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Abstract

The current approach to data analysis for the Laser Interferometry Space Antenna
(LISA) depends on the time delay interferometry observables (TDI) which have to be
generated before any weak signal detection can be performed. These are linear combi-
nations of the raw data with appropriate time shifts that lead to the cancellation of the
laser frequency noises. This is possible because of the multiple occurrences of the same
noises in the different raw data. Originally, these observables were manually generated
starting with LISA as a simple stationary array and then adjusted to incorporate the
antenna’s motions. However, none of the observables survived the flexing of the arms
in that they did not lead to cancellation with the same structure.

The principal component approach is another way of handling these noises that was
presented by Romano and Woan which simplified the data analysis by removing the
need to create them before the analysis. This method also depends on the multiple
occurrences of the same noises but, instead of using them for cancellation, it takes ad-
vantage of the correlations that they produce between the different readings. These
correlations can be expressed in a noise (data) covariance matrix which occurs in the
Bayesian likelihood function when the noises are assumed be Gaussian. Romano and
Woan showed that performing an eigendecomposition of this matrix produced two dis-
tinct sets of eigenvalues that can be distinguished by the absence of laser frequency
noise from one set. The transformation of the raw data using the corresponding eigen-
vectors also produced data that was free from the laser frequency noises. This result led
to the idea that the principal components may actually be time delay interferometry
observables since they produced the same outcome, that is, data that are free from
laser frequency noise. The aims here were (i) to investigate the connection between the
principal components and these observables, (ii) to prove that the data analysis using
them is equivalent to that using the traditional observables and (ii) to determine how
this method adapts to real LISA especially the flexing of the antenna.

For testing the connection between the principal components and the TDI observ-
ables a 10 x 10 covariance matrix containing integer values was used in order to obtain
an algebraic solution for the eigendecomposition. The matrix was generated using fixed

unequal arm lengths and stationary noises with equal variances for each noise type.



Results confirm that all four Sagnac observables can be generated from the eigenvec-
tors of the principal components. The observables obtained from this method however,
are tied to the length of the data and are not general expressions like the traditional
observables, for example, the Sagnac observables for two different time stamps were
generated from different sets of eigenvectors. It was also possible to generate the fre-
quency domain optimal AET observables from the principal components obtained from
the power spectral density matrix. These results indicate that this method is another
way of producing the observables therefore analysis using principal components should
give the same results as that using the traditional observables. This was proven by
fact that the same relative likelihoods (within 0.3%) were obtained from the Bayesian
estimates of the signal amplitude of a simple sinusoidal gravitational wave using the
principal components and the optimal AET observables.

This method fails if the eigenvalues that are free from laser frequency noises are
not generated. These are obtained from the covariance matrix and the properties of
LISA that are required for its computation are the phase-locking, arm lengths and
noise variances. Preliminary results of the effects of these properties on the principal
components indicate that only the absence of phase-locking prevented their production.
The flexing of the antenna results in time varying arm lengths which will appear in
the covariance matrix and, from our toy model investigations, this did not prevent
the occurrence of the principal components. The difficulty with flexing, and also non-
stationary noises, is that the Toeplitz structure of the matrix will be destroyed which
will affect any computation methods that take advantage of this structure. In terms of
separating the two sets of data for the analysis, this was not necessary because the laser
frequency noises are very large compared to the photodetector noises which resulted
in a significant reduction in the data containing them after the matrix inversion. In
the frequency domain the power spectral density matrices were block diagonals which
simplified the computation of the eigenvalues by allowing them to be done separately
for each block. The results in general showed a lack of principal components in the
absence of phase-locking except for the zero bin. The major difference with the power
spectral density matrix is that the time varying arm lengths and non-stationarity do

not show up because of the summation in the Fourier transform.
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Chapter 1

Introduction

1.1 Gravity

Gravity, for both Newton and Einstein, is a property of matter/energy relating to its
mass that causes objects to move closer to one another but they differ in how this
motion is produced. In the classical view, as defined by Newton’s Law of Universal
Gravitation, this motion is due to an attractive force that is created by the objects
mass. This force is gravity and it is transmitted through gravitational fields that are set
up by matter/energy in the surrounding space. In General Relativity on the other hand,
this motion is due to the deformation of the space surrounding matter that produces a
positive curvature towards its centre of mass. This curved space results in the deflection
of the path of other objects creating motion that mimics an attractive force. This motion
in the curved space is gravity and the gravitational field is the curvature of space [17].

In Einstein’s view of gravity, this curvature is not only caused by matter nor does it
only affect space. The Special Theory of Relativity coupled space with time and matter
with energy [14, 27]. In this theory matter and energy are equivalent as shown by
Einstein’s the energy-momentum equation (E? = m2c? + p?c?) so that spacetime/space
can be also distorted by energy [14]. Time and space exist as a 4-dimensional continuum
called a Minkowski spacetime which means that both could be distorted.

Newton’s gravity involves motion under the influence of forces while for Einstein it
is about motion in curved space therefore, it is dependent on the geometry of space; it is
a geometric theory [17]. The curvature of space/spacetime is defined by Einstein’s field
equation relating the curvature tensor G to the source of distortion, the stress-energy-

momentum tensor T which can be written as

&G

4

G—:

T (1.1)

c
where G is the universal gravitational constant and c is the speed of light [13]. In curved

spacetime the shortest straightest path is along a geodesic and motion along these paths
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Figure 1.1: The effects of the cross and plus polarisations of a gravitational wave on a ring of free
particles

is described by the geodesic equations [17]. Significant curvature is produced from very
dense sources which are very large masses packed in small volumes [13]. This can be
easily seen from the differential form of Gauss’s law where the field strength/intensity

is defined as the gravitational flux through a surface which is
V.-g=—4rGp (1.2)

where p is the mass density and G is the gravitational constant [55]. So that the more

densely packed objects will have stronger fields or, for Einstein, greater curving power.

