D2)

]
+

1

2

[
τ3(t−D3)− τ3′(t−D3)

]
= p1′(t−D1)− p1(t−D1) + p2′(t−D2)− p2(t−D2)

+ p3′(t−D3)− p3(t−D3), (2.26)

and

1

2

[
τ1(t−D2 −D3)− τ1′(t−D2 −D3)

]
+

1

2

[
τ2(t−D1 −D3)− τ2′(t−D1 −D3)

]
+

1

2

[
τ3(t−D1 −D2)− τ3′(t−D1 −D2)

]
= p1′(t−D2 −D3)− p1(t−D2 −D3) + p2′(t−D1 −D3)− p2(t−D1 −D3)

+ p3′(t−D1 −D2)− p3(t−D1 −D2), (2.27)

where the noises appear with opposite signs to the remaining noises in the Equation

2.20. The final noise canceling equation for the ζ with no phase-locking is

ζ(t) = s1′(t−D1) + s3′(t−D3) + s2′(t−D2)− s1(t−D1)− s2(t−D2)− s3(t−D3)

+
1

2

[
τ1(t−D1)− τ1′(t−D1) + τ2(t−D2)− τ2′(t−D2) + τ3(t−D3)

− τ3′(t−D3) + τ1(t−D2 −D3)− τ1′(t−D2 −D3) + τ2(t−D1 −D3)

− τ2′(t−D1 −D3) + τ3(t−D1 −D2)− τ3′(t−D1 −D2)
]
. (2.28)

The structure is the same in terms of its inter-spacecraft readings as for phase-locked

lasers. Although the ζ observable is the simplest to generate, it has a very low signal

response. However, this property has the advantage of allowing it to be used as an

instrumental noise analysis observable [20].
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2.2.2 The 6-pulse Sagnac α

This will be done by simulating a Sagnac interferometer directly where the differencing

is of the sum of the readings in two rings measured in opposite directions. One way

to do this for the 6-pulse Sagnacs is sequentially starting with the readings of the two

optical benches on the spacecraft that will act as the splitter and then combining it with

the readings of the next set of optical benches of the same type (primed or unprimed)

in opposite directions. For example, for spacecraft 1 the counter-clockwise path is from

s1′(t) to s3′(t) then to s2′(t) and the clockwise path is from s1(t) to s2(t) then to s3(t).

The lasers are assumed to be phase-locked on each spacecraft.

For the α Sagnac spacecraft 1 is the beam splitter and the readings are s1′ and s1,

which are differenced giving

s1′(t)− s1(t) = [p3(t−D2)− p1(t)]− [p2(t−D3)− p1(t)]

= p3(t−D2)− p2(t−D3). (2.29)

The next set of readings in the ringed paths are s3′(t) and s2(t) which when differenced

gives

s3′(t)− s2(t) = p2(t) + p2(t−D1)− p3(t)− p3(t−D1), (2.30)

where two sets of the same noises (p2, p3) occur but at different times. These noises also

occur in previously differenced readings therefore, either can be used to cancel them.

For example, noises p3(t) or p3(t−D1) in Equation 2.30 can be used to cancel p3(t−D2)

in Equation 2.29. However, using p3(t) requires only one offset D2 while using p3(t−D1)

requires offsetting it by D2 and the noise in Equation 2.29 by D1. This is also the same

for the other set of noises in Equation 2.30. For both sets of noises we use the simpler

option of shifting the ones at time t which means shifting s3′(t) by D3 and s2(t) by D2

and then differencing these to obtain

s3′(t−D2)− s2(t−D3) = p2(t−D3) + p2(t−D1 −D2)

− p3(t−D2)− p3(t−D1 −D3). (2.31)
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Adding these to Equation 2.29 gives

s1′(t)− s1(t) + s3′(t−D2)− s2(t−D3)

= p3(t−D2)− p2(t−D3) + p2(t−D3) + p2(t−D1 −D2)

− p3(t−D2)− p3(t−D1 −D3)

= p2(t−D1 −D2)− p3(t−D1 −D3). (2.32)

The final readings for each ring are s2′(t) and s3(t) which are

s2′(t) = p1(t−D3)− p2(t), s3(t) = p1(t−D2)− p3(t) (2.33)

where only one set of common noises exist (p1). Differencing them gives

s2′(t)− s3(t) = p1(t−D3)− p1(t−D2)− p2(t) + p3(t). (2.34)

The remaining noises in Equation 2.32 are p2(t − D1 − D2) and p3(t − D1 − D3) and

canceling them requires shifting p2(t) and p3(t) in Equation 2.34 by −D1 − D2 and

−D1−D3, respectively. To do this requires applying the same offsets to s2′(t) and s3(t)

which when differenced gives

s2′(t−D1 −D2) − s3(t−D1 −D3)

= p1(t−D3 −D1 −D2)− p2(t−D1 −D2)

−p1(t−D2 −D1 −D3) + p3(t−D1 −D3)

= p3(t−D1 −D3)− p2(t−D1 −D2), (2.35)

where the p1 noises have been canceled. Adding this to Equation 2.30 gives

s1′(t) − s1(t) + s3′(t−D2)− s2(t−D3) + s2′(t−D1 −D2)− s3(t−D1 −D3)

= p2(t−D1 −D2)− p3(t−D1 −D3) + p1(t−D3 −D1 −D2)

−p2(t−D1 −D2)− p1(t−D2 −D1 −D3) + p3(t−D1 −D3)

= 0. (2.36)

Reordering the combination to reflect the differencing of opposite ringed paths gives

s1′(t) +s3′(t−D2) + s2′(t−D1 −D2)− s1(t)− s2(t−D3)− s3(t−D1 −D3)

= α(t) (2.37)

The β and γ are derived using spacecraft 2 and spacecraft 3 as the beam splitters,

respectively.



56 Chapter 2. Understanding time delay interferometry

2.2.2.1 Laser noise cancellation without phase-locking

Without phase-locking the structure remains the same and the local phase noises are

canceled with the internal readings as illustrated for ζ. To show this we adjust the

combination which was generated for phase-locking to show the different laser phase

noises that now appear and group the noises according to times giving

s1′(t) + s3′(t−D2) + s2′(t−D1 −D2)− s1(t)− s2(t−D3)− s3(t−D1 −D3)

= p1(t)− p1′(t) + p1(t−D3 −D1 −D2)− p1′(t−D2 −D1 −D3)

+ p2(t−D3)− p2′(t−D3) + p2(t−D1 −D2)− p2′(t−D1 −D2)

+ p3(t−D2)− p3′(t−D2) + p3(t−D1 −D3)− p3′(t−D1 −D3) (2.38)

where as expected the noises no longer cancel. However, these can be canceled by using

the intra-spacecraft readings with the appropriate offsets. Apply the same process used

for ζ and difference the corresponding intra-spacecraft readings τi for the noises in

Equation 2.34 with the required offsets which will give

τ1(t)− τ1′(t))

= 2p1′(t)− 2p1(t),

τ1(t−D1 −D2 −D3)− τ1′(t−D1 −D2 −D3)

= 2p1′(t−D1 −D2 −D3)− 2p1(t−D1 −D2 −D3),

τ2(t−D3)− τ2′(t−D3)

= 2p2′(t−D3)− 2p2(t−D3),

τ2(t−D1 −D2)− τ2′(t−D1 −D2)

= 2p2′(t−D1 −D2)− 2p2(t−D1 −D2),

τ3(t−D2)− τ3′(t−D2)

= 2p3′(t−D2)− 2p3(t−D2),

τ3(t−D1 −D3)− τ3′(t−D1 −D3)

= 2p3′(t−D1 −D3)− 2p3(t−D1 −D3). (2.39)
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Figure 2.4: Schematic of LISA showing arms L3 and L2 used in the unequal-arm Michelson X observ-
able.

The new combination that will cancel all the noises is

s1′(t) − s1(t) + s3′(t−D2)− s2(t−D3) + s2′(t−D1 −D2)− s3(t−D1 −D3)

+
1

2

[
τ1(t)− τ1′(t)

]
+

1

2

[
τ1(t−D1 −D2 −D3)− τ1′(t−D1 −D2 −D3)

]
+

1

2

[
τ2(t−D3)− τ2′(t−D3)

]
+

1

2

[
τ2(t−D1 −D2)− τ2′(t−D1 −D2)

]
+

1

2

[
τ3(t−D2)− τ3′(t−D2)

]
+

1

2

[
τ3(t−D1 −D3)− τ3′(t−D1 −D3)

]
. (2.40)

Like the Sagnac ζ the structure of the inter-spacecraft readings si for the α is not altered

as the noise cancellation can be achieved by using the intra-spacecraft readings τi.

2.2.3 Unequal-arm Michelson X

The Michelson has a beam splitter with mirrors at the ends of two arms and for LISA

this is formed using one of the spacecraft and the two arms adjacent to it. For the

X observable spacecraft 1 is the splitter with the arms being L2 and L3. The phase

readings that are available for this combination are those from the four optical benches

at the end of these arms as shown in Figure 2.4 which are 1, 1’, 2’ and 3. All the optical

bench readings are one way measurements therefore no reflection occurs. To simulate

reflection we alternate between the optical bench readings at the end of each arm until

the noises are canceled. For example, for arm L3 we alternate between readings s1 and

s2′ .

Assuming that the lasers on each spacecraft are phase-locked, the four optical bench
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readings that are available for a Michelson formed with spacecraft 1 as the beam splitter

are

s1(t) = p2(t−D3)− p1(t),

s1′(t) = p3(t−D2)− p1(t),

s2′(t) = p1(t−D3)− p2(t),

s3(t) = p1(t−D2)− p3(t). (2.41)

To generate the X observable we can use the same first step as for the Sagnac where

the two optical bench readings on spacecraft 1 are differenced since it is acting as the

splitter which gives

s1′(t)− s1(t) =
[
p3(t−D2)− p1(t)

]
−
[
p2(t−D3)− p1(t)

]
= p3(t−D2)− p2(t−D3), (2.42)

where local noises are canceled. To simulate reflection, the next set of available readings

that can be used to cancel the remaining noises are those at the ends of the arms adjacent

to optical benches 1′ and 1 which are s3 and s2′ , respectively. To cancel the remaining

noises in Equation 2.42 s2′(t) is shifted by D3 and s3 by D3 giving

s2′(t−D3) = p1(t− 2D3)− p2(t−D3),

s3(t−D2) = p1(t− 2D2)− p3(t−D2). (2.43)

Combining these with Equation 2.42 with the appropriate signs gives

s1′(t)− s1(t) − s2′(t−D3) + s3(t−D2)

= p3(t−D2)− p2(t−D3)− p1(t− 2D3) + p2(t−D3)

+ p1(t− 2D2)− p3(t−D2)

= p1(t− 2D2)− p1(t− 2D3). (2.44)

The remaining phase noises are from the same spacecraft but at different times and to

equalise the times each is shifted by the time in the other, that is p1(t−2D2) by 2D3 and

p1(t− 2D3) by 2D2. Continuing with the reflection simulation, this means using s1 and

s1′ with the appropriate offsets which are shifting them by 2D3 and 2D3, respectively
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giving

s1(t− 2D2) = p2(t−D3 − 2D2)− p1(t− 2D2),

s1′(t− 2D3) = p3(t−D2 − 2D3)− p1(t− 2D3). (2.45)

Combining these with the Equation 2.44 with the appropriate signs gives

s1′(t) − s1(t)− s2′(t−D3) + s3(t−D2) + s1(t− 2D2)− s1′(t− 2D3)

= p1(t− 2D2)− p1(t− 2D3) + p2(t−D3 − 2D2)− p1(t− 2D2)

− p3(t−D2 − 2D3) + p1(t− 2D3)

= p2(t−D3 − 2D2)− p3(t−D2 − 2D3), (2.46)

where two new noises have been introduced. Again, the next available optical benches

are the s2′ and s3 which are shifted by D3 + 2D2 and D2 + 2D3, respectively, to obtain

the required times for the corresponding noises giving

s2′(t−D3 − 2D2) = p1(t− 2D3 − 2D2)− p2(t−D3 − 2D2),

s3(t−D2 − 2D3) = p1(t− 2D2 − 2D3)− p3(t−D2 − 2D3). (2.47)

Combining these with Equation 2.46 with the appropriate signs gives

s1′(t)−s1(t)− s2′(t−D3) + s3(t−D2) + s1(t− 2D2)− s1′(t− 2D3)

− s3(t−D2 − 2D3) + s2′(t−D3 − 2D2)

= p2(t−D3 − 2D2)− p3(t−D2 − 2D3)

− p1(t− 2D2 − 2D3) + p3(t−D2 − 2D3)

+ p1(t− 2D3 − 2D2)− p2(t−D3 − 2D2)

= 0, (2.48)

where all the noises have been canceled. Rearranging and grouping according to the

readings along each arm gives[
s1′(t)+s3(t−D2)

]
−
[
s1(t) + s2′(t−D3)

]
+
[
s1(t− 2D2) + s2′(t−D3 − 2D2)

]
−
[
s1′(t− 2D3) + s3(t−D2 − 2D3)

]
, (2.49)

which is the Michelson X combination.
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2.2.3.1 Laser noise cancellation without phase-locking

With independent lasers the four optical bench readings are

s1(t) = p2′(t−D3)− p1(t),

s1′(t) = p3(t−D2)− p1′(t),

s2′(t) = p1(t−D3)− p2′(t),

s3(t) = p1′(t−D2)− p3(t). (2.50)

As in the previous section, the two readings on spacecraft 1 (s1′ , s1) to obtain

s1′(t)− s1(t) = p3(t−D2)− p2′(t−D3) + p1(t)− p1′(t), (2.51)

where, as expected, this no longer cancel the local laser noises. As was shown for the

Sagnac with no phase-locking, this requires the intra-spacecraft readings τi. However,

the readings for s2′ and s3 contain noise contributions from the two lasers on spacecraft

2 and 3, respectively, so that the only available set of these readings for the X Michelson

are those on spacecraft 1 which are τ1 and τ1′ and their differenced reading is

τ1′(t)− τ1(t) = 2p1(t)− 2p1′(t). (2.52)

As before, only half of these noises are required for canceling the noises in Equation

2.51 and subtracting this amount gives

s1′(t)− s1(t)− 1

2
[τ1′(t)− τ1(t)] =

[
p3(t−D2)− p2′(t−D3)− p1′(t) + p1(t)

]
−
[
p1(t)− p1′(t)

]
= p3(t−D2)− p2′(t−D3). (2.53)

The same process of alternately combining the readings at the end of each arm with the

appropriate delays until all the noises are canceled is used. This means that the next

set of readings are s2′ and s3 which are shifted by D3 and D2, respectively to obtain the

required times for the common noises giving

s2′(t−D3) = p1(t− 2D3)− p2′(t−D3),

s3(t−D2) = p1′(t− 2D2)− p3(t−D2), (2.54)
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which are combined with Equation 2.53 with the appropriate signs to obtain the can-

cellation of the p2 and p3 noises, that is,

s1′(t)− s1(t) − 1

2
[τ1′(t)− τ1(t)]− s2′(t−D3) + s3(t−D2)

= p3(t−D2)− p2′(t−D3)− p1(t− 2D3) + p2′(t−D3)

+p1′(t− 2D2)− p3(t−D2)

= p1′(t− 2D2)− p1(t− 2D3). (2.55)

The remaining noises are from the same spacecraft but with different times therefore,

using the internal readings will not help in their cancellation. The next set of available

readings are those of s1 and s1′ . Since we are trying to recover the original combination

obtained for phase-locked lasers, apply the same offsets by shifting these readings by

2D2 and 2D3, respectively which gives

s1(t− 2D2) = p2′(t−D3 − 2D2)− p1(t− 2D2),

s1′(t− 2D3) = p3(t−D2 − 2D3)− p1′(t− 2D3). (2.56)

These are combined with the previous equation to obtain

s1′(t)− s1(t) − 1

2
[τ1′(t)− τ1(t)]− s2′(t−D3) + s3(t−D2)

−s1′(t− 2D3) + s1(t− 2D2)

= p1′(t− 2D2)− p1(t− 2D3)− p3(t−D2 − 2D3) + p1′(t− 2D3)

+p2′(t−D3 − 2D2)− p1(t− 2D2)

= p1′(t− 2D2)− p1(t− 2D2)− p1′(t− 2D3) + p1(t− 2D3)

−p3(t−D2 − 2D3) + p2′(t−D3 − 2D2), (2.57)

which does not result in the cancellation of the p1 and p1′ as in the phase-locked case at

this stage. However, there are two copies of p1 and p1′ at offsets of 2D2 and 2D3 which

allows for them to be grouped according to the same times that is, p1′(t− 2D2), p1(t−

2D2) and p1′(t − 2D3), p1(t − 2D3). The internal readings can now be used to cancel
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these noises and the terms with the required offsets are

τ1(t− 2D2) = p1′(t− 2D2)− p1(t− 2D2),

τ1′(t− 2D2) = p1(t− 2D2)− p1′(t− 2D2),

τ1(t− 2D3) = p1′(t− 2D3)− p1(t− 2D3),

τ1′(t− 2D3) = p1(t− 2D3)− p1′(t− 2D3), (2.58)

and their differenced values are

τ1′(t− 2D2)− τ1(t− 2D2) = 2p1(t− 2D2)− 2p1′(t− 2D2),

τ1′(t− 2D3)− τ1(t− 2D3) = 2p1(t− 2D3)− 2p1′(t− 2D3). (2.59)

Subtract half their values and combine them to Equation 2.57 with appropriate signs

gives

s1′(t)− s1(t) − 1

2

[
τ1′(t)− τ1(t)

]
− s2′(t−D3) + s3(t−D2)

−s1′(t− 2D3) + s1(t− 2D2)− 1

2

[
τ1′(t− 2D2)− τ1(t− 2D2)

]
−1

2

[
τ1′(t− 2D3)− τ1(t− 2D3)

]
= p1′(t− 2D2)− p1(t− 2D2)− p1′(t− 2D3) + p1(t− 2D3)

−p3(t−D2 − 2D3) + p2′(t−D3 − 2D2)

−p1′(t− 2D2) + p1(t− 2D2) + p1′(t− 2D3)− p1(t− 2D3)

= p2′(t−D3 − 2D2)− p3(t−D2 − 2D3). (2.60)

The next set of available readings are s2′ and s3 which require offsets of (−D3 − 2D2)

and (−D2 − 2D2) to match the noises in the previous equation which are

s2′(t−D3 − 2D2) = p1(t− 2D3 − 2D2)− p2′(t−D3 − 2D2),

s3(t−D2 − 2D2) = p1′(t− 2D2 − 2D3)− p3(t−D2 − 2D3). (2.61)
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Combining these with Equation 2.60 with appropriate signs gives

s1′(t)− s1(t) − 1

2

[
τ1′(t)− τ1(t)

]
− s2′(t−D3) + s3(t−D2)

−s1′(t− 2D3) + s1(t− 2D2)− 1

2

[
τ1′(t− 2D2)− τ1(t− 2D2)

]
+

1

2

[
τ1(t− 2D3)− τ1′(t− 2D3)

]
+s2′(t−D3 − 2D2)− s3(t−D2 − 2D3)

= p2′(t−D3 − 2D2)− p3(t−D2 − 2D3)

+p1(t− 2D3 − 2D2)− p2′(t−D3 − 2D2)

−p1′(t− 2D2 − 2D3) + p3(t−D2 − 2D3)

= p1(t− 2D3 − 2D2)− p1′(t− 2D2 − 2D3). (2.62)

The remaining noises are from the same spacecraft with the same times. Again use the

internal readings to obtain the noises with the appropriate offsets which are

τ1(t− 2D2 − 2D3) = p1′(t− 2D2 − 2D3)− p1(t− 2D2 − 2D3),

τ1′(t− 2D2 − 2D3) = p1(t− 2D2 − 2D3)− p1′(t− 2D2 − 2D3), (2.63)

and the differenced reading is

τ1′(t− 2D2 − 2D3)−τ1(t− 2D2 − 2D3)

= 2p1(t− 2D2 − 2D3)− 2p1(t− 2D2 − 2D3). (2.64)

Adding this to Equation 2.62 gives

s1′(t)− s1(t)− 1

2

[
τ1′(t)− τ1(t)

]
− s2′(t−D3) + s3(t−D2)

−s1′(t− 2D3) + s1(t− 2D2)− 1

2

[
τ1′(t− 2D2)− τ1(t− 2D2)

]
−1

2

[
τ1′(t− 2D3)− τ1(t− 2D3)

]
+s2′(t−D3 − 2D2)− s3(t−D2 − 2D3)

+
1

2

[
τ1′(t− 2D2 − 2D3)− τ1(t− 2D2 − 2D3)

]
= p1(t− 2D3 − 2D2)− p1′(t− 2D2 − 2D3)

−p1(t− 2D2 − 2D3) + p1′(t− 2D2 − 2D3)

= 0, (2.65)
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where all the noises have been canceled. The final expression after rearranging and

grouping the terms is

X(t) = [s1′(t) + s3(t−D2)]− [s1(t) + s2′(t−D3)] + [s1(t− 2D2) + s2′(t−D3 − 2D2)]

−[s1′(t− 2D3) + s3(t−D2 − 2D3)]

+
1

2

[
τ1(t)− τ1′(t)− τ1′(t− 2D2) + τ1(t− 2D2) + τ1(t− 2D3)

−τ1′(t− 2D3) + τ1′(t− 2D2 − 2D3)− τ1(t− 2D2 − 2D3)
]
, (2.66)

where, like the Sagnac, the structure did not change with respect to the inter-spacecraft

readings. The laser noise cancellation is achieved by incorporating the intra-spacecraft

readings.

2.2.4 Summary

In this section, the process of manually generating of the Sagnac α and ζ and Michel-

son X combinations was illustrated. This was initially done with the lasers locked on

each spacecraft and then for independent lasers. The structure of both combinations

remained the same in terms of their inter-spacecraft readings with the change being the

need for extra readings to cancel the laser phase noises which were obtained from the

intra-spacecraft readings.

2.3 The effect of orbital motion on the time delay

interferometry observables

This will be demonstrated using the rotational motion only which introduces a de-

pendency on the direction of the measurement of the arm lengths. This difference is

indicated by using Li′ and Li for clockwise and counter-clockwise measurements, re-

spectively. The arm lengths are assumed to be static. In this section the assumption

will be that lasers are phase-locked on each spacecraft. The time delay interferometry

observables that will be illustrated are the Sagnac ζ and the Michelson X.
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Table 2.2: The noises remaining in Equation 2.68 with their parent optical benches and the offsets
needed to cancel them in each reading.

Phase noise Parent Shifted Shifted parent
optical bench phase noise optical bench

p1(t−D3′ ) s2′ (t) p1(t−D3′ −D2) s2′ (t−D2)
p1(t−D2) s3(t) p1(t−D2 −D3′ ) s3(t−D3′ )

p2(t−D1′ ) s3′ (t) p2(t−D1′ −D3) s3′ (t−D3)
p2(t−D3) s1(t) p2(t−D3 −D1′ ) s1(t−D1′ )

p3(t−D2′ ) s1′ (t) p3(t−D2′ −D1) s1′ (t−D1)
p3(t−D1) s2(t) p3(t−D1 −D2′ ) s2(t−D2′ )

2.3.1 Sagnac ζ with orbital motion

The optical bench readings with the different light travel times are

s1(t) = p2(t−D3)− p1(t),

s1′(t) = p3(t−D2′)− p1(t),

s2(t) = p3(t−D1′)− p2(t),

s2′(t) = p1(t−D3′)− p2(t),

s3(t) = p1(t−D2′)− p3(t),

s3′(t) = p2(t−D1′)− p3(t). (2.67)

The different offsets caused by the directional dependence means that adjusting the final

equation obtained for phase-locked lasers to account for this cannot be done. Instead

we start by simulating a Sagnac by differencing the readings in the opposite arms as

done in Equation 2.16 to obtain

s1′(t) + s3′(t) + s2′(t)− s1(t)− s2(t)− s3(t)

= p3(t−D2′)− p1(t) + p2(t−D1′)− p3(t) + p1(t−D3′)− p2(t)

− p2(t−D3) + p1(t)− p3(t−D1) + p2(t)

− p1(t−D2) + p3(t)

= p1(t−D3′)− p1(t−D2) + p2(t−D1′)− p2(t−D3)

+ p3(t−D2′)− p3(t−D1). (2.68)

The difference in the arm lengths means that there are now six different offsets in the

result. The remaining noises with their parent optical bench are given in columns 1 and

2 of Table 2.2 and the offsets that need to be applied to these to cancel the noises are
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given in columns 3 and 4. The new readings with these offsets are

s1(t−D1′) = p2(t−D3 −D1′)− p1(t−D1′),

s1′(t−D1) = p3(t−D2′ −D1)− p1(t−D1),

s2(t−D2′) = p3(t−D1 −D2′)− p2(t−D2′),

s2′(t−D2) = p1(t−D3′ −D2)− p2(t−D2),

s3(t−D3′) = p1(t−D2 −D3′)− p3(t−D3′),

s3′(t−D3) = p2(t−D1′ −D3)− p3(t−D3). (2.69)

Rewriting Equation 2.68 with these shifts gives

s1′(t−D1) + s3′(t−D3) + s2′(t−D2)− s1(t−D1′)− s2(t−D2′)− s3(t−D3′)

= p3(t−D2′ −D1)− p1(t−D1) + p2(t−D1′ −D3)− p3(t−D3)

+ p1(t−D3′ −D2)− p2(t−D2)− p2(t−D3 −D1′)

+ p1(t−D1′)− p3(t−D1 −D2′) + p2(t−D2′)

− p1(t−D2 −D3′) + p3(t−D3′)

= p1(t−D1′)− p1(t−D1) + p2(t−D2′)− p2(t−D2)

+ p3(t−D3′)− p3(t−D3), (2.70)

which no longer leads to the cancellation of all the noises because the noises have different

offsets reflecting the directional dependency, for example, p1(t − D1) and p1(t − D1′).

The internal readings τi are useful when the noises on the same spacecraft are at the

same times but this does not happen in Equation 2.70 therefore they cannot be used to

solve the problem as was done for the independent lasers in Section 2.2.1.1.

This has illustrated why the ζ Sagnac combination does not survive rotational mo-

tion. This is also true of the 6-pulse Sagnacs. This failure with rotation of the antenna

can also be illustrated intuitively. In an actual Sagnac interferometer if the total length

of the opposite loops are not the same then the noises arriving at the beam splitter will

no longer be the same.
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2.3.2 Unequal-arm Michelson X with orbital motion

The equations for the optical benches needed for the unequal-arm Michelson with new

offsets are

s1(t) = p2(t−D3)− p1(t),

s1′(t) = p3(t−D2′)− p1(t),

s2′(t) = p1(t−D3′)− p2(t),

s3(t) = p1(t−D2)− p3(t). (2.71)

Differencing the readings on spacecraft 1 with the new offsets gives

s1′(t)− s1(t) = p3(t−D2′)− p1(t)− p2(t−D3) + p1(t)

= p3(t−D2′)− p2(t−D3). (2.72)

Offsetting s2′(t) by D3 and s3(t) by D2′ gives

s2′(t−D3) = p1(t−D3′ −D3)− p2(t−D3),

s3(t−D2′) = p1(t−D2 −D2′)− p3(t−D2′). (2.73)

Combining these with Equation 2.72 gives

s1′(t)− s1(t) − s2′(t−D3) + s3(t−D2′)

= p3(t−D2′)− p2(t−D3)− p1(t−D3′ −D3) + p2(t−D3)

+ p1(t−D2 −D2′)− p3(t−D2′)

= p1(t−D2 −D2′)− p1(t−D3′ −D3). (2.74)

The difference in the clockwise and counter-clockwise times means that the 2D2 and

2D3 offsets are replaced by −D2 − D2′ and −D3′ − D3, respectively. The next set of

readings with the appropriate offsets are

s1(t−D2 −D2′) = p2(t−D3 −D2 −D2′)− p1(t−D2 −D2′),

s1′(t−D3′ −D3) = p3(t−D2 −D3′ −D3)− p1(t−D3′ −D3), (2.75)
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which are combine with the previous equations to obtain

s1′(t)− s1(t)−s2′(t−D3) + s3(t−D2′)− s1′(t−D3′ −D3) + s1(t−D2 −D2′)

= p1(t−D2 −D2′)− p1(t−D3′ −D3)− p3(t−D2′ −D3′ −D3)

+ p1(t−D3′ −D3) + p2(t−D3 −D2 −D2′)− p1(t−D2 −D2′)

= p2(t−D3 −D2 −D2′)− p3(t−D2′ −D3′ −D3). (2.76)

The next set of readings from spacecraft 2 and 3 for canceling these are

s2′(t−D3 −D2 −D2′) = p1(t−D3′ −D3 −D2 −D2′)− p2(t−D3 −D2 −D2′),

s3(t−D2′ −D3′ −D3) = p1(t−D2 −D2′ −D3 −D3′)− p3(t−D2′ −D3′ −D3),

(2.77)

which are combined with Equation 2.76 to give

s1′(t)− s1(t)−s2′(t−D3′) + s3(t−D2)− s1′(t−D3′ −D3) + s1(t−D2 −D2′)

+ s2′(t−D3 −D2 −D2′)− s3(t−D2′ −D3′ −D3)

= p2(t−D3 −D2 −D2′)− p3(t−D2′ −D3′ −D3)

+ p1(t−D3′ −D3 −D2 −D2′)− p2(t−D3 −D2 −D2′)

− p1(t−D2 −D2′ −D3 −D3′) + p3(t−D2′ −D3 −D3′)

= 0. (2.78)

The unequal-arm Michelson retains its structure even when the directional differences

are accounted for. Its flexibility is due to the 2Di terms occurring in their non-rotating

expressions which are replaced by the Di+Di′ to account for the directional differences.

2.4 Summary

The laser phase noise in LISA presents a problem because of the inequality of the

lengths of its arms. Laser phase noise cancellation using time delay interferometry was

illustrated using a simple unequal-arm Michelson interferometer to explain the problem

caused by the inequality and how this can be resolved. With unequal arms the same

noises do not appear at the photodetectors at the same time but they still exist in the

different arms just at different times. To accomplish the laser noise cancellation in this

case the readings in each arm have to be obtained separately to allow the noises to be



69 Chapter 2. Understanding time delay interferometry

tracked in the different arms. Once the readings are located they are differenced to

cancel the noise. Two methods were shown for locating the same reading in the arms.

The obvious method was to difference the readings by the exact difference between the

arm lengths ∆L. The other was to simulate an equal arm interferometer by offsetting

the measurement in each arm by the length in the other. The conventional time delay

interferometry uses both methods.

We illustrated how these techniques for cancelling the laser noises are was used to

generate the conventional time delay interferometry observables. This was illustrated

using the Sagnac (ζ, α) and unequal-arm Michelson X using a simple model of LISA as

a stationary rigid array with the two lasers on each spacecraft phase-locked together.

Under these conditions the laser noise free combinations could be generated with only

the inter-spacecraft readings which are the readings taken along the arms. We then

illustrated the effect of removing phase-locking of the lasers had on the generation of the

combinations. The result was that this did not affect the structure of the combinations

in terms of the how the inter-spacecraft readings were combined, however, the internal

readings τi were now required for the laser phase noise cancellation. This was true for

both the Sagnac and Michelson combinations.

The toy model initially assumed stationary static arm lengths. We illustrated what

happened to these combinations when the motion of the LISA is taken into account.

This was done with the directional dependence of the arm lengths that occurs with the

rotational motion of the antenna. For this we assumed that the different measurements

were static. The effect was illustrated with the Sagnac ζ and the Michelson X combi-

nations with spacecraft phase-locking. The directional differences in the offsets broke

the symmetry of the ζ. The Michelson X combination, however, survived because the

2D offset in some of terms was able to incorporate the different offsets by becoming the

sum of the different offsets, that is, Di +Di′ .

In using this method the relaxation of the assumptions meant manually regenerating

the combinations making it an inefficient process which is the main reason for only a

few combinations being generated. The potential to generate all these combinations and

provide a more efficient way of generating them led to the computer-based methods such

as the algebraic and the geometric methods mentioned in Chapter 1. Although not all

the combinations would be needed, being able to generate them would offer the possibil-
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ity of obtaining those with better sensitivities to gravitational wave signals for use in the

data analysis process. The principal component approach is another computer-based

method that improves on these by incorporating the laser noise cancellation into the in-

ference process removing the need to generate the laser noise free data before doing the

analysis. This method is based on eigendecomposition of the raw data covariance and

the power spectral density matrices therefore, in the following chapter we will illustrate

how these are generated.



Chapter 3

Generating the covariance and power

spectral density matrices for LISA data

The principal components are obtained from the raw data covariance or power spectral

density matrices. In this chapter we generate the covariances and power spectral den-

sities required for creating these matrices. We also include the power spectral densities

for the optimal AET observables as our analysis will include the conventional approach

for comparison.

3.1 Basic functions

Ideally the covariance matrix would be derived directly from the noises using the auto-

covariance and cross-covariance functions obtained from their time series. However,

because there is no way to simultaneously and independently observe the noises the

covariance functions are generated algebraically and the values are computed based on

assumptions made about the noise characteristics1.

3.1.1 Covariance functions

Auto-covariance

If the noise is represented by a discrete random variable Xi with values given by xi

then the auto-covariance which expresses the mutual relationships between the different

values can be determined using

CXX(k) = cov(Xi, Xi+k) =
1

N

n∑
i=1

[(
xi − 〈Xi〉

) (
xi+k − 〈Xi+k〉

)]
, (3.1)

where i = {1, 2, ..., n} and k = {0, 1, ..., n−1}. k is the lag term specifying the separation

between the values of X. A simpler version of this equation will be used which is

1The information sources for this section were [34] and [62]
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obtained by expanding the product giving

CXX(k) =
1

N

n∑
i=1

[
xixi+k − xi〈Xi+k〉 − 〈Xi〉xi+k + 〈Xi〉〈Xi+k〉

]
=

1

N

n∑
i=1

[
xixi+k]−

1

N

n∑
i=1

[
xi〈Xi+k〉

]
− 1

N

n∑
i=1

[
〈Xi〉xi+k

]
+

1

N

n∑
i=1

[
〈Xi〉〈Xi+k〉

]
=
〈
XiXi+k

〉
−
〈
Xi

〉〈
Xi+k

〉
, (3.2)

where 〈XiXi+k〉 is the mean of the squared values and 〈Xi〉〈Xi+k〉 is the square of the

means. The auto-covariance is a one to one comparison between the values of the full

time series Xi with values from sections of the time series Xi+k where i+k is the starting

point for the partial series. The covariances are computed for all values of k to cover

the length of the time series. For zero lag the auto-covariance gives the variance of the

full time series and from Equation 3.2 this is

CXX(0) = cov(Xi, Xi) = var[X] =
〈
X2
i

〉
−
〈
Xi

〉2
. (3.3)

There will also be variances for portions of the time series Xi+k given by

cov(Xi+k, Xi+k) = var[Xi+k] =
〈
X2
i+k

〉
−
〈
Xi+k

〉2
. (3.4)

If the means are assumed to be zero Equations 3.2 and 3.4 become

CXX(k) =
〈
Xi Xi+k

〉
, CXX(0) =

〈
X2
i

〉
. (3.5)

In matrix format these can be written as

CXX=


var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) var(X2) · · · cov(X2, Xn)
...

...
. . .

...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)

 , (3.6)

where the variances are the values along the main diagonal and the auto-covariances

everywhere else.

Cross-covariance

The cross-covariances expresses relationships between different time series. For two

discrete time series represented by two random variables X and Y with values of xi and
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yi, respectively, the cross-covariance can be defined as

CXY (k) = cov(Xi, Yi+k) =
〈
(xi − 〈Xi〉) (yi+k − 〈Yi+k〉)

〉
=
〈
Xi Yi+k

〉
−
〈
Xi

〉〈
Yi+k

〉
, (3.7)

which with zero means becomes

CXY (k) =
〈
Xi Yi+k

〉
, CXY (0) =

〈
Xi Yi

〉
. (3.8)

The cross-covariance matrix is

CXY (k)=


cov(X1, Y1) cov(X1, Y2) · · · cov(X1, Yn)

cov(X2, Y1) cov(X2, Y 2) · · · cov(X2, Yn)
...

...
. . .

...

cov(Xn, Y1) cov(Xn, Y2) · · · cov(Xn, Yn)

 , (3.9)

where, as for the auto-covariance matrix, the zero lag terms are along the main diagonal

with the others providing the off-diagonal values.

The combined covariance matrix

Combining the auto-covariance and the cross-covariance matrices produces a block ma-

trix which is

C =


C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn

 , (3.10)

where Cij are blocks. The size of the blocks depends on the number of variables. The

diagonal Cii and off-diagonal Cij blocks are given by

Cii =

 var(Xi) cov(Xi, Yi)

cov(Xi, Yi) var(Yi)

 , Cij =

cov(Xi, Xj) cov(Xi, Yj)

cov(Yi, Xj) cov(Yi, Yj)

 . (3.11)

3.1.2 Power spectral densities

In the frequency domain this is expressed in terms of the auto-power and cross-power

spectral densities which defines how the power of the signal is distributed with fre-

quency. These can be obtained from their corresponding covariance functions through

the Fourier transform. The Wiener-Khinchin theorem gives the relationship between
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the autocorrelation function RXX(k) and the auto-power spectral density which is

SXX(k) =
∞∑

k=−∞

RXX(n) e−2πikn/N . (3.12)

The auto-correlation function is related to the auto-covariance function by

CXXk = RXX(k)− 〈Xi〉〈Xi+k〉 (3.13)

with zero means they are the same. So that the Wiener-Khinchin is also true for the

auto-covariance function. It can be extended to include the cross-correlations and the

cross-power spectral densities are obtained by

SXY (k) =
∞∑

k=−∞

RXY (n) e−2πikn/N (3.14)

where the relationship between the cross-correlation and the auto-covariance functions

[34] is

CXY (k) = RXY (k)− 〈Xi〉〈Yi+k〉. (3.15)

Power spectral density matrix

Unlike covariances which can occur between different times generally there are no corre-

lations between different frequencies. The complex spectra means that the computation

of the power spectral densities involves the use of complex conjugates and the auto-

power and cross-power spectral densities are defined as

SXX(f) = var[X̃(f)] = cov[X̃(f), X̃∗(f)],

SXY (f) = cov[X̃(f), Ỹ ∗(f)], (3.16)

where X̃∗(f) is the complex conjugate of X̃(f). The lack of correlations between differ-

ent frequencies mean that the power spectral density matrices are diagonal. The auto-

and cross-power spectral densities matrices are respectively

CXX =


SXX(1) 0 · · · 0

0 SXX(2) · · · 0
...

...
. . .

...

0 0 · · · SXX(n)

 , (3.17)
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and

CXY =


SXY (1) 0 · · · 0

0 SXY (2) · · · 0
...

...
. . .

...

0 0 · · · SXY (n)

 . (3.18)

As is the case for the time domain covariance matrices the combined matrix will be a

block matrix with the size of the blocks dependent on the number of variables. The

combined matrix and blocks are

C =


C11 0 · · · 0

0 C22 · · · 0
...

...
. . .

...

0 0 · · · Cnn

 . (3.19)

and

Cii =

SXX(i) SXY (i)

SXY (i) SY Y (i)

 . (3.20)

3.2 Raw data covariance and power spectral density

matrices

LISA data consist of time series from the six optical benches monitoring the three arms.

Each optical bench reading is a beating of the beam of local laser with that received

from the other bench at the end of the adjacent arm and will therefore contain two laser

noises and the noise from the recording photodetector. The inter-spacecraft raw data

in terms of noise contributions can be written as

si(t) = pj′(t−Dk)− pi(t) + ni(t), (3.21)

where pi and pj are the laser phase noises from the receiving and transmitting optical

benches and ni is the photodetector noise of the receiving optical bench [6]. The noises

are assumed to be random therefore, correlations between readings will only occur if the

same noise occurs in different readings. For example, the two optical bench readings
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(si, sj′) at the end of arm k can be written as

si(ta) = pj′(ta −Dk)− pi(ta) + ni(ta),

sj′(tb) = pi(tb −Dk)− pj′(tb) + nj′(tb), (3.22)

where they both contain the same noises pi and pj′ but they have times that differ

by the same offset Dk. This will cause correlations between the two readings when

ta − tb = ±Dk. This will also occur between the readings at the ends of the other two

arms.

In this representation of the noises in the data the laser noises are assumed to be

acting independently. With LISA there is the option of locking the phases of the lasers,

that is, phase-locking. Two other possibilities are locking the lasers on each spacecraft

together which will allow of the simulation of a beam splitter on each spacecraft, or

locking all the lasers to one (master) which allows for splitting and reflection. As

expected phase-locking will increase the number of correlations between the different

readings. The interesting option is the latter which will not only cause correlation

between the different optical bench readings but also within in the readings themselves.

With this option the lasers will all be acting as one therefore, pi = p and Equation 3.21

will become

si(t) = p(t−Dk)− p(t) + ni(t),

where there will also be correlations between the lasers in the readings at times t and

t−Dk.

3.2.1 LISA toy model assumptions

The assumptions that will be used for computing the covariances are that the laser

phase and shot noises are both white Gaussian processes with zero means and variances

of σ2
p and σ2

n, respectively. The conditions for correlations for these noises are

Rule 1 〈na[tc]nb[td]〉 = δabδcdσ
2
n, (3.23)

Rule 2 〈na[tc]pb[td]〉 = 0, (3.24)
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where δab and δcd are Dirac delta functions [54] which are given by

δab =

1, if a = b,

0, if a 6= b,

and δcd =

1, if c = d,

0, if c 6= d.

(3.25)

For independent lasers or for those locked on each spacecraft correlations between the

lasers requires both the optical bench numbers and times have to match. The condition

for correlations is

Rule 3 〈pa[tc]pb[td]〉 = δabδcdσ
2
p. (3.26)

When they are all locked they will act as a single laser and the optical bench number

no longer becomes necessary. Correlations occur when the times are the same therefore

Rule 4 〈p[tc]p[td]〉 = δcdσ
2
p. (3.27)

3.2.2 Generating the covariance matrices

With the assumption of zero means for the noises the definition for the auto-covariance

and cross-covariance functions that will be used are

cov(Xi, Xi) =
〈
Xi Xi

〉
, cov(Xi, Yi) =

〈
Xi Yi

〉
. (3.28)

The inter-spacecraft readings with the three phase-locking options are listed in Table 3.1

for equal and unequal arm lengths. The labeling and locations of the optical benches,

arms and spacecraft are shown in Figure 3.1.

3.2.2.1 Covariances with no laser phase-locking

For independent lasers the contributions for the combined laser phase and photodetector

noises in the inter-spacecraft readings can be written as

si(t) = pj′(t−Dk)− pi(t) + ni(t), (3.29)

where the primed subscript is used to distinguish between the two lasers on each space-

craft.
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Table 3.1: Optical bench time series showing the expressions for the laser phase and photodetector
noises in each optical bench reading for the different phase-locking options and with unequal and equal
arm lengths.

Phase locking Phase Time series
Unequal arms(Di = Li/c) Equal arms D = L/c

None s1(t) p2′ (t−D3)− p1(t) + n1(t) p2′ (t−D)− p1(t) + n1(t)
s1′ (t) p3(t−D2)− p1′ (t) + n1′ (t) p3(t−D)− p1′ (t) + n1′ (t)
s2(t) p3′ (t−D1)− p2(t) + n2(t) p3′ (t−D)− p2(t) + n2(t)
s2′ (t) p1(t−D3)− p2′ (t) + n2′ (t) p1(t−D)− p2′ (t) + n2′ (t)
s3(t) p1′ (t−D2)− p3(t) + n3(t) p1′ (t−D)− p3(t) + n3(t)
s3′ (t) p2(t−D1)− p3′ (t) + n3′ (t) p2(t−D)− p3′ (t) + n3′ (t)

Spacecraft s1(t) p2(t−D3)− p1(t) + n1(t) p2(t−D)− p1(t) + n1(t)
s1′ (t) p3(t−D2)− p1(t) + n1′ (t) p3(t−D)− p1(t) + n1′ (t)
s2(t) p3(t−D1)− p2(t) + n2(t) p3(t−D)− p2(t) + n2(t)
s2′ (t) p1(t−D3)− p2(t) + n2′ (t) p1(t−D)− p2(t) + n2′ (t)
s3(t) p1(t−D2)− p3(t) + n3(t) p1(t−D)− p3(t) + n3(t)
s3′ (t) p2(t−D1)− p3(t) + n3′ (t) p2(t−D)− p3(t) + n3′ (t)

All s1(t) p(t−D3)− p(t) + n1(t) p(t−D)− p(t) + n1(t)
s1′ (t) p(t−D2)− p(t) + n1′ (t) p(t−D)− p(t) + n1′ (t)
s2(t) p(t−D1)− p(t) + n2(t) p(t−D)− p(t) + n2(t)
s2′ (t) p(t−D3)− p(t) + n2′ (t) p(t−D)− p(t) + n2′ (t)
s3(t) p(t−D2)− p(t) + n3(t) p(t−D)− p(t) + n3(t)
s3′ (t) p(t−D1)− p(t) + n3′ (t) p(t−D)− p(t) + n3′ (t)

Auto-covariance

Using the reading for the left optical bench on spacecraft 1, for independent lasers this

can be written as

s1(t) = p2′(t−D3)− p1(t) + n1(t), (3.30)

and its auto-covariance function is defined as

cov[s1(t1), s1(t2)] =
〈[
p2′(t1 −D3)− p1(t2) + n1(ta)

]
×
[
p2′(t2 −D3)− p1(t2) + n1(t2)

]〉
=
〈
p2′(t1 −D3) p2′(t2 −D3)

〉
−
〈
p2′(t1 −D3) p1(t2)

〉
+
〈
p2′(t1 −D3) n1(t2)

〉
−
〈
p1(t1) p2′(t2 −D3)

〉
+
〈
p1(t1) p1(t2)

〉
−
〈
p1(t1) n1(t2)

〉
+ n1(t1) p2′(t2 −D3)

〉
−
〈
n1(t1) p1(t2)

〉
+
〈
n1(t1) n1(t2)

〉
. (3.31)

There are no correlations between the laser phase and photodetector noises (Rule 2)

nor between the different lasers (Rule 3) therefore Equation 3.31 becomes

cov[s1(t1), s1(t2)] =
〈
p2′(t1 −D3) p2′(t2 −D3)

〉
+
〈
p1(t1) p1(t2)

〉
+
〈
n1(t1) n1(t2)

〉
. (3.32)
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Figure 3.1: A schematic diagram of LISA illustrating the positions and labels of the arms (Li), optical
benches (i, i′) and spacecraft (S/C i).

Correlations will only exist when the times are the same, therefore setting t1, t2 = t in

Equation 3.32 gives

cov[s1(t), s1(t)] =
〈
p2

2′(t−D3)
〉

+
〈
p2

1(t)
〉

+
〈
n2

1(t)
〉

= var[s1(t)]. (3.33)

Indicating that the only auto-covariance when the lasers are not phase-locked is for zero

lag which is just the variance. Substituting the values for the variances of the different

noises into Equation 3.33 gives

var[s1(t)] = 2σ2
p + σ2

n. (3.34)

For the illustrations in the following sections only the contributions from the correlated

noises will be listed that is, terms that are combinations of pi and ni or pi and pj will

be ignored.

Cross-covariances

For independent lasers, the only cross-correlations that will exist are between the raw

data from optical benches at the ends of the same arm because only these will contain

common laser phase noises. The readings for the optical benches at the end of arm L3

are

s1(t) = p2′(t−D3)− p1(t) + n1(t),

s2′(t) = p1(t−D3)− p2′(t) + n2′(t), (3.35)
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where the same laser noises occur in both readings but at different times and their

cross-covariance is

cov[s1(t1), s2′(t2)] =
〈[
p2′(t1 −D3)− p1(t1) + n1(t1)

]
×
[
p1(t2 −D3)− p2′(t2) + n2′(t2)

]〉
= −

〈
p2′(t1 −D3) p2′(t2)

〉
−
〈
p1(t1) p1(t2 −D3)

〉
. (3.36)

The same noises exist at different times which are offset by the same value (D3). For

t2 = t1 −D3 the covariance is

cov[s1(t1), s2′(t1 −D3)] = −
〈
p2′(t1 −D3) p2′(t1 −D3)

〉
−
〈
p1(t1) p1(t1 − 2D3)

〉
= −

〈
p2

2′(t1 −D3)
〉

= −σ2
p, (3.37)

and for t1 = t2 −D3 it is

cov[s1(t2 −D3), s2′(t2)] = −
〈
p2′(t2 − 2D3) p2′(t2)

〉
−
〈
p1(t2 −D3) p1(t2 −D3)

〉
= −

〈
p2

1(t2 −D3)
〉

= −σ2
p, (3.38)

where the contributions are from different optical benches in each case.

Equal arm lengths

For independent lasers the structure of the expressions are not greatly affected by the

nature of the arm lengths. The difference is in the location of the correlations which

instead of being at the three values given by Di will only occur at one location deter-

mined by D. The equations for the auto-covariance and the cross-covariance with equal

arms are easily obtained from Equations 3.33 and 3.36. The auto-covariance with equal

arm lengths is

var[s1(t)] =
〈
p2

2′(t−D)
〉

+
〈
p2

1(t)
〉

+
〈
n2

1(t)
〉

= 2σ2
p + σ2

n. (3.39)

The cross-covariance between s1 and s2′ with equal arms is

cov[s1(t1), s2′(t2)] = −
〈
p2′(t1 −D) p2′(t2)

〉
−
〈
p1(t1) p1(t2 −D)

〉
, (3.40)

with the covariances occurring at times t1 = t2 −D and t2 = t1 −D.
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Figure 3.2: A diagram illustrating the block structure of the covariance matrix showing the times in
(a) and the labeling of the blocks in (b) where si are the optical bench readings.

Summary

The auto- and cross-covariances for all the raw data with no laser phase-locking are

given in Figure 3.4 where they are arranged in 6 × 6 blocks to mimic the block in

the covariance matrix shown in Figure 3.2. In Figure 3.4 the times are located at the

right edge of the blocks. The results for equal and unequal arm lengths are given. For

independent lasers, the auto-covariances when the times are the same, which are the

blocks along the main diagonal of the matrix, are restricted to the main diagonal of

each block. The values for different times produce two diagonals in the blocks above

and below the main diagonal of the block. However, this structure will only occur

when the arm lengths are equal. For different arm lengths the correlations will occur

in three different blocks because of the three different offsets (D1, D2, D3) occurring in

the values. The differences are illustrated in Figure 3.3.

D
s1 s1′ s2 s2′ s3 s3′

s1
s1′

s2
s2′

s3
s3′

(a)

D3 D2 D1

s1 s1′ s2 s2′ s3 s3′ s1 s1′ s2 s2′ s3 s3′ s1 s1′ s2 s2′ s3 s3′

s1
s1′

s2
s2′

s3
s3′

(b)

Figure 3.3: The structure of the blocks when the times are not equal illustrating the changes for (a)
equal (D) and (b) unequal arm (D1, D2, D3) lengths. The different offsets are shown above the blocks.
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(a) SAME TIMES (t1 = t2 = t)
Unequal arms (Di = Li/c)

s1(t) s1′(t) s2(t) s2′(t) s3(t) s3′(t)

s1(t)
〈p2

2′(t−D3)〉
0 0 0 0 0

+〈p2
1(t)〉+ 〈n2

1(t)〉

s1′(t) 0
〈p2

3(t−D2)〉
0 0 0 0

+〈p2
1′(t)〉+ 〈n2

1′(t)〉

s2(t) 0 0
〈p2

3′(t−D1)〉
0 0 0

+〈p2
2(t)〉+ 〈n2

2(t)〉

s2′(t) 0 0 0
〈p2

1(t−D3)〉
0 0

+〈p2
2′(t)〉+ 〈n2

2′(t)〉

s3(t) 0 0 0 0
〈p2

1′(t−D2)〉
0

+〈p2
3(t)〉+ 〈n2

3(t)〉

s3′(t) 0 0 0 0 0
〈p2

2(t−D1)〉
+〈p2

3′(t)〉+ 〈n2
1(t)〉

Equal arm (D = L/c)

s1(t) s1′(t) s2(t) s2′(t) s3(t) s3′(t)

s1(t1)
〈p2

2′(t−D)〉
0 0 0 0 0

+〈p2
1(t)〉+ 〈n2

1(t)〉

s1′(t) 0
〈p2

3(t−D)〉
0 0 0 0

+〈p2
1′(t)〉+ 〈n2

1′(t)〉

s2(t) 0 0
〈p2

3′(t−D)〉
0 0 0

+〈p2
2(t)〉+ 〈n2

2(t)〉

s2′(t) 0 0 0
〈p2

1(t−D)〉
0 0

+〈p2
2′(t)〉+ 〈n2

2′(t)〉

s3(t) 0 0 0 0
〈p2

1′(t−D)〉
0

+〈p2
3(t)〉+ 〈n2

3(t)〉

s3′(t) 0 0 0 0 0
〈p2

2(t−D)〉
+〈p2

3′(t)〉+ 〈n2
1(t)〉

(b) DIFFERENT TIMES (t1 6= t2)
Unequal arms (Di = Li/c)

s1(t2) s1′(t2) s2(t2) s2′(t2) s3(t2) s3′(t2)

s1(t1) 0 0 0
−〈p1(t1)p1(t2 −D3)〉

0 0−〈p2′(t1 −D3)p2′(t2)〉

s1′(t1) 0 0 0 0
〈p1′(t1)p1′(t2 −D2)〉

0−〈p3(t1 −D2)p3(t2)〉

s2(t1) 0 0 0 0 0
〈p2(t1)p2(t2 −D1)〉
−〈p3′(t1 −D1)p3′(t2)〉

s2′(t1)
−〈p1(t1 −D3)p1(t2)〉

0 0 0 0 0−〈p2′(t1)p2′(t2 −D3)〉

s3(t1) 0
〈p1′(t1 −D2)p1′(t2)〉

0 0 0 0−〈p3(t1)p3(t2 −D2)〉

s3′(t1) 0 0
〈p2(t1 −D1)p2(t2)〉

0 0 0−〈p3′(t1)p3′(t2 −D1)〉

Equal arms (D = L/c)

s1(t2) s1′(t2) s2(t2) s2′(t2) s3(t2) s3′(t2)

s1(t1) 0 0 0
−〈p1(t1)p1(t2 −D)〉

0 0−〈p2′(t1 −D)p2′(t2)〉

s1′(t1) 0 0 0 0
〈p1′(t1)p1′(t2 −D)〉

0−〈p3(t1 −D)p3(t2)〉

s2(t1) 0 0 0 0 0
〈p2(t1)p2(t2 −D)〉
−〈p3′(t1 −D)p3′(t2)〉

s2′(t1)
−〈p1(t1 −D)p1(t2)〉

0 0 0 0 0−〈p2′(t1)p2′(t2 −D)〉

s3(t1) 0
〈p1′(t1 −D)p1′(t2)〉

0 0 0 0−〈p3(t1)p3(t2 −D)〉

s3′(t1) 0 0
〈p2(t1 −D)p2(t2)〉

0 0 0−〈p3′(t1)p3′(t2 −D)〉

Figure 3.4: Raw data covariances when all lasers are operating independently, that is, the lasers are
not phase-locked. The blocks are grouped according to equal times (top) and unequal times (bottom).
The expressions in the cells are the noise covariances between the optical benches.
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(a) (b)

Figure 3.5: Samples of the raw data covariance matrices for no laser phase-locking with (a) equal and
(a) unequal arm lengths.

Sample covariance matrices for independent lasers

The values used for generating the covariances matrices are given in Table 3.2. These

were chosen to allow illustration of the structure of the matrices in a small space,

therefore, they do not represent real values for LISA. The range of values that the

divisions cover in the colour scheme used to display the matrices in the figures is set

by MATLAB. Differences between the covariances that are less than these division will

not show up in the figures. The values for the noise variances were chosen to overcome

this problem. This is more relevant for the case where all the lasers are locked but for

consistency the same values are used for all the phase locking options.

Samples of the covariance matrices for independent lasers with equal and unequal

arm lengths are shown in Figure 3.5. The times are listed at the top and left hand side

of the figures. The matrices are both symmetric about the main diagonal with entries

occurring in 6 × 6 blocks. As expected, with equal arm lengths the matrix has three

diagonals with the blocks on the main diagonal having values only along their main

diagonal. The other diagonals are offset from the main diagonal of the matrix by the

light travel time in the arm length D. For unequal arm lengths the main diagonal of the

matrix is still the same but the two diagonals obtained for equal arms have now been

split into three diagonals at offsets of 4, 5 and 6 which are the light travel times in the

different arms.
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Table 3.2: Values used for generating the covariances for all sample matrices.

Variable Value

Laser frequency noise variance, σ2
p 40

Photodetector noise variance, σ2
n 4

Arm lengths (seconds)
Equal, D 5
Unequal, Di 4, 5, 6

3.2.2.2 Covariances with laser phase-locking on each spacecraft

When the lasers are phase-locked on each spacecraft the readings for the two optical

benches on a spacecraft can be written as

si(t) = pj(t−Dk)− pi(t) + ni(t),

si′(t) = pk(t−Dj)− pi(t) + ni′(t), (3.41)

where correlations will now exist between them. There will also be correlations between

the raw data from the optical bench on one spacecraft and those from the two optical

benches on the spacecraft at the end of the adjacent arm. This happens because of they

will now contain the same laser noises. For example, the readings for spacecraft j which

is at the end of arm Lk are sj(t) and sj′(t) which are

sj′(t) = pi(t−Dk)− pj(t) + nj′(t),

sj(t) = pk(t−Di)− pj(t) + nj(t), (3.42)

where the common laser phase noise pj is also present in si(t) in Equation 3.41.

Auto-covariances

The auto-covariance will be the same as for the independent lasers with the only change

being the dropping of the primed notation for the laser noises. Since there still only

two different noises in the readings only the variance will have non-zero values which

for unequal arm lengths is

var[s1(t)] =
〈
p2

2(t−D3)
〉

+
〈
p2

1(t)
〉

+
〈
n2

1(t)
〉
,

(3.43)

with values of 2σ2
p + σ2

n in each case which is the same as for independent lasers. With

equal arm lengths the only change is the replacement of D3 with D.
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Cross-covariances

This will be computed for only three combinations of readings to illustrate the different

types correlations between the optical benches. This will be between the raw data from

the optical benches on spacecraft 1, between those at the end of arm L3 and between

the right optical bench of spacecraft 1 and the left optical bench of spacecraft 2. The

equations for these optical benches with spacecraft locking are

s1(t) = p2(t−D3)− p1(t) + n1(t),

s1′(t) = p3(t−D2)− p1(t) + n1′(t),

s2(t) = p3(t−D1)− p2(t) + n2(t),

s2′(t) = p1(t−D3)− p2(t) + n2′(t). (3.44)

The cross-covariance between the raw data form the optical benches on spacecraft 1 is

cov[s1(t1), s1′(t2)] =
〈[
p2(t1 −D3)− p1(t1) + n1(t1)

]
×
[
p3(t2 −D2)− p1(t2) + n1′(t2)

]〉
=
〈
p1(t1) p1(t2)

〉
. (3.45)

which will result in correlations when the times are equal giving

cov[s1(t), si′(1)] =
〈
p2

1(t)
〉

= σ2
p. (3.46)

Since these do not have any offset times the result will be same for equal arm lengths.

The cross-covariance between the raw data from the optical benches at the end of

arm L3 which are s1(t) and s2′(t) is

cov[s1(t1), s2′(t2)] =
〈[
p2(t1 −D3)− p1(t1) + n1(t1)

]
×
[
p1(t2 −D3)− p2(t2) + n2′(t2)

]〉
= −

〈
p2(t1 −D3) p2(t2)

〉
−
〈
p1(t1) p1(t2 −D3)

〉
, (3.47)

where the only difference between this and the independent lasers is the absence of the

primed values. This will give values of −σ2
p which will occur at offsets of t1− t2 = ±D3.

The only change with equal arm lengths is that the offsets are just D.

The cross-covariance between the raw data from the right optical bench of spacecraft

1 and that from the left optical bench of spacecraft 2 is

cov[s1′(t1), s2(t2)] =
〈[
p3(t1 −D2)− p1(t1) + n1′(t1)

]
×
[
p3(t2 −D1)− p2(t2) + n2(t2)

]〉
=
〈
p3(t1 −D2) p3(t2 −D1)

〉
, (3.48)
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where the correlation exist at two offset times of t1 −D2 and t2 −D3. The correlation

will occur at t1 − t2 = ±(D3 − D2) with values of σ2
p. This time there is a difference

with the equal arm lengths which is

cov[s1′(t1), s2(t2)] =
〈
p3(t1 −D) p3(t2 −D)

〉
. (3.49)

where, because of the equal offsets, the only times that correlations will occur are when

the times are equal which is

cov[s1′(t), s2(t)] =
〈
p2

3(t)
〉

= σ2
p. (3.50)

With equal arm lengths this correlation occurs in the block on the main diagonal of the

matrix but with unequal arm lengths it occurs at a time that is the difference of the

offsets D3 −D2 shifting it away from the main diagonal.

Summary

The locking of the lasers on each spacecraft increases the number of correlations between

the raw data which appears in the matrix as an increase in the density of the blocks

as illustrated in Figure 3.6. For the unequal arm lengths, although all the values are

placed in the same block in Figure 3.6, the correlations will not all occur in one block.

Sample covariance matrices

Figure 3.7 shows samples of the covariance matrices for equal and unequal arm lengths

where the variances and arm lengths are the same as used for independent lasers. For

equal arm lengths the number of diagonals is the same but with more values in each

block, that is, the density of the blocks has increased as expected. For unequal arm

lengths the number of correlations in the other diagonals has also increased and so has

the number of diagonals with two appearing close to the main diagonal which are due

to differences of the offsets Di −Dj.
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(a) SAME TIMES (t1 = t2 = t)
Unequal arms (Di = Li/c)

s1(t) s1′(t) s2(t) s2′(t) s3(t) s3′(t)

s1(t)
〈p2

2(t−D3)〉 〈p2
1(t)〉 0 0 0 0

+〈p2
1(t)〉+ 〈n2

1(t)〉

s1′(t) 〈p2
1(t)〉 〈p2

3(t−D2)〉
0 0 0 0

+〈p2
1(t)〉+ 〈n2

1′(t)〉

s2(t) 0 0
〈p2

3(t−D1)〉 〈p2
2(t)〉 0 0

+〈p2
2(t)〉+ 〈n2

2(t)〉

s2′(t) 0 0 〈p2
2(t)〉 〈p2

1(t−D3)〉
0 0

+〈p2
2(t)〉+ 〈n2

2′(t)〉

s3(t) 0 0 0 0
〈p2

1(t−D2)〉 〈p2
3(t)〉

+〈p2
3(t)〉+ 〈n2

3(t)〉

s3′(t) 0 0 0 0 〈p2
3(t)〉 〈p2

2(t−D1)〉
+〈p2

3(t)〉+ 〈n2
1(t)〉

Equal arms (D = L/c)
s1(t) s1′(t) s2(t) s2′(t) s3(t) s3′(t)

s1(t)
〈p2

2(t−D)〉 〈p2
1(t)〉 0 0 0 〈p2

2(t−D)〉
+〈p2

1(t)〉+ 〈n2
1(t)〉

s1′(t) 〈p2
1(t)〉 〈p2

3(t−D)〉 〈p2
3(t−D)〉 0 0 0

+〈p2
1(t)〉+ 〈n2

1′(t)〉

s2(t) 0 〈p2
3(t−D)〉 〈p2

3(t−D)〉 〈p2
2(t)〉 0 0

+〈p2
2(t)〉+ 〈n2

2(t)〉

s2′(t) 0 0 〈p2
2(t)〉 〈p2

1(t−D)〉 〈p2
1(t−D)〉 0

+〈p2
2(t)〉+ 〈n2

2′(t)〉

s3(t) 0 0 0 〈p2
1(t−D)〉 〈p2

1(t−D)〉 〈p2
3(t)〉

+〈p2
3(t)〉+ 〈n2

3(t)〉

s3′(t) 〈p2
2(t−D)〉 0 0 0 〈p2

3(t)〉 〈p2
2(t−D)〉

+〈p2
3(t)〉+ 〈n2

1(t)〉

(b) DIFFERENT TIMES (t1 6= t2)
Unequal arms (Di = Li/c)

s1(t2) s1′(t2) s2(t2) s2′(t2) s3(t2) s3′(t2)

s1(t1) 0 0 −〈p2(t1 −D3)p2(t2)〉 −〈p1(t1)p1(t2 −D3)〉 −〈p1(t1)p1(t2 −D2)〉 〈p2(t1 −D3)p2(t2 −D1)〉−〈p1(t1 −D3)p1(t2)〉

s1′(t1) 0 0 〈p3(t1 −D2)p3(t2 −D1)〉 −〈p1(t1)p1(t2 −D3)〉 −〈p1(t1)p1(t2 −D2)〉 −〈p3(t1 −D2)p3(t2)〉−〈p3(t1 −D2)p3(t2)〉

s2(t1) 〈p2(t1 −D3)p2(t2)〉 −〈p3(t1 −D1)p3(t2 −D2)〉 0 0 −〈p3(t1 −D1)p3(t2)〉 −〈p2(t1)p2(t2 −D1)〉
−〈p3(t1 −D1)p3(t2)〉

s2′(t1)
−〈p1(t1 −D3)p1(t2)〉 −〈p1(t1 −D3)p1(t2)〉 0 0 〈p1(t1 −D3)p1(t2 −D2)〉 −〈p2(t1)p2(t2 −D1)〉−〈p2(t1)p2(t2 −D3)〉

s3(t1) −〈p1(t1 −D2)p1(t2)〉 −〈p1(t1 −D2)p1(t2)〉 −〈p3(t1)p3(t2 −D1)〉 〈p1(t1 −D2)p1(t2 −D3)〉 0 0−〈p3(t1)p3(t2 −D2)〉

s3′(t1) 〈p2(t1 −D1)p2(t2 −D3)〉 −〈p3(t1)p3(t2 −D2)〉 −〈p2(t1 −D1)p2(t2)〉 −〈p2(t1 −D1)p2(t2)〉 0 0−〈p3(t1)p3(t2 −D1)〉

Equal arms (D = L/c)
s1t2 s1′t2 s2t2 s2′t2 s3t2 s3′t2

s1(t1) 0 0 −〈p2(t1 −D)p2(t2)〉 −〈p1(t1)p1(t2 −D)〉 −〈p1(t1)p1(t2 −D)〉 0−〈p1(t1 −D)p1(t2)〉

s1′(t1) 0 0 0 −〈p1(t1)p1(t2 −D)〉 −〈p1(t1)p1(t2 −D)〉 −〈p3(t1 −D)p3(t2)〉−〈p3(t1 −D)p3(t2)〉

s2(t1) 〈p2(t1)p2(t2 −D)〉 0 0 0 −〈p3(t1 −D)p3(t2)〉 −〈p2(t1)p2(t2 −D)〉
−〈p3(t1 −D)p3(t2)〉

s2′(t1)
−〈p1(t1 −D)p1(t2)〉 −〈p1(t1 −D)p1(t2)〉 0 0 0 −〈p2(t1)p2(t2 −D)〉−〈p2(t1)p2(t2 −D)〉

s3(t1) −〈p1(t1 −D)p1(t2)〉 −〈p1(t1 −D)p1(t2)〉 −〈p3(t1)p3(t2 −D)〉 0 0 0−〈p3(t1)p3(t2 −D)〉

s3′(t1) 0 −〈p3(t1)p3(t2 −D)〉 −〈p2(t1 −D)p2(t2)〉 −〈p2(t1 −D)p2(t2)〉 0 0−〈p3(t1)p3(t2 −D)〉

Figure 3.6: The covariances for the raw data when the lasers are phase-locked on each spacecraft for
unequal (top) and equal (bottom) arms.
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(a) (b)

Figure 3.7: Sample raw data covariance matrices with lasers that are phase-locked on each spacecraft
and with (a) equal and (b) unequal arm lengths.

3.2.2.3 Covariances with all lasers phase-locked to a master

When the lasers are all locked to a master they will all have the same noises and the

readings will reflect this by having no subscripts associated with the laser noises p. The

raw data with all the lasers locked can be written as

si(t) = p(t−Dk)− p(t) + ni(t), (3.51)

where the two laser noises in the readings are now the same but with different offsets.

This will introduce correlations within the same readings ans also with all the other

readings.

Auto-covariances

Using the raw data from the left optical bench on spacecraft 1 as an example, with all

lasers locked it is

s1(t) = p(t−D3)− p(t) + n1(t), (3.52)

and its auto-covariance is

cov[s1(t1), s1(t2)] =
〈[
p(t1 −D3)− p(t1) + n1(t1)

]
×
[
p(t2 −D3)− p(t2) + n1(t2)

]〉
=
〈
p(t1 −D3) p(t2 −D3)

〉
−
〈
p(t1 −D3) p(t2)

〉
−
〈
p(t1) p(t2 −D3)

〉
+
〈
p(t1) p(t2)

〉
+
〈
n1(t1) n1(t2)

〉
, (3.53)
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where there are four different times for correlations. For equal times t1, t2 = t the

auto-covariance for unequal arm lengths is

cov[s1(t)] = var[s1(t)] =
〈
p2(t−D3)

〉
+
〈
p2(t)

〉
+
〈
n2

1(t)
〉
,

= 2σ2
p + σ2

n, (3.54)

giving the same structure and values for the variances as the other two phase-locking

options. The difference here is that correlations have been introduced between the laser

phase noises in the same time series. The different times of these noises in the readings

cause correlations away from the main diagonal where ta 6= tb. The only change with

equal arm lengths is that the correlations occur at D instead of D3.

For times that are not the same ta 6= tb, the covariance for these are

cov[s1(t1), s1(t2)] = −
〈
p(t1 −D3) p(t2)

〉
−
〈
p(t1) p(t2 −D3)

〉
, (3.55)

with values of −σ2
p when t1 = t2 − D3 and t2 = t1 − D3. With equal arm lengths the

correlations occur at D instead of D3 with the same value −σ2
p.

Cross-covariances

The illustrations will be done with the raw data from the same optical benches that were

used for space craft locked lasers which are those on spacecraft 1 since the structure of

the cross-covariances are the same for the rest of the optical benches but with different

offsets. The equations for these with all the lasers locked together are

s1(t) = p(t−D3)− p(t) + n1(t),

s1′(t) = p(t−D2)− p(t) + n1′(t), (3.56)

The covariances between the raw data from spacecraft 1 is

cov[s1(t1), s1′(t2)] =
〈[
p(t1 −D3)− p(t1) + n1(t1)

]
×
[
p(t2 −D2)− p(t2) + n1′(t2)

]〉
=
〈
p(t1 −D3) p(t2 −D2)

〉
−
〈
p(t1 −D3) p(t2)

〉
−
〈
p(t1) p(t2 −D2)

〉
+
〈
p(t1) p(t2)

〉
. (3.57)

For t1, t2 = t the cross-covariance is

cov[s1(t), s1′(t)] =
〈
p2(t)

〉
= σ2

p, (3.58)
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which will be in the blocks along the main diagonal of the matrix but away from the

main diagonal of the individual blocks. For t1 6= t2 the covariance is

cov[s1(t1), s1′(t2)] =
〈
p(t1 −D3) p(t2 −D2)

〉
−
〈
p(t1 −D3) p(t2)

〉
−
〈
p(t1) p(t2 −D2)

〉
, (3.59)

with correlation occurring at three different times. For t1 = t2 −D2 and t2 = t1 −D3

the covariances are

cov[s1(t2 −D2), s1′(t2)] = −
〈
p2(t2 −D2)

〉
,

cov[s1(t1), s1′(t1 −D3)] = −
〈
p2(t1 −D3)

〉
, (3.60)

with both having values of −σ2
p. For the combinations with two offsets substituting

t1 = t−D2 and t2 = t−D3 gives

cov[s1(t−D2), s1′(t−D3)] =
〈
p2(t−D2 −D3)

〉
= σ2

p, (3.61)

where the correlations occur at sums of the offsets in readings D2 + D3. With equal

arm lengths the change will be in Equation 3.61 where the equal arm lengths will shift

the correlations to the main where the times are equal.

Summary

The covariances for all the raw data are shown in Figure 3.8 where overall the densities

of the blocks have increased and for equal arms they are completely filled.

Sample covariance matrices

Figure 3.9 show the sample matrices where, as expected, the densities of the matrices

have increased for both equal and unequal arm lengths. For equal arm lengths there

are still three diagonals as seen in the corresponding matrices for the independent and

spacecraft locked lasers but in this case all blocks are now filled. For unequal arm

lengths only the blocks along the main diagonal are full. There is also an increase in

density of the diagonals close the main.
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(a) SAME TIMES (t1 = t2 = t)
Unequal arms (Di = Li/c)

s1(t) s1′(t) s2(t) s2′(t) s3(t) s3′(t)

s1(t)
〈p2(t−D3)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉

+〈p2(t)〉+ 〈n2
1(t)〉

s1′(t) 〈p2(t)〉 〈p2(t−D2)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉
+〈p2(t)〉+ 〈n2

1′(t)〉

s2(t) 〈p2(t)〉 〈p2(t)〉 〈p2(t−D1)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉
+〈p2(t)〉+ 〈n2

2(t)〉

s2′(t) 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t−D3)〉 〈p2(t)〉 〈p2(t)〉
+〈p2(t)〉+ 〈n2

2′(t)〉

s3(t) 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t−D2)〉 〈p2(t)〉
+〈p2(t)〉+ 〈n2

3(t)〉

s3′(t) 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t)〉 〈p2(t−D1)〉
+〈p2(t)〉+ 〈n2

1(t)〉

Equal arms (D = L/c)
s1(t) s1′(t) s2(t) s2′(t) s3(t) s3′(t)

s1(t)
〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉

+〈p2(t)〉+ 〈n2
1(t)〉

s1′(t) 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉
+〈p2(t)〉+ 〈n2

1′(t)〉

s2(t) 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉
+〈p2(t)〉+ 〈n2

2(t)〉

s2′(t) 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉
+〈p2(t)〉+ 〈n2

2′(t)〉

s3(t) 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉
+〈p2(t)〉+ 〈n2

3(t)〉

s3′(t) 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t)〉+ 〈p2(t−D)〉 〈p2(t−D)〉
+〈p2(t)〉+ 〈n2

1(t)〉

(b) DIFFERENT TIMES (t1 6= t2)
Unequal arms (Di = Li/c)

s1(t2) s1′(t2) s2(t2) s2′(t2) s3(t2) s3′(t2)

s1(t1)
−
〈
p(t1 −D3) p(t2)

〉
−〈p(t1)p(t2 −D2)〉 −〈p(t1)p(t2 −D1)〉 −〈p(t1 −D3)p(t2)〉 −〈p(t1)p(t2 −D2)〉 −〈p(t1)p(t2 −D1)〉

−
〈
p(ta) p(tb −D3)

〉
−〈p(t1 −D3)p(t2)〉 −〈p(t1 −D3)p(t2)〉 −〈p(t1)p(t2 −D3)〉 −〈p(t1 −D3)p(t2)〉 −〈p(t1 −D3)p(t2)〉

+〈p(t1 −D3)p(t2 −D2)〉 +〈p(t1 −D3)p(t2 −D1)〉 +〈p(t1 −D3)p(t2 −D3)〉 +〈p(t1 −D3)p(t2 −D2)〉 +〈p(t1 −D3)p(t2 −D1)〉

s1′(t1)
−〈p(t1 −D2)p(t2)〉 −

〈
p(t1 −D2) p(t2)

〉
−〈p(t1)p(t2 −D1)〉 −〈p(t1 −D2)p(t2)〉 −〈p(t1 −D2)p(t2)〉 −〈p(t1)p(t2 −D2)〉

−〈p(t1)p(t2 −D3)〉 −
〈
p(ta) p(tb −D2)

〉
−〈p(t1 −D2)p(t2)〉 −〈p(t1)p(t2 −D3)〉 −〈p(t1)p(t2 −D2)〉 −〈p(t1 −D2)p(t2)〉

+〈p(t1 −D2)p(t2 −D3) +〈p(t1 −D2)p(t2 −D1)〉 +〈p(t1 −D2)p(t2 −D3)〉 +〈p(t1 −D2)p(t2 −D2)〉 +〈p(t1 −D2)p(t2 −D2)〉

s2(t1)
−〈p(t1 −D1)p(t2)〉 −〈p(t1 −D1)p(t2)〉 −

〈
p(t1 −D1) p(t2)

〉
−〈p(t1 −D1)p(t2)〉 −〈p(t1 −D1)p(t2)〉 −〈p(t1 −D1)p(t2)〉

−〈p(t1)p(t2 −D3)〉 −〈p(t1)p(t2 −D2)〉 −
〈
p(ta) p(tb −D1)

〉
−〈p(t1)p(t2 −D3)〉 −〈p(t1)p(t2 −D2)〉 −〈p(t1)p(t2 −D1)〉

+〈p(t1 −D1)p(t2 −D3)〉 +〈p(t1 −D1)p(t2 −D2)〉 +〈p(t1 −D1)p(t2 −D3)〉 +〈p(t1 −D1)p(t2 −D2)〉 +〈p(t1 −D1)p(t2 −D1)〉

s2′(t1)
−〈p(t1)p(t2 −D3)〉 −〈p(t1)p(t2 −D2)〉 −〈p(t1)p(t2 −D1)〉 −

〈
p(t1 −D3) p(t2)

〉
−〈p(t1)p(t2 −D2)〉 −〈p(t1)p(t2 −D1)〉

−〈p(t1 −D3)p(t2)〉 −〈p(t1 −D3)p(t2)〉 −〈p(t1 −D3)p(t2)〉 −
〈
p(ta) p(tb −D3)

〉
−〈p(t1 −D3)p(t2)〉 −〈p(t1 −D3)p(t2)〉

+〈p(t1 −D3)p(t2 −D3)〉 +〈p(t1 −D3)p(t2 −D2)〉 +〈p(t1 −D3)p(t2 −D1)〉 +〈p(t1 −D3)p(t2 −D2)〉 +〈p(t1 −D3)p(t2 −D1)〉

s3(t1)
−〈p(t1 −D2)p(t2)〉 −〈p(t1)p(t2 −D2)〉 −〈p(t1)p(t2 −D1)〉 −〈p(t1)p(t2 −D1)〉 −

〈
p(t1 −D2) p(t2)

〉
−〈p(t1)p(t2 −D1)〉

−〈p(t1)p(t2 −D3)〉 −〈p(t1 −D2)p(t2)〉 −〈p(t1 −D2)p(t2)〉 −〈p(t1)p(t2 −D3)〉 −
〈
p(ta) p(tb −D2)

〉
−〈p(t1 −D2)p(t2)〉

+〈p(t1 −D2)p(t2 −D3)〉 +〈p(t1 −D2)p(t2 −D2)〉 +〈p(t1 −D2)p(t2 −D1)〉 +〈p(t1 −D2)p(t2 −D3)〉 +〈p(t1 −D2)p(t2 −D1)〉

s3′(t1)
−〈p(t1 −D1)p(t2)〉 −〈p(t1 −D2)p(t2)〉 −〈p(t1)p(t2 −D1)〉 −〈p(t1 −D1)p(t2)〉 −〈p(t1 −D1)p(t2)〉 −

〈
p(t1 −D1) p(t2)

〉
−〈p(t1)p(t2 −D3)〉 −〈p(t1)p(t2 −D2)〉 −〈p(t1 −D1)p(t2)〉 −〈p(t1)p(t2 −D3)〉 −〈p(t1)p(t2 −D2)〉 −

〈
p(ta) p(tb −D1)

〉
+〈p(t1 −D1)p(t2 −D3)〉 +〈p(t1 −D2)p(t2 −D2)〉 +〈p(t1 −D1)p(t2 −D1)〉 +〈p(t1 −D1)p(t2 −D3)〉 +〈p(t1 −D1)p(t2 −D2)〉

Equal arms (D = L/c)
s1(t2) s1′(t2) s2(t2) s2′(t2) s3(t2) s3′(t2)

s1(t1)
−〈p(t1 −D) p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉
−〈p(t1) p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉

s1′(t1)
−〈p(t1 −D)p(t2)〉 −〈p(t1 −D) p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉
−〈p(t1)p(t2 −D)〉 −〈p(t1) p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1 −D)p(t2)〉

s2(t1)
−〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D) p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉
−〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1) p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉

s2′(t1)
−〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉
−〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1) p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉

s3(t1)
−〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1 −D) p(t2)〉 −〈p(t1)p(t2 −D)〉
−〈p(t1)p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1) p(t2 −D)〉 −〈p(t1 −D)p(t2)〉

s3′(t1)
−〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1 −D3) p(t2)〉
−〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1 −D)p(t2)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1)p(t2 −D)〉 −〈p(t1) p(t2 −D)〉

Figure 3.8: Raw data covariances with all lasers phased locked to a master for unequal (top) and equal
(bottom) arm lengths.
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(a) (b)

Figure 3.9: Sample raw data covariance matrices with lasers that are phase-locked on each spacecraft
and with (a) equal and (b) unequal arm lengths.

3.2.3 Power spectral density matrix

The process is similar to that used for computing the time domain covariances. First

the spectra for the optical bench readings are obtained from the Fourier transform of

the time series. Using the general equation for the optical bench time series which can

be written as

sl(t) = pj(t−Dk)− pl(t) + nl(t), (3.62)

where l and j are the optical bench numbers and k is the number for the arm. Here l is

used to avoid confusion with the imaginary number i. The corresponding spectrum is

s̃l(f) = p̃j′(f) e−2πifDk − p̃l(f) + ñl(f), (3.63)

where s̃l(f) represents the Fourier transform of sl(t) which is

s̃l(f) = F [sl(t)] =

∫ ∞
−∞

sl(t)e
−2πiftdt. (3.64)

The offset Dk in the time series corresponds to a phase shift e−2πifDk in the spectrum.

The list of all the raw data spectra for equal and unequal arm lengths is given in Table

3.3. As was done for the time series the generation of the power spectral densities will

be illustrated with a few examples for the different phase-locking options and for equal

and unequal arm lengths.
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Table 3.3: Raw data spectra showing the expressions for different types of phase-locking with unequal
and equal arm lengths.

Phase-locking Spectrum Contributions
Unequal arms(Di = Li/c) Equal arms D = L/c

None s̃1(f) p̃2′ (f) e−2πifD3 − p̃1(f) + ñ1(f) p̃2′ (f) e−2πifD − p̃1(f) + ñ1(f)
s̃1′ (f) p̃3(f) e−2πifD2 − p̃1′ (f) + ñ1′ (f) p̃3(f) e−2πifD − p̃1′ (f) + ñ1′ (t)
s̃2(f) p̃3′ (f) e−2πifD1 − p̃2(f) + ñ2(f) p̃3′ (f) e−2πifD − p̃2(f) + ñ2(f)
s̃2′ (f) p1(f) e−2πifD3 − p2′ (t) + ñ2′ (f) p̃1(f) e−2πifD − p̃2′ (f) + ñ2′ (f)
s̃3(f) p̃1′ (f) e−2πifD2 − p̃3(f) + ñ3(f) p̃1′ (f) e−2πifD − p̃3(f) + ñ3(f)
s̃3′ (f) p̃2(f) e−2πifD1 − p̃3′ (f) + ñ3′ (f) p̃2(f) e−2πifD − p̃3′ (f) + ñ3′ (f)

Spacecraft s̃1(f) p̃2(f) e−2πifD3 − p̃1(f) + ñ1(f) p̃2(f) e−2πifD − p̃1(f) + ñ1(f)
s̃1′ (f) p̃3(f) e−2πifD2 − p̃1(t) + ñ1′ (f) p̃3(f) e−2πifD − p̃1(f) + ñ1′ (f)
s̃2(f) p̃3(f) e−2πifD1 − p̃2(t) + ñ2(f) p̃3(f) e−2πifD − p̃2(f) + ñ2(f)
s̃2′ (f) p̃1(f) e−2πifD3 − p̃2(t) + ñ2′ (f) p̃1(f) e−2πifD − p̃2(f) + ñ2′ (f)
s̃3(f) p̃1(f) e−2πifD2 − p̃3(t) + ñ3(f) p̃1(f) e−2πifD − p̃3(f) + ñ3(f)
s̃3′ (f) p̃2(f) e−2πifD1 − p̃3(t) + ñ3′ (f) p̃2(f) e−2πifD − p̃3(f) + ñ3′ (f)

All s̃1(f) p̃(f) e−2πifD3 − p̃(t) + ñ1(f) p̃(f) e−2πifD − p̃(f) + ñ1(f)
s̃1′ (f) p̃(f) e−2πifD2 − p̃(t) + ñ1′ (f) p̃(f) e−2πifD − p̃(f) + ñ1′ (f)
s̃2(f) p̃(f) e−2πifD1 − p̃(t) + ñ2(f) p̃(f) e−2πifD − p̃(f) + ñ2(f)
s̃2′ (f) p̃(f) e−2πifD3 − p̃(t) + ñ2′ (f) p̃(f) e−2πifD − p̃(f) + ñ2′ (f)
s̃3(f) p̃(f) e−2πifD2 − p̃(t) + ñ3(f) p̃(f) e−2πifD − p̃(f) + ñ3(f)
s̃3′ (f) p̃(f) e−2πifD1 − p̃(t) + ñ3′ (f) p̃(f) e−2πifD − p̃(f) + ñ3′ (f)

3.2.3.1 Power spectral densities with no laser phase-locking

As shown in the time domain the only optical benches that will have common laser

phase noises for when the lasers are not phase-locked are those at the end of an arm.