1.2 Gravitational waves

The prediction of gravitational waves by Einstein came from the weak field approxi-
mation of the field equations, nearly flat spacetime, for which the solution is a wave
equation. They travel at the speed of light and transport energy as gravitational radi-
ation. The properties according to General Relativity are that they are transverse and
have two independent polarizations. Their transverse nature is manifested in how space-
time is distorted which is in a plane perpendicular to the direction of their propagation.
They are also area preserving in the transverse plane in that the stretching of spacetime
in one direction will cause a corresponding squeezing in a direction perpendicular to the
other producing two types of polarizations, h, and h,, that are 45° to each other. The
effects of the different polarisations on a ring of particles is shown in Figure 1.1.

The first evidence for their existence was indirectly obtained from measurements of

changes in the orbits of pulsars in binary systems which, according to general relativity,
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Figure 1.2: The orbital decay of the binary pulsar PSR B1913+16 comparing the observations (points)
and theoretical values (line) based on General Relativity. Weisberg, Nice and Taylor [80]

decreases because of gravitational damping with energy being lost through gravitational
radiation. This was first observed by Taylor and Weisberg [64] from observations of
PSR B1913+416 a binary system containing a pulsar discovered by Hulse and Taylor
[35]. Figure 1.2 shows the results of over thirty years of observations of this binary
presented by Weisberg, Nice and Taylor [80]. The theoretical model used to determine
the decay rate was based on General Theory of Relativity which produced a 0.997+0.002
agreement with the observed decay rate supporting this theory of gravity.

The actual observation of gravitational waves was made by the two LIGO detectors
at Livingston and Hanford of the coalescence of a binary system consisting of two black
holes on September 14, 2015 [3, 1]. The plots of the waveforms are given in Figure 1.3
showing the system’s inspiral, merger and final ring-down into a single black hole. From
just this observation came proof of gravitational waves, the existence of black holes
and, the fact that the waveforms match that predicted by General Theory of Relativity,
support for this theory of gravitation. Confirmation came from the observation of

another binary black hole coalescence on December 26, 2015 by these detectors [2].

1.2.1 Sources of gravitational waves

Gravitational waves are the propagating oscillations of the gravitational fields [57]. The

gravitational field is determined by the distribution of the mass-energy of the source
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Figure 1.3: The gravitational waves produced from the merger of a pair of black holes GW150914
observed by two LIGO detectors. Abbott et. al. [3]

and its strength will only change if there is a change in this distribution through a
loss/gain or from accelerated motion. For single sources this can be achieved through
asymmetric spinning or from symmetric spinning with structural asymmetry. Examples
of this type are spinning neutron stars which will produce continuous gravitational wave
(Figure 1.4a). Single sources can also produce gravitational waves from non-spherical
collapses or explosions such as core collapse of white dwarfs or the supernovae [52] with
sample waveform as shown in Figure 1.4c. Continuous and burst waveforms are also
produced by binary systems with the former being obtained when these systems are in
stable orbits [52]. Bursts from binaries can be produced by those with extreme mass
ratios, such as a super-massive black holes with a compact object, that are in highly
eccentric orbits [12]. Inspirals, like the one shown in Figure 1.4b, can be obtained from
the coalescence and merger of compact binaries such as two black holes or two neutron
stars. There will also be stochastic gravitational waves (Figure 1.4d) produced for the
superposition of incoherent sources from distant merges of neutron stars or supermassive

black holes or from the cosmological background [52].

1.3 Space-based gravitational wave detectors

Blair et. al. [13] indicated that the minimum length for a detector baseline to achieve

optimum sensitivity is half the wavelength of the gravitational signal being observed.
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Figure 1.4: Examples of the types of waveforms expected from some of the gravitational waves sources.
(LIGO Science Collaboration [40])

For the frequency ranges in gravitational wave spectrum shown in Figure 1.5 this gives
lengths of approximately 15 x 10?° km to 15 km. Currently, the longest detector is LIGO
which is a Michelson-type laser interferometer with physical lengths of 4 km which is less
than a third the lowest wavelength. The restriction on the arm length is largely due to
physical limitations caused by the curvature of the Earth but also includes building and
operational costs, vacuum system maintenance and the alignment of the interferometer
[13, 25]. The other main problem affecting ground-based detectors are seismic noises
due to vibrations and fluctuations in the gravity-gradient in the Earth’s surface [50].
Isolators can compensate for the vibrations but gravity-gradient noises, which are due
to random gravitational forces associated with the changes in the mass density in the
detectors surroundings, cannot be shielded and is the limiting noise source below 10 Hz
[58]. Reducing the effects from these noises is accomplished by locating the detectors in
seismically quieter sites which can increase sensitivities to 1 Hz [50]. The underground
location for KAGRA detector takes advantage of the decrease in the seismic waves with
depth. Even with these limitations, the first observations of gravitational waves was
produced by the LIGO ground-based observatories at Livingston and Hanford. There
is a suggestion for a 40 km ground-based interferometers from Dwyer et. al. [25] using
the natural depressions in areas that are bowls, such as the Carson Sink, to compensate
for the Earth’s curvature and to help reduce the amount of excavation. However, for

really long baselines and observations below 1 Hz the only option is space which also
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Figure 1.5: The gravitational wave spectrum and detectors. (From LIGO Science Collaboration:
http://www .ligo.org/science/faq.php)