For arm L3 these are s1 and s2′ which are

s̃1(f) = p̃2′(f) e−2πifD3 − p̃1(f) + ñ1(f),

s̃2′(f) = p̃1(f) e−2πifD3 − p̃2′(f) + ñ2′(f). (3.65)

For the power spectral densities only the optical bench numbers will be used, that is,

Sij instead of Ssisj .

Auto-power spectra

For optical bench s1 the auto-power spectral density is

S11(f) =
〈
[p̃2′(f)e−2πifD3 − p̃1(f) + ñ1(f)]× [p̃∗2′(f)e2πifD3 − p̃∗1(f) + ñ∗1(f)]

〉
=
〈
p̃2

2′(f)
〉

+
〈
p̃2

1(f)
〉

+
〈
ñ2

1(f)
〉
, (3.66)

which has the same structure as the time domain auto-covariance. Substituting the

values for the variances which are σ2
p and σ2

n gives

S11(f) = 2σ2
p + σ2

n. (3.67)
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Figure 3.10: A diagram illustrating the block structure of the covariance matrix showing the frequencies
in (a) and the labeling of the blocks in (b) where si are the optical bench readings.

For equal arm lengths the result is the same.

Cross-power spectra

The cross-power spectral density between the optical benches s1 and s2′ is

S12′(f) =
〈
[p̃2′(f)e−2πifD3 − p̃1(f) + ñ1(f)]× [p̃∗1(f)e2πifD3 − p̃∗2′(f) + ñ∗2′(f)]

〉
= −

〈
p̃2

2′(f)
〉
e−2πifD3 −

〈
p̃2

1(f)
〉
e2πifD3 . (3.68)

Substituting the values for the variances gives

S12′(f) = −σ2
p

[
e−2πifD3 + e2πifD3

]
, (3.69)

where they differ from the time domain by having an exponential term. With equal

arm lengths the only change is in the offset.

Summary

As was done for the covariance matrices, the values for all the power spectral densities

are given in 6 × 6 blocks in Figure 3.11 to match the structure in the matrix which

is shown in Figure 3.10. With no correlations between frequencies these blocks occur

along the main diagonal of the matrix. Unlike the time domain the structure of the

blocks will be the actual structure in the matrix as the time offset gives a phase shift

and not a shift off the main diagonal as in the time domain. For no phase-locking, like

the time domain, the non-zero values of the power-spectral densities in the individual

blocks will only occur along the main diagonal and two other diagonals. The difference

in the frequency domain is that these are now combined in the same block. Also, the

power spectral density matrices will contain two sets of values of either the combined

imaginary and real components or the magnitude and phases.
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Unequal arms (Di = Li/c)
s1(f) s1′(f) s2(f) s2′(f) s3(f) s3′(f)

s1(f)
〈p̃2

2′(f)〉
0 0

−〈p̃2
1(f)〉 e2πifD3

0 0
+〈p̃2

1(f)〉+ 〈ñ2
1(f)〉 −〈p̃2

2′(f)〉 e−2πifD3

s1′(f) 0
〈p̃2

3(f)〉
0 0

−〈p̃2
1′(f)〉 e2πifD2

0
+〈p̃2

1′(f)〉+ 〈ñ2
1′(f)〉 −〈p̃2

3(f)〉 e−2πifD2

s2(f) 0 0
〈p̃2

3′(f)〉
0 0

−〈p̃2
2(f)〉 e2πifD1

+〈p̃2
2(f)〉+ 〈ñ2

2(f)〉 −〈p̃2
3′(f)〉 e−2πifD1

s2′(f)
−〈p̃2

1(f)〉 e−2πifD3

0 0
〈p̃2

1(f)〉
0 0−〈p̃2

2′(f)〉 e2πifD3 +〈p̃2
2′(f)〉+ 〈ñ2

2′(f)〉

s3(f) 0
−〈p̃2

1′(f)〉 e−2πifD2

0 0
〈p̃2

1′(f)〉
0−〈p̃2

3(f)〉 e2πifD2 +〈p̃2
3(f)〉+ 〈ñ2

3(f)〉

s3′(f) 0 0
−〈p̃2

2(f)〉 e−2πifD1

0 0
〈p̃2

2(f)〉
−〈p̃2

3′(f)〉 e2πifD1 +〈p̃2
3′(f)〉+ 〈ñ2

1(f)〉

Equal arms (D = L/c)
s1(f) s1′(f) s2(f) s2′(f) s3(f) s3′(f)

s1(f)
〈p̃2

2′(f)〉
0 0

−〈p̃2
1(f)〉 e2πifD

0 0
+〈p̃2

1(f)〉+ 〈ñ2
1(f)〉 −〈p̃2

2′(f)〉 e−2πifD

s1′(f) 0
〈p̃2

3(f)〉
0 0

−〈p̃2
1′(f)〉 e2πifD

0
+〈p̃2

1′(f)〉+ 〈ñ2
1′(f)〉 −〈p̃2

3(f)〉 e−2πifD

s2(f) 0 0
〈p̃2

3′(f)〉
0 0

−〈p̃2
2(f)〉 e2πifD

+〈p̃2
2(f)〉+ 〈ñ2

2(f)〉 −〈p̃2
3′(f)〉 e−2πifD

s2′(f)
−〈p̃2

1(f)〉 e−2πifD

0 0
〈p̃2

1(f)〉
0 0−〈p̃2

2′(f)〉 e2πifD +〈p̃2
2′(f)〉+ 〈ñ2

2′(f)〉

s3(f) 0
−〈p̃2

1′(f)〉 e−2πifD

0 0
〈p̃2

1′(f)〉
0−〈p̃2

3(f)〉 e2πifD +〈p̃2
3(f)〉+ 〈ñ2

3(f)〉

s3′(f) 0 0
−〈p̃2

2(f)〉 e−2πifD

0 0
〈p̃2

2(f)〉
−〈p̃2

3′(f)〉 e2πifD +〈p̃2
3′(f)〉+ 〈ñ2

1(f)〉

Figure 3.11: Raw data power spectral densities for unequal and equal arm lengths and no phase-locking
of the lasers

Sample power spectral density matrices

The values used for generating the matrices are given in Table 3.4. The values for the

arm lengths were chosen to avoid integer values occurring in the exponential terms with

the integer frequencies used in the computations. The sample matrices are given in Fig-

ure 3.12 showing the magnitudes and phases. The matrices containing the magnitudes

show the three diagonals in each block. The values in the phase matrices are just values

of π which is equivalent to a zero phase shift. For these there are no values along the

main diagonal as there are no phase shifts in their values. As expected the magnitudes

are same for both types of arm lengths. The phases should show differences in the values

along the diagonals however, the small differences between the values do not result in

any noticeable variations in the matrix.

Table 3.4: Values used for generating the power spectral densities for all sample matrices.

Variable Value

Laser frequency noise variance, σ2
p 40

Photodetector noise variance, σ2
n 4

Arm lengths (seconds)
Equal, D 5.3
Unequal, Di 5.3, 6.3, 7.3
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Figure 3.12: Sample raw data power spectral density matrices for independent lasers showing the
magnitudes (left) and phases (right) for equal (top) and unequal (bottom) arm lengths.

3.2.3.2 Power spectral densities with laser phase-locking on each spacecraft

Some of the different types of correlations will be illustrated using the optical benches

on spacecraft 1 and the spacecraft 2 which are

s̃1(f) = p̃2(f) e−2πifD3 − p̃1(f) + ñ1(f),

s̃1′(f) = p̃3(f) e−2πifD2 − p̃1(f) + ñ1′(f),

s̃2(f) = p̃3(f) e−2πifD1 − p̃2(f) + ñ2(f),

s̃2′(f) = p̃1(f) e−2πifD3 − p̃2(f) + ñ2′(f). (3.70)

The full set of power spectral densities are given in Figure 3.13.
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Auto-power spectra

The auto-power spectral density for optical bench 1 with unequal arm lengths is

S11(f) =
〈
[p̃2(f)e−2πifD3 − p̃1(f) + ñ1(f)]× [p̃∗2(f)e2πifD3 − p̃∗1(f) + ñ∗1(f)]

〉
=
〈
p̃2

2(f)
〉

+
〈
p̃2

1(f)
〉

+
〈
ñ2

1(f)
〉

= 2σ2
p + σ2

n, (3.71)

which is the same as for no phase-locking and will also be the same for equal arm lengths

since the offset does not appear in the final value.

Cross-power spectra

As in the case for lasers that are not phase-locked, the only other correlation that exists

is between the optical benches at the end of each arm. For arm L3 the cross-power

spectral density with unequal arm lengths this is

S12′(f) =
〈
[p̃2(f)e−2πifD3 − p̃1(f) + ñ1(f)]× [p̃∗1(f)e2πifD3 − p̃∗2(f) + ñ∗2′(f)]

〉
= −

〈
p̃2

2(f)
〉
e−2πifD3 −

〈
p̃2

1(f)
〉
e2πifD3

= −σ2
p

[
e−2πifD3 + e2πifD3

]
, (3.72)

which is the same as for no phase-locking and with equal arm lengths the result is the

same but with offsets of D.

The cross-power spectral density for the optical benches on the spacecraft 1 with

unequal arm lengths is

S11′(f) =
〈
[p̃2(f)e−2πifD3 − p̃1(f) + ñ1(f)]× [p̃3(f)e−2πifD2 − p̃1(f) + ñ1′(f)]

〉
=
〈
p̃2

1(f)
〉

= σ2
p. (3.73)

For equal arm lengths the structure is the same but with offset of D and value is the

same. The cross-power spectral density for the left optical bench on spacecraft 1 (s̃1′)

and the right optical bench on spacecraft 2 (s̃2) with unequal arm lengths is

S1′2(f) =
〈
[p̃3(f)e−2πifD2 − p̃1(f) + ñ1′(f)]× [p̃∗3(f)e2πifD1 − p̃∗2(f) + ñ∗2(f)]

〉
=
〈
p̃2

3(f)
〉
e−2πif(D2−D1)

= σ2
p e
−2πif(D2−D1). (3.74)
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Unequal arms (Di = Li/c)
s1(f) s1′(f) s2(f) s2′(f) s3(f) s3′(f)

s1(f)
〈p̃2

2(f)〉 〈p2
1(f)〉 −〈p̃2

2(f)〉 e−2πifD3
−〈p̃2

1(f)〉 e2πifD3

−〈p̃2
1(f)〉 e2πifD2 〈p̃2

2(f)〉 e2πif(D1−D3)

+〈p̃2
1(f)〉+ 〈ñ2

1(f)〉 −〈p̃2
2(f)〉 e−2πifD3

s1′(f) 〈p2
1(f)〉 〈p̃2

3(f)〉 〈p̃2
3(f)〉 e2πif(D1−D2) −〈p̃2

1(f)〉 e2πifD3
−〈p̃2

1(f)〉 e2πifD2

−〈p̃2
3(f)〉 e−2πifD2

+〈p̃2
1(f)〉+ 〈ñ2

1′(f)〉 −〈p̃2
3(f)〉 e−2πifD2

s2(f) −〈p̃2
2(f)〉 e2πifD3 〈p̃2

3(f)〉 e−2πif(D1−D2) 〈p̃2
3(f)〉 〈p̃2

2(f)〉 −〈p̃2
3(f)〉 e−2πifD1

−〈p̃2
2(f)〉 e2πifD1

+〈p̃2
2(f)〉+ 〈ñ2

2(f)〉 −〈p̃2
3(f)〉 e−2πifD1

s2′(f)
−〈p̃2

1(f)〉 e−2πifD3

−〈p̃2
1(f)〉 e−2πifD3 〈p̃2

2(f)〉 〈p̃2
1(f)〉 〈p̃2

1(f)〉 e2πif(D2−D3) −〈p̃2
2(f)〉 e2πifD1

−〈p̃2
2(f)〉 e2πifD3 +〈p̃2

2(f)〉+ 〈ñ2
2′(f)〉

s3(f) −〈p̃2
1(f)〉 e−2πifD2

−〈p̃2
1(f)〉 e−2πifD2

−〈p̃2
3(f)〉 e2πifD1 〈p̃2

1(f)〉 e−2πif(D2−D3) 〈p̃2
1(f)〉 〈p̃2

3(f)〉−〈p̃2
3(f)〉 e2πifD2 +〈p̃2

3(f)〉+ 〈ñ2
3(f)〉

s3′(f) 〈p̃2
2(f)〉 e−2πif(D1−D3) −〈p̃2

3(f)〉 e2πifD2
−〈p̃2

2(f)〉 e−2πifD1

−〈p̃2
2(f)〉 e−2πifD1 〈p̃2

3(f)〉 〈p̃2
2(f)〉

−〈p̃2
3(f)〉 e2πifD1 +〈p̃2

3(f)〉+ 〈ñ2
1(f)〉

Equal arms (D = L/c)
s1(f) s1′(f) s2(f) s2′(f) s3(f) s3′(f)

s1(f)
〈p̃2

2(f)〉 〈p̃2
1(f)〉 −〈p̃2

2(f)〉 e−2πifD −〈p̃2
1(f)〉 e2πifD

−〈p̃2
1(f)〉 e2πifD 〈p̃2

2(f)〉
+〈p̃2

1(f)〉+ 〈ñ2
1(f)〉 −〈p̃2

2(f)〉 e−2πifD

s1′(f) 〈p̃2
1(f)〉 〈p̃2

3(f)〉 〈p̃2
3(f)〉 −〈p̃2

1(f)〉 e2πifD −〈p̃2
1(f)〉 e2πifD

−〈p̃2
3(f)〉 e−2πifD2

+〈p̃2
1(f)〉+ 〈ñ2

1′(f)〉 −〈p̃2
3(f)〉 e−2πifD2

s2(f) −〈p̃2
2(f)〉 e2πifD 〈p̃2

3(f)〉 〈p̃2
3(f)〉 〈p̃2

2(f)〉 −〈p̃2
3(f)〉 e−2πifD −〈p̃2

2(f)〉 e2πifD

+〈p̃2
2(f)〉+ 〈ñ2

2(f)〉 −〈p̃2
3(f)〉 e−2πifD

s2′(f)
−〈p̃2

1(f)〉 e−2πifD

−〈p̃2
1(f)〉 e−2πifD 〈p̃2

2(f)〉 〈p̃2
1(f)〉 〈p̃2

1(f)〉 −〈p̃2
2(f)〉 e2πifD

−〈p̃2
2(f)〉 e2πifD +〈p̃2

2(f)〉+ 〈ñ2
2′(f)〉

s3(f) −〈p̃2
1(f)〉 e−2πifD −〈p̃2

1(f)〉 e−2πifD

−〈p̃2
3(f)〉 e2πifD 〈p̃2

1(f)〉 〈p̃2
1(f)〉 〈p̃2

3(f)〉−〈p̃2
3(f)〉 e2πifD +〈p̃2

3(f)〉+ 〈ñ2
3(f)〉

s3′(f) 〈p̃2
2(f)〉 −〈p̃2

3(f)〉 e2πifD −〈p̃2
2(f)〉 e−2πifD

−〈p̃2
2(f)〉 e−2πifD 〈p̃2

3(f)〉 〈p̃2
2(f)〉

−〈p̃2
3(f)〉 e2πifD +〈p̃2

3(f)〉+ 〈ñ2
1(f)〉

Figure 3.13: Raw data power spectral densities with lasers that are phased-locked on each space craft
for unequal (top) and equal (bottom) arms

Here the exponential term includes the difference of the time offsets which will disappear

with equal arm lengths.

Summary

The values for all the power spectral densities are given in Figure 3.13. The difference

caused by the locking of the lasers on each spacecraft is to produce correlations between

all the optical benches resulting in full blocks.

Sample power spectral density matrices

The sample raw data power spectral density matrices for the spacecraft phase-locked

lasers are given in Figure 3.14 showing the magnitudes and phases for unequal and equal

arm lengths. The matrices for the different types of arm lengths have magnitudes that

are same with the phases showing small differences.
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Figure 3.14: Sample raw data power spectral density matrices with the lasers that are phase-locked on
each spacecraft showing the magnitudes (left) and phases (right) for equal (top) and unequal (bottom)
arm lengths.

3.2.3.3 Power spectral densities with all lasers phase-locked

The spectra for the readings on spacecraft 1 and 2 which are

s̃1(f) = p̃(f) e−2πifD3 − p̃(f) + ñ1(f),

s̃1′(f) = p̃(f) e−2πifD2 − p̃(f) + ñ1′(f),

s̃2(f) = p̃(f) e−2πifD1 − p̃(f) + ñ2(f),

s̃2′(f) = p̃(f) e−2πifD3 − p̃(f) + ñ2′(f). (3.75)

The power spectral densities for all the raw data are given in Table 3.5 and not in a

6× 6 blocks as done for the others as the equations are too long.
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Auto-power spectra

The auto-power spectral density for optical bench 1 is

S11(f) =
〈[
p̃(f)e−2πifD3 − p̃(f) + ñ1(f)

]
×
[
p̃∗(f)e2πifD3 − p̃∗(f) + ñ∗1(f)

]〉
=
〈
p̃2(f)

〉[
2− e−2πifD3 − e2πifD3

]
+
〈
ñ2

1(f)
〉

= σ2
p

[
2− e−2πifD3 − e2πifD3

]
+ σ2

n, (3.76)

with the only change for equal arm lengths being the the offsets to D.

Cross-power spectra

For the raw data from the optical benches at the end of arm L3 the cross-power spectral

density is

S12′(f) =
〈[
p̃(f)e−2πifD3 − p̃(f) + ñ1(f)

]
×
[
p̃∗(f)e2πifD3 − p̃∗(f) + ñ∗2′(f)

]〉
=
〈
p̃2(f)

〉[
2− e−2πifD3 − e2πifD3

]
= σ2

p

[
2− e−2πifD3 − e2πifD3

]
, (3.77)

which has the same structure as the auto-power spectral density for the laser phase

noises but contains no photodetector noise. With equal arm lengths the only change is

with the offsets changing to D.

The cross-power spectral density for the optical benches on the same spacecraft is

S11′(f) =
〈[
p̃(f)e−2πifD3 − p̃(f) + ñ1(f)

]
×
[
p̃∗(f)e2πifD2 − p̃∗(f) + ñ∗1′(f)

]〉
=
〈
p̃2(f)

〉[
1 + e−2πif(D3−D2) − e−2πifD3 − e2πifD3

]
= σ2

p

[
1 + e−2πif(D3−D2) − e−2πifD3 − e2πifD2

]
. (3.78)

With equal arm lengths there is a slight change in the structure to

S11′(f) =
〈
p̃2(f)

〉[
2− e−2πifD − e2πifD

]
(3.79)

which is the same as for cross-power spectral densities between s̃1 and s̃2′ with the same

value.

Summary

All the values for the raw data power spectral densities are given in Table 3.5 which

are the values for the blocks along the main diagonal. The values that will be on the
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Table 3.5: Raw data power spectral densities for equal and unequal arm lengths.

Power Expressions
spectra Unequal arm lengths Equal arm lengths

S11(f) 〈p̃2(f)〉
[
2− e−2πifD3 − e2πifD3

]
+ 〈ñ2

1(f)〉 〈p̃2(f)〉
[
2− e−2πifD − e2πifD

]
+ 〈ñ2

1(f)〉
S1′1′ (f) 〈p̃2(f)〉

[
2− e−2πifD2 − e2πifD2

]
+ 〈ñ2

1′ (f)〉 〈p̃2(f)〉
[
2− e−2πifD − e2πifD

]
+ 〈ñ2

1′ (f)〉

S22(f) 〈p̃2(f)〉
[
2− e−2πifD1 − e2πifD1

]
+ 〈ñ2

2(f)〉 〈p̃2(f)〉
[
2− e−2πifD − e2πifD

]
+ 〈ñ2

2(f)〉
S2′2′ (f) 〈p̃2(f)〉

[
2− e−2πifD3 − e2πifD3

]
+ 〈ñ2

2′ (f)〉 〈p̃2(f)〉
[
2− e−2πifD − e2πifD

]
+ 〈ñ2

2′ (f)〉

S33(f) 〈p̃2(f)〉
[
2− e−2πifD2 − e2πifD2

]
+ 〈ñ2

3(f)〉 〈p̃2(f)〉
[
2− e−2πifD − e2πifD

]
+ 〈ñ2

3(f)〉
S3′3′ (f) 〈p̃2(f)〉

[
2− e−2πifD1 − e2πifD1

]
+ 〈ñ2

3′ (f)〉 〈p̃2(f)〉
[
2− e−2πifD − e2πifD

]
+ 〈ñ2

3′ (f)〉

S12′ (f) 〈p̃2(f)〉
[
2− e−2πifD3 − e2πifD3

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S1′3(f) 〈p̃2(f)〉

[
2− e−2πifD2 − e2πifD2

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S23′ (f) 〈p̃2(f)〉

[
2− e−2πifD1 − e2πifD1

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S11′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D3−D2) − e−2πifD3 − e2πifD2

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S22′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D1−D3) − e−2πifD1 − e2πifD3

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S33′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D2−D1) − e−2πifD2 − e2πifD1

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S12(f) 〈p̃2(f)〉

[
1 + e−2πif(D3−D1) − e−2πifD3 − e2πifD1

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S13(f) 〈p̃2(f)〉

[
1 + e−2πif(D3−D2) − e−2πifD3 − e2πifD2

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S23(f) 〈p̃2(f)〉

[
1 + e−2πif(D1−D2) − e−2πifD1 − e2πifD2

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S1′2′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D2−D3) − e−2πifD2 − e2πifD3

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S1′3′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D2−D1) − e−2πifD2 − e2πifD1

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S2′3′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D3−D1) − e−2πifD3 − e2πifD1

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S13′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D3−D1) − e−2πifD3 − e2πifD1

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S21′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D1−D2) − e−2πifD1 − e2πifD2

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]
S32′ (f) 〈p̃2(f)〉

[
1 + e−2πif(D2−D3) − e−2πifD2 − e2πifD3

]
〈p̃2(f)〉

[
2− e−2πifD − e2πifD

]

main diagonals of these blocks are the auto-power spectral densities which are the first

six rows in the table. With equal arm lengths the laser noise contributions all have the

same structure.

Sample raw data power spectral density matrices

The sample matrices are given in Figure 3.15 where the values for the auto-power

spectral densities show up as a diagonal in the blocks and the matrices. One interesting

feature is the nature of the blocks for frequencies that do not contain any contribution

from the laser phase noises, for example, blocks 1 and 11. This is because the laser noises

in the equations have two basic structures [2−e−2πifDi−e2πifDi ] and [1+e−2πif(Di−Dj)−

e−2πifDi − e2πifDj ] which both sum to zero when the exponential terms are equal to 1.
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Figure 3.15: Sample raw data power spectral density matrices for lasers that are all phase-locked to
a master showing the magnitudes (left) and phases (right) for equal (top) and unequal arm lengths
(bottom).

3.2.4 A comparison of the covariance and power spectral den-

sity matrices

The instrumental noises in our toy model of LISA data that was used for generating

covariance and power spectral density matrices were the laser phase and photodetector

noises. The raw data from each of the six optical benches included the laser phase noises

from the local laser and from the other laser at the end of the same arm and, the noise

from the local photodetector. Both of these noises were assumed to be independent and

random therefore correlations only occurred if the same noise occurred in the different

readings. For the photodetector noises this meant that the correlations only occurred

between readings from the same optical bench at the same times, that is, only auto-

correlations existed for these noises. In the covariance matrix these only occur along
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the main diagonal. The times of the two laser phase noises each reading are t for the

local laser and t − Di for the laser beam arriving from the optical bench at the other

end of arm. The offset Di is the light travel time in arm i. The correlations reflected

these times with possible locations being on the main diagonal, where the times are the

same, and at times shifted from the main diagonal by offsets of Di or a difference of

two offsets of Di−Dj. For the laser phase noises the correlations between the readings

depended on how the lasers were phase-locked with the main outcome being an increase

in the number of correlations which increased the density of the matrix.

The samples of the covariance matrices generated in this chapter are reproduced

in Figures 3.16. The entries in these matrices are all 6 × 6 blocks corresponding to

the number of optical benches therefore, the description of the structure relates to the

blocks and not the elements. The properties of LISA that were demonstrated were the

arm lengths and the phase-locking of the lasers. The options for the arms included

static equal and unequal lengths and those for the phase locking the included (i) no

locking, (ii) locking of the two lasers on each together and (iii) locking all lasers to a

single (master) laser. In all cases the variances of the laser phase and photodetector

noises were kept constant with each type having the same values.

As expected, in the covariance matrices the equal arm lengths resulted in three

diagonals with the two diagonals away from the main located at offsets equal to the

light travel time in the arms which is shown in Figures 3.16a, 3.16c 3.16e. The diagonals

away from the main showed the correlations between the laser phase noises with times

of t and t − D while those on the main diagonal are between noises with the same

times. With equal arm lengths, the effect of increasing the number of lasers that were

phase-locked was just an increase in the density of the blocks. With three different arm

lengths the diagonals away from the main are split into three diagonals which is shown

in Figures 3.16b, 3.16d and 3.16f. These produced correlations between times t and

t−Di which occurred at offsets of Di. The effects of the phase-locking, in this case, was

more pronounced than for the equal arm lengths. Apart from increasing the number of

correlations, it also produced correlations between the laser phase noises with different

shifted times of t − Di and t − Dj. These correlations are located at times that are

differences of these offsets (Di − Dj) and are the values occurring close to the main

diagonal in Figures 3.16d and 3.16f. The power spectral density matrices have simpler
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structures than the covariance matrices because there are no correlations between the

different frequencies. The lack of correlations produced matrices that were all block

diagonals as shown in Figure 3.17. The time offsets in the covariance matrices occur

as phase shifts in the power spectral density matrices. Increasing the number of lasers

that are phase-locked also increased the density of the blocks in these matrices.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Sample raw data covariance matrices for laser options of no phase-locking (top), phase-
locking on each spacecraft (middle) and all locked to a master.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Sample raw data power spectral density matrices showing the magnitudes and phases
for no phase-locking (top), phase-locking on each spacecraft (middle) and all phase-locked to a master
(bottom).



107
Chapter 3. Generating the covariance and power spectral density matrices for LISA

data

Table 3.6: AET noise spectra

Amplitude spectra Noise contributions

A(f) 1√
2

{
ñ1(f)

[
1− e−2πifD2

]
− ñ1′(f)

[
1− e−2πif(D1+D3)

]
+ ñ2(f)

[
e−2πifD3 − e−2πif(D2+D3)

]
+ ñ2′(f)

[
e−2πifD1 − e−2πif(D1+D2)

]
− ñ3(f)

[
1− e−2πif(D1+D3)

]
+ ñ3′(f)

[
1− e−2πifD2

]}
E(f) 1√

6

{
− ñ1(f)

[
1− e−2πifD2 − 2e−2πif(D1+D2)

]
+ ñ1′(f)

[
1− 2e−2πifD3 + e−2πif(D1+D3

]
+ ñ2(f)

[
2− e−2πifD3 − e−2πif(D2+D3)

]
− ñ2′(f)

[
2− e−2πifD1 − e−2πif(D1−D2)

]
− ñ3(f)

[
1− 2e−2πifD1 + e−2πif(D1+D3)

]
+ ñ3′(f)

[
1 + e−2πifD2 − 2e−2πif(D2+D3)

]}
T (f) 1√

3

{
− ñ1(f)

[
1 + e−2πifD2 + e−2πif(D1+D2)

]
+ ñ1′(f)

[
1 + e−2πifD3 + e−2πif(D1+D3)

]
− ñ2(f)

[
1 + e−2πifD3 + e−2πif(D2+D3)

]
+ ñ2′(f)

[
1 + e−2πifD1 + e−2πif(D1+D2)

]
− ñ3(f)

[
1 + e−2πifD1 + e−2πif(D1+D3)

]
+ ñ3′(f)

[
1 + e−2πifD2 + e−2πif(D2+D3)

]}

3.3 The power spectral densities for AET .

For the static array assumption of LISA the laser phase noises are completely canceled

in the time delay interferometry observables. This is the main difference between the

computation of the covariance functions for the time delay interferometry observables

and for the raw data. The laser phase-locking which is important for the raw data will

not have any effect on the time delay interferometry covariances since the correlations

in them will be due to the remaining noises which, in our toy model, are the photode-

tector noises. The illustrations will only include an example of an auto-power and a

cross-power spectral density. The noise contributions for the amplitude spectra for the

AET observables are given in Table 3.6. The auto-power spectral density for the A

combination can be computed from

SAA(f) =
〈 1√

2

{
ñ1(f)

[
1− e−2πifD2

]
− ñ1′(f)

[
1− e−2πif(D3+D1)

]
+

+ ñ2(f)
[
e−2πifD3 − e−2πif(D3+D2)

]
+ ñ2′(f)

[
e−2πD1 − e−2πif(D1+D2)

]
− ñ3(f)

[
1− e−2πif(D1+D3)

]
+ ñ3′(f)

[
1− e−2πifD2

]}
× 1√

2

{
ñ∗1(f)

[
1− e2πifD2

]
− ñ∗1′(f)

[
1− e2πif(D3+D1)

]
+

+ ñ∗2(f)
[
e2πifD3 − e2πif(D3+D2)

]
+ ñ∗2′(f)

[
e2πD1 − e2πif(D1+D2)

]
− ñ∗3(f)

[
1− e2πif(D1+D3)

]
+ ñ∗3′(f)

[
1− e2πifD2

]}〉
=

1

2

{[〈
ñ2

1(f)
〉

+
〈
ñ2

2(f)
〉

+
〈
ñ2

2′(f)
〉

+
〈
ñ2

3′(f)
〉] [

2− e−2πifD2 − e2πifD2
]

+
[〈
ñ2

1′(f)
〉

+
〈
ñ2

3(f)
〉] [

2− e−2πif(D3+D1) − e2πif(D3+D1)
]}

(3.80)
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Table 3.7: AET power spectral densities.

Power spectra Noise contributions

SAA(f) 1
2

{[
〈ñ2

1(f)〉+ 〈ñ2
2(f)〉+ 〈ñ2

2′(f)〉+ 〈ñ2
3′(f)〉

] [
2− e2πifD2 − e−2πifD2

]
+
[
〈ñ2

1′(f)〉+ 〈ñ2
3(f)〉

] [
2− e2πif(D1+D3) − e−2πif(D1+D3)

]}
SEE(f) 1

6

{[
〈ñ2

1(f)〉+ 〈ñ2
2′(f)〉

] [
6− 2e2πifD1 − 2e−2πifD1 + e2πifD2 + e−2πifD2 − 2e2πif(D1+D2) − 2e−2πif(D1+D2)

]
+
[
〈ñ2

2(f)〉+ 〈ñ2
3′(f)

] [
6 + e2πifD2 + e−2πifD2 − 2e2πifD3 − 2e−2πifD3 − 2e2πif(D2+D3) − 2e−2πif(D2+D3)

]
+
[
〈ñ2

3(f)〉〈ñ2
1′(f)〉

] [
6− 2e2πifD1 − 2e−2πifD1 − 2e2πifD3 − 2e−2πifD3 + e2πif(D1+D3) + e−2πif(D1+D3)

]}
STT (f) 1

3

{[
〈ñ2

1(f)〉+ 〈ñ2
2′(f)〉

] [
3 + e2πifD1 + e−2πifD1 + e2πifD2 + e−2πifD2 + e2πif(D1+D2) + e−2πif(D1+D2)

]
+
[
〈ñ2

2(f)〉+ 〈ñ2
3′(f)〉

] [
3 + e2πifD2 + e−2πifD2 + e2πifD3 + e−2πifD3 + e2πif(D2+D3) + e−2πif(D2+D3)

]
+
[
〈ñ2

3(f)〉+ 〈ñ2
1′(f)〉

] [
3 + e2πifD1 + e−2πifD1 + e2πifD3 + e−2πifD3 + e2πif(D1+D3) + e−2πif(D1+D3)

]}
SAE(f) 1√

12

{
− 〈ñ2

1(f)〉
[
2e2πifD1 + e2πifD2 − e−2πifD2 − 2e2πif(D1+D2)

]
−〈ñ2

1′(f)〉
[
2e−2πifD1 − 2e2πifD3 + e2πif(D1+D3) − e−2πif(D1+D3)

]
−〈ñ2

2(f)〉
[
e2πifD2 − e−2πifD2 − 2e−2πifD3 + 2e−2πif(D2+D3)

]
−〈ñ2

2′(f)〉
[
2e−2πifD1 − e2πifD2 + e−2πifD2 − 2e−2πif(D1+D2)

]
−〈ñ2

3(f)〉
[
2e2πifD1 − 2e−2πifD3 − e2πif(D1+D3) + e−2πif(D1+D3)

]
+〈ñ2

3′(f)〉
[
e2πifD2 − e−2πifD2 + 2e2πifD3 − 2e2πif(D2+D3)

]}
SAT (f) 1√

6

{
〈ñ2

1(f)〉
[
e2πifD1 − e2πifD2 + e−2πifD2 − e2πif(D1+D2)

]
+〈ñ2

1′(f)〉
[
e−2πifD1 − e2πifD3 − e2πif(D1+D3) + e−2πif(D1+D3)

]
−〈ñ2

2(f)〉
[
e2πifD2 − e−2πifD2 + e−2πifD3 − e−2πif(D2+D3)

]
+〈ñ2

2′(f)〉
[
e−2πifD1 + e2πifD2 − e−2πifD2 − e−2πif(D1+D2)

]
+〈ñ2

3(f)〉
[
e2πifD1 − e−2πifD3 + e2πif(D1+D3) − e−2πif(D1+D3)

]
+〈ñ2

3′(f)〉
[
e2πifD2 − e−2πifD2 − e2πifD3 + e2πif(D2+D3)

]}
SET (f) 1

3
√

2

{
〈ñ2

1(f)〉
[
e2πifD1 − 2e−2πifD1 + e2πifD2 + e−2πifD2 + e2πif(D1+D2) − 2e−2πif(D1+D2)

]
+〈ñ2

1′(f)〉
[
e−2πifD1 − 2e2πifD1 + e2πifD3 − 2e−2πifD3 + e2πif(D1+D3) + e−2πif(D1+D3)

]
+〈ñ2

2(f)〉
[
e2πifD2 + e−2πifD2 − 2e2πifD3 + e−2πifD3 − 2e2πif(D2+D3) + e−2πif(D2+D3)

]
+〈ñ2

2′(f)〉
[
e−2πifD1 − 2e2πifD1 + e2πifD2 + e−2πifD2 − 2e2πif(D1+D2) + e−2πif(D1+D2)

]
+〈ñ2

3(f)〉
[
e2πifD1 − 2e−2πifD1 − 2e2πifD3 + e−2πifD3 + e2πif(D1+D3) + e−2πif(D1+D3)

]
+〈ñ2

3′(f)〉
[
e2πifD2 + e−2πifD2 + e2πifD3 − 2e−2πifD3 + e2πif(D2+D3) − 2e−2πif(D2+D3)

]}

and substituting the values for the variances gives

SAA(f) = σ2
n

[
6− 2e2πifD2 − 2e−2πifD2 − e2πif(D3+D1) − e−2πif(D3+D1)

]
. (3.81)

With equal arm lengths there are no major changes just a replacement of the Di with D

in Equations 3.80 and 3.81. The cross-power spectral density is computed in a similar

manner. The results for all the power spectral densities are given in Table 3.7. Samples

of the power spectral density matrices are given in Figure 3.18 showing the real and

imaginary values for equal and unequal arm lengths where frequencies and readings are

arranged as shown in Figure 3.19.
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(a) (b)

(c) (d)

Figure 3.18: Sample AET power spectral density matrices showing the real (left) and imaginary (right)
values for photodetector noise variances of σ2

n = 1. The matrices are for equal arm lengths of D = 5.3
(top) and unequal arm lengths of D = {5.3, 6.3, 7.3} (bottom).

Figure 3.19: A diagram illustrating the block structure of the power spectral density matrix for AET
showing the frequencies in (a) and the labeling of the blocks in (b).

3.4 Summary

In this chapter we generated the covariance and power spectral density matrices for

the raw data which are the sources of the principal components. The configuration of
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LISA used for these was that of stationary rigid array. The power spectral densities for

the optimal AET observables were also generated. Results were obtained for equal and

unequal arm lengths and, in the case of the raw data, for the three different laser phase-

locking options. Sample covariance power spectral density matrices were generated. In

the next chapter we will perform the eigendecomposition of the raw data covariance

and power spectral density matrices and prove the connection between the laser phase

noise free eigenvectors and the time delay interferometry observables in both the time

and frequency domains.



Chapter 4

The principal components - time delay

interferometry connection

In this chapter we show the connection between the principal components and time

delay interferometry observables in both the time and frequency domains. For this we

used a toy model of LISA with small covariance and power spectral density matrices

using small arm lengths and equal variances for each noise type. We begin with a brief

explanation of eigenvalues and eigenvectors and illustrate the conventional method for

generating them. We also compare algebraic and numeric methods for computing them

with respect to the values produced and the speed of computation.

4.1 Eigenvectors and eigenvalues

An eigenvector v is a vector that transforms a square matrix A into another vector

which is the same or a multiple of itself. The transformation is a linear operation that

can be written as

Av = λv, (4.1)

where the coefficient λ is the eigenvalue associated with the eigenvector. The number

of eigenvalues generated are equal to the size of the matrix. The eigenvectors will

be mutually independent but will only be orthogonal if the eigenvalues of the matrix

are all unique. The eigenvalues for a matrix that have multiple occurrences are called

degenerate.

The conventional way to determine the eigenvalues and eigenvectors is by finding

the solution of Equation 4.1 using the homogeneous form which is

Av − λv =
(
A− λI

)
v = 0, (4.2)

where I is the unit matrix [53]. The only non-trivial solution for this is when (A− λI
)

111
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is equal to zero which is solved using the determinant giving

|A− λI
∣∣ = 0, (4.3)

where | | indicates the determinant [53]. This equation is called the characteristic

equation which is a polynomial in λ of the same size as the matrix A giving the same

number of roots [53]. Expanding Equation 4.3 gives

|A− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

...

an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (4.4)

where aij are the elements of A. The eigenvectors are found by solving the Equation

4.1 for each eigenvalue.

4.1.1 Determination of the eigenvalues and eigenvectors for a

LISA - toy model example

When the matrix is a data covariance matrix the eigenvectors align with the variances

in the data. In the toy model data that Romano and Woan [54] used the phase measure-

ments consisted of a single laser noise p(t), photodetector noise ni(t) and signal hi(t)

which can be written as

si = hi(t) + p(t) + ni(t). (4.5)

The covariance matrix is based on the noises in the data, therefore, rearranging this

gives

si(t)− hi(t) = p(t) + ni(t), (4.6)

which for two photodetetors s1 and s2 gives

s1 − h1 = p+ n1,

s2 − h2 = p+ n2, (4.7)

where, because the terms have the same times, they have been dropped. With photode-

tector noises variances of σ2
n and laser phase noise variances of σ2

p the variances of s1

and s2 have the same value of 2σ2
p + σ2

n. Since there are no time offsets for the data the
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covariance matrix C is simple with no lags and is defined as

C =

σ2
p + σ2

n σ2
p

σ2
p σ2

p + σ2
n.

 .
The characteristic equation for this matrix is

|C − λI| =

∣∣∣∣∣∣[(σ
2
p + σ2

n)− λ] σ2
p

σ2
p [(σ2

p + σ2
n)− λ]

∣∣∣∣∣∣
=
[
(σ2

p + σ2
n)− λ

]2 − (σ2
p)

2

= 0, (4.8)

which easily factorises into[
(σ2

p + σ2
n)− λ

]2 − (σ2
p)

2 =
{[

(σ2
p + σ2

n)− λ
]
− σ2

p

} {[
(σ2

p + σ2
n)− λ

]
+ σ2

p

}
.

The two equations to be solved are

σ2
p + σ2

n − λ− σ2
p = 0,

σ2
p + σ2

n − λ+ σ2
p = 0, (4.9)

giving solutions of λ = σ2
n and λ = 2σ2

p +σ2
n, respectively. The eigenvalues are combined

in a matrix Λ as

Λ =

2σ2
p + σ2

n 0

0 σ2
n

 , (4.10)

where they occur on the diagonal of the matrix. The matrix version of Equation 4.1 is

CV = V Λ, (4.11)

where V is the matrix containing the eigenvectors, respectively. The occurrence of the

V on both sides means that the matrix of eigenvalues Λ is equivalent to the covariance

matrix C. Since this matrix is diagonal this means that the eigendecompostion diag-

onalised the covariance matrix. The corresponding eigenvectors are found by solving

Equation 4.1 for each eigenvalue. The equations with the eigenvalues areσ2
p + σ2

n σ2
p

σ2
p σ2

p + σ2
n

v11

v12

 = 2σ2
p + σ2

n

v11

v12

 , (4.12)

σ2
p + σ2

n σ2
p

σ2
p σ2

p + σ2
n

v21

v22

 = σ2
n

v21

v22

 , (4.13)
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where vij are the elements of the eigenvector matrix. Equations 4.12 and 4.13 give

consistent sets with general solutions of v11 = v12 and v21 = −v22 . The eigenvectors are

v1 = [k k] and v2 = [k − k] where k is non-zero number [53]. For k = 1 the vectors

are v1 = [1 1] and v2 = [1 − 1] and the matrix is

V =

1 1

1 −1

 , (4.14)

with the eigenvectors arranged in columns.

4.1.2 Algebraic and numeric computations of the eigenvalues

and eigenvectors

In the toy model example the eigenvalues were determined using the characteristic equa-

tion which requires the computation of the determinant of the matrix. The problem

with this is that this scales badly with matrix size since the computation of the deter-

minant is non-trivial for full matrices of sizes greater than three. The software package

that we used for generating the eigenpairs (eigenvalues and eigenvectors) was MATLAB

which has functions for algebraic and numeric solutions. To illustrate the difference

in the computation times between the two methods and also to show how badly the

algebraic approach scales with matrix size, the eigenpairs were computed for covariance

matrices of different sizes with the values of the other properties that determined the

matrix kept constant. Table 4.1 lists sample algebraic and numeric computation times

for matrix sizes (n) ranging from 30 to 18000 which are plotted in Figure 4.1. The

numeric computation of the 18000 × 18000 matrix took approximately 420 s which is

roughly the time it took the algebraic computation of only a 48× 48 matrix.1

In terms of the values and number of degenerate eigenvalues, both methods seem

to produce the same results. The values of all the eigenvalues were checked for one

matrix and their rounded values were found to be the same. For generating the time

delay interferometry combinations the exact solutions were required for the eigenvectors,

therefore, the the algebraic solutions were only used for this purpose.

1Computed on saturn (x86, 64bit, 1200MHz)
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Table 4.1: Examples of the computation times for the eigenvalues and eigenvectors from algebraic and
numeric solutions obtained using MATLAB.

(a) Algebraic (b) Numeric

Number of Computation Number of Computation
timestamps time (s) timestamps time (s)

5 12.982 5 0.00046
6 56.353 6 0.00056
7 215.740 7 0.00062
8 501.246 10 0.00073
10 2289.314 11 0.00077
11 4243.665 12 0.00107
12 8208.799 14 0.00124
13 12314.336 15 0.00165
14 19402.763 20 0.00272
15 31757.095 40 0.00701

100 0.04304
300 0.44765
501 1.64426
800 7.08202
1600 62.41153
3000 435.86898

4.1.3 Independence and orthogonality of the eigenvectors

Independence indicates that there are no linear combinations of all the eigenvectors that

will sum to zero. This can be written as

x1e1 + x2e2 + · · ·+ xnen = 0 (4.15)

Figure 4.1: The plot of the algebraic and numeric computation times for the values in Table 4.1.
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Table 4.2: The contributions from the raw data for the Sagnac α and ζ for times t = {1, ..., 5} and
offsets D = {1, 2, 3}.

OB# α[5] ζ[5]

s1 (1) 0 0
s1′ (1) 0 0
s2 (1) 0 0
s2′ (1) 0 0
s3 (1) -1 1
s3′ (1) 0 0

s1 (2) 0 0
s1′ (2) 0 0
s2 (2) -1 0
s2′ (2) 1 0
s3 (2) 0 -1
s3′ (2) 0 1

s1 (3) 0 0
s1′ (3) 0 0
s2 (3) 0 -1
s2′ (3) 0 0
s3 (3) 0 0
s3′ (3) 1 0

s1 (4) 0 -1
s1′ (4) 0 1
s2 (4) 0 0
s2′ (4) 0 0
s3 (4) 0 0
s3′ (4) 0 0

s1 (5) -1 0
s1′ (5) 1 0
s2 (5) 0 0
s2′ (5) 0 0
s3 (5) 0 0
s3′ (5) 0 0

where xi are coefficients and 0 is the null vector [53]. For independent vectors the

only combination that will lead to the null vector is the trivial solution where all the

coefficients are zero. For the eigenvectors to be mutually orthogonal their inner products

must be equal to zero, that is,

ei · ej=0. (4.16)

If the eigenvalues for the covariance matrix are all unique their eigenvectors will be

independent and orthogonal. In the case of degenerate eigenvalues the eigenvectors will

be independent but not necessarily orthogonal.

4.2 Generating the Sagnac observables

Determining the set of eigenvectors that will produce the required time delay interfer-

ometer combination can be obtained by solving a set of linear equations which can be
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Figure 4.2: The covariance matrix of Romano and Woan with variances of σ2
p = 50 and σ2

n = 1, times
of t = {1, 2, 3, 4, 5} and offsets of D = {1, 2, 3}.

written as

x1e1 + x2e2 + · · ·+ xnen = b, (4.17)

where xi are scalar coefficients, ei are the eigenvectors of size n × 1, b is a n × 1

vector containing the corresponding values needed for each time delay interferometry

combinations. In matrix form this can be written as

Ax = b, (4.18)

where A is the matrix of eigenvectors as columns, x is a column vector of coefficients

and b the column vector containing the target values which will reflect the structure

of the matrix. Examples for b values for α(5) and α(5) are given in Table 4.2. The

solution will be obtained by

x = A−1b, (4.19)

which can be done directly in MATLAB using the left divide operator

x = A\b, (4.20)

or using linsolve function.
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Table 4.3: The degenerate eigenvalues for the covariance matrix in Figure 4.2 used in Romano and
Woan [54].

OB# e1 e2 e3 e4 e5 e6 e7 e8 e9

s1 (1) 0 0 0 0 0 0 0 0 0
s1′ (1) 0 0 0 0 0 0 0 0 0
s2 (1) 0 0 0 0 0 1 0 0 0
s2′ (1) 0 0 0 0 0 0 0 0 0
s3 (1) 0 0 0 1 0 0 0 0 0
s3′ (1) 0 1 0 0 0 0 0 0 0

s1 (2) 0 0 0 0 0 0 0 0 0
s1′ (2) 0 0 0 0 0 -1 0 0 0
s2 (2) 0 0 0 0 0 0 1 0 0
s2′ (2) 0 0 0 -1 0 0 0 0 0
s3 (2) 1 0 0 0 0 -1 0 0 0
s3′ (2) 0 0 0 0 0 0 0 0 1

s1 (3) 0 -1 0 0 0 0 0 0 0
s1′ (3) 0 1 0 1 0 0 -1 0 0
s2 (3) 1 0 0 0 0 0 0 0 0
s2′ (3) -1 0 0 0 0 1 0 0 0
s3 (3) 0 0 1 0 0 0 0 0 0
s3′ (3) 0 0 0 0 0 0 0 1 0

s1 (4) 0 0 0 0 0 1 0 0 -1
s1′ (4) 0 0 0 0 0 -1 0 0 1
s2 (4) 0 0 1 -1 0 0 1 0 0
s2′ (4) 0 0 -1 0 0 0 0 0 0
s3 (4) 0 0 0 0 1 0 0 0 0
s3′ (4) 0 0 0 0 0 1 0 0 0

s1 (5) 0 0 0 -1 0 0 1 -1 0
s1′ (5) 0 0 0 1 0 0 -1 1 0
s2 (5) 0 0 0 0 1 1 0 0 0
s2′ (5) 0 0 0 0 -1 -1 0 0 0
s3 (5) 0 0 0 1 0 0 0 -1 0
s3′ (5) 0 0 0 -1 0 0 0 1 0

4.2.1 Results for the covariance matrix given in Romano and

Woan

Romano and Woan [54] were able to produce the Sagnac α time delay interferometry

observable from the laser phase noise from the eigenvectors obtained from a 1 × 5

covariance matrix with times t = {1, 2, 3, 4, 5} and offsets D = {1, 2, 3}. The matrix

and the laser noise free eigenvectors that they obtained are given in Figure 4.2 and

Table 4.3, respectively.
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Table 4.4: The values for the current and shifted times appearing in the Sagnac observables for t =
{1, 2, 3, 4, 5} and Di = {1, 2, 3} as used by Romano and Woan.

t t−D1 t−D2 t−D3 t−D1 −D2 t−D1 −D3 t−D2 −D3

1 0 -1 -2 -2 -3 -4
2 1 0 -1 -1 -2 -3
3 2 1 0 0 -1 -2
4 3 2 1 1 0 -1
5 4 3 2 2 1 0

4.2.1.1 Solutions for the Sagnac α and ζ

The inter-spacecraft phase measurements for the Sagnac observables can be written as

α(t) = s1′(t) + s2′(t−D1 −D2) + s3′(t−D2)− s1(t)− s2(t−D3)− s3(t−D1 −D3),

β(t) = s1′(t−D3) + s2′(t) + s3′(t−D2 −D3)− s1(t−D2 −D1)− s2(t)− s3(t−D1),

γ(t) = s1′(t−D3 −D1) + s2′(t−D1) + s3′(t)− s1(t−D2)− s2(t−D3 −D2)− s3(t),

ζ(t) = s1′(t−D1) + s2′(t−D2) + s3′(t−D3)− s1(t−D1)− s2(t−D2)− s3(t−D3).

(4.21)

The values for the times occurring in the Sagnacs are given in Table 4.4 for t =

{1, 2, 3, 4, 5} and Di = {1, 2, 3} where they range from −4 to 5. If the covariance

matrix is restricted to positive values including zero, the only time that will have offsets

occurring with all these values is t = 5. The values for all the Sagnacs for this time are

α(5) = s1′(5) + s2′(2) + s3′(3)− s1(5)− s2(2)− s3(1),

β(5) = s1′(2) + s2′(5) + s3′(0)− s1(2)− s2(5)− s3(4),

γ(5) = s1′(1) + s2′(4) + s3′(5)− s1(3)− s2(0)− s3(5),

ζ(5) = s1′(4) + s2′(3) + s3′(2)− s1(4)− s2(3)− s3(2). (4.22)

The matrix used by Romano and Woan did not include a zero value, therefore, the

only combinations that could be generated are the α(5) and ζ(5). Their solution for

α(5) was −e4 − e7 + e8. From Table 4.3 the equations for these are

e4 = s3(1)− s2′(2) + s1′(3)− s2(4)− s1(5) + s1′(5) + s3(5)− s3′(5),

e7 = s2(2)− s1′(3) + s2(4) + s1(5)− s1′(5)− s3(5) + s3′(5),

e8 = s3′(3)− s1(5) + s1′(5), (4.23)
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which gives

−e4 − e7 + e8= −s3(1) + s2′(2)− s1′(3) + s2(4) + s1(5)− s1′(5)− s3(5) + s3′(5)

− s2(2) + s1′(3)− s2(4)− s1(5) + s1′(5) + s3(5)− s3′(5)

+ s3′(3)− s1(5) + s1′(5)

= s1′(5) + s2′(2) + s3′(3)− s1(5)− s2(2)− s3(1)

≡ α(5). (4.24)

This matches the values for α(5) in Equation 4.22. ζ(5) can also be obtained by com-

bining eigenvectors e1 and e9 of Table 4.3 for which the contributions from the raw data

are

e1 = s3(2) + s2(3)− s2′(3),

e9 = s3′(2)− s1(4) + s1′(4), (4.25)

and differencing them gives

ζ(5) = −e1 + e9

= −s3(2)− s2(3) + s2′(3) + s3′(2)− s1(4) + s1′(4)

= s1′(4) + s2′(3) + s3′(2)− s1(4)− s2(3)− s3(2). (4.26)

We have illustrated that two Sagnacs can be obtained from the laser noise free eigen-

vectors of the covariance matrix for the times presented by Romano and Woan. The

conclusion from this is that the limitations came from the matrix size and times which

did not allow for a zero value, therefore, it should be possible to generate the other

Sagnacs by using a larger matrix.

4.2.1.2 Results for a 6× 6 matrix

To investigate this, a new covariance matrix was generated for times of t = {0, 1, 2, 3, 4, 5}

with the same offsets used by Romano and Woan. This matrix is shown in Figure 4.3

where, because of the symmetric Toeplitz structure, the only difference from the previ-

ous matrix in Figure 4.2 is the size of the matrix. The degenerate eigenvectors for this

matrix obtained from MATLAB’s eig function are listed in Table 4.5. From this set of

eigenvectors we were able to obtain solutions for all the Sagnacs for time t = 5. The
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Figure 4.3: The covariance matrix for times of t = {0, ..., 9} and offsets of D = {1, 2, 3, 4} with variances
of σ2

p = 50 and σ2
n = 1.

solutions are

α(5) = e3 + e6 + e10, β(5) = e2 + e11,

γ(5) = e8 + e12, ζ(5) = e5 + e7. (4.27)

For example, for ζ the raw data contributions for eigenvectors e5 and e7 are

e5 = −s3(2)− s2(3) + s2(3), e7 = s3′(2)− s1(4) + s1′(4), (4.28)

and summing them gives

e5 + e7 = −s3(2)− s2(3) + s2′(3) + s3′(2)− s1(4) + s1′(4)

= s1′(4) + s2′(3) + s3′(2)− s1(4)− s3(2)− s2(3)

= ζ(5). (4.29)

The six phase readings occurring in the four Sagnacs in Equation 4.22 do not have

any overlapping times for the same optical benches. Also, the solutions for the four

Sagnacs in Equation 4.27 do not have any overlapping eigenvectors which could reflect

this independence for same times. This will be investigated further in the next section.

Independence and orthogonality of the eigenvectors

The set of eigenvectors in Table 4.3 and 4.5 were determined to be all mutually inde-

pendent but they are not all orthogonal. This is expected as they are associated with
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Table 4.5: The degenerate eigenvalues for times t = {0, ..., 5} and offsets D = {1, 2, 3}.

OB# e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

s1 (0) 0 0 0 0 0 0 0 0 0 0 0 0

s1′(0) 0 0 0 0 0 0 0 0 0 0 0 0

s2 (0) 0 0 0 0 0 1 0 0 0 -1 0 -1

s2′(0) 0 0 0 0 0 0 0 0 0 0 0 0

s3 (0) -1 0 0 0 0 0 0 0 0 0 0 0

s3′(0) 0 1 0 0 0 0 0 0 1 0 0 0

s1 (1) 0 0 0 0 0 0 0 0 0 0 0 0

s1′(1) 0 0 0 0 0 -1 0 0 0 1 0 1

s2 (1) -1 0 0 0 0 0 0 0 1 0 0 0

s2′(1) 1 0 0 0 0 0 0 0 0 0 0 0

s3 (1) 0 0 -1 0 0 0 0 0 0 0 0 0

s3′(1) 0 0 0 1 0 1 0 0 0 -1 0 0

s1 (2) 0 -1 0 0 0 0 0 0 -1 0 0 0

s1′(2) 0 1 0 0 0 0 0 0 0 0 0 0

s2 (2) 0 0 -1 0 0 1 0 0 0 -1 0 0

s2′(2) 0 0 1 0 0 0 0 0 0 0 0 0

s3 (2) 0 0 0 0 -1 0 0 0 0 0 0 0

s3′(2) 0 0 0 0 0 0 1 0 1 0 0 0

s1 (3) 0 0 0 -1 0 0 0 0 0 0 0 -1

s1′(3) 0 0 0 1 0 0 0 0 0 0 0 0

s2 (3) 0 0 0 0 -1 0 0 0 1 0 0 0

s2′(3) 0 0 0 0 1 0 0 0 0 0 0 0

s3 (3) 0 0 0 0 0 -1 0 -1 0 1 0 1

s3′(3) 0 0 0 0 0 1 0 0 0 0 0 0

s1 (4) 0 0 0 0 0 0 -1 0 0 0 0 0

s1′(4) 0 0 0 0 0 0 1 0 0 0 0 0

s2 (4) 0 0 0 0 0 0 0 -1 0 0 0 1

s2′(4) 0 0 0 0 0 0 0 1 0 0 0 0

s3 (4) 0 0 0 0 0 0 0 0 -1 0 -1 0

s3′(4) 0 0 0 0 0 0 0 0 1 0 0 0

s1 (5) 0 0 0 0 0 0 0 0 0 -1 0 0

s1′(5) 0 0 0 0 0 0 0 0 0 1 0 0

s2 (5) 0 0 0 0 0 0 0 0 0 0 -1 0

s2′(5) 0 0 0 0 0 0 0 0 0 0 1 0

s3 (5) 0 0 0 0 0 0 0 0 0 0 0 -1

s3′(5) 0 0 0 0 0 0 0 0 0 0 0 1

eigenvalues that are degenerate. For example, in Table 4.3 eigenvectors e1 and e2 both

form non-zero inner products with e4 and so does e4 with e1,e2, e3 and e7. The majority

of the eigenvectors in that table were not orthogonal. Table 4.5 had more orthogonal

eigenvectors which could be linked to how they were generated as their non-zero values

have patterns that do not occur in those of Table 4.3.

4.2.2 Results for offsets of Di = {2, 3, 4}

This section contains the results for a different set of offsets and times that will allow

the generation of combinations for different times from the same matrix. To obtain the

Sagnac combinations for a specific set of offsets, the largest time value for the covariance



123 Chapter 4. The principal components - time delay interferometry connection

matrix must be equal to or greater than the maximum time offset in the combinations.

For offsets of Di = {2, 3, 4} the maximum offset in the Sagnac combinations is D2+D3 =

7, therefore, the top value in the range of times of the covariance matrix must not be

less than this value. If the times are restricted to positive values including zero, these

only occur for t = 7 as shown in Table 4.6 therefore, to illustrate the generation of the

Sagnacs for more than a single time value we extended the times up to 9 which will

allow for three times values of 7, 8 and 9. The times needed for the phase measurements

for the optical benches in the Sagnacs for these times are also included in Table 4.6.

The covariance matrix is given in Figure 4.4 and its degenerate eiegnvectors are listed

in Table 4.7. The equations for the Sagancs for t = {7, 8, 9} are

α(7) = s1′(7) + s2′(2) + s3′(4)− s1(7)− s2(3)− s3(1),

β(7) = s1′(3) + s2′(7) + s3′(0)− s1(2)− s2(7)− s3(5),

γ(7) = s1′(1) + s2′(5) + s3′(7)− s1(4)− s2(0)− s3(7),

ζ(7) = s1′(5) + s2′(4) + s3′(3)− s1(5)− s2(4)− s3(3),

α(8) = s1′(8) + s2′(3) + s3′(5)− s1(8)− s2(4)− s3(2),

β(8) = s1′(4) + s2′(8) + s3′(1)− s1(3)− s2(8)− s3(6),

γ(8) = s1′(2) + s2′(6) + s3′(8)− s1(5)− s2(1)− s3(8),

ζ(8) = s1′(6) + s2′(5) + s3′(4)− s1(6)− s2(5)− s3(4),

α(9) = s1′(9) + s2′(4) + s3′(6)− s1(9)− s2(5)− s3(3),

β(9) = s1′(5) + s2′(9) + s3′(2)− s1(4)− s2(9)− s3(7),

γ(9) = s1′(3) + s2′(7) + s3′(9)− s1(6)− s2(2)− s3(9),

ζ(9) = s1′(7) + s2′(6) + s3′(5)− s1(7)− s2(6)− s3(5). (4.30)

From this set of eigenvectors we were able to obtain solutions for all the Sagnacs listed

in Equation 4.30. The solutions are

α(7) = e5 + e12, α(8) = e8 + e15, α(9) = e4 + e11 + e18,

β(7) = e2 + e13, β(8) = e3 + e16, β(9) = e6 + e19,

γ(7) = e7 + e14, γ(8) = e1 + e10 + e17, γ(9) = e2 + e13 + e20,

ζ(7) = e4 + e6, ζ(8) = e5 + e7 + e9, ζ(9) = e8 + e10 + e12. (4.31)
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Table 4.6: The values for the current and shifted times appearing in the Sagnac observables for t =
{0, . . . , 9} and Di = {2, 3, 4}.

t t−D1 t−D2 t−D3 t−D1 −D2 t−D1 −D3 t−D2 −D3

0 -2 -3 -4 -5 -6 -7
1 -1 -2 -3 -4 -5 -6
2 0 -1 -2 -3 -4 -5
3 1 0 -1 -2 -3 -4
4 2 1 0 -1 -2 -3
5 3 2 1 0 -1 -2
6 4 3 2 1 0 -1
7 5 4 3 2 1 0
8 6 5 4 3 2 1
9 7 6 5 4 3 2

Figure 4.4: The covariance matrix for times of t = {0, ..., 9} and offsets of D = {2, 3, 4} and variances
of σ2

p = 50 and σ2
n = 1.

The difference with this method of generating time delay interferometry observables is

that the combinations are generated for specific times and not for a general time t. This

means that the combinations of eigenvectors that work for one time value are not the

same for another as shown in Equation 4.31.
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Table 4.7: The time domain degenerate eigenvectors eigenvectors for time t = {0, ..., 9}, offsets D =
{2, 3, 4} and variances σ2

p = 50 and σ2
n = 1.

OB# e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20

s1 (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s1′(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 (0) 0 0 0 0 1 0 -1 0 0 1 0 -1 0 0 0 0 -1 0 0 0
s2′(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s3 (0) -1 0 0 -1 0 1 1 0 -1 0 0 0 0 -1 0 0 1 1 -1 0
s3′(0) 1 0 0 0 0 0 0 1 0 -1 0 0 1 0 -1 0 0 0 0 -1

s1 (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s1′(1) 0 0 0 0 -1 0 1 0 0 -1 0 1 0 0 0 0 1 0 0 0
s2 (1) -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2′(1) 1 0 0 1 0 -1 -1 0 1 0 0 0 0 1 0 0 -1 -1 1 0
s3 (1) 0 -1 0 -1 -1 1 1 1 0 -1 0 0 1 -1 -1 0 1 1 -1 0
s3′(1) 0 1 0 0 0 0 0 0 0 0 1 0 -1 0 0 1 0 -1 0 0

s1 (2) -1 0 0 0 0 0 0 -1 0 1 0 0 -1 0 1 0 0 0 0 1
s1′(2) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 (2) 0 -1 0 -1 0 1 1 1 -1 -1 0 0 1 -1 -1 0 1 1 -1 -1
s2′(2) 0 1 0 1 1 -1 -1 -1 0 1 0 0 -1 1 1 0 -1 -1 1 0
s3 (2) 0 0 -1 -1 -1 1 1 0 0 -1 1 1 0 -1 -1 1 1 0 -1 0
s3′(2) 0 0 1 0 1 0 -1 0 0 1 0 -1 0 1 0 -1 -1 0 1 0

s1 (3) 0 -1 0 0 0 0 0 0 0 0 -1 0 1 0 0 -1 0 1 0 0
s1′(3) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 (3) 0 0 -1 -1 -1 1 1 1 0 -1 1 0 0 -1 -1 1 1 0 -1 0
s2′(3) 0 0 1 1 1 -1 -1 0 0 1 -1 -1 0 1 1 -1 -1 0 1 0
s3 (3) 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s3′(3) 0 0 0 1 0 0 -1 0 1 0 0 0 0 1 0 0 0 -1 0 0

s1 (4) 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 -1 0
s1′(4) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 (4) 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0
s2′(4) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s3 (4) 0 0 0 0 -1 0 0 0 0 -1 0 1 0 0 0 0 1 0 0 0
s3′(4) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s1 (5) 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 0 1 0
s1′(5) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 (5) 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 -1 0 0
s2′(5) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
s3 (5) 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 1 0 0 0 0 1
s3′(5) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

s1 (6) 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1
s1′(6) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
s2 (6) 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0
s2′(6) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
s3 (6) 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 1 0 0
s3′(6) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

s1 (7) 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
s1′(7) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
s2 (7) 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1
s2′(7) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
s3 (7) 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0
s3′(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

s1 (8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0
s1′(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
s2 (8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
s2′(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
s3 (8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
s3′(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

s1 (9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0
s1′(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
s2 (9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0
s2′(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
s3 (9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
s3′(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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4.2.2.1 Eigenvectors and correlations in the Sagnac observables

In the eigenvector combinations for the Sagnacs given in Equation 4.31 there are some

combinations that have common eigenvectors. These occur between different combina-

tions at different times, for example, the eigenvector combinations for α(7) and ζ(8)

are

α(7) = e5 + e12,

ζ(8) = e5 + e7 + e9. (4.32)

which both contain the eigenvector e5. This could indicate correlations between the

two Sagnacs for those times. However, this depends on whether any of the terms in

e5 survive in the ζ(8) as it may just be used to cancel the unwanted terms in the

other eigenvectors in order to obtain those needed for ζ(8). The eigenvector used for

generating this Sagnac are

e5 = s2(0)− s1′(1) + s2′(2)− s2(3)− s3(1)− s3(2) + s3′(2) + s2′(3)− s3(4) + s3′(4),

e7 = −s2(0) + s1′(1)− s2′(2) + s2(3) + s3(1) + s3(2)− s3′(2)− s2′(3)− s2(5) + s2′(5)

+s3(0)− s2′(1) + s2(2)− s3′(3)

e9 = −s3(0) + s2′(1)− s2(2) + s3′(3)− s1(6) + s1′(6), (4.33)

where they have been aligned to show the terms that will cancel. The final combination

will contain two terms from each eigenvector giving

ζ(8) = −s3(4) + s3′(4)− s2(5) + s2′(5)− s1(6) + s1′(6), (4.34)

where the common optical bench between the two is s3′(4). A list of the Sagnacs and

their common eigenvectors is given in Table 4.8. Also, in Table 4.9 the correlated

Sagnacs are listed with their common optical bench readings. All the Sagnacs with

common eigenvectors are correlated but not all the correlated Sagnacs in Table 4.9 have

common eigenvectors.

4.3 Generating the AET observables

The AET observables were generated in the frequency domain therefore, in this section

we investigate the connection between these and the eigenvectors of the raw data power
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Table 4.8: Sagnacs with common eigenvectors.

Sagnacs Eigenvectors

α(7), ζ(8) e5

α(7), ζ(9) e12

β(7), γ(9) e2, e13

γ(7), ζ(8) e7

ζ(7), α(9) e4

ζ(7), β(9) e6

α(8), ζ(9) e8

γ(8), ζ(9) e10

Table 4.9: Correlations between the Sagnacs for times t = {7, 8, 9}.

Sagnacs Common terms

α(7), ζ(8) s3′ (4)
α(7), ζ(9) s1(7), s1′ (7)

β(7), γ(9) s1′ (3), s2′ (7)
β(7), ζ(9) s3(5)

γ(7), ζ(8) s2′ (5)
γ(7), β(9) s1(4), s3(7)

ζ(7), α(8) s2(4)
ζ(7), γ(8) s1(5)
ζ(7), α(9) s2′ (4), s3(3)
ζ(7), β(9) s1′ (5)

α(8), ζ(9) s3′ (5)

γ(8), ζ(9) s2′ (6)

ζ(8), α(9) s2(5)
ζ(8), γ(9) s1(6)

spectral density matrix. The A, E and T spectra can be written as a combination of

the phase reading s̃i(f) and a complex gain Gi(f). For example, A can be written as

A(f) =
1√
2

{
ñ1(f)

[
1− e−2πifD2

]
− ñ1′(f)

[
1− e−2πif(D1+D3)

]
+ñ2(f)

[
e−2πifD3 − e−2πif(D2+D3)

]
+ ñ2′(f)

[
e−2πifD1 − e−2πif(D1+D2)

]
− ñ3(f)

[
1− e−2πif(D1+D3)

]
+ ñ3′(f)

[
1− e−2πifD2

]}
. (4.35)

The complex gains are the terms in square brackets associated with each bench and

Equation 4.35 can be rewritten as

A(f) =
1√
2

[
s̃1(f)G1(f)− s̃1′(f)G1′(f) + s̃2(f)G2(f) + s̃2′(f)G2′(f)

−s̃3(f)G3(f) + s̃3′(f)G3′(f)
]
. (4.36)
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Table 4.10: The complex gains for AET .

Observable Optical bench Gain

Ã(f) s̃1 (f) 1− e−2πifD2

s̃1′ (f) −1 + e−2πif(D1+D3)

s̃2 (f) e−2πifD3 − e−2πif(D2+D3)

s̃2′ (f) e−2πifD1 − e−2πif(D1+D2)

s̃3 (f) −1 + e−2πif(D1+D3)

s̃3′ (f) 1− e−2πifD2

Ẽ(f) s̃1 (f) −1− e−2πifD2 + 2e−2πif(D1+D2)

s̃1′ (f) 1− 2e−2πifD3 + e−2πif(D1+D3

s̃2 (f) 2− e−2πifD3 − e−2πif(D2+D3)

s̃2′ (f) −2 + e−2πifD1 + e−2πif(D1+D2)

s̃3 (f) −1 + 2e−2πifD1 − e−2πif(D1+D3)

s̃3′ (f) 1 + e−2πifD2 − 2e−2πif(D2+D3)

T̃ (f) s̃1 (f) −1− e−2πifD2 − e−2πif(D1+D2)

s̃1′ (f) 1 + e−2πifD3 + e−2πif(D1+D3)

s̃2 (f) −1− e−2πifD3 − e−2πif(D2+D3)

s̃2′ (f) 1 + e−2πifD1 + e−2πif(D1+D2)

s̃3 (f) −1− e−2πifD1 − e−2πif(D1+D3)

s̃3′ (f) 1 + e−2πifD2 + e−2πif(D2+D3)

The gains for the observables are listed given in Table 4.10. For generating the AET

observables these gains are the target values for the vector b in Equation 4.19. The

normalising fractions associated them will not be included in the computations.

4.3.1 Results

The eigenpairs were generated from the real and imaginary power spectral density

matrix with laser phase noise variance of σ2
p = 50 and photodetector noise variance

σ2
n = 1, respectively. Three different sets of offsets were used which are Di = {2, 3, 4},

Di = {2.5, 3.5, 4.5} and Di = {2.125, 3.125, 4.125}.

4.3.1.1 Solutions for integer offsets D = {2, 3, 4}

The real and imaginary power spectral density matrices for offsets Di = {2, 3, 4} are

given in Figure 4.5. The blocks in the real matrix are all the same and those in the

imaginary matrix have values that are very small 10−13 which will be assumed to be zero.

The eigenpairs can therefore be generated from just one of the bocks in the real matrix.

The values of the first blocks (S11) of both matrices will be used and these are given in

Table 4.11a. The small size of the blocks makes it easy to list all the eigenvalues and

eigenvectors, including those with laser phase noises, which are given in Table 4.11b

where the two distinct values are clearly seen. The laser noise free eigenvectors are
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Table 4.11: The real and imaginary values for the blocks of the power spectral density matrix for offsets
Di = {2, 3, 4} (a) with their corresponding eigenpairs (b).

(a) Power spectral densities.

Real Imaginary

s̃1 (0) 101 50 -50 -100 -50 50 0 0 0 0 0 0
s̃1′ (0) 50 101 50 -50 -100 -50 0 0 0 0 0 0
s̃2 (0) -50 50 101 50 -50 -100 0 0 0 0 0 0
s̃2′ (0) -100 -50 50 101 50 -50 0 0 0 0 0 0
s̃3 (0) -50 -100 -50 50 101 50 0 0 0 0 0 0
s̃3′ (0) 50 -50 -100 -50 50 101 0 0 0 0 0 0

(b) Eigenvalues (λi) and eigenvectors (vi, ei).

λ1 λ2 λ3 λ4 λ5 λ6 OB# v1 v2 e1 e2 e3 e4

301 0 0 0 0 0 s̃1 (0) -1 1 1 1 0 -1
0 301 0 0 0 0 s̃1′ (0) -1 0 -1 0 1 1
0 0 1 0 0 0 s̃2 (0) 0 -1 1 0 0 0
0 0 0 1 0 0 s̃2′ (0) 1 -1 0 1 0 0
0 0 0 0 1 0 s̃3 (0) 1 0 0 0 1 0
0 0 0 0 0 1 s̃3′ (0) 0 1 0 0 0 1

Table 4.12: The complex gains for AET for integer offsets D = {2, 3, 4}.

OB# Ã(1) Ẽ(1) T̃ (1)

s̃1 (0) 0 0 -3

s̃1′ (0) 0 0 3

s̃2 (0) 0 0 -3

s̃2′ (0) 0 0 3

s̃3 (0) 0 0 -3

s̃3′ (0) 0 0 3

labeled ei and those with laser phase noises are labeled vi. The eigenvalues of interest

are the degenerate ones, λi = 1, and their corresponding eigenvectors are given by ei.

The four degenerate eigenvalues are all independent but only e2 and e3 are orthogonal.

Since the power spectral densities are the same for all frequencies the equations for

these can be written in terms of f giving

e1 = s̃1(f)− s̃1′(f) + s̃2(f),

e2 = s̃1(f) + s̃2′(f),

e3 = s̃1′(f) + s̃3(f),

e4 = −s̃1(f) + s̃1′(f) + s̃3′(f). (4.37)

For these offsets the complex gains for frequencies f = {0, .., 5} are all the same which

are given in Table 4.12 where only the T combinations has non-zero values. This is

because of the structure of the A and E observables and the even numbers of π being
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(a) (b)

Figure 4.5: The optical bench (a) real and (b) imaginary power spectral density matrices for frequencies
f = {0, ..., 5}, offsets D = {2, 3, 4} and laser phase and photodetector noise variances of σ2

p = 50 and
σ2
n = 1, respectively.

produced in the exponential terms by the integer values. The solution for T is

T̃ (f) = −3e1 + 3e2 − 3e3 + 3e4

= −3
[
e1 − e2 + e3 − e4

]
= −3

[
s̃1(f)− s̃1′(f) + s̃2(f)− s̃1(f)− s̃2′(f)

+s̃1′(f) + s̃3(f) + s̃1(f)− s̃1′(f)− s̃3′(f)
]

= −3
[
s̃1(f)− s̃1′(f) + s̃2(f)− s̃2′(f) + s̃3(f)− s̃2′(f)

]
. (4.38)

4.3.1.2 Solutions for real offsets

The previous results showed that having integer offsets and integer frequencies produced

real values for the power spectral densities of all the blocks with only the T combinations

having non-zero values. To obtain non-zero values for the A and E real offsets were

used. This was done for two sets of values in which one set provided only real power

spectral densities and the other a combination of real and imaginary values.

Solutions for Di = {2.5, 3.5, 4.5}

The real and imaginary matrices for the power spectral densities matrices for these

offsets are given in Figure 4.6. For these offsets, there are two sets of values for the

blocks in the real matrix reflecting the even and odd frequencies. The real values for

even frequencies are the same result as those for integer offsets. The imaginary values are
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Table 4.13: (a) The real and imaginary values for the block S11 and S22 of the power spectral density
matrix for offsets D = {2.5, 3.5, 4.5}. The eigenvalue and eigevectors for these blocks are given in (b)
and (c), respectively.

(a) Power spectral densities.

Real Imaginary

s̃1 (0) 101 50 -50 -100 -50 50 0 0 0 0 0 0
s̃1′(0) 50 101 50 -50 -100 -50 0 0 0 0 0 0
s̃2 (0) -50 50 101 50 -50 -100 0 0 0 0 0 0
s̃2′(0) -100 -50 50 101 50 -50 0 0 0 0 0 0
s̃3 (0) -50 -100 -50 50 101 50 0 0 0 0 0 0
s̃3′(0) 50 -50 -100 -50 50 101 0 0 0 0 0 0

s̃1 (1) 101 50 50 100 50 50 0 0 0 0 0 0
s̃1′(1) 50 101 50 50 100 50 0 0 0 0 0 0
s̃2 (1) 50 50 101 50 50 100 0 0 0 0 0 0
s̃2′(1) 100 50 50 101 50 50 0 0 0 0 0 0
s̃3 (1) 50 100 50 50 101 50 0 0 0 0 0 0
s̃3′(1) 50 50 100 50 50 101 0 0 0 0 0 0

(b) Eigenvalues (λi) and eigenvectors (vi, ei) for block S11.

λ1 λ2 λ3 λ4 λ5 λ6 OB# v1 v2 e1 e2 e3 e4

301 0 0 0 0 0 s̃1 (0) -1 1 1 1 0 -1
0 301 0 0 0 0 s̃1′(0) -1 0 -1 0 1 1
0 0 1 0 0 0 s̃2 (0) 0 -1 1 0 0 0
0 0 0 1 0 0 s̃2′(0) 1 -1 0 1 0 0
0 0 0 0 1 0 s̃3 (0) 1 0 0 0 1 0
0 0 0 0 0 1 s̃3′(0) 0 1 0 0 0 1

(c) Eigenvalues (λi) and eigenvectors (vi, ei) for block S22.

λ1 λ2 λ3 λ4 λ5 λ6 OB# v1 v2 v3 e1 e2 e3

401 0 0 0 0 0 s̃1 (1) 1 -1 -1 -1 0 0
0 101 0 0 0 0 s̃1′(1) 1 1 0 0 -1 0
0 0 101 0 0 0 s̃2 (1) 1 0 1 0 0 -1
0 0 0 1 0 0 s̃2′(1) 1 -1 -1 1 0 0
0 0 0 0 1 0 s̃3 (1) 1 1 0 0 1 0
0 0 0 0 0 1 s̃3′(1) 1 0 1 0 0 1

similar to those obtained for integer offsets with values ≈ 10−13 which will be rounded

to 0. The values for both even and odd frequencies are from blocks S11 and S22 which

are given in Table 4.13 (a). The complete set of eigenvalues and eigenvectors are given

in Table 4.13 (b) and (c).

The eigenpairs for S11 where f = 0 are the same as for the integer values. For block

S22 there are three laser noise free eigenvectors which are mutually independent and
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(a) (b)

Figure 4.6: The (a) real and (b) imaginary power spectral density matrices for frequencies f = {0, ..., 5},
offsets D = {2.5, 3.5, 4.5} and laser phase and photodetector noise variances of σ2

p = 50 and σ2
n = 1,

respectively.

orthogonal. The equations for these are

e1 = −s̃1(1) + s̃2′(1), e2 = −s̃1′(1) + s̃3(1), e3 = −s̃2(1) + s̃3′(1). (4.39)

The gains for A, E and T for both blocks S11 and S22 are given in Table 4.14. The

solutions for block S22 are

Ã(1) = −2e1 + 2e3

= 2s̃1(1)− 2s̃2′(1)− 2s̃2(1) + 2s̃3′(1)),

Ẽ(1) = −2e1 − 4e2 − 2e3

= 2s̃1(1) + 4s̃1′(1) + 2s̃2(1)− 2s̃2′(1)− 4s̃3(1))− 2s̃3′(1),

T̃ (1) = e1 − e2 + e3

= −s̃1(1) + s̃1′(1)− s̃2(1) + s̃2′(1)− s̃3(1) + s̃3′(1). (4.40)

Table 4.14: The complex gains for AET for integer offsets D = {2.5, 3.5, 4.5}.

OB# Ã(0) Ẽ(0) T̃ (0) OB# Ã(1) Ẽ(1) T̃ (1)

s̃1 (0) 0 0 -3 s̃1 (1) 2 2 -1

s̃1′(0) 0 0 3 s̃1′(1) 0 4 1

s̃2 (0) 0 0 -3 s̃2 (1) -2 2 -1

s̃2′(0) 0 0 3 s̃2′(1) -2 -2 1

s̃3 (0) 0 0 -3 s̃3 (1) 0 -4 -1

s̃3′(0) 0 0 3 s̃3′(1) 2 -2 1
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(a) (b)

Figure 4.7: The real (a) and imaginary (b) matrices for the power spectral density matrices for fre-
quencies f = {0, 1, 2, 3, 4, 5}, offsets D = {2.125, 3.125, 4.125} (e,f) and laser phase and photodetector
noise variances of σ2

p = 50 and σ2
n = 1, respectively.

Solutions for D = {2.125, 3.125, 4.125}

These offsets were chosen to give multiples of π/4 in the exponential terms which give

real and imaginary values of 0.7071 (=
√

2/2). The hope was that there would be

algebraic solutions for these values.

The real and imaginary matrices for the power spectral densities for these offsets are

given in Figure 4.7 and the values for all the blocks are given in Table 4.15. The gains

for A, E and T for these offsets are given in Table 4.16. With these offsets imaginary

values were obtained for some of the blocks. Blocks for frequencies of 0 and 4 overlap

with those in the previous sets. The focus will be on those blocks with imaginary values

which are those for frequencies which are 1, 2, 3 and 5 in order to obtain both algebraic

and numeric solutions with them.

Algebraic solution

For an algebraic solution the block for f = 2 was used and the values for the eigenvalues

and eigenvectors are given in Table 4.17. The laser noise free eigenvectors are

e1 = −s̃1(2) + (1 + i) s̃1′(2)− (1 + i)s̃2 + s̃2′(2),

e2 = −(1− i) s̃1(2) + s̃1′(2)− (1 + i) s̃2 + s̃3(2),

e3 = −(1− i) s̃1(2) + (1− i) s̃1′(2)− s̃2(2) + s̃3′(2). (4.41)

For example, the solution for A is
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Table 4.15: The real and imaginary (rounded to nearest integer) values for the blocks of the power
spectral density matrix for offsets D = {2.125, 3.125, 4.125}.

Real Imaginary

s̃1 (0) 101 50 -50 -100 -50 50 0 0 0 0 0 0
s̃1′ (0) 50 101 50 -50 -100 -50 0 0 0 0 0 0
s̃2 (0) -50 50 101 50 -50 -100 0 0 0 0 0 0
s̃2′ (0) -100 -50 50 101 50 -50 0 0 0 0 0 0
s̃3 (0) -50 -100 -50 50 101 50 0 0 0 0 0 0
s̃3′ (0) 50 -50 -100 -50 50 101 0 0 0 0 0 0

s̃1 (1) 101 50 -35 -71 -35 50 0 0 35 0 -35 0
s̃1′ (1) 50 101 50 -35 -71 -35 0 0 0 -35 0 35
s̃2 (1) -35 50 101 50 -35 -71 -35 0 0 0 35 0
s̃2′ (1) -71 -35 50 101 50 -35 0 35 0 0 0 -35
s̃3 (1) -35 -71 -35 50 101 50 35 0 -35 0 0 0
s̃3′ (1) 50 -35 -71 -35 50 101 0 -35 0 35 0 0

s̃1 (2) 101 50 0 0 0 50 0 0 50 0 -50 0
s̃1′ (2) 50 101 50 0 0 0 0 0 0 -50 0 50
s̃2 (2) 0 50 101 50 0 0 -50 0 0 0 50 0
s̃2′ (2) 0 0 50 101 50 0 0 50 0 0 0 -50
s̃3 (2) 0 0 0 50 101 50 50 0 -50 0 0 0
s̃3′ (2) 50 0 0 0 50 101 0 -50 0 50 0 0

s̃1 (3) 101 50 35 71 35 50 0 0 35 0 -35 0
s̃1′ (3) 50 101 50 35 71 35 0 0 0 -35 0 35
s̃2 (3) 35 50 101 50 35 71 -35 0 0 0 35 0
s̃2′ (3) 71 35 50 101 50 35 0 35 0 0 0 -35
s̃3 (3) 35 71 35 50 101 50 35 0 -35 0 0 0
s̃3′ (3) 50 35 71 35 50 101 0 -35 0 35 0 0

s̃1 (4) 101 50 50 100 50 50 0 0 0 0 0 0
s̃1′ (4) 50 101 50 50 100 50 0 0 0 0 0 0
s̃2 (4) 50 50 101 50 50 100 0 0 0 0 0 0
s̃2′ (4) 100 50 50 101 50 50 0 0 0 0 0 0
s̃3 (4) 50 100 50 50 101 50 0 0 0 0 0 0
s̃3′ (4) 50 50 100 50 50 101 0 0 0 0 0 0

s̃1 (5) 101 50 35 71 35 50 0 0 -35 0 35 0
s̃1′ (5) 50 101 50 35 71 35 0 0 0 35 0 -35
s̃2 (5) 35 50 101 50 35 71 35 0 0 0 -35 0
s̃2′ (5) 71 35 50 101 50 35 0 -35 0 0 0 35
s̃3 (5) 35 71 35 50 101 50 -35 0 35 0 0 0
s̃3′ (5) 50 35 71 35 50 101 0 35 0 -35 0 0

Ã(2) = (1 + i) e1 − 2e2 + (1− i) e3

= −(1 + i)s̃1(2) + (1 + i)2 s̃1′(2)− (1 + i)2s̃2(2) + (1 + i)s̃2′(2)

+2(1− i) s̃1(2)− 2s̃1′(2) + 2(1 + i) s̃2(2)− 2s̃3(2)

−(1− i)2 s̃1(2) + (1− i)2 s̃1′(2)− (1− i)s̃2(2) + (1− i)s̃3′(2)

=
[
− (1 + i) + 2(1− i)− (1− i)2

]
s̃1(2) +

[
(1 + i)2 − 2 + (1− i)2

]
s̃1′(2)

−
[
(1 + i)2 − 2(1 + i) + (1− i)

]
s̃2(2) + (1 + i)s̃2′ − 2s̃3 + (1− i)s3′(2)

=
[
− 1− i+ 2− 2i+ 2i

]
s̃1(2) +

[
2i− 2− 2i

]
s̃1′(2)

−
[
2i− 2− 2i+ 1− i

]
s2 + (1 + i)s2′(2)− 2s̃3(2) + (1− i)s̃3′

= (1− i)s̃1(2)− 2s̃1′(2) + (1 + i)s̃2(2) + (1 + i)s̃2′(2)

−2s̃3(2) + (1− i)s̃3′(2). (4.42)
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Table 4.16: The complex gains for AET for f = {0, ..., 5} and offsets D = {2.125, 3.125, 4.125}.