has the advantage of operating in a natural vacuum. The baselines can be formed
either between Earth and a space-based test mass or entirely between space-based test
masses. For the Earth-space combination the space test mass can either be spacecraft
or pulsars. The former involves Doppler tracking using microwave signals to monitor
changes in the separation between the Earth and the spacecraft for the passage of a
gravitational wave and the frequency band for this type is 10~% Hz to 1 Hz [65, 57]. For
the Earth-pulsar combination the arrival times of the pulses are monitored for changes
which could be caused by the passage of a gravitational wave crossing their path. This
method is limited by the fact that the pulsar periods are not constant and only give
stable values after being averaged over a long period of time. The most stable of these
systems are the millisecond pulsars [57]. An example of the baseline for this combination
is 1.7 x 10' km for the millisecond pulsar PSR J0437-4715. The frequency range for this
type of observation is about 10~7 Hz to 10~ Hz which is the middle of the spectrum
given in Figure 1.5 [65]. The space-based option involves using satellites that track
each other using lasers. The passage of a gravitational wave will change the separations
between them which will be monitored by the satellites using laser interferometry. Their

operating frequency band is 107* Hz to 10~ Hz [57]. The first detector of this type is the
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Figure 1.6: Schematic diagram showing the location and orbit of LISA (a) and its annual motion (b)
(European space agency. Pre-Phase A Report [10]

Laser Interferometer Space Antenna (LISA) which was a joint project between NASA
and ESA. Our investigations will be based on this detector which will be discussed in

the next section.

1.4 Laser Interferometer Space Antenna - LISA

The first detailed design and mission plan for LISA was laid out in the early Pre-Phase
A reports [10, 29, 21, 11]. In this design the antenna consists of three satellites in
their own free fall orbit around the Sun with inclinations and eccentricities that keep
the spacecraft in a triangular formation that trials the Earth by 20°. The separation
between each spacecraft is 5 x 10°m. The yearly motion of the antenna causes its plane
to rotate about the centre of mass which is on located on the ecliptic and tilted at
60° [10]. Schematic diagrams showing its location relative to the Sun and the Earth
and its rotational motion are given in Figure 1.6. The three spacecraft are identical in
design containing two optical benches arranged in a Y-shape as shown in Figure 1.7a.

Within each bench is a proof mass, a laser, beam splitters, photodetectors, a reference
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Figure 1.7: Schematic diagrams of LISA showing (a) the positioning and orientation of the optical
benches in each satellite (Pre-Phase A Report [10]) and (b) the original design of LISA’s optical bench
(Larson [39]).

cavity for stabilising the laser, a phase modulator for conveying clock information and
for data exchange between the spacecraft, and a telescope. A schematic of this is given
in Figure 1.7b. The proof masses are in their own drag-free orbits. LISA is a nearly
omni-directional detector and its configuration allows it to act as a multidetector where
it can function as three independent interferometers which can be used to detect the

different polarisations of a gravitational wave [10].

1.4.1 Design changes - the split configuration

In LISA the changes in each arm are measured by the two spacecraft located at the
each end. The end of the arms are defined by the proof masses (mirrors) but how these
measurements are obtained differ from the conventional Michelson interferometer. In
the Pre-phase A design of LISA this measurement is between a proof mass at one end
and optical bench at the other. This is illustrated in Figure 1.7b where the beam being
transmitted to the distant spacecraft (red) is not reflected off the proof mass but the
incoming beam (green) is reflected off the proof mass before it goes to the photodetector.
There are also measurements taken between the two optical benches on each spacecraft
where the opposite occurs. The beam going to the other bench (red) is first reflected
off the local proof mass before being transmitted and the beam being received from
the other bench (green) goes directly to the photodetector. The distance measurement

is therefore split into a long-arm measurement from optical bench of the transmitting
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Figure 1.8: A schematic of the split configuration showing the three different measurements s (t),
€1(t) and 71(¢). In the diagram L, M, BS and PM represent the laser, mirrors, beam splitters and
proof masses, respectively. Also, PD, S/C and OB indicate the photodetectors, spacecraft and optical
benches, respectively. Based on diagram from Otto, Heinzel and Danzmann [46].

spacecraft to the proof mass on the receiving spacecraft plus the short-arm measurement
on the transmitting spacecraft between the optical bench and its local proof mass.

In the final design before LISA became an ESA-only project the measurements were
divided into three sections consisting of one long-arm and two short-arm measurements.
The laser beam in the long-arm measurement no longer interacts with either of the proof
masses. This design change is illustrated in Figure 1.8 showing the new configuration
which is the baseline from 2006 [46]. As illustrated in Figure 1.8 there are three sets of

optical bench readings that are needed for the science data. These readings are:

Spacecraft to spacecraft measurements s;(¢): These are the readings between the
spacecraft at the end of each arm which are called the inter-spacecraft or long
arm measurements. They are the result of the incoming light from the distant
spacecraft being interfered with the local light on the receiving optical bench

which is recorded at photodetector PD1 in Figure 1.8.

Proof mass to proof mass measurements ¢;(¢): These are the internal measure-
ments between the two proof masses of the optical benches on each spacecraft
which called the intra-spacecraft readings. There are due to the local light on one
optical bench being interfered with the light from the other optical bench. They
monitor the test mass motion and are recorded at photodetector PD2 in Figure

1.8.

Laser with laser 7;(¢): These are the reference interferometer measurements obtained
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from the interference of the lasers on the two optical benches on each spacecraft

and recorded at photodetector PD3 in Figure 1.8.

1.4.2 Current status

The transfer of the LISA mission to ESA in 2011 resulted in changes in the name,
design and mission. The name change reflected the different design of the two options
namely, evolved LISA (eLISA) which was a smaller scale of the original LISA and the
New Gravitational Wave Observer (NGO). NGO is a reduced version of LISA with the
same number of spacecraft but with only two arms and with reduced lengths of 1 x 10°
m. The final name is eLISA with the design specifications of NGO which is shown in
Figure 1.9. The predicted launch date is in 2034.