OB Ã Ẽ T̃

s̃1 (0) 0 0 -3

s̃1′ (0) 0 0 3

s̃2 (0) 0 0 -3

s̃2′ (0) 0 0 3

s̃3 (0) 0 0 -3

s̃3′ (0) 0 0 3

s̃1 (1) 0.2929 - 0.7071i -1.7071 + 1.2929i -1.7071 - 1.7071i

s̃1′ (1) -1.0000 + 1.0000i -0.4142 - 0.4142i 1.7071 + 1.7071i

s̃2 (1) 0.7071 - 0.2929i 1.2929 - 1.7071i -1.7071 - 1.7071i

s̃2′ (1) 0.7071 - 0.2929i -1.2929 + 1.7071i 1.7071 + 1.7071i

s̃3 (1) -1.0000 + 1.0000i 0.4142 + 0.4142i -1.7071 - 1.7071i

s̃3′ (1) 0.2929 - 0.7071i 1.7071 - 1.2929i 1.7071 + 1.7071i

s̃1 (2) 1 - 1i -3 - 1i 0 - 1i

s̃1′ (2) -2 + 0i 0 - 2i 0 + 1i

s̃2 (2) 1 + 1i 3 - 1i 0 - 1i

s̃2′ (2) 1 + 1i -3 + 1i 0 + 1i

s̃3 (2) -2 + 0i 0 + 2i 0 - 1i

s̃3′ (2) 1 - 1i 3 + 1i 0 + 1i

s̃1 (3) 1.7071 - 0.7071i -0.2929 - 2.7071i -0.2929 + 0.2929i

s̃1′ (3) -1.0000 - 1.0000i 2.4142 - 2.4142i 0.2929 - 0.2929i

s̃2 (3) -0.7071 + 1.7071i 2.7071 + 0.2929i -0.2929 + 0.2929i

s̃2′ (3) -0.7071 + 1.7071i -2.7071 - 0.2929i 0.2929 - 0.2929i

s̃3 (3) -1.0000 - 1.0000i -2.4142 + 2.4142i -0.2929 + 0.2929i

s̃3′ (3) 1.7071 - 0.7071i 0.2929 + 2.7071i 0.2929 - 0.2929i

s̃1 (4) 2 2 -1

s̃1′ (4) 0 4 1
s̃2 (4) −2 2 -1

s̃2′ (4) −2 -2 1
s̃3 (4) 0 -4 -1

s̃3′ (4) 2 -2 1

s̃1 (5) 1.7071 + 0.7071i -0.2929 + 2.7071i -0.2929 - 0.2929i

s̃1′ (5) -1.0000 + 1.0000i 2.4142 + 2.4142i 0.2929 + 0.2929i

s̃2 (5) -0.7071 - 1.7071i 2.7071 - 0.2929i -0.2929 - 0.2929i

s̃2′ (5) -0.7071 - 1.7071i -2.7071 + 0.2929i 0.2929 + 0.2929i

s̃3 (5) -1.0000 + 1.0000i -2.4142 - 2.4142i -0.2929 - 0.2929i

s̃3′ (5) 1.7071 + 0.7071i 0.2929 - 2.7071i 0.2929 + 0.2929i

The solutions for E and T are

Ẽ(2) = (−1 + i) e1 + 2e2 + (3 + i) e3,

T̃ (2) = i e1 − i e2 + i e3. (4.43)
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Table 4.17: The eigenvalues and eigenvectors for block f = 2 for offsets D = {2.125, 3.125, 4.125}.

Eigenvalues Eigenvectors
λ1 λ2 λ3 λ4 λ5 λ6 OB# v1 v2 v3 e1 e2 e3

201 0 0 0 0 0 s̃1 (2) 1 -1-i 1+i -1 -1+i -1+i
0 201 0 0 0 0 s̃1′ (2) 1-i -1 1+i 1+i 1 1-i
0 0 201 0 0 0 s̃2 (2) 1-i -1+i 1 -1-i -1-i -1
0 0 0 1 0 0 s̃2′ (2) 1 0 0 1 0 0
0 0 0 0 1 0 s̃3 (2) 0 1 0 0 1 0
0 0 0 0 0 1 s̃3′ (2) 0 0 1 0 0 1

Table 4.18: The degenerate eigenvectors for block f = {1, 3, 5} for offsets D = {2.125, 3.125, 4.125}.

(a)

OB# e1 e2 e3

s̃1 (1) 0.4082 0.5570 + 0.0079i -0.1518 + 0.0016i

s̃1′ (1) -0.4082 -0.3651 - 0.0730i -0.3668 - 0.2452i

s̃2 (1) 0.4082 -0.1689 + 0.2469i 0.4914 + 0.0490i

s̃2′ (1) -0.4082 0.4776 + 0.0730i -0.1994 + 0.2452i

s̃3 (1) 0.4082 -0.3881 - 0.2547i -0.3395 - 0.0506i

s̃3′ (1) -0.4082 -0.1125 + 0.0000i 0.5663 + 0.0000i

(b)

OB# e1 e2 e3

s̃1 (2) -0.0419 + 0.5507i 0.1050 - 0.1313i 0.4082

s̃1′ (2) -0.1568 + 0.0174i -0.2594 - 0.4911i -0.4082

s̃2 (2) -0.4774 - 0.3069i -0.0763 + 0.0732i 0.4082

s̃2′ (2) 0.0229 - 0.0174i -0.3022 + 0.4911i -0.4082

s̃3 (2) 0.5193 - 0.2438i -0.0288 + 0.0581i 0.4082

s̃3′ (2) 0.1339 + 0.0000i 0.5616 + 0.0000i -0.4082

(c)

OB# e1 e2 e3

s̃1 (3) -0.0419 - 0.5507i 0.1050 + 0.1313i 0.4082

s̃1′ (3) -0.1568 - 0.0174i -0.2594 + 0.4911i -0.4082

s̃2) (3) -0.4774 + 0.3069i -0.0763 - 0.0732i 0.4082

s̃2′ (3) 0.0229 + 0.0174i -0.3022 - 0.4911i -0.4082

s̃3 (3) 0.5193 + 0.2438i -0.0288 - 0.0581i 0.4082

s̃3′ (3) 0.1339 + 0.0000i 0.5616 + 0.0000i -0.4082

Numeric solution

The laser noise free eigenvectors for blocks with frequencies f = {1, 3, 5} are given in

Table 4.18. The solutions for AET using these eigenvectors are

Ã(1) = (0.6746− 1.7142i) e2 + (0.6512− 1.5892i) e3,

Ẽ(1) = (−2.3501 + 1.8237i) e2 + (2.5478− 1.9208i) e3,

T̃ (1) = (−4.1815− 4.1815i) e1,

Ã(3) = (−0.6006− 2.5994i) e1 + (3.1829− 0.6392i) e2,
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Ẽ(3) = (−5.1417 + 2.2762i) e1 + (1.7477 + 4.2776i) e2,

T̃ (3) = (−0.7175 + 0.7175i) e3,

Ã(5) = (−0.6006 + 2.5994i) e1 − (3.1829 + 0.6392i) e2,

Ẽ(5) = (−5.1417− 2.2762i) e1 + (1.7477− 4.2776i) e2,

T̃ (5) = (−0.7175− 0.7175i) e3. (4.44)

The same results were obtained for f = {3, 5} with blocks that contain the same

real values but different imaginary values for the power spectral densities (Table 4.15).

This seems to indicate that the eigenvalues and eigenvectors can obtained from the real

power spectral density matrix. This might also indicate the possibility of using only

the magnitude spectral densities, however, unlike the real values they do not retain the

signs of the values which are needed, for example, blocks f = 1 and f = 3. The eigen-

values for these blocks are (301,301,1,1,1,1) and (401,101,101,1,1,1) where the number

of degenerate values are different.

4.4 Summary

In this chapter we proved the connection between the eigenvalues that are free from

laser phase noises with the time domain Sagnac and the frequency domain AET ob-

servables. In the time domain using integer values for the offsets allowed the eigenpairs

to be generated algebraically. This was only possible for very small matrices since the

computation times increased rapidly with the increase in the size of the matrix. The

algebraic computation times for a small 90×90 matrix was approximately 9 hrs. In the

frequency domain the structure of the matrix is a block diagonal and the algebraic com-

putation can be done on each block separately which, in theory, should lead to shorter

reasonable times. However, the conventional method of generating the eigenvalues de-

pends on the determinant of the matrix which is not trivial to compute for matrices

with sizes greater than three. In the frequency domain the speed of the computation

will depend on the size and structure of the blocks. For the raw data the size of the

blocks is the same as in the time domain which is 6 × 6 for which the computation of

the determinant for algebraic solutions will still not be trivial in general. However, the

partitioning of the eigendecompostion makes parallel computation possible which would
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be useful for both methods.

Obtaining LISA data with the required sensitivity for the analysis is accomplished by

transforming the raw data using the laser noise free eigenvectors which are determined

from the eigenvalues. It is the transformation of the data that is important therefore,

exact solutions may not be needed for the generation of the eigenpairs. In this case

numeric solutions were obtained for which the computation times remained reasonably

low. For example, for the largest matrix which was 18000×18000 the computation time

was 7 m. For this time, the size of the matrix that the algebraic computation could

produce a solution was for a 48× 48 matrix. The comparison of the number and values

of the eigenvalues obtained from both methods were the same. The difference was that

the numeric solutions gave eigenvectors with that had contributions from most of the

optical benches and times.

In this chapter we used toy models to obtain algebraic solutions in order to determine

the connection between the laser noise free eigenvectors and time delay interferometry

combinations. We adjusted the model slightly to include real values for the arm lengths

from which we were still able to obtain the distinct groups. In Chapter 6 the model will

be extended even further to handle more realistic LISA data including some mentioned

in Romano and Woan. The success of this approach relies on the splitting of the values

into the two distinct groups, therefore in that chapter we will be checking whether this

will still be the case when using real data. Before doing this, however, we will show how

the principal components approach is used in the data analysis and how it compares

with the conventional approach using the time delay interferometry observables. This

will be done in the next chapter.



Chapter 5

Bayesian-principal component analysis for

LISA data

Recall that the reason for the time delay interferometry observables is to achieve the

required sensitivity for LISA that will allow astronomy to be obtained from its data.

The main obstruction to achieving this goal is the overwhelming laser phase noises

for which the time delay interferometry observables were developed which are linear

combination of the raw data that leads to the cancellation of the noises. The data

analysis is done using these observables which have to be generated before any analysis

is performed. Romano and Woan introduced the principal components approach for

producing the data with the necessary sensitivity required for the analysis. In the

last chapter we proved the connection between these principal components and the

time delay interferometry observables. In this chapter we illustrate the use of these

components in the data analysis and show that they produce the same results as the

conventional method using the time delay interferometry observables. This will be

performed on a toy model of LISA raw data consisting of a single monochromatic source

buried in white stationary Gaussian noises. The signal will be characterised only by its

waveform parameters of amplitude, frequency and phase with the latter two assumed

to be known. Bayesian inference will be used to estimate the amplitude of the signal in

the raw data.

Since the data are time series the inference is initially done using these however, the

frequency domain offers some advantages particularly the possibility of identifying the

frequencies of the signals and of simplifying the matrix inversion and eigendecomposition

because of the diagonal nature of the power spectral density matrix. For this reason

the inference is also performed in this domain. The results from these will be compared

with that obtained using the conventional approach with the optimal AET observables.

139
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5.1 Bayesian inference

The Bayesian approach to statistical inference uses probability to define uncertainty

which expresses either incomplete knowledge or unpredictability due to randomness

[45]. It is performed on real data which are the outcomes of observations and therefore

they are fixed. The variable quantities, which are the target of the inference, are the

unknown parameters that produce the data and the uncertainties in the estimates of

their values are defined with probability distributions. This differs from the frequentist

approach where the unknown parameters are fixed and the data are random outcomes.

Probabilities are assigned to reflect the possibility of different realisations of the data

based on a particular parameter value which is based on hypothetical data [79].

5.1.1 Bayes’ theorem

The mathematical formulation of Bayesian inference is Bayes’ theorem which is defined

by Bretthorst [16] as

p(H|D, I) =
p(D|H, I)p(H|I)

p(D|I)
. (5.1)

Following Bretthorst, the outcome of the inference is the posterior probability p(H|D, I)

which expresses the probability of the hypothesis H given the data D and some prior

information I. The prior information defines what is known about the phenomena that

generated the data. The prior probability p(H|I) describes what is known about the hy-

pothesis based only on information obtained before considering the data. The posterior

provides information after considering the data. The direct probability p(D|H, I) gener-

ally expresses the probability of the data given the hypothesis and the prior information.

However, what this represents depends on what is kept constant in the computations.

When the hypothesis is evaluated for different sets of data this is a sampling probability

distribution but when different hypotheses are evaluated using the same data it is a

likelihood function. The prior probability of the data p(D|I) is the probability of the

data based only on the prior information and it is also called the marginal probability,

the global likelihood or the evidence.

Weinberg [79] points out that it is the relationship between the posterior and the

prior probabilities that is the value of the Bayesian analysis since it provides informa-
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tion about the hypothesis before and after considering the data. This also allows the

updating of the estimates when new data are acquired resulting in a sequential applica-

tion of Bayes’ theorem where the posterior probability obtained from one experiment is

used as the prior probability for the next experiment. It provides a way to learn from

experience by including new data/information [45]. Another advantage of the Bayesian

approach is the ability to handle nuisance parameters which are those that are needed

for the computation but are not the required outcome of the inference. This is handled

through a process of marginalisation where the computation are performed for all values

of the nuisance parameter.

5.1.2 Bayesian parameter estimation

In the inference the hypothesis is posed as a question about the values of the parameters

that could be responsible for the observed data for which the prior information I will

contain a model M for the data [5]. For parameter estimation Equation 5.1 can be

written as

p(a|d,M) =
p(d|a,M) p(a|M)

p(d|M)
, (5.2)

where p(d|a,M) is the likelihood, p(a|M) is the prior and is the p(d|M) evidence. The

parameters and data are given by a = {a1, ..., ak} and d = {d1, ..., dn}, respectively.

5.1.2.1 The posterior probability

As the outcome of the inference, the posterior probability p(a|d,M) will be a distri-

bution of the probabilities of the possible values of the parameters responsible for the

data. The results of the inference can be expressed by reporting the whole distribution

or just summary statistics from it, for example, the mean and variance [79].

5.1.2.2 The likelihood

The likelihood p(d|a,M) is the point where the data enters the inference. For model-

based inference this is evaluated for different values of the parameters for the same data

and therefore, it is a likelihood function L(a; D,M). The inference will be based on

the noises in the data with parameters and model defined by statistics and probability

distributions.
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The statistical models express the probability of the joint occurrence of the values

in the observations. If the noise in the data are represented by d = {d1, d2, . . . , dn}

and if the individual values are all mutually independent, the probability of their joint

occurrence can be expressed as

pd(d1, ..., dn) = p(d1) p(d2) · · · p(dd)

=
n∏
i=1

p(di). (5.3)

With dependencies between the values, the joint probability distribution will contain

conditional probabilities which is given by

pd(d1, ..., dn) = p(d1) p(d2|d1) · · · p(dn|d1, . . . , dn−1)

= p(d1)
n∏
i=2

p(di|d1, . . . , dn−1). (5.4)

Although the focus is on the noises, the aim is the extraction of the signals buried

in the noise. The noise models and their parameters are assumed to be previously

known and are used to infer the signal parameters based on knowledge of the different

waveforms expected in the data.

5.1.3 Simplifying Bayes’ theorem

The computation of the posterior probability using Bayes’ theorem as given in Equation

5.2 can be expressed as a proportionality depending only on the likelihood, that is,

p(a|d,M) ∝ p(d|a,M). (5.5)

This depends on the properties of the evidence and assumptions made about the prior.

This will be illustrated in the following sections.

5.1.3.1 The evidence

In the context of parameter estimation, the evidence p(d|M), the denominator in Equa-

tion 5.2, is computed for a fixed model and fixed data which can be obtained from

p(d|a,M) =
∑
i

p(d|ai,M) p(ai|M). (5.6)

where it is the probability of the data summed over all the values of the parameters

giving a global value for the parameters (global likelihood) or a marginal value for the
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data (marginal likelihood) [33]. The likelihood gives results for a particular value of

the parameter while the evidence is evaluated for all values of the parameter. So for

parameter estimation this will be a constant and its effect would be to normalise the

posterior probability ensuring that it sums or integrates to unity [15]. The product

of the posterior distribution with a constant does not change its mean value or the

structure of the distribution, therefore, it can be ignored and Equation 5.2 reduces to a

proportionality containing the prior and likelihood becoming

p(a|d,M) ∝ p(d|a,M) p(a|M). (5.7)

5.1.3.2 The prior

This is the term that can greatly affects the outcome of the inference as it describes

the distribution of the values of the parameters which can have different statistics and

shapes. In our toy model we will be assuming equal probabilities of all values for the

parameter being estimated which can be defined using a flat or uniform prior. This will

also be constant for which the product with the likelihood function will also not change

the structure or location of the mean of the resulting posterior probability distribution.

Ignoring the prior reduces Equation 5.7 to

p(a|D,M) ∝ p(d|a,M) (5.8)

which will be the form used in the analysis of LISA data.

5.1.4 The likelihood for the raw data

The raw data time series with the two lasers on each spacecraft phase-locked can be

written as

si(ta) = pj(ta −Dk)− pi(ta) + ni(ta) + hi(ta), (5.9)

where pi, ni, hi represent the contributions from the laser phase noises, the photodetector

noises and the gravitational waves, respectively. The subscripts i and j indicate the

optical bench number and k the arm of the antenna. The likelihood is based on the

noises in the data and these are obtained from Equation 5.9 by subtracting the signal
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hi(t) giving

si(ta)− hi(ta) = pj(ta −Dk)− pi(ta) + ni(ta)

= di(ta), (5.10)

which is a linear combination of the three different noises. In the toy model each of these

noises are assumed to be independent Gaussian processes with no correlations between

their values at different times. This means that there are no correlations between the

same optical bench readings at different times (auto-correlations) but there are cross-

correlations between the different optical bench readings because of the presence of the

same noises in the different readings.

The joint probability distribution for each reading di will be the product of inde-

pendent Gaussian distributions. The probability distribution of a linear combination

of independent Gaussian processes is another Gaussian with mean and variance equal

to the sum of the individual means and variances. The distribution for the noises in

each optical bench data is therefore d ∼ N (0, 2σ2
d) where σ2

d = 2σ2
p + σ2

n expressing the

joint probability distribution of the combined noises in each optical bench data and the

likelihood is

L(a; di,M) =
m∏
l=1

p(di(tl))

=
m∏
l=1

( 1

2π(2σ2
p + σ2

n)

)1/2

exp
(
− 1

2

(di(tl))
2

2σ2
p + σ2

n

)
=
( 1

2π(2σ2
p + σ2

n)

)m/2
exp
(
− 1

2

m∑
l=1

(di(tl))
2

2σ2
p + σ2

n

)
, (5.11)

which is a multivariate Gaussian. Here di = {di(t1), . . . di(tm)} with the subscript i

indicating the optical bench number. In matrix form this can be written as

L(a; di,M) =
1

(2π)N/2|C|1/2
exp
(
− 1

2
dTi C

−1di

)
, (5.12)

where C is the covariance matrix for each optical bench expressing the correlations

between the values at different times, |C| is the determinant of the matrix and N is the

total number of values. For the individual optical bench readings the matrix will be

diagonal with the values along the main diagonal being the variance which is 2σ2
p + σ2

n.

The inference is performed using all six readings simultaneously and with phase-locking

of the lasers on each spacecraft there will be correlations between the readings of the
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different optical benches requiring conditional distributions. The likelihood for all six

readings Equation 5.12 becomes

L(a; d,M) =
1

(2π)N |C|1/2
exp
(
− 1

2
dTC−1d

)
, (5.13)

where d is a 6m × 1 vector of the raw data from all the six optical benches grouped

in blocks of six where the order is 1, 1′, 2, 2′, 3, 3′. This covariance matrix is the block

matrix that was generated in Chapter 3.

5.1.4.1 Computing the likelihood

The values that will be used for the noise variances in the our toy model will be chosen

to allow for easy identification of the laser noise free eigenvectors and will have values

integer values with a large separation between them for example, σ2
p = 100 and σ2

n = 1.

This leads to very small values in the terms outside the exponential in the multivariate

Gaussian function in Equation 5.13 for any appreciable sized matrix. For a 10 × 10

diagonal matrix the determinant is ≈ 1033 for which the inverse is ≈ 10−33. Since these

do not change in the parameter estimation the computation of the likelihood function

will be based only on the last term in the equation which is called the likelihood kernel

[33] and Equation 5.13 can be rewritten as

L(a; d,M) ∝ exp
(
− 1

2
dTC−1d

)
. (5.14)

The values within the exponential will also be small and to compensate for this the

relative likelihood LR will be computed and plotted instead of the likelihood where it is

given relative to the maximum estimate of the parameter [33]. This is computed from

LR(a; d) =
L(a; d)

L(âML; d)
. (5.15)

The aim of the analysis is to obtain an estimate of the amplitude of the signal buried

in the raw data using the data generated by the principal components. Since we will

be using relative likelihood values we will only be able to compare the values obtained

and not their probabilities.

5.1.4.2 Incorporating the principal components

The target of the principal component analysis is the covariance matrix in Equation

5.13. Recall that the principal components are obtained from the eigendecomposition



146 Chapter 5. Bayesian-principal component analysis for LISA data

of this matrix which can be expressed as

CV = V Λ, (5.16)

where V and Λ are the matrix of eigenvectors and eigenvalues, respectively.

C = V ΛV −1. (5.17)

The inverse of the covariance matrix is required which can be written as

C−1 = (V ΛV −1)−1

= V TΛV, (5.18)

where the V −1 = V T . This is substituted into Equation ??

L(a; d,M) ∝ exp
[
− 1

2
(V d)TΛ−1(V d)

]
, . (5.19)

5.2 Bayesian inference using the raw science data

In this section the results of the inference using the principal component approach for

dealing with the laser phase noises are given including details of how the data are

simulated. This is done in the time and frequency domains. In order to compare the

estimates of the amplitude values from both domains the spectra will be generated from

the raw data time series using the MATLAB fft function.

5.2.1 Simulating the raw data time series

Recall that time series for the raw data can be written as

si(t) = pj(t−Dk)− pi(t) + ni(t) + hi(t), (5.20)

where each reading is a combination of the noises associated with the receiving optical

bench (pi, ni), the delayed phase noise of the transmitting optical bench (pj) and the

strain produced by the gravitational wave hi in the arm between them.
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5.2.1.1 The laser phase and photodetector noises

The noise contributions for all the optical benches with the laser on each spacecraft

phase-locked to each other are

snoise1 (t) = p2(t−D3)− p1(t) + n1(t), snoise1′ (t) = p3(t−D2)− p1(t) + n1′(t),

snoise2 (t) = p3(t−D1)− p2(t) + n2(t), snoise2′ (t) = p1(t−D3)− p2(t) + n2′(t),

snoise3 (t) = p1(t−D2)− p3(t) + n3(t), snoise3′ (t) = p2(t−D1)− p3(t) + n3′(t), (5.21)

where there will only be three independent lasers with phases noises of p1, p2 and p3

with the numbers indicating the spacecraft. Each laser phase noise occurs in readings

at the current time t and at two shifted times related to the arms adjacent to the parent

spacecraft requiring three copies of each noise. The time series are simulated with three

independent random Gaussian sequences with zero means and variances σ2
p generated

with the MATLAB randn function. The time series for the laser noises with the time

offsets are generated from the current time series by shifting them according to the

corresponding offsets. The photodetector noises are all independent with each occuring

only once in the data at time t. These are simulated with six independent random

Gaussian sequences with zero means and variance σ2
n also using the randn function.

5.2.1.2 Gravitational wave signal

The contributions from the signals in the optical bench data are

sgwi (t) = hi(t), (5.22)

where hi(t) is the phase reading associated with the strain produced in the arm adjacent

to optical bench i by the gravitational wave h(t). The equations for signal responses

were obtained from Armstrong, Estabrook and Tinto [6] where the gravitational signal

h(t) is assumed to be a transverse traceless plane wave. The motion and orientation of

the wave is described by an orthonormal propagation frame with unit vectors î, ĵ and

k̂ with the direction of motion being parallel to k̂. The wave is a combination of two

polarisations h+(t) and h×(t) given by

h(t) = h+(t)e+ + h×(t)e×, (5.23)
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Figure 5.1: A schematic diagram of the plane of LISA showing notation and the location of the vectors
used in deriving the gravitational wave responses based on [6].

where e+ and e× are tensors that are transverse to k̂ and traceless. For the orthonormal

frame these can be expressed as

e+ =


1 0 0

0 −1 0

0 0 0

 , e× =


0 1 0

1 0 0

0 0 0

 , (5.24)

and Equation 5.23 becomes

h(t) =


h+(t) 0 0

0 −h+(t) 0

0 0 0

+


0 h×(t) 0

h×(t) 0 0

0 0 0

 . (5.25)

In Armstrong et. al. [6] the wave is assumed to be a first-order spatial metric

perturbation occurring at point O which is a point in plane of the antenna that is

equidistant from the three spacecraft as shown in Figure 5.1. The distance from this

point to three spacecraft is l and the orientation to the spacecraft is defined by three

unit vectors p̂i that are in the antenna’s plane. The orientation of the wave with respect

to the antenna given by µi which is the dot product of the k̂ and p̂i that is

µi = k̂ · p̂i. (5.26)
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The expressions given for the responses for the optical benches on spacecraft 1 are

h1(t) =
[
1 +

d

D3

(
µ1 − µ2

)][
Ψ3(t− µ2d−D3)−Ψ3(t− µ1d)

]
, (5.27)

h1′(t) =
[
1− d

D2

(
µ3 − µ1

)][
Ψ2(t− µ3d−D2)−Ψ2(t− µ1d)

]
, (5.28)

where Di = Li/c is the light travel time in each arm and d = l/c is the travel time from

O to each spacecraft. The function Ψi(t) describes the orientation of the wave to the

arms with respect to the unit vectors n̂i along each arm and is given by

Ψi(t) =
1

2

n̂i · h(t) · n̂i
1− (k̂ · n̂i)2

. (5.29)

From the above, the responses for the optical benches on the other spacecraft were

generated and determined to be

h2(t) =
[
1 +

d

D1

(
µ2 − µ3

)][
Ψ1(t− µ3d−D1)−Ψ1(t− µ2d)

]
, (5.30)

h2′(t) =
[
1− d

D3

(
µ1 − µ2

)][
Ψ3(t− µ1d−D3)−Ψ3(t− µ2d)

]
, (5.31)

h3(t) =
[
1 +

d

D1

(
µ2 − µ3

)][
Ψ1(t− µ2d−D1)−Ψ1(t− µ3d)

]
, (5.32)

h3′(t) =
[
1− d

D2

(
µ3 − µ1

)][
Ψ2(t− µ1d−D2)−Ψ2(t− µ3d)

]
, (5.33)

where Ψi for all the optical benches are defined as

Ψ1(t− µ2d−D1) =
1

2

n̂1 · h(t− µ2d−D1) · n̂1

1− (k̂ · n̂1)2
, Ψ1(t− µ3d) =

1

2

n̂1 · h(t− µ3d) · n̂1

1− (k̂ · n̂1)2
,

Ψ1(t− µ3d−D1) =
1

2

n̂1 · h(t− µ3d−D1) · n̂1

1− (k̂ · n̂1)2
, Ψ1(t− µ2d) =

1

2

n̂1 · h(t− µ2d) · n̂1

1− (k̂ · n̂1)2
,

Ψ2(t− µ1d−D2) =
1

2

n̂2 · h(t− µ1d−D2) · n̂2

1− (k̂ · n̂2)2
, Ψ2(t− µ3d) =

1

2

n̂2 · h(t− µ3d) · n̂2

1− (k̂ · n̂2)2

Ψ2(t− µ3d−D2) =
1

2

n̂2 · h(t− µ3d−D2) · n̂2

1− (k̂ · n̂2)2
, Ψ2(t− µ1d) =

1

2

n̂2 · h(t− µ1d) · n̂2

1− (k̂ · n̂2)2
,

Ψ3(t− µ1d−D3) =
1

2

n̂3 · h(t− µ1d−D3) · n̂3

1− (k̂ · n̂3)2
, Ψ3(t− µ2d) =

1

2

n̂3 · h(t− µ2d) · n̂3

1− (k̂ · n̂3)2
,

Ψ3(t− µ2d−D3) =
1

2

n̂3 · h(t− µ2d−D3) · n̂3

1− (k̂ · n̂3)2
, Ψ3(t− µ1d) =

1

2

n̂3 · h(t− µ1d) · n̂3

1− (k̂ · n̂3)2
.

(5.34)
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Simplifying the responses

In our simulation the signal will be assumed to contain only the plus polarisation and

the vectors î and ĵ are aligned with the direction of its perturbations. Assuming that the

gravitational wave is traveling in a direction perpendicular to the plane of the antenna,

then µi = k̂ · n̂i = 0 and expressions in the Equation 5.34 reduce to

Ψ1(t) =
1

2
n̂1 · h(t) · n̂1, Ψ1(t−D1) =

1

2
n̂1 · h(t−D1) · n̂1,

Ψ2(t) =
1

2
n̂2 · h(t) · n̂2, Ψ2(t−D2) =

1

2
n̂2 · h(t−D2) · n̂2,

Ψ3(t) =
1

2
n̂3 · h(t) · n̂3, Ψ3(t−D3) =

1

2
n̂3 · h(t−D3) · n̂3. (5.35)

Inserting these into Equations 5.28 and 5.33 gives

h1(t) = Ψ3(t−D3)−Ψ3(t) =
1

2

[
n̂3 · h(t−D3) · n̂3 − n̂3 · h(t) · n̂3

]
,

h1′(t) = Ψ2(t−D2)−Ψ2(t) =
1

2

[
n̂2 · h(t−D2) · n̂2 − n̂2 · h(t) · n̂2

]
,

h2(t) = Ψ1(t−D1)−Ψ1(t) =
1

2

[
n̂1 · h(t−D1) · n̂1 − n̂1 · h(t) · n̂1

]
,

h2′(t) = Ψ3(t−D3)−Ψ3(t) =
1

2

[
n̂3 · h(t−D3) · n̂3 − n̂3 · h(t) · n̂3

]
,

h3(t) = Ψ2(t−D2)−Ψ2(t) =
1

2

[
n̂2 · h(t−D2) · v̂2 − n̂2 · h(t) · n̂2

]
,

h3′(t) = Ψ1(t−D1)−Ψ1(t) =
1

2

[
n̂1 · h(t−D1) · n̂1 − n̂1 · h(t) · n̂1

]
. (5.36)

Next î is set parallel to arm L2. The relationships between propagation vectors (̂i, ĵ, k̂)

and the unit vectors n̂i along the arms are

î = −n̂1 cos(θ3), ĵ = n̂1 sin(θ3),

î = n̂2, ĵ = 0,

î = −n̂3 cos(θ1), ĵ = −n̂3 sin(θ1). (5.37)

The angles θ1 and θ3 are at the spacecraft 1 and 3, respectively and for an equilateral

arrangement they will be 60◦. However, with unequal arms these will be determined by

using the cosine formula giving

cos(θ1) =
D2

2 +D2
3 −D2

1

2D2D3

, cos(θ3) =
D2

1 +D2
2 −D2

3

2D1D2

. (5.38)

The expressions for the terms n̂i · h(t) · n̂i in Ψi are
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n̂1 · h(t) · n̂1 =
(
−n̂1cos(θ3) n̂1sin(θ3) 0

)
h+(t) 0 0

0 −h+(t) 0

0 0 0



−n̂1cos(θ3)

n̂1sin(θ3)

0


= n̂2

1h+(t)cos2(θ3)− n̂2
1h+(t)sin2(θ3

= h+(t)
[
cos2(θ3)− sin2(θ3

]
= h+(t)cos(2θ3), (5.39)

n̂2 · h(t) · n̂2 =
(
n̂2 0 0

)
h+(t) 0 0

0 −h+(t) 0

0 0 0




n̂2

0

0


= h+(t), (5.40)

n̂3 · ~h(t) · n̂3 =
(
−n̂3cos(θ1) −n̂3sin(θ1) 0

)
h+(t) 0 0

0 −h+(t) 0

0 0 0



−n̂3cos(θ1)

−n̂3sin(θ1)

0


= h+(t)

[
cos2(θ1)− sin2(θ1

]
= h+(t)cos(2θ1). (5.41)

The final responses are obtained by inserting these into Equation 5.36 giving

h1(t) =
1

2

[
n̂3 · h(t−D3) · n̂3 − n̂3 · h(t) · n̂3

]
=

cos(2θ1)

2

[
h+(t−D3)− h+(t)

]
, (5.42)

h1′(t) =
1

2

[
n̂2 · h(t−D2) · n̂2 − n̂2 · h(t) · n̂2

]
=

1

2

[
h+(t−D2)− h+(t)

]
, (5.43)

h2(t) =
1

2

[
n̂1 · h(t−D1) · n̂1 − n̂1 · h(t) · n̂1

]
=

cos(2θ3)

2

[
h+(t−D1)− h+(t)

]
, (5.44)

h2′(t) =
1

2

[
n̂3 · h(t−D3) · n̂3 − n̂3 · h(t) · n̂3

]
=

cos(2θ1)

2

[
h+(t−D3)− h+(t)

]
, (5.45)
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h3(t) =
1

2

[
n̂2 · h(t−D2) · v̂2 − n̂2 · h(t) · n̂2

]
=

1

2

[
h+(t−D2)− h+(t)

]
, (5.46)

h3′(t) =
1

2

[
n̂1 · h(t−D1) · n̂1 − n̂1 · h(t) · n̂1

]
=

cos(θ3)

2

[
h+(t−D1)− h+(t)

]
. (5.47)

The signal waveforms

A zero phase cosine waveform is assumed for the gravitational wave signal which is

h+(t) = Hcos(2πf0t), (5.48)

where H is the peak amplitude and f0 is the frequency. The final responses using this

waveform are

h1(t) =
Hcos(2θ1)

2

[
cos
(
2πf0(t−D3)

)
− cos(2πf0t)

]
,

h1′(t) =
H

2

[
cos
(
2πf0(t−D2)

)
− cos(2πf0t)

]
,

h2(t) =
Hcos(2θ3)

2

[
cos
(
2πf0(t−D1)

)
− cos(2πf0t)

]
,

h2′(t) =
Hcos(2θ1)

2

[
cos
(
2πf0(t−D3)

)
− cos

(
2πf0t)

]
,

h3(t) =
H

2

[
cos
(
2πf0(t−D2)

)
− cos

(
2πf0t)

]
,

h3′(t) =
Hcos(2θ3)

2

[
cos
(
2πf0(t−D1)

)
− cos(2πf0t)

]
. (5.49)

5.2.2 The likelihood function in the frequency domain

The complex data means that the frequency domain likelihood kernel will contain a

complex conjugate which is

L(a|{di},M) = exp
[
− 1

2
(s− h)∗T C−1 (s− h)

]
. (5.50)

where ‘*’ indicate the complex conjugate. In MATLAB the transpose automatically

includes the conjugate.

5.2.2.1 The signal spectra

The gravitational wave was modeled in the time series as a monochromatic cosine signal

with initial zero phase. The Fourier transform of a cosine function [63] can be written
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as

F
[
cos(2πf0t)

]
=

1

2

[
δ(f − f0) + δ(f + f0)

]
, (5.51)

with the time shifted version being given by

F
[
cos
(
2πf0(t−Di)

)]
=

1

2

[
e−2πf0Diδ(f − f0) + e2πf0Diδ(f + f0)

]
, (5.52)

which gives delta responses with amplitudes split in half at ±f0.

The raw data time series for the signals from Section 5.2.1 are

hi(t) =
Gi

2

[
cos(2πf0(t−Dk)− cos(2πf0t)

]
, (5.53)

where Gi represents the gains in arm i. The corresponding spectra are

h̃i(f) =
Gi

2

{1

2

[
e2πif0Diδ(f + f0) + e−2πif0Dkδ(f − f0)

]
− 1

2

[
δ(f + f0) + δ(f − f0)

]}
=
Gi

4

[
δ(f + f0)(e2πif0Dk − 1) + δ(f − f0)(e−2πif0Dk − 1)

]
, (5.54)

and for the single sided spectrum this becomes

h̃i(f) =
Gi

2

[
δ(f − f0)(e−2πif0Dk − 1)

]
. (5.55)

The terms δ(f ± f0) are complex and for a cosine signal with zero phase this will be

1 + 0i. The signal spectra for all the optical benches are

h̃1(f) =
Hcos(2θ1)

2
δ(f − f0)(e−2πif0D3 − 1), h̃1′(f) =

H

2
δ(f − f0)(e−2πif0D2 − 1),

h̃2(f) =
Hcos(2θ3)

2
δ(f − f0)(e−2πif0D1 − 1), h̃2′(f) =

Hcos(2θ1)

2
δ(f − f0)(e−2πif0D3 − 1),

h̃3(f) =
H

2
δ(f − f0)(e−2πif0D2 − 1), h̃3′(f) =

Hcos(2θ3)

2
δ(f − f0)(e−2πif0D1 − 1).

(5.56)

For the toy model we are assuming no modulation of its amplitude, frequency or phase

therefore, the location of the values in the spectra will be exactly at the frequency of the

signal. This means that for our model the amplitude search in the frequency domain

can be done just at the frequency of the signal. We also chose the frequency of the

signal to match exactly one of the bins in the spectra to avoid leakage.



154 Chapter 5. Bayesian-principal component analysis for LISA data

Table 5.1: Values used for the amplitude search.

Parameter Value

Range of times 0 - 1047 s
Sampling rate (Hz) 1
Offsets (D1,D2,D3)(s) 15, 16, 17
Laser noise means 0
Laser noise variances 10000
Shot noise means 0
Shot noise variances 1
Signal amplitude 5
Signal frequency 4.9× 10−3Hz
Template range for the amplitude 3-7
Number of templates 1000

5.2.3 Raw data results

The values for the parameters used in the model, data and search are given in Table 5.1.

A search was done only for the signal’s amplitude therefore all the values of the other

parameters were fixed. A section of the covariance matrix is given in Figure 5.4 and the

real and imaginary blocks for the power spectral density matrix are given in Figure 5.3.

The relative likelihoods for the signal amplitude for both domains are given in Figure

5.2. The frequency domain results include values for both the full spectra and just at

the signal frequency in order to show that the block eigendecomposition produced the

same results as the full matrix decomposition. The results for all three cases showed

same relative likelihood for the signal’s amplitude with the most likely value being 5.034

which is within a range of about 0.7% of the actual value.
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Figure 5.2: The relative likelihoods for the signal amplitude obtained from the raw data time series
and spectra. All the values of the other signal parameters were kept fixed during the estimation. For
the spectra, results were obtained for the full spectra and for the single frequency. The maximum
likelihood values all occur at 5.034.

(a) (b)

Figure 5.3: Samples of the power spectral density matrix block at the signal’s frequency showing the
(a) real and (b) imaginary values. The offsets are 15s, 16s and 17s with noise variances of σ2

p = 10000
and σ2

n = 1.
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Figure 5.4: A section of the covariance matrix for offsets of D = {15, 16, 17} with laser and photode-
tector noise variances of σ2

p = 10000 and σ2
n = 1, respectively.
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5.3 Bayesian inference using the time delay inter-

ferometry observables

The current approach to doing LISA data analysis is through the time delay interfer-

ometry observables. In this section the results of the analysis using the optimal AET

observables are presented. Since these observables were generated in the frequency do-

main the results are only for that domain. However, in order to compare the results

with those obtained for the principal components the AET data were generated from

the raw data used in the previous section. The signal amplitude search required the

templates of the signal in the AET data spectra therefore these are included in this

section.

5.3.1 Simulating the AET time series

The time series for the A,E, T observables in terms of the Sagnacs are

A(t) =
1√
2

[γ(t)− α(t)],

E(t) =
1√
6

[α(t)− 2β(t) + γ(t)],

T (t) =
1√
3

[α(t) + β(t) + γ(t)], (5.57)

where the α(t), β(t) and γ(t) are given by

α(t) = s1′(t) + s2′(t−D1 −D2) + s3′(t−D2),

− s1(t)− s2(t−D3)− s3(t−D1 −D3),

β(t) = s1′(t−D3) + s2′(t) + s3′(t−D2 −D3),

− s1(t−D2 −D1)− s2(t)− s3(t−D1),

γ(t) = s1′(t−D3 −D1) + s2′(t−D1) + s3′(t)

− s1(t−D2)− s2(t−D3 −D2)− s3(t). (5.58)

The assumption is that the laser phase noises have been canceled, therefore, each phase

reading si(t) is just a combination of the photodetector noise ni(t) and gravitational

wave signal hi(t) which is

si(t) = ni(t) + hi(t). (5.59)
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The raw data used to generate the AET time series therefore, only included the pho-

todetector noises and the signal. The readings si are shifted according to the offsets in

the Sagnacs given in Equation 5.58.

5.3.2 The AET signal spectra

The signal contributions to the AET data spectra are

Ã(f) =
H√

2
δ(f − f0)

[
1− e2πif0D2 − e2πif0(D1+D3) − e2πif0(D1+D2+D3)

]
− Hcos(2θ1)

2
√

2
δ(f − f0)

[
1 + e2πif0D1 − e2πif0D2 − e2πif0D3 − e2πif0(D1+D2)

− e2πif0(D1+D3) + e2πif0(D2+D3) + e2πif0(D1+D2+D3)
]

− Hcos(2θ3)

2
√

2
δ(f − f0)

[
1− e2πif0D1 − e2πif0D2 + e2πif0D3 + e2πif0(D1+D2)

− e2πif0(D1+D3) − e2πif0(D2+D3) + e2πif0(D1+D2+D3)
]
,

Ẽ(f) = − H√
6
δ(f − f0)

[
e2πif0D1 − e2πif0D2 − e2πif0(D1+D2) + e2πif0(D2+D3)

]
+
Hcos(2θ1)

2
√

6
δ(f − f0)

[
3− e2πif0D1 + e2πif0D2 − 3e2πif0D3 − 3e2πif0(D1+D2)

+ e2πif0(D1+D3) − e2πif0(D2+D3) + 3e2πif0(D1+D2+D3)
]

+
Hcos(2θ3)

2
√

6
δ(f − f0)

[
3e2πif0D1 − e2πif0D2 + e2πif0D3 + e2πif0(D1+D2)

− e2πif0(D1+D3) + 3e2πif0(D2+D3) − 3e2πif0(D1+D2+D3)
]
,

T̃ (f) = − H

2
√

3
δ(f − f0)

[
e2πif0D1 − e2πif0D3 − e2πif0(D1+D2) + e2πif0(D2+D3)

]
− Hcos(2θ1)

2
√

3
δ(f − f0)

[
e2πif0D1 − e2πif0D2 − e2πif0(D1+D3) + e2πif0(D2+D3)

]
− Hcos(2θ3)

2
√

3
δ(f − f0)

[
e2πif0D2 + e2πif0D3 − e2πif0(D1+D2) + e2πif0(D1+D3)

]
,

(5.60)

which are used for the templates in the amplitude search.

5.3.3 AET results

The relative likelihood for the signal amplitude is given in Figure 5.5 and the real and

imaginary blocks of the power spectral density matrix used in the analysis are given in

Figure 5.6. From the plot the most likely value for the signal amplitude is 5.05 which
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Figure 5.5: The relative likelihood for the signal amplitude for the optimal time delay interferometry
observable AET where the maximum likelihood value is at 5.05.

is within a 1% range of the actual value.

(a) (b)

Figure 5.6: Sample block of the power spectral density matrix at the signal’s frequency showing the
(a) real and and (b) imaginary values.
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Figure 5.7: The relative likelihoods for the amplitude of the signal obtained from the raw data time
series and spectra using principal components and from the AET spectra. The maximum likelihoods
for the signal amplitudes occur at 5.034, 5.034 for the raw data and 5.05 for AET .

5.4 Summary

The relative likelihood plots for the signal amplitude obtained using the raw data and

the optimal time delay interferometry data for both domains are given in Figure 5.7

where they have the same precision with estimates of the signal amplitudes of 5.034 for

the raw data and 5.05 for the AET observables.



Chapter 6

Principal components for more realistic

LISA data

In the previous chapters the principal component approach was illustrated using a toy

model of LISA in terms of both its configuration and data. The antenna was assumed

to be stationary and rigid with unequal arm lengths. The instrumental noises used in

the data were restricted to the primary and the limiting sources which are the laser

phase and the photodetector (shot) noises respectively, both of which were assumed to

be white, Gaussian and stationary with known means and variances. All noise means

were set to zero with the variances of each type having the same values of σ2
p and

σ2
n, respectively chosen to provide a significant separation between the different types

to reflect the situation in the antenna. All the photodetector noises were assumed to

be independent and the lasers were phase-locked on each spacecraft resulting in only

three laser phase noises. Based on these assumptions, the eigendecomposition of the

noise covariance and power spectral density matrices produced two distinct groups of

eigenvalues with one set having contributions from both types of noises and the other

only photodetector noises. The group of interest is the latter which, because of the

equality of the noise variances, led to multiply degenerate values.

In this chapter we investigate how the principal component approach adapts to more

complex models of LISA data and the focus will be on the noise covariance and power

spectral density matrices as they are the sources of the eigenvalues. The values and

types of the eigenvalues will depend on the matrix structure which is determined by

the variance and covariances of the noises, the phase-locking of the lasers and the arm

lengths therefore a summary of the results of Chapter 3 which outlined their effects

on the matrices is given. The final outcome is to see what aspects of real LISA data

will prevent the laser noise free eigenvalues from being generated without which the

principal components method will not be useful.

161
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6.1 Time domain

Recall that the readings of each optical bench tracking the relative spacecraft motion

(long arm reading) is a combination of the laser phase (pi(t)) and the photodetector

(ni(t)) noises associated with that bench plus the laser phase noise (pj(t − Dk)) from

the optical bench at the other end of the arm. The time series of phase shifts recorded

by each bench can be written as

si(t) = pj(t−Dk)− pi(t) + ni(t), (6.1)

where i, j represent the optical benches, k the arms and Dk is the time offset or the light

travel time in the arm between the two optical benches. In the toy model, LISA was

modeled as a stationary array with static arms that could have equal or unequal lengths

which gave a maximum of three values which is indicated by the subscript k = {1, 2, 3}.

6.1.1 Matrix definitions

Before proceeding a few terms that will be used in this section to describe the matrices

will be explained. The main diagonal in a square matrix is the central diagonal that

splits the matrix into halves giving upper and lower triangular sections. Super-diagonals

and sub-diagonals are those parallel to the main running above and below it, respec-

tively. In a symmetric matrix the values in the upper triangle are a reflection of those in

lower triangle about the main diagonal. A Toeplitz matrix is one in which all the values

are constant along each diagonal with each diagonal having different values in general.

In a symmetric Toeplitz matrix the sub-diagonals are a reflection of the super-diagonals

across the main diagonal. The entries of a matrix may also be in the form of blocks

where the element appear as smaller matrices within the matrix with the previously

mentioned types also having block equivalents. In the toy model of LISA used in the

previous chapters the noise covariance matrix is a symmetric block Toeplitz where the

diagonals contain the same block repeated along the diagonal.
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Table 6.1: Raw data phase readings showing the contributions for the laser phase pi and photodetector
(ni) noises. The expressions are given for the different types of laser noise phase-locking with unequal
(Di = Li/c) and equal (D = L/c) arm lengths.

phase-locking Phase Noise contributions in the readings
Equal arms D Unequal arms(Di)

None s1(t) p2′ (t−D)− p1(t) + n1(t) p2′ (t−D3)− p1(t) + n1(t)
s1′ (t) p3(t−D)− p1′ (t) + n1′ (t) p3(t−D2)− p1′ (t) + n1′ (t)
s2(t) p3′ (t−D)− p2(t) + n2(t) p3′ (t−D1)− p2(t) + n2(t)
s2′ (t) p1(t−D)− p2′ (t) + n2′ (t) p1(t−D3)− p2′ (t) + n2′ (t)
s3(t) p1′ (t−D)− p3(t) + n3(t) p1′ (t−D2)− p3(t) + n3(t)
s3′ (t) p2(t−D)− p3′ (t) + n3′ (t) p2(t−D1)− p3′ (t) + n3′ (t)

Spacecraft s1(t) p2(t−D)− p1(t) + n1(t) p2(t−D3)− p1(t) + n1(t)
s1′ (t) p3(t−D)− p1(t) + n1′ (t) p3(t−D2)− p1(t) + n1′ (t)
s2(t) p3(t−D)− p2(t) + n2(t) p3(t−D1)− p2(t) + n2(t)
s2′ (t) p1(t−D)− p2(t) + n2′ (t) p1(t−D3)− p2(t) + n2′ (t)
s3(t) p1(t−D)− p3(t) + n3(t) p1(t−D2)− p3(t) + n3(t)
s3′ (t) p2(t−D)− p3(t) + n3′ (t) p2(t−D1)− p3(t) + n3′ (t)

All s1(t) p(t−D)− p(t) + n1(t) p(t−D3)− p(t) + n1(t)
s1′ (t) p(t−D)− p(t) + n1′ (t) p(t−D2)− p(t) + n1′ (t)
s2(t) p(t−D)− p(t) + n2(t) p(t−D1)− p(t) + n2(t)
s2′ (t) p(t−D)− p(t) + n2′ (t) p(t−D3)− p(t) + n2′ (t)
s3(t) p(t−D)− p(t) + n3(t) p(t−D2)− p(t) + n3(t)
s3′ (t) p(t−D)− p(t) + n3′ (t) p(t−D1)− p(t) + n3′ (t)

6.1.2 The effects of the laser phase-locking on the covariance

matrix

Recall that LISA has six optical benches which are indicated with the subscripts i, j =

{1, 1′, 2, 2′, 3, 3′}. Each optical bench has its own laser allowing for several options in

terms of whether they are linked by phase-locking or left to operate independently. The

phase-locking options that are considered are (i) none where all the lasers are acting

independently, (ii) spacecraft locked where the two lasers on each spacecraft are locked

to each other and (iii) all locked where all the lasers are acting as a single laser. The

labeling of the laser noises reflects the phase-locking options. For the independent

lasers the labels reflect the optical bench number (i, j = {1, 1′, 2, 2′, 3, 3′}). The primed

notation is dropped for the spacecraft locked lasers giving i, j = {1, 2, 3} which indicate

the spacecraft number. When they are all locked the numbers are not used.

The equations for the raw data from all the optical benches are given in Table 6.1

for the different phase-locking options showing the differences with equal and unequal

arm lengths. Although the covariances are not given the existence of correlations can

be easily be determined. Recall that correlations between two optical benches will only

occur if the same noise appear in their readings indicating that the noise type and

times must match. For the lasers this depends on the phase-locking and, because of the
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structure of the readings, also the time offsets. In this section the focus is on the effects

of phase-locking only and the arm lengths will be assumed to be equal.

6.1.2.1 No laser phase-locking

From the equations for this mode of operation in Table 6.1 it can be seen that the

only non-zero entries in the covariance matrix will be from the variances, which are the

auto-covariances at time t, and the cross-covariances between the raw data from the

two optical benches at the end of each arm as these are the only readings that have the

same laser phase noises. Recall that auto-covariance expresses the correlations within

the same raw data while the cross-covariances are between different data. For example,

using the raw data from the optical benches at the end of arm 3 which are s1(t) and

s2‘(t), with equal arm lengths D the equations are

s1(t) = p2′(t−D)− p1(t) + n1(t),

s2‘(t) = p1(t−D)− p2‘(t) + n2‘(t), (6.2)

where the same two laser phase noises p1 and p2′ occur in each but with different times.

The only auto-covariance within these readings is at time t. For s1(t) the auto-covariance

is

cov[s1(ta), s1(tb)] = 〈p2′(ta −D) p2′(tb −D)〉+ 〈p1(tb) p1(tb)〉+ 〈n1(tb) n1(tb)〉, (6.3)

which will only produce non-zero values at time ta = tb = t, that is,

cov[s1(t), s1(t)] = 〈p2
2′(t−D)〉+ 〈p2

1(t)〉+ 〈n2
1(t)〉

= var[s1(t)]. (6.4)

These are the main diagonal entries on the covariance matrix. The cross-covariance

between the two readings is

cov[s1(ta), s2′(tb)] = −〈p2′(ta −D) p2′(tb)〉 − 〈p1(ta) p1(tb −D)〉, (6.5)

giving non-zero values when ta − tb = ±D which are the locations of the sub-diagonal

and super-diagonal entries. Only one term will contribute at a particular time. For

example, for times tb = ta −D and ta = tb −D the covariances are respectively,

cov[s1(ta), s2′(ta −D)] = −〈p2
2′(ta −D)〉,

cov[s1(tb −D), s2′(tb)] = −〈p2
1(tb −D)〉, (6.6)
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where the noise will also be from different lasers and will only give the same result if

they have the same variances. For no phase-locking, the equal arm lengths will produce

three diagonals in the covariance matrix including the main diagonal.

6.1.2.2 Lasers phase-locked on each spacecraft

Locking the lasers on each spacecraft to each other introduces correlations between the

readings of the optical benches along the two arms that are monitored by that spacecraft.

Also, since each arm is monitored by two spacecraft, this also causes correlations with

the optical benches on the other spacecraft. So that the spacecraft locking causes mutual

correlations between all the optical benches. With spacecraft phase-locking there will

only be three independent lasers and this will be reflected in the notation where primed

notation pi′ will be dropped. The spacecraft phase-locking does not change the auto-

covariance nor the cross-covariance between the readings for the optical benches at the

end of each arm.

Unlike the optical benches at the end of each arm which have two common noises, the

other cross-covariances for the other optical benches will only be due to one common

noise between them. This will produce correlations at times consisting of different

combinations of t and t − D producing three points of correlations. The correlations

at time t will be from the optical benches on the same spacecraft for example, the

cross-covariance between for s1 and s1′ on spacecraft 1 is

cov[s1(t), s1′(t)] = 〈p2(t)〉, (6.7)

which occur along the main diagonal. The other two will occur between the readings

of the optical bench one spacecraft with the two readings along the arm opposite that

spacecraft. For example, for s1 on spacecraft 1 the arm opposite to spacecraft 1 is arm

1 with optical benches s2 and s3′ and the cross-covariances are

cov[s1(ta), s2(tb)] = −〈p2(ta −D) p2(tb)〉,

cov[s1(ta), s3′(tb)] = 〈p2(ta −D) p2(tb −D)〉. (6.8)

In the first equation covariances will occur at tb − ta = D which will be along the

diagonals at ±D. In the second, because of the equal arm lengths, the only possible

time for the correlations is for ta = tb = t which will also produce values along the

main diagonal. The total number of diagonals is three which is the same as for the
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independent lasers. However, the increase in the number of correlations will increase

the density of the blocks along each diagonal.

6.1.2.3 All lasers phase-locked

Extending the locking to all lasers so that they operate as a single laser means that

they will all have the same laser phase noise p as shown in Table 6.1. This results in

correlations not only between the readings of all the optical benches but also within

each reading. With all laser phase-locked the readings can be written as

si(t) = p(t−D)− p(t) + ni(t), (6.9)

where the only difference in all the readings will be the photodetector noises ni. The

auto-covariances are

cov[si(ta), si(tb)] = 〈p(ta −D) p(tb −D)〉+ 〈p(ta) p(tb)〉+ 〈ni(ta) ni(tb)〉

− 〈p(ta −D) p(tb)〉 − 〈p(ta) p(tb −D)〉, (6.10)

which now has two extra terms relating to the correlations between the noises within

each reading. With equal times t the auto-covariance is

var[si(t)] = 〈p2(t−D)〉+ 〈p2(t)〉+ 〈n2
i (t)〉, (6.11)

which occurs along the main diagonal and has the same structure as the other two

phase-locking options. When the times are not equal ta 6= tb the covariances are

cov[si(ta), si(tb)] = −〈p(ta −D) p(tb)〉 − 〈p(ta) p(tb −D)〉, (6.12)

with contributions only from the two other terms. These are similar to the terms in

the cross-covariances of Equation 6.5 having non-zero values occurring at ta − tb = ±D

which are the sub-diagonals and super-diagonals. The cross-covariances will have similar

expressions with the difference being that they will not contain photodetector noises as

they are all independent. For example, for two optical bench readings given by

si(t) = p(t−D)− p(t) + ni(t),

sj(t) = p(t−D)− p(t) + nj(t), (6.13)
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their cross-covariances will be

cov[si(ta), sj(tb)] = 〈p(ta −D) p(tb −D)〉+ 〈p(ta) p(tb)〉

− 〈p(ta −D) p(tb)〉 − 〈p(ta) p(tb −D)〉. (6.14)

For ta = tb = t and ta 6= tb the covariances are

cov[si(t), sj(t)] = 〈p2(t−D)〉+ 〈p2(t)〉,

cov[si(ta), sj(tb)] = −〈p(ta −D) p(tb)〉 − 〈p(ta) p(tb −D)〉, (6.15)

where covariances will occur at t (main diagonal) and ta−tb = ±D (two other diagonals)

giving the same three diagonals and in the other cases. The difference in this case is

that the blocks will all be full because all the readings are correlated.

6.1.2.4 Summary of the effects of laser phase-locking

The phase-locking affects the matrix by increasing the number of correlations between

the readings from the different optical benches. This appears as an increase in the

density of the blocks occurring in the diagonals in the matrix. It determines what is

correlated and not where the correlations occur in the matrix in that it defines what

occurs in the blocks at the points of correlations.

6.1.3 The effects of the arm lengths on the covariance matrix

Although the previous section was focused on the effects of the phase-locking on the

covariance matrix from it we were able to see that the correlations away from the main

diagonal were located at positions related to the arm lengths which for equal arm lengths

occurred at ±D. In this section we show the effects of unequal arm lengths and, because

LISA is a moving detector with its structure disturbed by other objects, the effects of

motion on the arms will also be considered.

6.1.3.1 Static unequal arm lengths

Recall that with unequal arm lengths the optical bench readings can be written as

si(t) = pj(t−Dk)− pi(t) + ni(t), (6.16)
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and with static values Dk will have three different offsets of D1, D2 and D3. Starting

with the basic LISA model with no phase-locking of the lasers, recall that the only

non-zero values in the matrix are the variances (auto-covariances at same time t) and

the cross-covariances between the readings of the optical benches along each arm. The

general equation for the variances which are sums of the variances of the different noises

can be written as

var[si(t)] = 〈p2
j(t−Dk)〉+ 〈p2

i (t)〉+ 〈n2
i (t)〉. (6.17)

These are the values occurring on the main diagonal and the inequality of the arm

lengths has not changed their value nor their location. The cross-covariances however,

will be affected by the different lengths as these are associated with the correlations

between laser phase noises with times t and t−Di. Using the general equations for the

optical benches at the end of each arm which can be written as

si(t) = pj(t−Dk)− pi(t) + ni(t),

sj(t) = pi(t−Dk)− pj(t) + nj(t), (6.18)

and the cross-covariance will be

cov[si(ta), sj(tb)] = −〈pj(ta −Dk) pj(tb)〉 − 〈p2
i (ta) pi(tb −Dk)〉. (6.19)

The locations of the correlations will depend on Dk and will produce three sub-diagonals

and three super-diagonals if the arm lengths are all different.

With spacecraft phase-locking the main diagonal will be affected because of the cross-

covariances between laser phase noises with times shifted by different offsets t−Di and

t−Dj. For example, for s1 and s3′ with equal arm lengths the covariance is

cov[s1(ta), s3′(tb)] = 〈p2(ta −D) p2(tb −D)〉, (6.20)

producing values when the times are equal and will occur along the main diagonal.

With unequal arm lengths this becomes

cov[s1(ta), s3′(tb)] = 〈p2(ta −D3) p2(tb −D1)〉, (6.21)

where the correlations will occur at times that are differences of the offsets ta − tb =

±(D3 − D1) shifting them away from the main diagonal. There will be two other

differences of (D1 −D2) and (D2 −D3) producing a maximum of three new diagonals

all located between the main diagonal and those at the offset ±Di with the smallest
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Table 6.2: Raw data phase measurements showing the contributions for the laser phase pi and photode-
tector (ni) noises for directionally dependent arm lengths Di′ 6= Di. These are given for the different
types of laser noise phase-locking.

Phase-locking Optical bench Noise contributions in the readings
phase shift

None s1(t) p2′ (t−D3)− p1(t) + n1(t)
s1′ (t) p3(t−D2′ )− p1′ (t) + n1′ (t)
s2(t) p3′ (t−D1)− p2(t) + n2(t)
s2′ (t) p1(t−D3′ )− p2′ (t) + n2′ (t)
s3(t) p1′ (t−D2)− p3(t) + n3(t)
s3′ (t) p2(t−D1′ )− p3′ (t) + n3′ (t)

Spacecraft s1(t) p2(t−D3)− p1(t) + n1(t)
s1′ (t) p3(t−D2′ )− p1(t) + n1′ (t)
s2(t) p3(t−D1)− p2(t) + n2(t)
s2′ (t) p1(t−D3′ )− p2(t) + n2′ (t)
s3(t) p1(t−D2)− p3(t) + n3(t)
s3′ (t) p2(t−D1′ )− p3(t) + n3′ (t)

All s1(t) p(t−D3)− p(t) + n1(t)
s1′ (t) p(t−D2′ )− p(t) + n1′ (t)
s2(t) p(t−D1)− p(t) + n2(t)
s2′ (t) p(t−D3′ )− p(t) + n2′ (t)
s3(t) p(t−D2)− p(t) + n3(t)
s3′ (t) p(t−D1′ )− p(t) + n3′ (t)

value. The actual number of diagonals depends on the values of the offsets.

When the lasers are all phase-locked the number of diagonals that the main diagonal

splits into will not increase for the same set of arm lengths. This is because there are

still only the three options for the differences between the offsets. The difference in the

matrix between this and the spacecraft locking will be in the density of the blocks of

these shifted diagonals.

6.1.3.2 Directionally dependent static arm lengths

LISA will be orbiting the Sun with its guiding centre located on the ecliptic. Each of

its spacecraft are in their own orbit and the relative motion between them causes an

apparent rotation of the plane of the antenna in a clockwise direction with a period of

one year. Simulating this motion by assuming a rotating rigid array the effect leads

to the light travel times in each arm being dependent on the direction of measurement

[20]. From Cornish and Hellings [20], because of the rotation a beam transmitted from

a spacecraft will have to lead or aimed ahead the receiving spacecraft. If the actual arm

length has a travel time ofDi and Di′ and Di are the measured times in the clockwise and

counter-clockwise directions then the rotation will result in the Di′ < Di and Di > Di.

The raw data showing the directional dependence are given in Table 6.2. With the

assumption of fixed values, the directional dependence has increased the number of
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Figure 6.1: The changes in the arm lengths as modeled by Dhurandhar et. al. [23].

offsets in the readings to six since each arm now has two offsets associated with it. The

effects are similar to those of the static unequal arms of the previous section but will

reflect the increase in the number of offsets. There will be six sub-diagonals and six

super-diagonals for all phase-locking options.

For the main diagonal, like the equal arms case, only the phase-locking of the lasers

will produce a different number of diagonals. With spacecraft phase-locking although

there are six offsets the actual number of differences are still limited to three because

they are restricted by the offset times shared by the same laser noises as the correlations

occur between times of t−Di and t−Dj. As shown in Table 6.2 the differences restricted

to D3−D1′ , D2′ −D1 and D3′ −D2. However, when all the lasers are phase-locked the

differences will include all the offsets. As in the unequal arms case, the actual number

of diagonals in both cases will dependent on the values of the offsets.

6.1.3.3 Time varying arm lengths

Apart from the rotational effects, the relative motion between the spacecraft coupled

with tidal forces cause continuous changes in the arm lengths that oscillate about a

nominal value reflecting orbital period [39, 36]. This produces a breathing or flexing

effect [39, 23] with changes in the arm lengths of 1% or approximately 50× 106m [36].

Figure 6.1 is an example of the changes as modeled by Dhrurandhar et. al. [23].

In the optical bench readings this will produce time varying offsets which will be

expressed as functions of time Di(t). All the other properties related to the arm lengths

discussed previously were modeled as static resulting in the diagonal patterns in the
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covariance matrix. This is one of the properties that will break the Toeplitz structure

of the covariance matrices.

The auto-covariance with the time varying offsets can be written as

var[si(t)] = 〈p2
j′

(
t−Dk(t)

)
〉+ 〈p2

i (t)〉+ 〈ni(t)〉, (6.22)

which will not be affected by the time varying arm lengths. For the readings at the end

of each arm the cross-covariance with the time varying offsets can be written as

cov[si(ta), sj(tb)] = −
〈
pj
(
ta −Dk(t)

)
pj(tb)

〉
−
〈
p2
i (ta) pj

(
tb −Dk(t)

)〉
, (6.23)

with the correlations occurring at ta − tb = ±Dk(t) which is now time dependent. To

show the effects near the main diagonal readings s1 and s3′ will be used and the cross-

covariance with time varying offsets is

cov[s1(ta), s3′(tb)] =
〈
p2

(
ta −D3(t)

)
p2

(
tb −D1(t)

)〉
, (6.24)

giving correlations at ta − tb = ±
(
D3(t)−D1(t)

)
which is also time dependent.

6.1.3.4 Summary of the effects of the arm lengths

The lengths of the arms determine where the correlations occur in the covariance matrix.

With static values the matrix has a Toeplitz structure with diagonals occurring away

from the main at locations that depend on the values of the arm lengths and on whether

there are dependencies in the direction of the measurements of the arm lengths. With

time varying arm lengths the diagonals are no longer guaranteed as the location of the

correlations will reflect the temporal variations in the arm lengths which destroys the

Toeplitz structure.

6.1.4 The effects of the noise variances on the covariance ma-

trix

The variances of the noises determine the values of the covariances in the matrix. When

the noises are stationary, that is, their variances do not change with time, the values

at times t and (t − Di) will be the same and the covariance matrix will be Toeplitz.

In the simple toy model each noise type was assumed to have the same variances of

σ2
p and σ2

n. Here this assumption will be relaxed allowing the noises in each optical
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bench to have different values. We also look at the effects of temporal changes in the

variances (non-stationarity) and the reduction of the separations between the values for

the variances of the two noise types.

6.1.4.1 Unequal noise variances

As done in the previous sections examples will be illustrated for the auto-covariance

which determines the values along the main diagonal and one cross-covariance for the

sub/super-diagonals. The auto-covariance with independent lasers can be written as

var[si(t)] = 〈p2
j′(t−Dk)〉+ 〈p2

i (t)〉+ 〈ni(t)〉, (6.25)

where there are contributions from two different laser phase noises and a photodetector

noise. For stationary noises with equal variances for each type of noise of σ2
p and σ2

n

Equation 6.25 becomes

var[si(t)] = 2σ2
p + σ2

n. (6.26)

With unequal variances, which will be indicated by σ2
pi and σ2

ni, the auto-covariance

using Equation 6.25 is

var[si(t)] = σ2
pj + σ2

pi + σ2
ni, (6.27)

where the difference will be a change in the total variance that will reflect the different

noise contributions. This will also be true for the cross-covariances, for example, from

the general equation optical benches at the end of an arm is

cov[si(ta), sj(tb)] = −〈pj′(ta −Dk) pj′(tb)〉 − 〈pi(ta) pi(tb −Dk)〉, (6.28)

giving values of −σ2
pi or −σ2

pj depending on the times of the correlations.

6.1.4.2 Time varying variances

This would be reflected in the changes of the variances with time and, as with the

time-varying arm lengths, would break the Toeplitz structure of the Matrix. However,

the breaking will be due to different values along all the diagonals. For example, from

Equation 6.25 the auto-covariance is

var[si(t)] =
〈
p2
j′

(
t−Dk

)〉
+ 〈p2

i (t)〉+ 〈ni(t)〉, (6.29)
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where there will be no change in the structure of the equation. The temporal variations

will be show up as different values for the different times t. Assuming that the variances

are the same for each noise type, that is, σ2
p and σ2

n then the time varying values will be

var[si(t)] = σ2
p(t−Dk) + σ2

p(t) + σ2
n(t), (6.30)

where σ2
p(t−Dk), σ

2
p(t) and σ2

n(t) are the variances for the noises at those times.

6.1.4.3 Separation between the laser phase noise and photodetector noise

variances

This was one of the concerns of Romano and Woan [54] in terms of the effects on the

splitting of the eigenvalues into the two different groups. In the current design the laser

phase noise is expected to be about 107 times greater than the photodetector noises

giving large separations between the two noise types. In the covariance matrices these

are reflected in the values where the laser noise variances overwhelm the photodetector

noises which appear only in the elements along the main diagonal. For example, for

the independent lasers for variances of σ2
p = 1000 and σ2

n = 1 the values along the

diagonal are 2σ2
p +σ2

n = 2001 with the other diagonals being −σ2
p = −1000. As the laser

variance approaches the photodetector variances the contributions to the variances are

more evenly spread. For example, for the same photodetector noise variances with laser

noise variance of σ2
p = 2, the values are now 2σ2

p + σ2
n = 5 and −σ2

p = −2.

However, the reason for the time delay interferometry observables is the size of the

laser phase noises, therefore if these are reduced to the level of the secondary noises by

improvements in the laser frequency stability then there is no longer any need for these

observables. With that said this investigation will investigate the separations up to the

limit that they become close to the secondary noises but will be just to determine if

they affected by the size of the separations.

6.1.4.4 Summary of the effects of the noise variances

The noise variance determine the values of the covariances in the matrix. They do not

affect the location of the correlations. For stationary values and static arm lengths the

matrix is Toeplitz but this will be broken by non-stationarity.
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6.1.5 Summary

The purpose of this section was to illustrate how the properties of LISA affect its noise

covariance matrix and hence determined how these will change the eigenvalues when

adapting our approach to a more realistic model of LISA. The actual values of the

elements in the matrix are determined by the variances of the different noises. The

structure or layout of the matrix is determined by the phase-locking of the lasers and

the arm lengths with the former determining the number of correlations and hence the

density of the matrix while the latter determines their location. Static values of the

arm lengths and variances result in Toeplitz structures which disappears when either

has time dependent values.

6.1.6 Results

After determining the effects of each of the properties of the LISA on its noise covari-

ance matrix the next step would be to algebraically generate the eigenvalues from the

different matrices to show how they are affected by the different properties. This would

be the preferred method as they would show the contributions from each noise source to

the eigenvalues. However, as seen in Chapter 4 even for small matrices the computation

times for the algebraic solutions are very long. Instead, the effects will be determined

using actual values using numeric solutions which are the results presented in this sec-

tion. The matrices with Toeplitz structures are illustrated with tables of the non-zero

values of their first rows.

6.1.6.1 The effects of laser phase-locking and static arm lengths

Initially to illustrate only the effects of phase-locking the arm lengths all had the same

value with light travel time of D = 16. Also, the variances of each noise type had the

same values of σ2
p = 1000 and σ2

n = 1 for the laser phase and photodetector noises,

respectively. The covariance matrices for the three phase-locking option of none, space-

craft locked and all locked for times of t = {0, 1, . . . , 23} are given in Figure 6.2. For

these the arm lengths are the same and they all have a main diagonal and two others

separated from the main by the offset value D. The blocks in the diagonals show the

increase in their density with the increase in the number of phase-locked lasers. The
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matrix for no phase-locking in Figure 6.2a also differs from the others by having blocks

in the main diagonal having only a main diagonal.

The eigenvalues for these covariance matrices are given in columns two to seven of

Table 6.3 where the noticeable results are:

• only the phase-locked lasers produced the required laser noise free eigenvalues,

• clear separations exist between the eigenvalues with and without laser noise,

• the number of laser noise free eigenvalues increased with the number of phase-

locked lasers.

This seems to indicate that phase-locking of the lasers, which determines the amount

of correlations between the optical bench readings, is an important factor in obtaining

the laser noise free eigenvalues.

For spacecraft phase-locked lasers the number of eigenvalues is 40 and for all phase-

locked lasers it is 120. The separation between the eigenvalues with and without laser

phase noises also increased with the increase in phase-locking from 1000 for spacecraft

phase-locking to 2000 when they were all phase-locked. The lack of laser noise free

eigenvalues for the independent lasers in relation to the structure of the matrix might

be due to the blocks along the main diagonal being simple diagonals.

Results for unequal static arm lengths

Next, the restriction on the arm lengths was relaxed by allowing them to have different

values with corresponding offsets of Di = {15, 16, 17} to see how the structure of the

matrix in terms of the location of the correlations affects the distribution and nature

of the eigenvalues. The covariance matrices for these values are given in Figure 6.3

where the expected increase in the number of diagonals in the matrices occurs. The

common feature for the three phase-locking options is the splitting of the sub-diagonal

and super-diagonals that occurred at the offset of 16 for the equal arm case into three

diagonals each reflecting the number of different arm lengths now occurring at offsets

from the main diagonal of 15, 16, and 17. The closeness of these values makes the

diagonals appear as a bands but this will depend on the sampling rate. The effect of

the phase-locking is to introduce other diagonals close to the main diagonal reflecting
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the correlations between different offset times e.g. t1 −Di and t2 −Dj giving values at

t1 − t2 ±Di −Dj.

The eigenvalues for these matrices are given in Table 6.3 in columns 8 to 13 with

results that are similar to those for equal arms. Only the phase-locked lasers produced

the laser noise free eigenvalues with an increase in their number with the number of

locked lasers. The separation between the eigenvalues with and without laser noises

is not as clear as with equal arms. The smallest eigenvalue is 1 and the assumption

is that this is associated with the photodetector noises that have variances of σ2
n = 1.

Some of the other values especially for spacecraft phase-locking are small compared

to the laser phase noise variances and may also only contain photodetector noises, for

example, values of 10, 44 and 69. Based on the smallest eigenvalues only, the number

of laser noise free eigenvalues for the spacecraft and all locked lasers are 28 and 104,

respectively. These are less than the corresponding values for the equal arms indicating

a decrease in their number with the increase in the number of different arm lengths.
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(a)

C0,0

2001 0 0 0 0 0
0 2001 0 0 0 0
0 0 2001 0 0 0
0 0 0 2001 0 0
0 0 0 0 2001 0
0 0 0 0 0 2001

C0,16

0 0 0 -1000 0 0
0 0 0 0 -1000 0
0 0 0 0 0 -1000

-1000 0 0 0 0 0
0 -1000 0 0 0 0
0 0 -1000 0 0 0

(b)

(c)

C0,0

2001 1000 0 0 0 1000
1000 2001 1000 0 0 0

0 1000 2001 1000 0 0
0 0 1000 2001 1000 0
0 0 0 1000 2001 1000

1000 0 0 0 1000 2001

C0,16

0 0 0 -1000 -1000 0
0 0 0 -1000 -1000 0

-1000 0 0 0 0 -1000
-1000 0 0 0 0 -1000

0 -1000 -1000 0 0 0
0 -1000 -1000 0 0 0

(d)

(e)

C0,0

2001 2000 2000 2000 2000 2000
2000 2001 2000 2000 2000 2000
2000 2000 2001 2000 2000 2000
2000 2000 2000 2001 2000 2000
2000 2000 2000 2000 2001 2000
2000 2000 2000 2000 2000 2001

C0,16

-1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000

(f)

Figure 6.2: Sample covariance matrices for different laser phase-locking options with lasers that are
(a) independent, (b) spacecraft locked and (c) all locked. The arm lengths are all assumed to equal
with light travel times of D = 16 and the laser phase and photodetector noise variances are σ2

p = 1000
and σ2

n = 1, respectively. The values on the right are for the non-zero blocks of the first rows of the
matrices which are the same along the diagonals containing them.
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(a)

R0,0 R0,16

2001 0 0 0 0 0 0 0 0 0 0 0
0 2001 0 0 0 0 0 0 0 0 -1000 0
0 0 2001 0 0 0 0 0 0 0 0 0
0 0 0 2001 0 0 0 0 0 0 0 0
0 0 0 0 2001 0 0 -1000 0 0 0 0
0 0 0 0 0 2001 0 0 0 0 0 0

R0,15 R0,17

0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1000 0 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1000 0 0 0 0 0 0 0 0 0

(b)

(c)

R0,0 R0,15

2001 1000 0 0 0 0 0 0 0 0 0 0
1000 2001 0 0 0 0 0 0 0 0 0 0

0 0 2001 1000 0 0 0 0 0 0 0 -1000
0 0 1000 2001 0 0 0 0 0 0 0 -1000
0 0 0 0 2001 1000 0 0 -1000 0 0 0
0 0 0 0 1000 2001 0 0 -1000 0 0 0

R0,1 R0,16

0 0 0 0 0 0 0 0 0 0 -1000 0
0 0 0 0 0 0 0 0 0 0 -1000 0
0 1000 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1000 0 0 0 -1000 0 0 0 0
0 0 0 0 0 0 0 -1000 0 0 0 0

R0,2 R0,17

0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0 0

(d)

(e)

R0,0 R0,15

2001 1000 1000 2000 1000 1000 0 0 -1000 0 0 -1000
1000 2001 1000 1000 2000 1000 0 0 -1000 0 0 -1000
1000 1000 2001 1000 1000 2000 0 0 -1000 0 0 -1000
2000 1000 1000 2001 1000 1000 0 0 -1000 0 0 -1000
1000 2000 1000 1000 2001 1000 0 0 -1000 0 0 -1000
1000 1000 2000 1000 1000 2001 0 0 -1000 0 0 -1000

R0,1 R0,16

0 0 0 0 0 0 0 -1000 0 0 -1000 0
1000 0 0 1000 0 0 0 -1000 0 0 -1000 0

0 1000 0 0 1000 0 0 -1000 0 0 -1000 0
0 0 0 0 0 0 0 -1000 0 0 -1000 0

1000 0 0 1000 0 0 0 -1000 0 0 -1000 0
0 1000 0 0 1000 0 0 -1000 0 0 -1000 0

R0,2 R0,17

0 0 0 0 0 0 -1000 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 -1000 0 0

1000 0 0 1000 0 0 -1000 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 -1000 0 0

1000 0 0 1000 0 0 -1000 0 0 -1000 0 0

(f)

Figure 6.3: Sample covariance matrix for unequal offsets D = {15, 16, 17} with lasers that are (a) not
locked, (b) locked on each spacecraft. The laser phase and photodetector noise variances of σ2

p = 1000
and σ2

n = 1, respectively. The non-zero blocks of the first rows of the matrices are shown on the right.
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Table 6.3: Time domain eigenvalues for the different laser noise phase-locking options of none, spacecraft
locked and all locked with values for equal and unequal arm lengths with light travel times ofD = 16 and
Di = {15, 16, 17}, respectively. The laser phase noise and photodetector noise variances are σ2

p = 1000
and σ2

n = 1 and time values are t = {0, . . . , 23}.

phase-locking Eigenvalues
Equal arms Unequal arms

None 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001

Spacecraft 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 10 44
1 1 1 1 1 1 69 89 139 224 261 315
1 1 1 1 1001 1001 444 454 470 479 639 692

1001 1001 1001 1001 1001 1001 7 06 731 752 947 960 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1269 1269 1269 1269 1001 1001 1001 1001 1001 1001
1269 1269 1269 1269 1269 1269 1001 1123 1146 1221 1236 1269
1269 1269 1269 1269 1269 1269 1269 1269 1269 1329 1376 1391
2001 2001 2001 2001 2001 2001 1649 1711 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 4001 4001 3224 3231 3278 3437 3592 3906
4001 4001 4001 4001 4001 4001 4001 4001 4001 4001 4001 4140
4733 4733 4733 4733 4733 4733 4423 4466 4688 4733 4733 4733
4733 4733 4733 4733 4733 4733 4733 4823 4881 4906 5044 5072
4733 4733 4733 4733 6001 6001 5111 5256 5289 5374 5436 5475
6001 6001 6001 6001 6001 6001 5551 5575 5717 5719 5921 5925

All 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 318 345 1165 1292
1 1 1 1 1 1 1910 2583 2938 3769 4202 4430
1 1 1 1 1 1 4530 4849 5204 5282 5659 5694

6001 6001 6001 6001 6001 6001 6001 6001 6001 6001 6001 6001
6001 6001 12001 12001 12001 12001 6001 6417 6505 7375 7636 8135

12001 12001 12001 12001 18001 18001 9133 10096 10888 11599 12048 12398
18001 18001 18001 18001 18001 18001 12711 12989 14030 15456 16768 17677
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Table 6.4: Time domain eigenvalues for directionally dependent arm lengths with offsets of D =
{15, 14, 17, 16, 19, 18} and variances of σ2

p = 1000 and σ2
n = 1.

phase-locking Eigenvalues

None 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001

Spacecraft 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 34 36 65 68 94 131 148 183 190 205 226 269 280 298 355 369

371 377 393 407 428 444 567 597 636 672 685 729 790 849 859 911 924 967
991 1001 1009 1075 1127 1191 1224 1256 1307 1335 1378 1432 1467 1512 1516 1595 1647 1737

1773 1785 1848 1853 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2170 2189 2269 2566 2570 2874 2899 2940 3061 3106 3144 3174 3220 3244 3302
3321 3324 3440 3586 3589 3775 3810 3813 3845 3951 3952 4064 4157 4213 4224 4371 4592 4665
4761 4850 4909 4991 5000 5043 5179 5199 5243 5338 5392 5438 5464 5539 5579 5680 5693 5774

All 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 852 1135 1383 2049 2899 3669

4284 4555 4901 4985 5123 5150 5298 5388 5453 5649 5680 5789 6001 6001 6001 6001 6001 6282
6391 6449 6696 6739 6886 7103 7663 8311 9095 9961 10796 11340 12061 12171 12253 12535 14299 16764

Directionally dependent arm lengths

The rotation produces a dependence of the lengths of the arms on the direction of

motion. This effect is modeled by giving each arm two static values to represent

the different light travel times in the different directions. The values used are Di =

{15, 14, 17, 16, 19, 18} where they occur in order of {1, 1′, 2, 2′, 3, 3′} for the numbers

associated with each arm. The static assumption means that this just increases the

number of arm lengths. The covariance matrices for this effect are given in Figures 6.4

and 6.5 where there are increases in the numbers of the diagonals due to the increase

in the number of offsets Di. The actual number of diagonals that are produced close

to the main diagonal will depend on the values with the matrix for the all locked lasers

showing a large increase in the number of diagonals.

The effects on the eigenvalues is expected to reflect the two previous examples since,

as mentioned before, this is essentially just increasing the number of diagonals in the

matrices. The number of laser noise free eigenvalues for independent, spacecraft locked

and all locked lasers are 0, 20 and 102, respectively showing a decrease in the last two.

The separation between values reflects the situation for the three unequal arms where

the next value above the photodetector noise variance is 34 which is much smaller than

the laser phase noise variances of 1000.
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(a)

C0,0

2001 0 0 0 0 0
0 2001 0 0 0 0
0 0 2001 0 0 0
0 0 0 2001 0 0
0 0 0 0 2001 0
0 0 0 0 0 2001

C0,14 C0,17

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1000 0
0 0 0 0 0 -1000 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

C0,15 C0,18

0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1000 0 0 0 0 0 0 0 0 0

C0,16 C0,19

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 -1000 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(b)

(c)

C0,0

2001 1000 0 0 0 0
1000 2001 0 0 0 0

0 0 2001 1000 0 0
0 0 1000 2001 0 0
0 0 0 0 2001 1000
0 0 0 0 1000 2001

C0,14 C0,17

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1000 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1000 0 0 0 -1000 0 0 0 0
0 0 0 0 0 0 0 -1000 0 0 0 0

C0,15 C0,18

0 0 0 0 0 0 0 0 0 0 -1000 0
0 0 0 0 0 0 0 0 0 0 -1000 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0 0

C0,16 C0,19

0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 -1000 0 0 0 0 0 0
0 0 0 0 0 -1000 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

C0,16 C0,19

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 -1000 0 0 0 0 0 0 0 0 0
0 0 -1000 0 0 0 0 0 0 0 0 0

(d)

Figure 6.4: Sample covariance matrices for directionally dependent arm lengths with corresponding
light travel times of Di = {15, 14, 17, 16, 19, 18} for lasers that are (a) independent and (b) spacecraft
locked. The laser phase noise and photodetector noise variances are σ2

p = 1000 and σ2
n = 1, respectively.