1.4.3 LISA Pathfinder - LPF

Before launching LISA some of its technology are being tested by the LISA Pathfinder
(LPF) which was launched on December 3, 2015. This is a scaled down version of
LISA with only one spacecraft with two test masses each suspended in their vacuum
container and are separated by 38 cm [41]. The mission objectives obtained from ESA

LISA Pathfinder fact sheet web page are to:

e Demonstrate drag-free and attitude control in a spacecraft with two free test

masses.

e Test feasibility of laser interferometry with picometre resolution at low frequency

— approaching 107?m/v/Hz in the frequency band 1-30 mHz.

e Test the endurance of the different instruments and hardware in the space envi-

ronment

LISA pathfinder arrived at its location at the first Sun-Earth Lagrangian point L1
on January 23, 2016 and the test masses were released into their own free fall orbits on

February 13 and 17 and started its science phase on March 1, 2016 [28].
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Figure 1.9: Schematic of eLISA orbit showing the reduction in the number of arms and their lengths.
Amaro-Seoane et. al. [49]

1.5 LISA data analysis: current approach

The two issues affecting LISA that are critical to its success in producing science are the
overwhelming laser frequency noises and the large number of sources that will occur in
its data. Interestingly, these are associated with the same properties of LISA that give
it the advantages over the ground-based detectors. Being in space allows it to have long
arms for observing in the low frequency band which is implemented using free-falling
spacecraft in orbit around the Sun. However, the long arms introduce significant travel
times between the spacecraft which, combined with its orbital motion and the perturba-
tions from planets, causes unequal time varying arm lengths that create problems with
the laser frequency noise cancellation. The level of this noise is expected to be about
107 greater than that of large proportion of its signals. The low frequency bandwidth
in which it operates is densely populated by a large number of sources consisting of
approximately 2 x 10® binaries of which several million will occur in its bandwidth in
the 0.1 mHz to 3 mHz region [18, 75, 30].

The current approach to resolving these problems resulted from the need to show
that the LISA project was viable in that it could still produce useful information. This
led to the development of a kind of divide and conquer approach in which problems
were tackled separately with the Mock LISA Data Challenges for handling the source
problem and the development of the time delay interferometry observables for laser

frequency noise cancellation.
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1.5.1 Source confusion

Of the millions of sources occurring in LISA’s bandwidth only about 10* will be re-
solvable [8, 30]. This presents two major challenges referred to as source confusion and
source confusion noise. The former is related to the overlapping of the sources caused
by cross-correlations of their signals occurring strongly below 2 mHz [22]. The confusion
noise is related to the unresolved sources which will produce a background noise. The
challenge is to untangle the signals and determine the confusion noise level in order to
distinguish it from the instrumental noises.

The Mock LISA Data Challenges (MLDC) have different levels and goals. The levels
presented an approach to the analysis problem that was similar to the laser noise can-
cellation in that they started with simple models of LISA data and gradually introduced
more of the complexities the data. For example, the first challenge data sets had a single
signal or small set of overlapping ones embedded in Gaussian noise with no confusion
noise with the main goal of developing the data analysis tools. The main site for the
challenges is AstroGravS a service provided by NASA [32] containing all the challenges
and links to papers. Overviews are provided by Arnaud et. al. [8, 9].

One outcome in terms of the signal extraction was the realisation that correlations
between the signals meant that a global solution was required where all the signals were
fitted using a filter bank consisting of models of every type of source occurring in the
data [19]. The framework for this was shown to be Bayesian presented by Umstétter et.
al. [75, 76] where they were able to also define a confusion noise limit and determine

the number of signals which was also an unknown.

1.5.2 Laser frequency noise

The ability of a laser to maintain the same frequency over a specified time period
determines its frequency stability and the random fluctuation of its stability is called
frequency or phase noise [38]. In LISA the problem occurs because these frequency
fluctuations occur at levels of 1.0 x 1073 /v/Hz in the millihertz band while its goal is
to observe signals at levels of 1072°/v/Hz) or lower [69]. The simple illustration of the
problem is given in Figure 1.10 using examples of the two levels of noises and a single

sinusoidal signal. The effects of the individual noises on the signal are shown in plots
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Figure 1.10: Sample plots to show the effects of the primary (middle left) and secondary (bottom left)
noises on a simple sinusoidal signal (top left). The combinations of the individual noises with the signal
are given in the top and middle panels on the right. The bottom right plot is the combination of both
noises and the signal.

on the right where only in the top plot, which is a combination of the signal with the
secondary noise, is the signal is still visible. The laser noise totally overwhelms both the
signal and the secondary noises in the middle and bottom plots. The goal was to find
a way to cancel the laser frequency noises or reduce them to the level of the secondary
noises. This noise is also present in ground-based laser interferometer detectors but the
symmetry (fixed with equal lengths) and shortness of their arms (~ 107° s for 4 km
arms) allows cancellation by directly differencing the readings because the delays, and
hence noise, are the same in each arm. The very long arms of LISA (5 x 10° m) result in
significant light travel times of about 16.7s between the space craft and the variations in
their lengths cause differences of up to 1% (5 x 107 m) [36] which rules out this method

of noise cancellation for LISA.