The values on the right are the non-zero blocks of the first row of each matrix.
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(a)

C0,0 C0,14

2001 1000 1000 1000 1000 1000 0 0 0 0 0 -1000
1000 2001 1000 1000 1000 1000 0 0 0 0 0 -1000
1000 1000 2001 1000 1000 1000 0 0 0 0 0 -1000
1000 1000 1000 2001 1000 1000 0 0 0 0 0 -1000
1000 1000 1000 1000 2001 1000 0 0 0 0 0 -1000
1000 1000 1000 1000 1000 2001 0 0 0 0 0 -1000

C0,1 C0,15

0 0 0 0 0 0 0 0 -1000 0 0 0
0 0 0 0 1000 0 0 0 -1000 0 0 0
0 1000 0 0 0 0 0 0 -1000 0 0 0

1000 0 0 0 0 0 0 0 -1000 0 0 0
0 0 0 1000 0 0 0 0 -1000 0 0 0
0 0 1000 0 0 0 0 0 -1000 0 0 0

C0,2 C0,16

0 0 0 0 0 0 0 -1000 0 0 0 0
0 0 0 1000 0 0 0 -1000 0 0 0 0
0 0 0 0 1000 0 0 -1000 0 0 0 0
0 0 0 0 0 0 0 -1000 0 0 0 0

1000 0 0 0 0 0 0 -1000 0 0 0 0
0 1000 0 0 0 0 0 -1000 0 0 0 0

C0,3 C0,17

0 0 0 0 0 0 0 0 0 0 -1000 0
1000 0 0 0 0 0 0 0 0 0 -1000 0

0 0 0 1000 0 0 0 0 0 0 -1000 0
0 0 0 0 0 0 0 0 0 0 -1000 0
0 0 0 0 0 0 0 0 0 0 -1000 0
0 0 0 0 1000 0 0 0 0 0 -1000 0

C0,4 C0,18

0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 -1000 0 0

1000 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 1000 0 0 0 0 0 -1000 0 0

C0,5 C0,19

0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0

1000 0 0 0 0 0 -1000 0 0 0 0 0

(b)

Figure 6.5: Sample covariance matrix for directionally dependent arm lengths D = {15, 16, 17} for
lasers that are all phase-locked. The laser phase and photodetector noise variances of σ2

p = 1000 and
σ2
n = 1, respectively. The non-zero block values are given on the right.
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Table 6.5: Time domain eigenvalues for time varying arm lengths with laser noise and photodetector
noise variances of σ2

p = 1000 and σ2
n = 1. The values are for a section of the larger matrix corresponding

to times of t = {0, ..., 23}.

Phase-locking Eigenvalues

None 587 587 587 587 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3415 3415 3415 3415 4001 4001 4001 4001 5001 5001

Spacecraft 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 44 55 67 89 102 132 147 180 189 190 229 243 255 281 329 372 377

391 419 434 471 481 512 530 540 585 595 650 684 720 738 771 788 836 867
944 1001 1001 1032 1086 1107 1164 1192 1293 1332 1345 1368 1379 1450 1491 1520 1553 1581

1602 1630 1648 1775 1792 1831 1843 1897 1927 1980 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2214 2360 2440 2455 2611 2720 2753 2806 2909 3051 3094 3113 3140 3184 3242 3280
3321 3374 3440 3522 3577 3645 3801 3835 3908 4113 4158 4233 4248 4298 4336 4351 4513 4657
4732 4898 4976 4995 5085 5086 5170 5186 5280 5327 5369 5398 5441 5531 5564 5684 6266 6341

All 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1112 1227 1383 1737 1770 1881

2239 2498 2668 2950 3084 3491 3768 3867 4222 4577 4674 4890 5237 5385 5484 5766 5983 6341
7055 7260 7698 8403 9073 9535 9699 10068 10805 11372 12021 12772 12927 13007 14300 14687 15081 16043

6.1.6.2 The effects of time varying arm lengths

LISA will have time varying arm lengths with changes of about 1% or 50× 106m which

is be approximately 0.17s. For arm lengths of 5 × 109m the light travels times will be

about 16.67±0.17s over a period of one year. In order to illustrate this in a small matrix

the separations between the arm lengths and their period of change are exaggerated.

Only three arm lengths are used with 4 s separations between them with sinusoidal

variations based on those in Figure 6.6a. The covariance matrices for the three phase-

locking options are shown in Figures 6.9 where the locations of the correlations are

seen to mimic the temporal variations in the arm lengths. The eigenvalues in Table 6.5

are for a smaller matrix with the times that match those in the previous sections in

order to compare the eigenvalues. As expected only the phase-locked lasers produced

the required laser noise free eigenvalues with the numbers for the spacecraft locked and

all locked lasers being 18 and 102, respectively. These were close to the values of the

directionally dependent arm lengths with similar separations values.
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(a) (b)

(c) (d)

Figure 6.6: Sample covariance matrices for time varying arm lengths. Three different arm lengths were
used initially separated by 4s and allowed to vary according to the patterns shown in (a) which was
based on information from Larson [39].
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6.1.6.3 The effects of the noise variances

In the previous sections the variances of the two noise types were equal with values of

σ2
p = 1000 and σ2

n = 1 which provided a large separation between them. In this section

these restrictions will be removed allowing the lasers and photodetectors to have differ-

ent variances and also reducing their separation. Each change will be done separately

for different phase-locking options.

Different noise variances

In the first set the photodetector noises have the same variances of σ2
n = 1 and the laser

phase noise variances are given different values which depend on the phase-locking. The

only two phase-locking options that can be used in this case are none and spacecraft

locked for which the values for will be σ2
pi = {900, 1200, 1500, 1800, 2100, 24000} and

σ2
pi = {900, 1500, 2100} respectively. The arm length used in this case will be unequal

with light travel times of Di = {15, 16, 17} and the times are t = {0, . . . , 23}. The

covariance matrices for the two phase-locking options are given in Figure 6.7 along with

the values for the non-zero blocks of the first row that are included in the figure.

In the second set the laser phase noises had the same variances of σ2
p = 1000 while the

photodetector noises variances were σ2
ni = {1, 2, 3, 4, 5, 6}. Although the photodetector

noises only affect the diagonal and are not affected by the phase-locking the three options

were done to show how the values are reflected in the eigenvalues. The times and offsets

are the same as in the previous section. The covariance matrices are given in Figure 6.8

also with the values of the non-zero blocks of the first row.

The eigenvalues for both cases are given in Table 6.6 with those for the different

phase noises in columns 2 to 7 and those for photodetector noises in columns 8 to 13. In

both cases the independent lasers did not produce any laser noise free eigenvalues. For

the different laser noise variances with spacecraft locked lasers the number of eigenvalues

is 29 which is just one more than that obtained for the corresponding unequal arms case.

The noticeable result is that of the different photodetector noises where the eigen-

values reflect the values of the photodetector noise variances. This was one of the issues

mentioned by Romano and Woan. Although the degeneracy no longer exists because

of the different values it is the splitting of the values into those with and without laser

phase noises that is important and this was obtained. However, not all the photodetec-
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(a)

R0,0 R0,16

2701 0 0 0 0 0 0 0 0 0 0 0
0 3301 0 0 0 0 0 0 0 0 -1200 0
0 0 3901 0 0 0 0 0 0 0 0 0
0 0 0 2701 0 0 0 0 0 0 0 0
0 0 0 0 3301 0 0 -2100 0 0 0 0
0 0 0 0 0 3901 0 0 0 0 0 0

R0,15 R0,17

0 0 0 0 0 0 0 0 0 -900 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1500 0 0 0 0 0 0
0 0 0 0 0 0 -1800 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 -2400 0 0 0 0 0 0 0 0 0

(b)

(c)

R0,0 R0,15

2101 900 0 0 0 0 0 0 0 0 0 0
900 2401 0 0 0 0 0 0 0 0 0 0

0 0 2701 1200 0 0 0 0 0 0 0 -1200
0 0 1200 2101 0 0 0 0 0 0 0 -1200
0 0 0 0 2401 1500 0 0 -1500 0 0 0
0 0 0 0 1500 2701 0 0 -1500 0 0 0

R0,1 R0,16

0 0 0 0 0 0 0 0 0 0 -900 0
0 0 0 0 0 0 0 0 0 0 -900 0
0 1500 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 900 0 0 0 -1500 0 0 0 0
0 0 0 0 0 0 0 -1500 0 0 0 0

R0,2 R0,17

0 0 0 0 0 0 0 0 0 -900 0 0
0 0 0 0 0 0 0 0 0 -900 0 0
0 0 0 0 0 0 -1200 0 0 0 0 0
0 0 0 0 0 0 -1200 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1200 0 0 0 0 0 0 0 0 0 0 0

(d)

Figure 6.7: Sample covariance matrices for different laser phase noise variances of (a) σ2
p =

{900, 1200, 1500, 1800, 2100, 2400} for independent lasers and (b) σ2
p = {900, 900, 1200, 1200, 1500, 1500}

for the spacecraft locked lasers. The phototdetector noise variances are σ2
n = 1 and the offsets are

D = {15, 16, 17}. The values for the non-zero blocks are given on the right.

tor noise variances were represented in the eigenvalues for the spacecraft locked lasers

which may just be due to the size of the matrix. The number of eigenvalues obtained

for the spacecraft and all locked lasers are 29 and 104 which are similar to those of the

corresponding unequal arms.
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(a)

R0,0 R0,16

2001 0 0 0 0 0 0 0 0 0 0 0
0 2002 0 0 0 0 0 0 0 0 -1000 0
0 0 2003 0 0 0 0 0 0 0 0 0
0 0 0 2004 0 0 0 0 0 0 0 0
0 0 0 0 2005 0 0 -1000 0 0 0 0
0 0 0 0 0 2006 0 0 0 0 0 0

R0,15 R0,17

0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1000 0 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1000 0 0 0 0 0 0 0 0 0

(b)

(c)

R0,0 R0,15

2001 1000 0 0 0 0 0 0 0 0 0 0
1000 2002 0 0 0 0 0 0 0 0 0 0

0 0 2003 1000 0 0 0 0 0 0 0 -1000
0 0 1000 2004 0 0 0 0 0 0 0 -1000
0 0 0 0 2005 1000 0 0 -1000 0 0 0
0 0 0 0 1000 2006 0 0 -1000 0 0 0

R0,1 R0,16

0 0 0 0 0 0 0 0 0 0 -1000 0
0 0 0 0 0 0 0 0 0 0 -1000 0
0 1000 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1000 0 0 0 -1000 0 0 0 0
0 0 0 0 0 0 0 -1000 0 0 0 0

R0,2 R0,17

0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 0 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 -1000 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0 0

(d)

(e)

R0,0 R0,15

2001 1000 1000 2000 1000 1000 0 0 -1000 0 0 -1000
1000 2002 1000 1000 2000 1000 0 0 -1000 0 0 -1000
1000 1000 2003 1000 1000 2000 0 0 -1000 0 0 -1000
2000 1000 1000 2004 1000 1000 0 0 -1000 0 0 -1000
1000 2000 1000 1000 2005 1000 0 0 -1000 0 0 -1000
1000 1000 2000 1000 1000 2006 0 0 -1000 0 0 -1000

R0,1 R0,16

0 0 0 0 0 0 0 -1000 0 0 -1000 0
1000 0 0 1000 0 0 0 -1000 0 0 -1000 0

0 1000 0 0 1000 0 0 -1000 0 0 -1000 0
0 0 0 0 0 0 0 -1000 0 0 -1000 0

1000 0 0 1000 0 0 0 -1000 0 0 -1000 0
0 1000 0 0 1000 0 0 -1000 0 0 -1000 0

R0,2 R0,17

0 0 0 0 0 0 -1000 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 -1000 0 0

1000 0 0 1000 0 0 -1000 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 -1000 0 0
0 0 0 0 0 0 -1000 0 0 -1000 0 0

1000 0 0 1000 0 0 -1000 0 0 -1000 0 0

(f)

Figure 6.8: Sample covariance matrix for different photodetector variances of σ2
n = {1, 2, 3, 4, 5, 6} with

laser noise variances of σ2
p = 1000 for no phase-locking with offsets of D = {15, 16, 17}. The values for

the non-zero blocks are given on the right.
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Table 6.6: The eigenvalues for different laser phase noise and photodetector noise variances. In columns
2-7 the laser phase noises are σ2

p = {900, 1200, 1500, 1800, 2100, 2400} for independent lasers and σ2
p =

{900, 1500, 2100} for spacecraft locked lasers. In both cases the photodetector noise variances are kept
constant with values of σ2

n = 1. In columns 8-13 the photodetector noises are σ2
n = {1, 2, 3, 4, 5, 6} and

the laser phase noises variances are kept constant with values of σ2
p = 1000.

phase-lock Eigenvalues
Different laser phase noise variances Different photodetector variances

None 901 901 901 901 901 901 1002 1002 1002 1002 1002 1002
901 1201 1201 1201 1201 1201 1002 1002 1002 1002 1002 1002

1201 1201 1201 1501 1501 1501 1002 1002 1003 1003 1003 1003
1501 1501 1501 1501 1501 1501 1003 1003 1003 1003 1003 1003
1801 1801 1801 1801 1801 1801 1003 1003 1003 1003 1003 1003
1801 2101 2101 2101 2101 2101 1004 1004 1004 1004 1004 1004
2101 2101 2101 2401 2401 2401 1004 1004 1004 1004 1004 1004
2401 2401 2401 2401 2401 2401 1004 1004 1004 1004 1004 1004
2701 2701 2701 2701 2701 2701 2001 2001 2001 2001 2001 2001
2701 2701 2701 2701 2701 2701 2001 2001 2001 2001 2002 2002
2701 2701 2701 2701 2701 2701 2002 2002 2002 2002 2002 2002
2701 2701 3301 3301 3301 3301 2003 2003 2003 2003 2003 2003
3301 3301 3301 3301 3301 3301 2004 2004 2004 2004 2004 2004
3301 3301 3301 3301 3301 3301 2004 2004 2004 2004 2005 2005
3601 3601 3601 3601 3601 3601 2005 2005 2005 2005 2005 2005
3601 3901 3901 3901 3901 3901 2006 2006 2006 2006 2006 2006
3901 3901 3901 3901 3901 3901 3003 3003 3003 3003 3003 3003
3901 4501 4501 4501 4501 4501 3003 3003 3003 3003 3003 3003
4501 4501 4501 4501 4501 4501 3003 3003 3004 3004 3004 3004
4501 4501 4501 4501 5401 5401 3004 3004 3004 3004 3004 3004
5401 5401 5401 5401 5401 5401 3004 3004 3004 3004 3004 3004
5401 5401 5401 5401 5401 5401 3005 3005 3005 3005 3005 3005
5401 5401 5401 6301 6301 6301 3005 3005 3005 3005 3005 3005
6301 6301 6301 6301 6301 6301 3005 3005 3005 3005 3005 3005

Spacecraft 1 1 1 1 1 1 2 2 2 3 3 3
1 1 1 1 1 1 3 3 3 3 3 3
1 1 1 1 1 1 3 3 3 3 3 3
1 1 1 1 1 1 3 3 3 3 4 4
1 1 1 1 1 51 4 5 5 5 5 47

78 101 162 250 301 358.5 71 91 142 226 264 318
498 525 546 560 668 765.6 447 456 473 482 642 694
787 802 830 993 993 993.4 708 733 754 949 963 1002
993 993 1002 1010 1032 1034.5 1003 1003 1003 1003 1003 1004

1147 1183 1263 1329 1341 1342.9 1004 1004 1004 1004 1004 1004
1343 1343 1343 1343 1357 1386.1 1004 1125 1148 1223 1239 1271
1451 1455 1560 1593 1655 1698.2 1271 1271 1271 1332 1378 1394
1783 1895 1922 1987 2100 2108.7 1651 1713 2002 2002 2002 2002
2255 2287 2328 2359 2370 2401.0 2003 2003 2003 2003 2003 2003
2401 2401 2401 2422 2529 2582.2 2004 2004 2004 2004 2004 2004
2679 2737 2817 2838 2937 2938.6 2004 2004 2005 2005 2005 2005
3081 3081 3081 3081 3081 3137.3 3003 3003 3003 3003 3003 3003
3151 3543 3588 3674 4121 4120.6 3003 3004 3004 3004 3004 3004
4121 4121 4121 4359 4470 4532.2 3225 3232 3282 3439 3596 3908
4810 4867 4867 4867 4867 4866.6 4004 4004 4004 4004 4004 4143
4896 4908 5076 5085 5195 5208.2 4426 4468 4690 4736 4736 4736
5575 5649 6031 6350 6361 6363.8 4736 4825 4883 4909 5047 5075
6401 6404 6422 6429 7286 7292.2 5114 5258 5292 5376 5438 5478
7311 7313 7344 7354 7455 7456.8 5553 5578 5719 5722 5923 5928

All 1 1 1 1 1 1
1 1 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3
3 3 4 4 4 4
4 4 4 4 4 4
4 4 4 4 4 4
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 6
6 6 6 6 6 6
6 6 321 348 1168 1294

1912 2586 2941 3771 4205 4433
4532 4851 5207 5285 5661 5697
6004 6004 6004 6004 6004 6004
6004 6419 6507 7377 7638 8138
9136 10099 10890 11602 12051 12401

12714 12992 14032 15459 16770 17679
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Table 6.7: Time domain eigenvalues for variable laser phase and photodetector variances. The offsets
are D = {15, 16, 17} and the lasers are locked on each spacecraft.

Eigenvalues

0.8 0.8 0.8 0..8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0..9 0.9 0.9 0.9 0..9 0.9 0.9
0.9 0.9 0.9 0..9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 984 99.4 110.9 118.0 305.8 340.8

387.1 401.5 407.8 416.3 432.4 489.3 511.3 524.0 560.1 563.5 631.9 637.4 672.8 696.2
700.8 721.0 743.5 779.7 803.6 815.0 869.8 892.2 943.8 948.3 1.008.6 1009.3 1047.0 1068.2

1072.1 1087.1 1093.8 1103.5 1191.3 1197.2 1203.7 1215.4 1250.1 1263.0 1273.1 1283.9 1287.3 1297.5
1304.3 1324.7 1336.4 1339.2 1349.9 1378.5 1389.2 1394.2 1434.5 1458.8 1477.3 1483.4 1509.7 1517.8
1528.0 1548.6 1558.6 1560.3 1571.7 1577.0 1582.2 1582.9 1601.4 1609.6 1611.1 1618.0 1627.3 1635.5
1640.8 1651.8 1827.4 1828.8 1832.0 1836.5 1841.0 1846.6 1848.8 1852.7 1859.9 1862.4 1864.7 1878.1
1880.0 1887.2 1899.3 1907.6 2345.2 2547.2 2958.1 2975.5 2978.1 2981.8 3026.9 3103.6 3172.0 3306.0
3390.6 3439.6 3508.3 3553.5 3626.5 3638.1 3677.5 3705.3 3716.9 3726.5 3827.3 3927.5 3964.3 3973.2
3983.4 4013.2 4139.1 4164.2 4188.8 4190.7 4260.7 4275.5 5008.9 5022.7 5043.5 5057.3 5107.3 5125.2
5164.1 5188.7 5200.2 5234.6 5272.7 5335.6 5361.0 5440.8 5459.4 5472.1 5500.0 5515.6 5520.1 5523.2
5635.0 5643.6 5706.2 5720.0 5735.6 5738.2 5760.3 5778.9 5785.7 5827.6 5901.8 5922.2 5970.9 5975.6
6038.3 6079.6 6246.8 6253.0 6277.3 6367.2 6430.2 6453.6 6496.3 6510.2 6705.5 6716.1 6874.6 6878.6

Variable laser phase and photodetector noise variances

To model non-stationarity in the noises the values of their variances were varied sinu-

soidally about their mean values of σ2
p = 1000 and σ2

n = 1 as illustrated in Figure 6.9a.

The covariance matrix was only generated for the spacecraft phase-locked lasers which

is given in Figure 6.9b where the temporal changes of the variances result in changes

in the values along the diagonals. The eigenvalues for this matrix are given in Table

6.7 and the number of laser noise free values is 78. The larger matrix was used here to

illustrate the variations along the diagonals. For a similar sized matrix as those in the

other sections the number of eigenvalues is 29. The large separation in the variances

allowed the two groups to be easily determined and their values reflected the changing

values of the variances.

Small separations between the laser and photodetector noise variances

For this section only the covariance matrices for spacecraft locked lasers and unequal

arm lengths with times of D = {15, 16, 17} will be used. Three sets of values were

investigated for equal and unequal variances with integer and real values which are (i)

σ2
p = 9 and σ2

n = 1, (ii) σ2
p = 2 and σ2

n = 1 and (iii)σ2
pi = {2.3, 2.4, 2.5, 2.6, 2.7, 2.8}

and σ2
ni = {0.8, 0.9, 1.0, 1.1, 1.2, 1.3}. In the last set the smallest laser noise variance

differs from the largest photodetector noise by 1. Only the matrix for the the first set is

presented which is in Figure 6.10 to illustrate the differences between the values when

the separation between the two types of noises are small. The values of the non-zero

blocks are also included.
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(a)

(b)

Figure 6.9: Sample covariance matrix (b) for time varying laser phase and photodetector noise variances
with the values varying according to the patterns shown in (a).
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(a)

R0,0 R0,15

19 9 0 0 0 0 0 0 0 0 0 0
9 19 0 0 0 0 0 0 0 0 0 0
0 0 19 9 0 0 0 0 0 0 0 -9
0 0 9 19 0 0 0 0 0 0 0 -9
0 0 0 0 19 9 0 0 -9 0 0 0
0 0 0 0 9 19 0 0 -9 0 0 0

R0,1 R0,16

0 0 0 0 0 0 0 0 0 0 -9 0
0 0 0 0 0 0 0 0 0 0 -9 0
0 9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 9 0 0 0 -9 0 0 0 0
0 0 0 0 0 0 0 -9 0 0 0 0

R0,2 R0,17

0 0 0 0 0 0 0 0 0 -9 0 0
0 0 0 0 0 0 0 0 0 -9 0 0
0 0 0 0 0 0 -9 0 0 0 0 0
0 0 0 0 0 0 -9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

(b)

Figure 6.10: Sample covariance matrix for smaller separations between the laser phase noise and
photodetector noises variances. The values for the variances are σ2

p = 9 and σ2
n = 1 with spacecraft

locked lasers and offsets of D = {15, 16, 17}. The values on the right are non-zero blocks of the first
row.

The eigenvalues are given in Table 6.8 where in all three sets they do still split into

the two groups relating to those with and without laser phase noises. The splitting

is judged from the actual values where those that match the phototdetector noises

variance are assumed be from them. Values closer to the laser phase noise variances are

assumed to be related to combinations of these noises and the phototdetector noises.

Note that in all three sets there are values between the two which are much closer to the

phtotodetector noises which may just contain this type but are not included in the laser

noise free group. As the values get closer to it becomes more difficult to distinguish

between the two sets of values.

In the first set with the noise variances for each noise type being equal with values

σ2
p = 9 and σ2

n = 1 and the number of eigenvalues equal to the 1 is 30. The values close

to the laser noise are 8 and 10 which could be σ2
p±σ2

n. The range of values between the

photodetector noise values and these are 2 to 7. In the second set where the values are

still integers with the laser noise variance reduced to σ2
p = 2 resulting in a separation

from the photodetector noises of only 1, the splitting still occurred with the number of

values associated with the only photodetector noises increasing to 34. The next set of

eigenvalues are equal to 2 where now it is impossible to tell what this is associated with
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Table 6.8: Time domain eigenvalues for smaller separations between the variances of the two noise
types. The offsets are {D = 15, 16, 17} and the lasers are locked on each spacecraft.

Eigenvalues

Variances (σ2
p = 9, σ2

n = 1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4
5 5 5 5 7 7 7 8 8 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 11 11 12 12 12 12 12 12 13 13 14
16 16 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
19 19 19 19 19 19 28 28 28 28 28 28 28 28 28 28 28 28
30 30 30 32 33 36 37 37 37 37 37 38 41 41 43 44 44 44
44 44 45 45 46 47 47 48 49 49 50 50 51 51 52 52 54 54

Variances (σ2
p = 2, σ2

n = 1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7
7 7 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10

10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 13 13

Variances (σ2
p = 1.5, σ2

n = 1.0)
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1.3 1.4 1.5
1.7 1.7 1.7 1.7 2.0 2.0 2.1 2.1 2.1 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5
2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.7 2.7 2.8 2.9 2.9 2.9 2.9 2.9 3.0 3.1 3.1
3.5 3.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
4.0 4.0 4.0 4.0 4.0 4.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
5.8 5.9 6.0 6.2 6.4 6.9 7.0 7.0 7.0 7.0 7.0 7.2 7.6 7.7 8.0 8.1 8.1 8.1
8.1 8.2 8.3 8.4 8.6 8.6 8.7 8.9 8.9 9.1 9.2 9.2 9.3 9.4 9.6 9.6 9.9 9.9

Variances (σ2
p = 1.5, σ2

ni = {0.8, 0.9, 1.0, 1.1, 1.2, 1.3})
0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.3 1.4 1.5 1.5
1.7 1.8 1.8 1.8 2.0 2.1 2.1 2.1 2.2 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.6
2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.8 2.9 3.0 3.0 3.0 3.0 3.0 3.1 3.2
3.5 3.6 3.9 3.9 3.9 4.0 4.0 4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1
4.1 4.1 4.2 4.2 4.2 4.2 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.6 5.6 5.6 5.6 5.6
5.8 5.8 6.0 6.1 6.6 6.9 7.1 7.1 7.1 7.1 7.1 7.3 7.8 7.8 8.1 8.1 8.1 8.1
8.1 8.3 8.4 8.4 8.7 8.7 8.7 8.9 9.0 9.1 9.2 9.3 9.4 9.4 9.6 9.6 9.9 9.9

Variances (σ2
pi = {1.5, 1.6, 1.7}, σ2

ni = {0.8, 0.9, 1.0, 1.1, 1.2, 1.3})
0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.3 1.4 1.5 1.6
1.8 1.8 1.8 1.9 2.1 2.1 2.2 2.2 2.2 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6
2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.8 2.9 3.0 3.0 3.1 3.1 3.1 3.1 3.2 3.2 3.3
3.6 3.7 4.0 4.0 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.4 4.4
4.4 4.4 4.5 4.5 4.5 4.5 5.6 5.6 5.6 5.6 5.6 5.6 5.7 6.0 6.0 6.1 6.1 6.1
6.1 6.1 6.3 6.6 7.0 7.1 7.5 7.5 7.5 7.5 7.5 7.7 8.3 8.3 8.4 8.4 8.5 8.5
8.5 8.6 9.0 9.1 9.1 9.3 9.4 9.5 9.5 9.6 10.0 10.0 10.1 10.1 10.3 10.3 10.6 10.6

as this is also the value of the laser noise. Even the third set where the values are no

longer integers and were also all given different values there are still values that reflect

the value of the photodetector noise variances. In this case the number of these values

is 32.
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6.2 Frequency domain

In this section we investigate the effects of laser phase-locking, arm lengths and the

noise variances on the power spectral density matrix. LISA’s raw data data are time

series so that a frequency domain analysis involves the Fourier transform therefore,

understanding what occurs with the data is needed. This is especially important when

the noise properties are time dependent, for example, in the case of non-stationary.

6.2.1 The power spectral density matrix

For the toy model the power spectral density matrices will only contain non-zero values

in the blocks along the main diagonal since there are no correlations between different

frequencies. The effects of the different properties will be confined to these blocks. The

size of each block is 6× 6 with the auto-power spectral densities occurring on the main

diagonal and the cross-power spectral densities elsewhere. Recall that the raw data time

series can be written as

si(t) = pj′(t−Dk)− pi(t) + ni(t), (6.31)

and its spectrum is

s̃i(f) = p̃j′(f) e−2πifDk − p̃i(f) + ñi(f), (6.32)

where the time offset Dk becomes a phase shift and s̃i(f) represents the Fourier trans-

form of si(t) given by

s̃i(f) =

∫ ∞
−∞

si(t) e
−2πiftdt. (6.33)

For no phase-locking with unequal arm lengths the auto-power spectra can be written

as

S̃ii(f) =
〈[
p̃j′(f) e−2πifDk − p̃i(f) + ñi(f)

]
×
[
p̃j′(f) e2πifD − p̃i(f) + ñi(f)

]〉
= 〈p̃2

j′(f)〉+ 〈p̃2
i (f)〉+ 〈ñ2

i (f)〉. (6.34)
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Independent
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Figure 6.11: The raw data power spectral densities showing the contributions for the all blocks in the
matrix for the independent and spacecraft locked lasers. The arm lengths used are static and unequal
with no directional dependence.

An example of the cross-power spectral density using the readings from the optical

benches at the end of arm k is

S̃ij(f) =
〈[
p̃j(f) e−2πifDk − p̃i(f) + ñi(f)

]
×
[
p̃i(f) e2πifDk − p̃j(f) + ñj(f)

]〉
= −〈p̃2

j(f)〉 e−2πifDk − 〈p̃2
i (f)〉 e2πifDk . (6.35)

6.2.1.1 The effects of laser phase-locking

The contributions for all the elements in each block are given in terms of σ2
pi and σ2

ni

in Figure 6.11 for independent and spacecraft locked lasers with unequal static arm

lengths with no directional dependencies. The values for all locked lasers are not given

because of space limitations. The general format of the auto-power when all the lasers

are phase-locked can be written as

Sii(f) = σ2
p

[
2− e−2πifDk − e2πifDk

]
+ σ2

ni. (6.36)
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The cross-power densities for the readings along each arm is similar to the auto-power

densities but without the photodetector noises which is

Sij(f) = σ2
p

[
2− e−2πifDk − e2πifDk

]
, (6.37)

where Dk is the offset in the arm. Comparing this to the block representing the inde-

pendent lasers in Figure 6.11, these will replace the values in the two diagonals away

from the main. For all the others, the cross-power can be expressed as

Sij = σ2
p

[
e−2πif(Dk−Di) − e−2πifDk − e2πifDi + 1

]
, (6.38)

where Dk and Dj are the offsets in the arms adjacent to optical benches i and j re-

spectively. Again, using the block for the independent lasers, these will replace the zero

values. So all the elements in the block for all locked lasers will be occupied. From this

it can be seen that the effects of the arm lengths Di are not the same as in the time

domain. Here they are just phase shifts in the values and do not affect the location of

the values.

Since the arm lengths do not have the same effects as in the time domain in discussing

the phase-locking the unequal arms will be used instead. As seen in Figure 6.11 the

effect of phase-locking is to increase the number of correlations which increases the

density of the blocks. Without phase-locking only the optical benches at the ends of the

arms are correlated resulting in only three diagonals in each block. With phase-locking

all the optical benches are correlated resulting in the blocks being full. This is the same

as in the time domain.

6.2.1.2 The effects of static arm lengths

The arm lengths occur as phase shifts in the spectra and so they affect the values in

the blocks. With equal arm lengths the values that will show major changes from the

unequal arms are those that include differences of offsets which only occur with phase-

locking. For example, for space-craft locked lasers the cross-power spectral density for

s1 and s3′ is σ2
p2 e

2πif(D1−D3) which becomes σ2
p2 with equal arm lengths. The same is

true for all locked lasers where the cross-power in Equation 6.38 which is

Sij = σ2
p

[
e−2πif(Dk−Di) − e−2πifDk − e2πifDi + 1

]
, (6.39)
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which becomes

Sij = σ2
p

[
2− e−2πifD − e2πifD

]
. (6.40)

The effects of directionally dependent arm lengths

The directional dependence of the arm lengths will mean that the equations will contain

offsets reflecting the directional differences indicated by Dk and Dk′ . The only set that

will show changes in the structure of the equations is the cross-power between the optical

benches at the ends of each arm when the lasers are all locked. The equation for these

is given by Equation 6.37 which is

Sij = σ2
p

[
2− e−2πifDk − e2πifDk

]
. (6.41)

With directional dependence this becomes

Sij(f) = σ2
p

[
e−2πif(Dk−Dk′ ) − e−2πifDk − e2πifDk′ + 1

]
. (6.42)

6.2.1.3 The effects of the noise variances

As in the time domain the values of the variances determine values of the power and

not the location of the correlations. The differences in their values will be reflected in

the values in the blocks.

6.2.1.4 Time varying arm lengths and non-stationarity

Recall that the Fourier transform of a time series with an offset is given by

F [si(t−D)] =

∫ ∞
−∞

si(t−D)e−2πiftdt. (6.43)

Letting u = t−D will give t = u−D and dt = du which when substituted into Equation

6.43 gives

F [si(u)] =

∫ ∞
−∞

si(u)e−2πif(u−D)du

=

∫ ∞
−∞

si(u) e−2πifu e−2πifDdu. (6.44)

When D is constant the exponential term e−2πifD will also be constant for each value

of f and can be taken out of the integral giving

F [si(u)] = e−2πifD

∫ ∞
−∞

si(u) e−2πifudu (6.45)
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where the term in the integral is the Fourier transform of si(u), therefore

F [si(u)] = e−2πifD s̃i(f). (6.46)

For time dependent offsets D(t) Equation 6.43 becomes

F [si(t−D(t))] =

∫ ∞
−∞

si(t−D(t))e−2πiftdt. (6.47)

With u = t−D(t) then t = u−D(t) and dt = du giving

F [si(u)] =

∫ ∞
−∞

si(u)e−2πif(u−D(t))du

=

∫ ∞
−∞

si(u)e−2πifu e−2πifD(t))du. (6.48)

where the exponential term with the time offset is no longer a constant value and

therefore cannot be taken out of the integral. In computing the power spectral densities

it is easier to combine it with the non-stationarity.

In dealing with non-stationarity it is easier to view the power spectral densities

through the Wiener-Khinchin theorem [47] where it is the Fourier transform of the

auto-covariance function Cxx(τ) which for the continuous case van be written as

Sxx(f) = F [Cxx(τ)]

=

∫ ∞
τ=∞

Cxx(τ) e−2πifτdτ (6.49)

where τ is the lag and each contribution to a frequency bin is the sum of all the lag values.

This can be extended to cross-power spectral densities Sxy(f) and cross-covariances

Cxy(τ) to give

Sxy(f) = F [Cxy(τ)]

=

∫ ∞
τ=∞

Cxy(τ) e−2πifτdτ. (6.50)

The covariance function will include the time dependent arm lengths and variances and

since each frequency value is the sum of all the lag values the variations will not be

visible in the spectra. They will be averages of all the time values.

6.2.1.5 Summary

With the toy model there are no correlation between frequencies and the power spectral

density matrix is a block diagonal. The phase-locking has the same effects as in the

time domain and increases the density of the blocks. The arm lengths do not define
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Figure 6.12: Raw data power spectral densities for the first block when the frequency is equal to zero
showing the contributions for the all blocks in the matrix for all three phase-locking options. Values
for some of the blocks are given on the right.

the structure of the matrix as in the time domain as they appear as phase shifts which

determines the values in the blocks and not the locations of the correlations in the

blocks. Also, the variances determine the values of the power.

6.2.2 Results

Although in the power spectral density matrices the blocks have small sizes of 6 × 6

which should be possible to solve algebraically the exponential terms occurring in the

some of the power spectral densities increases the complexity of the matrix and the

increases the computation times. This means that solutions are obtained as was done

in the time domain.

An interesting feature in the matrices is the structure of the zero frequency block

for the different phase-locking options. These are given in Figure 6.12 where all the

exponential terms disappear and their values are all real. The most striking being the

block for all locked lasers where all the laser phase noises cancel leaving only the main

diagonal which contains only photodetector noises. For example, for zero frequency
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Equations 6.36 and 6.37 with for the equal arm lengths become

Sii(f) = σ2
p

[
2− e0 − e0

]
+ σ2

ni = σ2
ni,

Sij(f) = σ2
p

[
2− e0 − e0

]
= 0, (6.51)

leading to cancellaion of the laser phase noises.

6.2.2.1 The effects of laser phase-locking

In Figure 6.13 the absolute values of the power spectral density matrices for the three

phase-locking options are given. The arm lengths are all equal with values of D = 16.3

and the noise variances are σ2
p = 1000 and σ2

n = 1 for the laser phase and photdetector

noises, respectively. The matrices show the expected differences between the densities

of the blocks for the independent and phase-locked lasers. The cancellation of the laser

phase noises is seen in the first block (f = 0) for all locked lasers. For all the other

blocks the values away from the main diagonal are all the same differing from the main

diagonal by 1.

The eigenvalues for these matrices are given in Table 6.9 in columns 3 to 8 where

they are grouped by blocks with the block numbers given in column 2. As in the time

domain the values that are assumed to be due to only photodetector nosies are those

that are equal to their values. The results mostly reflect those of the time domain for the

corresponding covariance matrices with the phase-locked lasers providing the splitting of

the eigenvalues into groups with and without laser noises. However, for the independent

lasers the first block differs from the rest of the blocks in that it also produced the two

groups of values. Also, the tenth block contains three values of 9 which are close to

the photodetector noises and could also be free from laser noise. For the case where all

the lasers are locked, the first block which contains only the photodetector noises has

eigenvalues that are equal to their values with no further decomposition occurring.

As in the time domain, the number of eigenvalues increased with the number of

lasers that are phase-locked. Ignoring the first blocks, the number of laser phase noise

free values are 3 and 5 for spacecraft locked and all locked lasers, respectively. Also,

note the large separations between the two sets of values with the only exceptions being

the tenth blocks of the phase-locked options.
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(a)

S0,0 S2,2

2001 0 0 2000 0 0 2001 0 0 1893 0 0
0 2001 0 0 2000 0 0 2001 0 0 1893 0
0 0 2001 0 0 2000 0 0 2001 0 0 1893

2000 0 0 2001 0 0 1893 0 0 2001 0 0
0 2000 0 0 2001 0 0 1893 0 0 2001 0
0 0 2000 0 0 2001 0 0 1893 0 0 2001

S1,1 S3,3

2001 0 0 328 0 0 2001 0 0 948 0 0
0 2001 0 0 328 0 0 2001 0 0 948 0
0 0 2001 0 0 328 0 0 2001 0 0 948

328 0 0 2001 0 0 948 0 0 2001 0 0
0 328 0 0 2001 0 0 948 0 0 2001 0
0 0 328 0 0 2001 0 0 948 0 0 2001

(b)

(c)

S0,0 S2,2

2001 1000 1000 2000 1000 1000 2001 1000 1000 1893 1000 1000
1000 2001 1000 1000 2000 1000 1000 2001 1000 1000 1893 1000
1000 1000 2001 1000 1000 2000 1000 1000 2001 1000 1000 1893
2000 1000 1000 2001 1000 1000 1893 1000 1000 2001 1000 1000
1000 2000 1000 1000 2001 1000 1000 1893 1000 1000 2001 1000
1000 1000 2000 1000 1000 2001 1000 1000 1893 1000 1000 2001

S1,1 S3,3

2001 1000 1000 328 1000 1000 2001 1000 1000 948 1000 1000
1000 2001 1000 1000 328 1000 1000 2001 1000 1000 948 1000
1000 1000 2001 1000 1000 328 1000 1000 2001 1000 1000 948
328 1000 1000 2001 1000 1000 948 1000 1000 2001 1000 1000

1000 328 1000 1000 2001 1000 1000 948 1000 1000 2001 1000
1000 1000 328 1000 1000 2001 1000 1000 948 1000 1000 2001

(d)

(e)

S0,0 S8,8

1 0 0 0 0 0 1498 1497 1497 1497 1497 1497
0 1 0 0 0 0 1497 1498 1497 1497 1497 1497
0 0 1 0 0 0 1497 1497 1498 1497 1497 1497
0 0 0 1 0 0 1497 1497 1497 1498 1497 1497
0 0 0 0 1 0 1497 1497 1497 1497 1498 1497
0 0 0 0 0 1 1497 1497 1497 1497 1497 1498

S1,1 S9,9

1673 1672 1672 1672 1672 1672 9 8 8 8 8 8
1672 1673 1672 1672 1672 1672 8 9 8 8 8 8
1672 1672 1673 1672 1672 1672 8 8 9 8 8 8
1672 1672 1672 1673 1672 1672 8 8 8 9 8 8
1672 1672 1672 1672 1673 1672 8 8 8 8 9 8
1672 1672 1672 1672 1672 1673 8 8 8 8 8 9

S2,2 S10,10

3894 3893 3893 3893 3893 3893 1852 1851 1851 1851 1851 1851
3893 3894 3893 3893 3893 3893 1851 1852 1851 1851 1851 1851
3893 3893 3894 3893 3893 3893 1851 1851 1852 1851 1851 1851
3893 3893 3893 3894 3893 3893 1851 1851 1851 1852 1851 1851
3893 3893 3893 3893 3894 3893 1851 1851 1851 1851 1852 1851
3893 3893 3893 3893 3893 3894 1851 1851 1851 1851 1851 1852

(f)

Figure 6.13: Sample power spectral density matrices for phase-locking options of (a) none, (c) spacecraft
locked and (e) all locked with equal arm lengths of D = 16.3. The laser phase and photodetector noise
variances are σ2

p = 1000 and σ2
n = 1, respectively. Values for some of the blocks are given on the right.
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Table 6.9: Frequency domain eigenvalues for the different phase-locking options with equal of D = 16.3
and unequal arm lengths of D = {15.3, 16.3, 17.3}. The laser phase and photodetector noise variances
σ2
p = 1000 and σ2

n = 1, respectively.

Phase-locking Block Eigenvalues
Equal arms Unequal arms

None 1 1 1 1 4001 4001 4001 1 1 1 4001 4001 4001
2 1673 1673 1673 2329 2329 2329 1106 1673 1733 2270 2329 2896
3 108 108 108 3894 3894 3894 73 108 0801 3201 3894 3929
4 1053 1053 1053 2949 2949 2949 33 1053 1215 2787 2949 3969
5 419 419 419 3583 3583 3583 284 419 1440 2562 3583 3718
6 535 535 535 3467 3467 3467 535 535 0754 3248 3467 3467
7 899 899 899 3103 3103 3103 129 619 0899 3103 3383 3874
8 174 174 174 3828 3828 3828 174 383 1792 2210 3619 3828
9 1498 1498 1498 2504 2504 2504 316 1053 1498 2504 2949 3686
10 9 9 9 3993 3993 3993 9 129 0284 3718 3874 3993
11 1852 1852 1852 2150 2150 2150 1556 1852 1852 2151 2151 2446

Spacecraft 1 1 1 1 1 6001 6001 1 1 1 1 6001 6001
2 1 1 1 3346 4329 4329 1 1 1 3104 3836 5063
3 1 1 1 2108 2108 7786 1 1 1 1833 2802 7368
4 1 1 1 3053 3053 5896 1 1 1 1445 4581 5977
5 1 1 1 837 5583 5583 1 1 1 1929 3442 6632
6 1 1 1 1069 5467 5467 1 1 1 2459 2754 6790
7 1 1 1 2899 2899 6205 1 1 1 1072 5021 5909
8 1 1 1 2174 2174 7655 1 1 1 1662 3794 6548
9 1 1 1 2995 4504 4504 1 1 1 2247 3580 6176
10 1 1 1 17 5993 5993 1 1 1 0278 5703 6022
11 1 1 1 3702 4150 4150 1 1 1 3556 3917 4530

All 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 10035 1 1 1 1 1 10093
3 1 1 1 1 1 23357 1 1 1 1 1 22041
4 1 1 1 1 1 17687 1 1 1 1 1 16260
5 1 1 1 1 1 2508 1 1 1 1 1 6525
6 1 1 1 1 1 3204 1 1 1 1 1 8631
7 1 1 1 1 1 18612 1 1 1 1 1 13224
8 1 1 1 1 1 22964 1 1 1 1 1 12001
9 1 1 1 1 1 8982 1 1 1 1 1 12470
10 1 1 1 1 1 49 1 1 1 1 1 15196
11 1 1 1 1 1 11104 1 1 1 1 1 12293

6.2.2.2 The effects of different static arm lengths

This section will also include the directional dependence of the arm lengths as they are

modeled using static values giving six different arm lengths. The absolute values of the

power spectral density matrices for arm lengths of Di = {15.3, 16.3, 17.3} are given in

Figure 6.14 where the matrix with the most changes is the one for all locked lasers. The

matrices for the directional values Di = {15.3, 14.3, 17.3, 16.3, 19.3, 18.3} are given in

Figure 6.15.

The eigenvalues for the Di = {15.3, 16.3, 17.3} are given in columns 9 to 14 of Table

6.9 where they show the same pattern as for equal arm lengths. Ignoring the first block

of the independent lasers, the splitting of the values into the two groups is linked to the

phase-locked lasers with large separations between their values. The numbers of laser

noise free eigenvalues are the same as for equal arms with 3 and 5 for spacecraft and

all locked lasers, respectively. For the independent lasers, as for equal arm lengths, the
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(a)

S0,0 S2,2

2001 0 0 2000 0 0 2001 0 0 1200 0 0
0 2001 0 0 2000 0 0 2001 0 0 1893 0
0 0 2001 0 0 2000 0 0 2001 0 0 1928

2000 0 0 2001 0 0 1200 0 0 2001 0 0
0 2000 0 0 2001 0 0 1893 0 0 2001 0
0 0 2000 0 0 2001 0 0 1928 0 0 2001

S1,1 S3,3

2001 0 0 895 0 0 2001 0 0 1968 0 0
0 2001 0 0 328 0 0 2001 0 0 948 0
0 0 2001 0 0 268 0 0 2001 0 0 786

895 0 0 2001 0 0 1968 0 0 2001 0 0
0 328 0 0 2001 0 0 948 0 0 2001 0
0 0 268 0 0 2001 0 0 786 0 0 2001

(b)

(c)

S0,0 S2,2

2001 1000 1000 2000 1000 1000 2001 1000 1000 1200 1000 1000
1000 2001 1000 1000 2000 1000 1000 2001 1000 1000 1893 1000
1000 1000 2001 1000 1000 2000 1000 1000 2001 1000 1000 1928
2000 1000 1000 2001 1000 1000 1200 1000 1000 2001 1000 1000
1000 2000 1000 1000 2001 1000 1000 1893 1000 1000 2001 1000
1000 1000 2000 1000 1000 2001 1000 1000 1928 1000 1000 2001

S1,1 S3,3

2001 1000 1000 895 1000 1000 2001 1000 1000 1968 1000 1000
1000 2001 1000 1000 328 1000 1000 2001 1000 1000 948 1000
1000 1000 2001 1000 1000 268 1000 1000 2001 1000 1000 786
895 1000 1000 2001 1000 1000 1968 1000 1000 2001 1000 1000

1000 328 1000 1000 2001 1000 1000 948 1000 1000 2001 1000
1000 1000 268 1000 1000 2001 1000 1000 786 1000 1000 2001

(d)

(e)

S0,0 S8,8

1 0 0 0 0 0 3686 2349 1969 3685 2349 1969
0 1 0 0 0 0 2349 1498 1255 2349 1497 1255
0 0 1 0 0 0 1969 1255 1053 1969 1255 1052
0 0 0 1 0 0 3685 2349 1969 3686 2349 1969
0 0 0 0 1 0 2349 1497 1255 2349 1498 1255
0 0 0 0 0 1 1969 1255 1052 1969 1255 1053

S1,1 S9,9

1106 1360 1584 1105 1360 1584 3718 173 3794 3717 173 3794
1360 1673 1948 1360 1672 1948 173 9 177 173 8 177
1584 1948 2269 1584 1948 2268 3794 177 3873 3794 177 3872
1105 1360 1584 1106 1360 1584 3717 173 3794 3718 173 3794
1360 1672 1948 1360 1673 1948 173 8 177 173 9 177
1584 1948 2268 1584 1948 2269 3794 177 3872 3794 177 3873

S2,2 S10,10

3201 3529 3545 3200 3529 3545 1852 1851 2127 1851 1851 2127
3529 3894 3910 3529 3893 3910 1851 1852 2127 1851 1851 2127
3545 3910 3929 3545 3910 3928 2127 2127 2446 2127 2127 2445
3200 3529 3545 3201 3529 3545 1851 1851 2127 1852 1851 2127
3529 3893 3910 3529 3894 3910 1851 1851 2127 1851 1852 2127
3545 3910 3928 3545 3910 3929 2127 2127 2445 2127 2127 2446

(f)

Figure 6.14: Sample power spectral density matrices for unequal arm lengths of D = {15.3, 16.3, 17.3}
for phase-locking options of (a) none, (c) spacecraft locked and (e) all locked. The laser noise and
photodetector noise variances are σ2

p = 1000 and σ2
n = 1, respectively.



203 Chapter 6. Principal components for more realistic LISA data

Table 6.10: Frequency domain eigenvalues for directionally dependent arm lengths with values of
D = {15.3, 14.3, 17.3, 16.3, 19.3, 18.3} for lasers that are (a) independent, (c) spacecraft locked and (e)
all locked. The laser phase and photodetector noise variances are σ2

p = 1000 and σ2
n = 1, respectively.

Phase-locking Block Eigenvalues

None 1 1 1 1 4001 4001 4001
2 419 1383 1440 2562 2619 3583
3 316 383 1498 2504 3619 3686
4 383 495 1215 2787 3507 3619
5 254 1160 1383 2619 2842 3748
6 1 23 23 3979 3979 4001
7 619 1383 1733 2269 2619 3383
8 174 383 1792 2210 3619 3828
9 383 708 950 3052 3294 3619
10 129 899 1383 2619 3103 3873
11 1 90 90 3912 3912 4001

Spacecraft 1 1 1 1 1 6001 6001
2 1 1 1 2393 3682 5928
3 1 1 1 1473 4306 6224
4 1 1 1 1581 4157 6265
5 1 1 1 1919 4099 5985
6 1 1 1 1091 3118 7795
7 1 1 1 2382 4178 5442
8 1 1 1 1662 3793 6548
9 1 1 1 2221 3154 6629
10 1 1 1 1600 4319 6084
11 1 1 1 793 3711 7499

All 1 1 1 1 1 1 1
2 1 1 1 1 1 8759
3 1 1 1 1 1 17353
4 1 1 1 1 1 13619
5 1 1 1 1 1 12477
6 1 1 1 1 1 14868
7 1 1 1 1 1 12619
8 1 1 1 1 1 12001
9 1 1 1 1 1 13360
10 1 1 1 1 1 11383
11 1 1 1 1 1 11131

first block differs from the rest producing the two groups of eigenvalues. Also, the tenth

block the low value of 9 still appears but only once.

The eigenvalues for the directionally dependent arm lengths are given in Table 6.10.

Again the results are similar to those of the previous case with the space-craft locked

lasers being the ones that, in general, produced the two groups of eigenvalues with large

separations between their values. The numbers of the laser noise free values are the

same being 3 and 5 for spacecraft and all locked laser, respectively. For the independent

the first block is still the exception for that option but now there are other 1’s occurring

in blocks 6 and 11. Also, in these two blocks there are values of 23 and 90 which again

could be associated with photodetectors noises.
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1 (a)

S0,0 S2,2

2001 0 0 2000 0 0 2001 0 0 1872 0 0
0 2001 0 0 2000 0 0 2001 0 0 618 0
0 0 2001 0 0 2000 0 0 2001 0 0 1102

2000 0 0 2001 0 0 1872 0 0 2001 0 0
0 2000 0 0 2001 0 0 618 0 0 2001 0
0 0 2000 0 0 2001 0 0 1102 0 0 2001

S1,1 S3,3

2001 0 0 1582 0 0 2001 0 0 1911 0 0
0 2001 0 0 618 0 0 2001 0 0 2000 0
0 0 2001 0 0 561 0 0 2001 0 0 1911

1582 0 0 2001 0 0 1911 0 0 2001 0 0
0 618 0 0 2001 0 0 2000 0 0 2001 0
0 0 561 0 0 2001 0 0 1911 0 0 2001

(b)

(c)

S0,0 S2,2

2001 1000 1000 2000 1000 1000 2001 1000 1000 1582 1000 1000
1000 2001 1000 1000 2000 1000 1000 2001 1000 1000 618 1000
1000 1000 2001 1000 1000 2000 1000 1000 2001 1000 1000 561
2000 1000 1000 2001 1000 1000 1582 1000 1000 2001 1000 1000
1000 2000 1000 1000 2001 1000 1000 618 1000 1000 2001 1000
1000 1000 2000 1000 1000 2001 1000 1000 561 1000 1000 2001

S1,1 S3,3

2001 1000 1000 1872 1000 1000 2001 1000 1000 1911 1000 1000
1000 2001 1000 1000 618 1000 1000 2001 1000 1000 2000 1000
1000 1000 2001 1000 1000 1102 1000 1000 2001 1000 1000 1911
1872 1000 1000 2001 1000 1000 1911 1000 1000 2001 1000 1000
1000 618 1000 1000 2001 1000 1000 2000 1000 1000 2001 1000
1000 1000 1102 1000 1000 2001 1000 1000 1911 1000 1000 2001

(d)

(e)

S0,0 S9,9

1 0 0 0 0 0 3201 2188 1835 321 3434 3529
0 1 0 0 0 0 2188 1498 1255 219 2349 2414
0 0 1 0 0 0 1835 1255 1053 184 1969 2024
0 0 0 1 0 0 321 219 184 33 344 354
0 0 0 0 1 0 3434 2349 1969 344 3686 3788
0 0 0 0 0 1 3529 2414 2024 354 3788 3894

S1,1 S10,10

254 651 758 396 529 848 2269 135 2964 1427 2904 1184
651 1673 1948 1017 1360 2180 135 9 177 85 173 71
758 1948 2269 1184 1584 2539 2964 177 3873 1865 3794 1547
396 1017 1184 619 826 1325 1427 85 1865 899 1827 745
529 1360 1584 826 1106 1772 2904 173 3794 1827 3718 1515
848 2180 2539 1325 1772 2842 1184 71 1547 745 1515 619

S1,1 S10,10

950 1922 1930 1408 1742 1767 1270 1533 1762 1762 1533 1269
1922 3894 3910 2852 3529 3580 1533 1852 2127 2127 1851 1533
1930 3910 3929 2865 3545 3597 1762 2127 2446 2445 2127 1762
1408 2852 2865 2091 2586 2623 1762 2127 2445 2446 2127 1762
1742 3529 3545 2586 3201 3246 1533 1851 2127 2127 1852 1533
1767 3580 3597 2623 3246 3294 1269 1533 1762 1762 1533 1270

(f)

Figure 6.15: Sample power spectral density matrices for directionally dependent arm lengths with
values of D = {15.3, 14.3, 17.3, 16.3, 19.3, 18.3}. The laser phase and photodetector noise variances are
σ2
p = 1000 and σ2

n = 1, respectively.
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(a)

S0,0 S2,2

2701 0 0 2700 0 0 2701 0 0 1772 0 0
0 3301 0 0 3300 0 0 3301 0 0 3136 0
0 0 3901 0 0 3900 0 0 3901 0 0 3767

2700 0 0 2701 0 0 1772 0 0 2701 0 0
0 3300 0 0 3301 0 0 3136 0 0 3301 0
0 0 3900 0 0 3901 0 0 3767 0 0 3901

S1,1 S3,3

2701 0 0 1451 0 0 2701 0 0 2661 0 0
0 3301 0 0 1039 0 0 3301 0 0 1753 0
0 0 3901 0 0 1034 0 0 3901 0 0 1742

1451 0 0 2701 0 0 2661 0 0 2701 0 0
0 1039 0 0 3301 0 0 1753 0 0 3301 0
0 0 1034 0 0 3901 0 0 1742 0 0 3901

(b)

(c)

S0,0 S2,2

2101 900 1200 2100 900 1200 2101 900 1200 1282 900 1200
900 2401 1500 900 2400 1500 900 2401 1500 900 2279 1500

1200 1500 2701 1200 1500 2700 1200 1500 2701 1200 1500 2604
2100 900 1200 2101 900 1200 1282 900 1200 2101 900 1200
900 2400 1500 900 2401 1500 900 2279 1500 900 2401 1500

1200 1500 2700 1200 1500 2701 1200 1500 2604 1200 1500 2701

S1,1 S3,3

2101 900 1200 977 900 1200 2101 900 1200 2067 900 1200
900 2401 1500 900 711 1500 900 2401 1500 900 1254 1500

1200 1500 2701 1200 1500 469 1200 1500 2701 1200 1500 1096
977 900 1200 2101 900 1200 2067 900 1200 2101 900 1200
900 711 1500 900 2401 1500 900 1254 1500 900 2401 1500

1200 1500 469 1200 1500 2701 1200 1500 1096 1200 1500 2701

(d)

Figure 6.16: Sample power spectral density matrices for different laser noise variances of σ2
p =

{900, 1200, 1500, 1800, 2100, 2400} for independent lasers and σ2
p = {900, 1500, 2100} for spacecraft

locked lasers. The photodetector noise variances is σ2
n = 1 and the arm lengths are D =

{15.3, 16.3, 17.3}.

6.2.2.3 The effects of the noise variances

In this section the results for the effects of different values for the noise variances and

of small separations between the two noise types are given. For the case of different

variances this was done for each noise type separately. The variances used for the laser

phase noises were σ2
pi = {900, 1200, 1500, 1800, 2100, 24000} for no phase-locking and

σ2
pi = {900, 1500, 21000} for spacecraft locked lasers with σ2

n = 1. For different photode-

tector noises the values used were σ2
ni = {1, 2, 3, 4, 5, 6} with the laser phase noise vari-

ance with the same values of σ2
p = 1000. The offsets used were Di = {15.3, 16.3, 17.3}.
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Table 6.11: Frequency domain eigenvalues for different laser phase and photodetector noise variances.
In columns 2-7 the laser phase noises are σ2

p = {900, 1200, 1500, 1800, 2100, 2400} for independent
lasers and σ2

p = {900, 1500, 2100} for spacecraft locked lasers. In both cases the photodetector noise
variances are kept constant with values of σ2

n = 1. In columns 8-13 the photodetector noises are
σ2
n = {1, 2, 3, 4, 5, 6} and laser phase noise variances are kept constant with values of σ2

p = 1000.

Phase-locking Block Eigenvalues
Different laser variances Different photodetector variances

None 1 1 1 1 5401 6601 7801 2 3 4 4003 4004 4005
2 1250 2262 2867 4152 4341 4935 1108 1676 1736 2273 2331 2897
3 134 165 929 4473 6437 7668 77 111 803 3202 3896 3932
4 40 1548 2159 5054 5363 5643 35 1056 1218 2791 2951 3970
5 521 633 1552 3850 5969 7281 288 421 1442 2563 3586 3721
6 629 806 1370 4773 5796 6432 536 537 758 3251 3469 3470
7 154 1129 1334 5249 5268 6674 130 622 902 3105 3387 3875
8 264 702 1763 3640 6338 7100 176 386 1793 2212 3623 3831
9 375 1890 2098 4504 5027 5912 317 1057 1500 2507 2952 3688
10 13 236 338 5064 6589 7566 12 132 286 3719 3877 3995
11 1781 2370 2667 3621 4232 5135 1559 1853 1854 2152 2153 2450

Spacecraft 1 1 1 1 1 6162 8240 2 3 4 5 6003 6004
2 1 1 1 3085 5050 6268 2 3 5 3107 3839 5065
3 1 1 1 2232 2992 9179 3 3 5 1835 2804 7371
4 1 1 1 1554 6228 6622 2 4 4 1448 4584 5979
5 1 1 1 2346 3590 8467 2 4 5 1931 3445 6635
6 1 1 1 2451 3670 8283 2 3 5 2462 2756 6792
7 1 1 1 1198 5850 7355 2 4 4 1075 5024 5912
8 1 1 1 1969 4052 8383 3 3 5 1664 3796 6550
9 1 1 1 2328 4667 7408 2 3 5 2250 3582 6178
10 1 1 1 320 5933 8150 2 4 5 280 5705 6025
11 1 1 1 3577 4561 6266 2 4 5 3559 3919 4533

All 1 1 2 3 4 5 6
2 1 2 4 4 6 10096
3 1 2 4 5 6 22044
4 1 3 3 5 6 16262
5 2 3 3 5 6 6526
6 1 2 4 5 5 8634
7 1 2 4 4 6 13227
8 1 3 3 4 6 12003
9 2 2 3 5 6 12472
10 2 2 4 5 5 15198
11 1 2 4 5 6 12296

The effects of different noise variances

The matrices for the different laser phase noises for the two phase-locking cases are

given in Figure 6.16 and those for the different photodetector noises are in Figure 6.17.

The eigenvalues for the matrices are given in Table 6.11. For both sets, the results

are the same as in the previous sections where the independent lasers did not produce

the two groups of values except for the first block. Also, for the spacecraft locked

lasers, the number of laser noise free eigenvalues is 3 for all blocks except the first with

large separations between their values and those with laser phase noises. For the case

with different photodetector noise variances the laser noise free eigenvalues reflect the

different values but not all are present for each block.
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(a)

S0,0 S10,10

2001 0 0 2000 0 0 2001 0 0 1717 0 0
0 2002 0 0 2000 0 0 2002 0 0 1992 0
0 0 2003 0 0 2000 0 0 2003 0 0 1872

2000 0 0 2004 0 0 1717 0 0 2004 0 0
0 2000 0 0 2005 0 0 1992 0 0 2005 0
0 0 2000 0 0 2006 0 0 1872 0 0 2006

S1,1 S11,11

2001 0 0 895 0 0 2001 0 0 149 0 0
0 2002 0 0 328 0 0 2002 0 0 149 0
0 0 2003 0 0 268 0 0 2003 0 0 445

895 0 0 2004 0 0 149 0 0 2004 0 0
0 328 0 0 2005 0 0 149 0 0 2005 0
0 0 268 0 0 2006 0 0 445 0 0 2006

(b)

(c)

S0,0 S10,10

2001 1000 1000 2000 1000 1000 2001 1000 1000 1717 1000 1000
1000 2002 1000 1000 2000 1000 1000 2002 1000 1000 1992 1000
1000 1000 2003 1000 1000 2000 1000 1000 2003 1000 1000 1872
2000 1000 1000 2004 1000 1000 1717 1000 1000 2004 1000 1000
1000 2000 1000 1000 2005 1000 1000 1992 1000 1000 2005 1000
1000 1000 2000 1000 1000 2006 1000 1000 1872 1000 1000 2006

S1,1 S11,11

2001 1000 1000 895 1000 1000 2001 1000 1000 149 1000 1000
1000 2002 1000 1000 328 1000 1000 2002 1000 1000 149 1000
1000 1000 2003 1000 1000 268 1000 1000 2003 1000 1000 445
895 1000 1000 2004 1000 1000 149 1000 1000 2004 1000 1000

1000 328 1000 1000 2005 1000 1000 149 1000 1000 2005 1000
1000 1000 268 1000 1000 2006 1000 1000 445 1000 1000 2006

(d)

(e)

S0,0 S9,9

1 0 0 0 0 0 3686 2349 1969 3685 2349 1969
0 2 0 0 0 0 2349 1499 1255 2349 1497 1255
0 0 3 0 0 0 1969 1255 1055 1969 1255 1052
0 0 0 4 0 0 3685 2349 1969 3689 2349 1969
0 0 0 0 5 0 2349 1497 1255 2349 1502 1255
0 0 0 0 0 6 1969 1255 1052 1969 1255 1058

S1,1 S10,10

1106 1360 1584 1105 1360 1584 3718 173 3794 3717 173 3794
1360 1674 1948 1360 1672 1948 173 10 177 173 8 177
1584 1948 2271 1584 1948 2268 3794 177 3875 3794 177 3872
1105 1360 1584 1109 1360 1584 3717 173 3794 3721 173 3794
1360 1672 1948 1360 1677 1948 173 8 177 173 13 177
1584 1948 2268 1584 1948 2274 3794 177 3872 3794 177 3878

S2,2 S11,11

3201 3529 3545 3200 3529 3545 1852 1851 2127 1851 1851 2127
3529 3895 3910 3529 3893 3910 1851 1853 2127 1851 1851 2127
3545 3910 3931 3545 3910 3928 2127 2127 2448 2127 2127 2445
3200 3529 3545 3204 3529 3545 1851 1851 2127 1855 1851 2127
3529 3893 3910 3529 3898 3910 1851 1851 2127 1851 1856 2127
3545 3910 3928 3545 3910 3934 2127 2127 2445 2127 2127 2451

(f)

Figure 6.17: Sample power spectral density matrices for different photodetector noise variances of
σ2
n = {1, 2, 3, 4, 5, 6} with laser phase noises of σ2

p = 1000 for lasers that are (a) independent, (c)
phase-locked on each spacecraft and (e) all locked. The arm lengths used are D = {15.3, 16.3, 17.3}.
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The effects of small separation between the laser phase and photodetector

noise variances

As in the time domain the laser phase noise variances were reduced to values that

were close to the photodetector noises variances. Five combinations of variances were

used which are given in Table 6.12 along with the eigenvalues for 11 blocks. The power

spectral density matrix given in Figure 6.18 is the only one presented which corresponds

to the first set of variances in the table where the laser phase variances are σ2
p = 9 and

the photodetector noises variances are σ2
n = 1. As in the previous cases the assumption

here is that the eigenvalues with same values as the photodetector noise variances will

be the ones that are assumed to be free from laser phase noise. The other eigenvalues

that are not equal to these are ignored especially because of the closeness in two types

of variances.

For the first set in Table 6.12 the variances are σ2
n = 1 and σ2

p = 9 where the

closeness of the values does not affect the separation into the two groups which are still

be easily distinguished because of the reasonable differences between the two sets of

eigenvalues. Even when there is only a difference of 1 between the two noise variances

which is the second set of values in Table 6.12 the two groups of eigenvalues are still

obvious even though there has been a large drop on the differences between their values.

The same is true for the other three sets with separations between smallest laser phase

noise variance and the largest photodetector noise variances being difference of only 0.5

and 0.2. The Fourier transform sums all the values in the time series and this produces

larger separations in their values in the spectra.

6.3 Summary

In this section the aim was to determine how certain properties of LISA relating to its

noise covariance and power spectral density matrices affect the nature if the eigenvalues.

We were interested in finding out what would prevent the eigenvalues from splitting

into the two distinct groups related to those with and without laser phase noises. The

properties that were investigated are the phase-locking of the lasers, the arm lengths

and the variances of laser phase and photodetector noises. This was done in the time

and frequency domains which included summaries of the effects these properties on the
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Table 6.12: Frequency domain eigenvalues for small separations between the laser phase and pho-
todetector noise variances with the lasers locked on each spacecraft and with arm lengths of D =
{15.3, 16.3, 17.3}.

Set Noise Variance Block Eigenvalues

1 σ2
n = 1, σ2

p = 9 1 1 1 1 1 55 55
2 1 1 1 29 36 47
3 1 1 1 18 26 67
4 1 1 1 14 42 55
5 1 1 1 18 32 61
6 1 1 1 23 26 62
7 1 1 1 11 46 54
8 1 1 1 16 35 60
9 1 1 1 21 33 57
10 1 1 1 3 52 55
11 1 1 1 33 36 42

2 σ2
n = 1, σ2

p = 2 1 1 1 1 1 13 13
2 1 1 1 7 9 11
3 1 1 1 5 7 16
4 1 1 1 4 10 13
5 1 1 1 5 8 14
6 1 1 1 6 7 15
7 1 1 1 3 11 13
8 1 1 1 4 9 14
9 1 1 1 5 8 13
10 1 1 1 2 12 13
11 1 1 1 8 9 10

3 σ2
n = 1.0, σ2

p = 1.5 1 1.0 1.0 1.0 1.0 10.0 10.0
2 1.0 1.0 1.0 5.7 6.8 8.6
3 1.0 1.0 1.0 3.8 5.2 12.1
4 1.0 1.0 1.0 3.2 7.9 10.0
5 1.0 1.0 1.0 3.9 6.2 11.0
6 1.0 1.0 1.0 4.7 5.1 11.2
7 1.0 1.0 1.0 2.6 8.5 9.9
8 1.0 1.0 1.0 3.5 6.7 10.8
9 1.0 1.0 1.0 4.4 6.4 10.3
10 1.0 1.0 1.0 1.4 9.6 10.0
11 1.0 1.0 1.0 6.3 6.9 7.8

4 σ2
ni = {0.8, 0.9, 1.0, 1.1, 1.2, 1.3}, σ2

p = 1.5 1 0.9 1.0 1.1 1.2 10.0 10.1
2 0.9 1.0 1.2 5.7 6.8 8.6
3 1.0 1.0 1.2 3.8 5.3 12.1
4 0.9 1.1 1.1 3.3 8.0 10.0
5 0.9 1.1 1.2 3.9 6.2 11.0
6 0.9 1.0 1.2 4.7 5.2 11.2
7 0.9 1.1 1.1 2.7 8.6 9.9
8 1.0 1.0 1.2 3.5 6.7 10.9
9 0.9 1.0 1.2 4.4 6.5 10.3
10 0.9 1.1 1.2 1.5 9.6 10.1
11 0.9 1.1 1.2 6.4 6.9 7.9

5 σ2
ni = {0.8, 0.9, 1.0, 1.1, 1.2, 1.3}, σ2

pi = {1.5, 1.6, 1.7} 1 0.9 1.0 1.1 1.2 10.2 11.1

2 0.9 1.0 1.2 5.8 7.5 9.0
3 1.0 1.0 1.2 4.0 5.4 12.9
4 0.9 1.1 1.1 3.4 8.8 10.3
5 0.9 1.1 1.2 4.1 6.4 11.8
6 0.9 1.0 1.2 4.8 5.6 11.9
7 0.9 1.1 1.1 2.8 9.3 10.3
8 1.0 1.0 1.2 3.7 6.9 11.7
9 0.9 1.0 1.2 4.6 7.0 10.8
10 0.9 1.1 1.2 1.5 9.9 11.0
11 0.9 1.1 1.2 6.8 7.0 8.5

respective covariance and power spectral density matrices.

The overall results were that in both domains the property that had the major effect
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(a)

S0,0 S9,9

19 9 9 18 9 9 19 9 9 15 9 9
9 19 9 9 18 9 9 19 9 9 4 9
9 9 19 9 9 18 9 9 19 9 9 9

18 9 9 19 9 9 15 9 9 19 9 9
9 18 9 9 19 9 9 4 9 9 19 9
9 9 18 9 9 19 9 9 9 9 9 19

S1,1 S10,10

19 9 9 8 9 9 19 9 9 15 9 9
9 19 9 9 3 9 9 19 9 9 18 9
9 9 19 9 9 2 9 9 19 9 9 17
8 9 9 19 9 9 15 9 9 19 9 9
9 3 9 9 19 9 9 18 9 9 19 9
9 9 2 9 9 19 9 9 17 9 9 19

S2,2 S11,11

19 9 9 11 9 9 19 9 9 1 9 9
9 19 9 9 17 9 9 19 9 9 1 9
9 9 19 9 9 17 9 9 19 9 9 4

11 9 9 19 9 9 1 9 9 19 9 9
9 17 9 9 19 9 9 1 9 9 19 9
9 9 17 9 9 19 9 9 4 9 9 19

(b)

Figure 6.18: Sample power spectral density matrix for laser phase and photodetector noise variances of
σ2
p = 9 and σ2

n = 1respectively. The arm lengths are D = {15.3, 16.3, 17.3} with the lasers phase-locked
on each spacecraft. The values shown on the right are for some of the blocks of the matrix.

on the splitting of the eiegenvalues into the two distinct groups was the phase-locking

of the lasers. When the lasers were all independent (no phase-locking) no laser phase

noise free eigenvalues were obtained. The other properties were mostly tested with the

three phase-locking options and the results did not change for the independent lasers,

that is, the other properties did not override this result. For the noise variances, having

different and real values just led to the eigenvalues reflecting these values which was

also true for time varying variances. When the laser phase and photodetector noise

variances had values that were close the two groups were still produced but being able

to distinguish between them depended on how close their values were. In general it

easier to do this in the frequency domain. More detailed summary of the results for

each domain are given in the following sections.

6.3.1 Time domain

The structure of time domain covariance matrix in terms of the locations of its values

is determined by the type of laser phase-locking and by the arm lengths. The phase-

locking determines the number of correlations that occur between the optical benches

therefore, defined the density of the blocks while the arm lengths determine the location
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Table 6.13: Summary of the laser noise free eigenvalues in the time domain for the matrices with time
values of t = {0, ..., 23}.

Property Option Number of eigenvalues
None Spacecraft All

Arm lengths Equal 0 40 120
Unequal 0 28 104
Directional 0 20 102
Time varying 0 18 102

Variances Unequal laser 0 29 -
Unequal photodetector 0 29 104
Variable (both) - 29 -

of the blocks within the matrix. The values of the entries are determined by the noise

variances.

It was discovered that the property prevented the splitting of the eigenvalues into the

two groups was the absence laser phase-locking, that is the covariance matrices for inde-

pendent lasers did not produce any laser noise free eigenvalues. The behaviour/nature

of the arm lengths and noise variance did not override this result. A summary of the

eigenvalues for the different options investigated is given in Table 6.13. With phase-

locking the number of these values increased with the number of locked lasers but they

decreased with the increase in the number of different values for the arm lengths.

6.3.2 Frequency domain

In the toy model there are no correlations between the different frequencies and the

power spectral density matrices are all block diagonals. As in the time domain the

laser phase-locking determines the number of correlations between the optical benches

readings which is reflected in the structure of the individual blocks. It is also the

property that determines the location of the correlations within each block. The arm

lengths appear as phase shifts in the power spectra therefore contribute in the blocks

along with the noise variances. The contributions to each frequency in the spectra is the

sum of the time domain values therefore, the time varying arm lengths and variances

do not have the same effects on the power spectral density matrix as they do in the

covariance matrix.

In general the results reflect those of the time domain in terms of what prevents the

splitting in to the two groups of eigenvalues but with a few quirks. The property that

prevented the splitting in to the two groups is the absence of phase-locking. However,
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Table 6.14: Summary of the eigenvalues in the frequency domain for the different options.

Case Block Number of eigenvalues
Number None Spacecraft All

Generally 1 3 4 6
2 - 11 0 3 5

For directionally dependent arms 1 3 4 6
2-5,7-10 0 3 5
6, 11 1 3 5

note that the first blocks of the matrices where the frequency is zero have slightly

different properties than the other blocks. So the absence of laser noise free eigenvalues

for the power spectral density matrices with independent lasers excludes the first block.

As in the time domain the nature of the variances did not override the results for

independent lasers nor did change the number of eigenvalues. The arm lengths mostly

followed this pattern however, with the directionally dependent values there were a few

laser noise free eigenvalues appearing in two of the blocks for the non zero frequencies.

Also the number of laser noise free eigenvalues seem to be defined by the phase-locking

where they were greater for all locked lasers. A summary of the eigenvalues is given in

Table 6.14 where they are all grouped since the numbers did not change for the different

properties with the exception of the directionally dependent arm lengths which is shown

separately.
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Conclusions

Space-based laser interferometer gravitational detectors will allow observations below

1 Hz which is out of the range of ground-based systems due to limitations caused

by gravity gradient noises and restrictions on the physical arm lengths. LISA was

the original NASA-ESA design for a space-based detector consisting of three satellites

that maintain a nearly equilateral triangle formation with sides of 5 × 109 m as they

orbit the Sun in a location that is about 20◦ behind the Earth. The time varying

unequal arm lengths coupled with the significant travel times between the spacecraft

prevents the cancellation of the overwhelming laser phase noises by the methods used

in ground-based interferometers. This was resolved with the time delay interferometry

observables which are linear combinations of the raw data with appropriate time offsets

that result in their cancellation. The conventional way of doing LISA analysis is through

these observables which have to be generated before any weak signal extraction can be

performed. However, another way of obtaining the sensitivity for the data was presented

by Romano and Woan that allowed it to be accomplished during signal extraction which

was achieved by performing a principal component analysis of the raw data. They

illustrated how this provided two distinct groups of eigenvalues that were distinguished

by the absence of laser phase noises in one set, the target group, which could be used

to factorise the likelihood function used in the Bayesian inference. Their investigations

were done in the time domain using a small covariance matrix with integer values for

times, arm lengths and noise variances.

In this thesis we implemented the principal component approach using a toy model

of LISA based on a static rigid array with unequal integer arm lengths and with data

consisting of a simple sinusoidal signal, laser phase noises and photodetector noises.

The analysis was done in the time and frequency domains and, for comparing of the

results, we also performed the analysis using the conventional approach with the fre-

quency domain optimal AET observables. The principal components are obtained from

the noise (data) covariance and power spectral matrices therefore, in testing how this

213
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method handled real LISA data we focused on the properties of LISA that affect them

including the laser phase-locking, arm lengths and noise variances. We were interested

in how the method adapted to time varying arms as this proved to be the breaking

point of some of the traditional time delay interferometry observables. We were also

interested in what could prevent the occurrence of the laser noise free eigenvalues as

this is necessary for the success of this method. Romano and Woan found that it was

possible to use the eigenvectors of the principal components to generate one of the time

delay interferometry observables suggesting a connection between them therefore this

was also investigated.

For testing the connection between the principal components and the TDIs we used

a small covariance matrix in order to obtain exact solutions using algebraic methods.

From this we were able to generate the four Sagnac observables for different times from

the time domain eigenvectors and also the AET observables from the frequency domain

eigenvectors which indicates that this method is just another way of obtaining the time

delay interferometry observables. The difference is that the observables generated in

this manner are tied to the length of the data and are not general expressions like the

traditional observables, for example, Sagnac α(7) and α(8) were generated from different

sets of eigenvectors. Also, multiple eigenvalues that are free from laser phase noises are

produced with this method which means that it allows the simultaneous generation of

many time delay interferometry observables.

The property that prevented the generation of the eigenvalues that were free from

laser phase noises was the absence of phase-locking. This was also true for the frequency

domain but with some exceptions with the zero bin. For the separation between the

values of the variances of the two noises this was reduced to 0.2 and this did not prevent

the two distinct groups but it was more difficult to distinguish between them. However,

the reason for the time delay interferometry observables is the size of the laser phase

noises which result in the weak signals being overwhelmed, therefore, if the values are

reduced to the levels of the secondary noises which are close to the signals this is no

longer an issue and their cancellation would no longer be required. In terms of the time

varying arm lengths, this did not affect this method in the same way that it does the

traditional time delay interferometry observables. In this method the variations will

appear in the covariance matrix and from our toy model investigations this did not
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prevent the occurrence of the eigenvalues with no laser phase noises.

For the signal detection we performed an amplitude search for a simple sinusoidal

gravitational wave and obtained the same accuracy and precision as that acquired using

the conventional approach with the time delay interferometry observables. The sugges-

tion by Romano and Woan was to factorise the likelihood with analysis done only on

the laser noise free data however, we found that this was not required as the size of the

laser phase noises meant that the inverse reduced their contribution in the transformed

data. The signal extraction process uses templates of the signals which depend on the

structure of the data used and for real LISA data the minimum number of terms in the

geometric observables is 16. The principal component approach uses the raw data that

contain only two copies of the signal in the raw data. The laser phase noise free data,

the time delay interferometry observables, are obtained by transforming the raw data

using the eigenvectors.

The overall results are that (i) the principal components approach is another way of

producing the time delay interferometry observables which are obtained from the eigen-

decomposition of the covariance matrix, (ii) analysis using these principal components

produced the same results as the conventional time delay interferometry observables

and (iii) this approach adapts readily to real LISA data especially in dealing with time

varying arms. The advantage of this method is that it simplifies LISA data analysis

by incorporating the laser noise cancellation in the statistical inference achieving the

same results as the conventional approach. Future work could include a real test of the

method by applying it to the more realistic data of the Mock LISA Data Challenges.

This method depends on capturing the variances and covariances in the data which

defines the principal components therefore, the covariance matrix must match what is

occurring in the data. In our investigation these were generated algebraically based on

assumptions made about the noise characteristics and behaviour. One of those assump-

tions was Gaussian distributed noises which are completely defined by the covariance

matrix therefore, this could be a problem for distributions for which this does not occur.

Determining the noise characteristics and behaviour is also a problem with the tradi-

tional time delay interferometry observables. However, for these observables there are

some that will have low responses to gravitational waves, zero signal observables, that

would provide information about the noises. One other option is to include a search on
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(a) (b)

Figure 7.1: Samples of the raw data covariance and power spectral density (absolute) matrices for
spacecraft phase-locked lasers and equal arm lengths.

the noise characteristics in the inference. Another major problem, which is also shared

with the conventional approach, is the matrix inversion. The PCA has the advantage of

diagonalising the covariance matrix which is trivial to invert but the problem is trans-

ferred to the eigendecomposition. However, for the algebraic solution the characteristic

equation only requires the determinant of the covariance matrix while the inversion also

uses the matrix of cofactors. In the time domain the computation times for the eigen-

decomposition of the matrix using algebraic solutions scales very badly with the size of

the matrix, for example, it took approximately 9 h to obtain results for a 90×90 matrix

which just covers a time span of 15 s. Computation times using numeric solutions scaled

better with time but overall they were still slow, for example, it took 7 m to compute a

18000× 18000 (50 m) square matrix which is extremely small for the size of LISA data.

7.1 Future work

Potential for future work is on the eigendecomposition of these large matrices which is

essential for the principal components and would also be useful for the matrix inversion

for the conventional approach. The covariance matrix has non-zero contributions that

are restricted to narrow bands near the main diagonal which will not change in width

with the increase in the size of the matrix. The bandwidth will change slightly with

the temporal changes but will not go beyond the maximum that reflects the 1% change
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due to flexing. Samples of the matrices in the time and frequency domains in Figure

7.1 are for static stationary array with the laser phase-locked on each spacecraft and

equal arm lengths. While for full matrices computing the determinant is non-trivial, the

sparseness of LISA’s covariance matrix could lead to simplification of the computation.

The determinant is in the characteristic equation used for algebraic solutions which is

|C− λI
∣∣ = 0, (7.1)

where C is the covariance matrix and I is the unit matrix. The traditional way to

compute the determinant is to use one row or column of the matrix. Using the first

with elements given by c1j the equation for computing the determinant from Petersen

and Pederson [48] is

det(C) =
n∑
j=1

(−1)j+1c1j det
(
[C]1j

)
(7.2)

where [C]1j is a smaller matrix obtained from C by deleting the row 1 and column j.

For LISA most of the elements in the row are zero with a possible maximum of Di−Dj

band near the main diagonal and the Di. There will also be zeros within the band as

shown in Figure 7.1a and the quantity will depend on the lengths of the arms, phase-

locking and sampling rate. In that example there are only five non-zero values. Also,

because the determinant is a sum of the values computed for each element in the first

row as given in Equation 7.2, there is the opportunity for parallel computation with the

values for each element c1j computed separately and then summed.

Other possibilities are from transforming the matrix into forms that have trivial

solutions for the determinant such as diagonal and triangular matrices or have closed

form solutions such as tridiagonal matrices. A block diagonal structure was obtained

in the frequency domain for our toy examples as shown in Figure 7.1b where eigende-

composition it allowed the decomposition to be performed on individual blocks. This

structure was obtained because of the assumption of the lack of correlations between

frequencies. In theory the small size (6 × 6) should allow algebraic solutions with rea-

sonable times but this depended on the values in the blocks which includes exponential

terms. Despite this the partitioning allows parallel computation which can also be used

for numeric methods. The diagonal structure of the matrix will be lost if there are

correlations between the frequencies and the problems will be similar to those of the

time domain.
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(a)

(b) (c)

Figure 7.2: Matrix partitioning possibilities for the covariance matrix. The small blocks represent the
6× 6 blocks for the optical benches and the larger red and yellow blocks are the partitions. This would
represent the case for equal arm lengths and all lasers phase-locked with the separations between the
diagonals reduced for illustration.

Other ways of obtaining the diagonal and tridiagonal structure is by partitioning the

matrix into blocks. Unfortunately, there is no way to partition the covariance matrix

to obtain independent blocks. This is illustrated in Figure 7.2b which would represent

the case of equal arm lengths and all lasers phase-locked. The separation between the

diagonals have been reduced for illustrative purposes. In this figure the small blocks in

the matrices represent the 6 × 6 blocks of the covariance matrices with the blue ones
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indicating non-zero values and the coloured squares are used to show the partitioning.

The only possibility for diagonal solution is with overlapping blocks Figure 7.2a. This

could be investigated to determine if there is a solution that will account for the shared

blocks. In this illustration the small size of the partition made the overlap large but

with large blocks the contribution from each block will be reduced.

For the tridiagonal case which are illustrated in Figures 7.2b and 7.2c giving three

types of blocks including those centred on the main diagonal, those next to the main

diagonal, and the others which will all be zero. A simple example is for a matrix

consisting of the four blocks in Figure 7.2c where the determinant is given by Petersen

and Pederson [48] as

det

(A11 A12

A21 A22

) = det
(
A22

)
· det

(
C1

)
= det

(
A11

)
· det

(
C2

)
, (7.3)

where

C1 = A11 −A12A
−1
22 A21,

C2 = A22 −A21A
−1
11 A12, (7.4)

with possibility of checking how this expanded to the larger matrix. There are methods

that take advantage the symmetric structure and give closed form solutions such as that

given for symmetric banded Topelitz matrices by Trench [74] with solutions related to

the bandwidth and both the matrix size. Also, there are solutions for general block

tridiagonal matrices [56] but require nonsingular blocks which can be avoided by par-

titioning the matrix allow for this. These cases will only work for some simplification

of LISA such as fixed arm lengths, however, they may still be useful depending on how

much the breathing of the arms affect the matrix structure which will depend on the

phase-locking and sampling rate.
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