1.5.3 Time delay interferometry

Time delay interferometry (TDI) is a post processing technique that was introduced
by Armstrong, Estabrook and Tinto [6, 26, 69, 7, 70, 68] for canceling the laser fre-
quency noise which was based on earlier works for noise cancellation in an unequal-arm

Michelson interferometer [31, 66, 67]. The process involves using linear combinations
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s/c2

s/c1

Figure 1.11: Schematic of LISA showing the labeling of the spacecraft (S/C i), optical benches and
arms (L;). The optical benches are labeled with primed ¢’ and unprimed (¢) integers.

of the individual data streams with appropriate time shifts to cancel the laser noises
and relies on multiple occurrences of the same noise in the readings from the differ-
ent optical benches. Each spacecraft has two optical benches giving six inter-spacecraft
measurements of fractional frequencies y;(t), obtained from beating the laser from a dis-
tant spacecraft with the local laser on the receiving spacecraft, and six intra-spacecraft
readings z;(t), from beating the two lasers on each spacecraft [6]. These are illustrated
in Figure 1.12. For a simple drag-free model of LISA with static arms and no orbital
or rotational motion, the inter-spacecraft (y;) and intra-spacecraft (z;) readings for the

laser frequency noises can be written as

Yo (t) = Cy(t — Dy) — Ci(t),

(2

47 (t) = Cu(t) — Cilt), (1.3)

(2

where C; and Cj are the laser frequency noises in the receiving and transmitting space
craft, respectively [6]. Dy is the light travel time in the arm between the spacecraft
which is equal to Ly/c where Ly is the arm length and c¢ is the speed of light. Using
the readings for the photodetectors at the ends of arm Lj in Figure 1.11 which are y; (¢)
and yo (t) with laser noise contributions [Cy (t — D3) — Cy(t)] and [C1(t — D3) — Cy (t)],

respectively, the equations for these noises are
Y (t) = Co(t — D3) — Cu(t),
Y3 (t) = Ci(t — D3) — Car(t), (1.4)

which show the same noises occurring in the two readings but at different times of

(t — D3) and t. These noises also occur in the internal readings for the same two optical
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Figure 1.12: Schematic diagram illustrating the Pre-phase A optical bench measurements using space-
craft 1 and 2 showing (a) the inter-spacecraft readings between spacecraft 1 and 2 (red and green lines)
and (b) and the intra-spacecraft readings between optical benches 1 and 1’ on spacecraft 1 (orange and
blue lines).

benches 2 (t) and zo/(t) which are

A (t) = Co(t) — Ci(1),
2% (1) = Cy(t) — Co (1), (1.5)

where the noises all occur at the same times t [26].

How these multiple occurrences are used to cancel laser phase noises can be shown
using the laser frequency noises C; and Cy in the previous equations. Laser frequency
noise C occurs at time ¢ in y» and 2; in Equations 1.4 and 1.5. Subtracting z{®°"(¢)

laser

from y;%°¢"(t) gives
" () — 2" (1) = [Cy(t — Ds) — C1(1)] = [Cv (1) — C1(1)]
— Gyt — Dy) — Cul), (16)

where this noise is canceled leaving two other noises Co(t — D3) and Cy/(t). Laser

frequency noise Cy also occurs in the internal readings 24" of spacecraft 2 but at a
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different time. Shifting this reading by D3 to match that in Equation 1.6 gives
Zé(,zser(t - Dg) == Cg(t - Dg) - 02/(25 - Dg), (17)
which when added to Equation 1.6 gives the required cancellation which is

yllaser(t) — Ziaser@) + Zé?ser(t — D3) = CQ/ (t — Dg) — le(t) + Cz(t — D3) — C2’ (t - D3)
— Cy(t — Ds) — Cu(t). (1.8)

laser

The cancellation of Cy could have been done by shifting y5**"(¢) by D3 instead giving

yé‘?“’”(t — Dg) = Cl(t — D3 — Dg) — Ogl(t — Dg)
= Cy(t — 2D3) — Co(t — Dy), (1.9)

and then adding this to Equation 1.6 to obtain

YT () — 247 () + yh T (t — D3) = Cy(t — D3) — Cu(t) + Ci(t — 2D3) — Cy(t — Ds)

= Cy(t — 2D3) — Cy (). (1.10)

This process is repeated until all the laser frequency noises are canceled and the data
that are obtained are the time delay interferometry combinations or observables. For
the conventional time delay observables this was done manually using trial and error.

The various possibilities for combining the raw data for canceling the noises resulted
in combinations with different structures some resembling certain types of interferome-
ters and were named accordingly, for example, the Michelson and the Sagnac combina-
tions. In a Michelson interferometer a single beam is split between two perpendicular
arms and reflected off mirrors at the ends of the arms back to the splitter where they are
recombined with the final phase measurements being the difference of the readings in
the two arms. In a Sagnac the mirrors are arranged so that the optical path is a closed
ring. Two beams obtained from splitting a single laser are directed along clockwise
and counter-clockwise paths and then recombined at the splitter. In the Michelson and
Sagnac time delay interferometry observables the individual terms occur in a pattern
matching these differences. This is illustrated in Figure 1.13 with a few other combina-
tions. The arrows indicate the direction of the measurements in the combinations with
the recording optical benches located at the arrowhead.

The first set of time delay interferometry combinations were based on a simple model

of LISA which are the first (1) generation TDIs. Those that include the rotational
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Figure 1.13: Diagrams illustrating some of the time delay interferometry combinations including the
Michelson and Sagnac. The readings used for each combination and the direction of their measurements
are indicated by the arrows. Reproduced from Larson [39] with labels added to show the arms and
spacecraft.

motion of the antenna but not the flexing of the arms are the modified TDIs or TDI 1.5
[59, 20, 70]. The 2"¢ generation TDIs incorporate all the motions of LISA [60, 20, 70].
Some of the combinations retain the structure of their inter-spacecraft readings when
the orbital motion effects are taken into account. For those that do not, a new set of
generalised combinations with similar names were obtained but not all resulted in the

cancellation of the noises [60].

1.5.3.1 The effects of LISA’s motions on time delay interferometry

Recall that the problem with the laser frequency noises is that the inequality of LISA’s
arm lengths rules out the possibility of cancellation by the direct differencing of the
readings from the different arms as used in ground-based interferometer detectors. Any
behaviour of LISA that directly changes the arm lengths will affect the laser frequency
noise cancellation which will in turn affect the time delay interferometry combinations.
In the Pre-phase A model of the optical bench [10], the ends of the arms, and their
lengths, are determined from the positions of the proof masses and optical benches.
The inter-spacecraft reading y;(t) is made between the receiving (local) optical bench
and the proof mass of the transmitting spacecraft which will be affected by the non-
inertial motions of the proof masses and optical benches. Recall that the first generation

inter-spacecraft and intra-spacecraft readings for the laser frequency noises have simple
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structures which are

Yy (t) = Cy(t — Dy) — Ci(t),

(2

77 (t) = Cy(t) — Ci(t).

2

With the optical bench and proof mass noises these become

yéaser(t) _ Cf(t _ Dk) _ C’Z(t) — Ty, - ‘7],(15 — Dk) + 2Ny - 171(75) — N - ‘Z(t)7

245 (t) = () = Ci(t) — 2y - [ () — Vi (8)], (1.11)

where n; is a unit vector along arm 7 measured in the counter-clockwise direction and,
7;(t) and Vj(t) are the random velocities associated with proof mass ¢ and optical bench
i, respectively [26]. The effects of the rotational motion of LISA is to cause the light
travel times in each arm to be dependent on the direction of measurement that is,
Dy, # D where k' and k indicates the clockwise and counter-clockwise directions in
arm k, respectively.

The offsets in the inter-spacecraft readings now have to account for this difference, for
example, the optical benches at the end of arm k will contain the same laser frequency
noises but with offsets measured in the opposite directions. If y;(¢) and y; (t) represent
these readings then their directionally dependent versions, excluding the acceleration

noises, will be

Y (t) = Cy(t — Di) — Ci(t),
Yy (t) = Cy(t — Dyy) — Cy(t). (1.12)

The flexing or breathing of the arms caused by perturbations from nearby objects
makes the arm lengths time dependent which will occur as Dy(t), for example, for y;()

with flexing becomes
ylaser (t) = Cylt — Di(t)] — Ci(t). (1.13)

Note that the time dependent version will cover the rotational effects. The two were
separated to illustrate the different motions associated with the different generations of
the time delay interferometry observables. For the second generation observables the
order that the offsets occur is important. An alternate way of writing the equations
for the observables uses a compact notation where the time shifts are subscripts, for

example, y;(t — Dy) is replaced with y; . For the second generation equations both the
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sSiC3
Figure 1.14: Schematic of LISA showing the directional dependence of the arm lengths with the clock-

wise and counter-clockwise directions labeled L;» and L;, respectively. The spacecraft are indicated by
S/C i with their corresponding optical benches by i and ¢'.

comma and semicolon are used as separators [60, 70] with the following meaning

yi =uylt— Di(t)],

vij =y{t—D;(t) — D[t — D;(t)] },

Yijr = y(t — Dy(t) — D;j[t — Dy(t)] — Di{t — Dy(t) — D;[t — Dy(t)]}). (1.14)
In the following sections brief overviews of the Sagnac and the Michelson combinations
illustrating how their structure changes with the motions of LISA are given. No ex-
planation will given for why this occurs as this will be done in Chapter 2. The aim
here is to introduce the current approach to handling the laser frequency noises for

understanding where the possibilities are for improvements in the data analysis. The

compact notation will be used in the next section.

1.5.3.2 The Sagnac combinations

The Sagnac observables consists of two kinds which are the six-pulse (a, 3, 7) and
the fully symmetric () combinations. The simplest forms of these combinations for

stationary static model of LISA, not motion effects, using o and ¢ combinations are

a(t) = [yv(t) +yz(t — Da) + yo(t — D1 — Dy)]
— [y2(t) + y2(t — Ds) + ys(t — Dy — Ds)],
(t) = [yv(t — D1) 4 ys(t — D3) 4y (t — Dy)]

— [1(t = D1) 4 y2(t — Dy) + ys(t — Ds)], (1.15)
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where the terms within them are grouped to show the differencing of readings in different
directions. For synthesizing the Sagnac structure, the «, 8 and v combinations are
obtained by using spacecraft 1, 2 and 3 as beam splitters, respectively. Six-pulse refers
to the fact that the gravitational wave signal will have a six-pulse response in these
combinations corresponding to the six different times occurring in them [6]. These
combinations have three time patterns occurring in them which are ¢, (t — D;) and
(t — D; — D;) which distinguishes them from the fully symmetric Sagnac ¢ where all the
readings have been shifted by one offset, (¢ — D;). Also, the ¢ Sagnac has no central
spacecraft (beam-splitter) and has a very low response to gravitational wave signals.

With the compact notation these can be written as

a = [yv +ys2+ Y212l — 1 + Y23 + Y3,13),
C=lyra+ysys+yral = [Y11+ Y22+ ys3l
Accounting for the accelerations of the proof masses and optical benches requires

the intra-spacecraft readings for the laser frequency noise cancellation. From Estabrook

et. al. [26], including the acceleration noise changes v and ¢ in Equation 1.15 to

a=[yr +ys2+yri2] — [v1 + Y23 + Ys13)
1
+ 5{[2’1 — zv| 4 [21 — 2v) 123 + [22 — 22] 3 + [22 — 2] 12

+ (23 — 23)2 + [23 — 2313}, (1.16)

and

C=lyra +yss+yra] — Y11+ vo2 + ys3]
1
+ 5{[21 —zv]1 + [z — 2v) s+ [z — 2or)2 + 22 — 2213

+ (23 — 23] 3 + [23 — Z3/],12}, (1.17)

where the structure of the inter-spacecraft readings do not change. However, including
the effects of the rotational motion which causes the directional dependence of the arm
lengths breaks the symmetry of the Sagnac in that there are no combinations that will
retain the same structure with respect to the inter-spacecraft readings [20, 26]. However,
there are other generalised or modified Sagnac combinations «; and ¢; [26, 60, 59] with

three combinations for each with roughly similar structure but with twice the number
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of terms. Examples of these generalised combinations from Shaddock [59] are

a1 = [y + Yo + Yy v — [y1 + Y21 + ysz1]
— [yr + Yz 2 + Yo 1] 231 + (Y1 + Y21 + Ys31) 231
1
- 5{[21/ — 21) — [z — 2] 2miz1re + (22 — 22)0 + [z — 22) 172

+ [z — 20| 1231 — [220 — 22] vroras1 + [23 — 23] + [23 — 23] 31

- [23' - 23],2'231 - [23/ - 23],312'3'1'}7

G = [y + Yoo + Ys ) — Wi + Yz g1 + Yy o]
+ (Y17 123 + Yz 332 + Yo 223] — (Y1132 + Y2002 + Y3 3372/]
1
- 5{[23' - 23],31 + [23' - 23],1'2/1 - [23' - 23],3'32' - [23' - 23],232'1
+ [z — 20) 11 + [0 — 22) 1 — [22r — 22] 232 + [220 — 22| 3111
- [2’2/ - 22],3'232' - [22' - Zz],3/31'2'} (1-18)

with the terms grouped to show a Sagnac-type arrangement. The second generation

combination includes the flexing of the antenna which for the generalised «; is

ar(t) = [y + Yz + Y] — (Y1 + Y2i3 + y33]
— [y1 + Y23 + y3;13} vy [y + Yz + Y] io13

— %{[21/ — 21| + [z — 21) 2133102 — |22 — 22]i3 — [z — 2]

+ [z — 20) 33102 + [220 — 20].v2213 — [23 — 23] — [23 — 23).13

+ [23 — 23)i0013 + (23 — 23];133'1/2'}, (1.19)
where the order of the offsets are important [20, 77]. Shaddock [59] indicates that this
combination does not lead to perfect cancellation of the laser frequency noises which is
also true of the generalised (; combination [70]. The level of the residual noises remains

to a first order in the systematic velocities [60].

1.5.3.3 The Michelson combinations

The unequal arm Michelson observables consists of the three combinations X, Y and

Z centred on spacecraft 1,2 and 3, respectively. The simple form of the X combination
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SIC 2

Figure 1.15: Schematic of LISA showing the spacecraft, optical benches and arms that are used in the
Michelson X observable.

for static arms and no antenna motion, can be written as

X(t) = {[yr(t) + ys(t — Da)] — [n1(t) + y2 (t — Ds)] }
+ { [yl(t — 2D2) + ygl(t — D3 — 2D2)]

— [yv(t — 2D3) + ys(t — Dy — 2D3)] }, (1.20)
and the compact form is

X = {[Z/l’ + Y32 — [:‘/1 + 3/2',3}} + {[311,22 + y2',322] — [yl/,33 + y3233} }

The are four groups of readings consisting of sums of the contributions from the optical
benches at the ends of the arms adjacent to the spacecraft 1 which can be seen in Figure
1.15. The sum in each group simulates reflection at the end of the arm. For example,
the first term of the equation is the sum of the readings at the end of arm L, which are
y1 of spacecraft 1 and y3 of spacecraft 3. These can be interpreted as the transmission
of a beam from optical bench 1’ from an earlier time (t— D3) to optical bench 3 and then
back to optical bench 1" arriving at time ¢. Similarly, the second term is a sum of the
readings along arm L3 so that the first line in the equation is the subtraction of the left
readings from the right. This also occurs in the second line but for earlier times and with
right subtracted from left. One advantage of these combinations is that they require
only the four optical benches while the Sagnac combinations use all six optical bench
readings. This would allow LISA to operate if some of the benches are not functional.

Like the Sagnac, accounting for the spacecraft motions effects, the drag-free case, the
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combination gains contributions from the intra-spacecraft readings becoming

X = {lyv +ys2l — v +vrsl} + {[v1 + vrsloe — [y + ys2l 33}
1
+ 5{[21 —z2v] = 21— 2v] o0 — [21 — 2133 + [21 — 21/],2233}, (1.21)

where the structure of the inter-spacecraft readings remain the same. With rotation

Equation 1.21 becomes

X = {[yr +yso] = [y1 + 3/2',3]} + {[y1 + Yo 3] 22 — [y + y3,2’]73'3}
1
+ 5{[21 — 2y — |71 — 2v) 02 — [21 — 21] 33 + |21 — 2’1/],22/3’3}7 (1.22)

where the only difference is that there are now primed and unprimed offsets to indicate
the directional dependence of their measurement. However, like the Sagnac, the flexing
of the arms does change the structure of the Michelson combinations requiring more
terms with more complex offsets due to their dependence on time. The generalised X;
combinations have twice the number of terms for example, the X; given by Shaddock

et. al. [60] is

Xy = {lyr +ys) — [+ v23]} + {lv1 + yoslior — [y + yslzs }
+ {[yl + Yor3)izra20 — (Y10 + 93;2'];22/3/3} + {[yl/ + Y3 )i3r33:3000 — Y1 + y2/;3];22/22’3/3}
+ %{[21 — 2| — |71 — 2v)oy — [21 — 2v)s + [21 — 21200233
+ [21 — 21)333320 — [21 — Zl’];22’3’33’322’}- (1.23)
The difference with the generalised Michelson combination compared with the gener-

alised Sagnac is that it cancels laser frequency noise several orders of degrees below the

secondary noises [60].

1.5.4 Time delay interferometry combinations for different sig-

nal responses

In the previous section we saw that it was possible to synthesize two different types
of interferometers, the Michelson and Sagnac, illustrating how LISA can operate as
these two different types of detectors simultaneously. Also, each configuration has dif-
ferent options depending on which spacecraft acted as the beam splitter which increases
the number of detectors it can synthesize simultaneously. This offered the possibility

of improving the responses to gravitational waves from combinations of the different
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“detectors” that would improve the signal to noise ratio.

1.5.4.1 Improving LISA’s sensitivity

Prince. et. al. [51] used this approach to produce combinations that provided optimal
sensitivity which are the A, E and T. These are based on the Sagnacs and generated

in the frequency domain. The equations for these are

[a(f) —2B(f) +3(f)].
T(f) = —=[a(f) + () +7(f)], (1.24)

where ~ represents the Fourier transform and for A this is

A(f) = FIA(t)] = / h A(t)e 2t (1.25)

—oc0

In the previous section the antenna motions destroyed the Sagnacs and their gener-
alised counterparts contain residual laser frequency noises. This means that the AET
which are linear combinations of the first generation Sagnac will also be affected by
the orbital motion. Also shown was that the Michelson combinations even though their
structure also changed with the flexing leading to their generalised counterparts they
were still able to eliminate the laser frequency noises. This led to AET being recreated

in terms of these with one set of these as used by Adams and Cornish [4] being

A(f) = Z [2X(f) =Y (f) - Z(f)],

3
E(f) = 5520 - ¥ ()
T() = S [K() + (1) + Z(5) (1.26)

where they have similar structure with some rearrangement in Aand E except for T
which is the sum of all three. Nayak et. al. [42] used the same approach to produce
another set of observables that increased the sensitivity of LISA. These were generated

in the frequency domain and also based on the Sagnac «,  and ~ observables. The
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combination they produced were

y® :é[a—kﬁ—Zﬂ?
y® :%[5_64,
Y(3):%[oz+ﬁ+7], (1.27)

showing slight differences from those in Equation 1.24.

1.5.4.2 Zero signal solution

The approach was also used to produce combinations with null responses to gravita-
tional waves which would be useful in isolating the instrumental noises and would also
be helpful in separating it from the source confusion noise. The first generation ¢ com-
bination whihc has a low response offered this opportunity but does not survive LISA’s
orbital motion. Cornish and Hellings [20] produced a A{ combination that had the
same properties when accounting for the rotational motion but it did not survive the
flexing of the antenna.

One combination that achieves this is the zero-signal solution n with the ability to
identify a signal’s location using only two of its parameters which is independent of
assumptions about the signal waveform. It is an improvement on the ( combination in
terms of its ability to discriminate gravitational wave background noise from instrumen-
tal noise [72, 71]. This combination was also generated in the frequency domain using
the first generation Sagnac and is given by

1(f) = [B+(f,0.0)vx(f,0.6) = B« (f. 0, 0)v+(f. 0, 9)]a(f),

+ [,Y-i-(fa 07 ¢)a><(f7 97 ¢) — Tx (f? 97 ¢)a+(fa 9, gb)}ﬂ(f)a
+ |:O'/+<f7 97 Qb)ﬁx (f7 07 ¢) - O-/><<f7 97 ¢)6+(f7 07 ¢)}”?(f>7 (128)

where 6 and ¢ are the two parameters describing the sources location. The + and x
terms in the brackets represent the antenna pattern functions of «, 5 and ~ for the plus
and cross polarisations, respectively. Being formulated using the Sagnac they will be
sensitive to the orbital motions but this could possibly be handled in the same way as

the optimal TDIs by using the Michelson-type combinations.
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1.5.5 Computational approaches for time delay interferometry

Manually generating the time delay interferometry combinations is slow and inefficient
giving only a small set of possible combinations. The next obvious step is a computer-
based generation of these observables and two methods were presented for this which
are the algebraic approach introduced by Dhurandhar, Nayak and Vinet [24] and the
geometric approach by Vallisneri [77]. An overview of their methods and how they

adapt to the motions of LISA is presented this section.

1.5.5.1 Algebraic time delay interferometry

The algebraic approach is based on computational commutative algebra and provides a
mathematical foundation for the time delay interferometry [24, 43, 44, 68]. Starting with
the first generation assumption of a stationary static LISA array where all motion effects
are ignored, recall that the laser frequency noises contributions to the inter-spacecraft

measurements can be written as
yi(t) = Cj(t — Dy,) — Ci(t), (1.29)

where Dy, = L;/c represent the light travel time, offset, in arm k with length Ly. ¢ is
the speed of light. Their approach was to focus on the delays in the three arms of the
antenna and form a polynomial with them. This is done by first replacing the shifted

time (¢t — Dy) with a shift operator Ej, given by
Epf(t) = f(t = Dy). (1.30)
Using this notation and ignoring the time component Equation 1.29 becomes
yi = £,C; — Ci. (1.31)

They grouped the six optical bench readings into two sets of readings of U* and V*
that represent those in each arm for the clockwise and counter-clockwise directions,
respectively. Here i represents the number of the recording optical bench. For example,
for spacecraft 1, the optical bench readings and corresponding U and V' representations

are

y1 = E3Cy — (O, vi= Cy — E5C%,
Yy = E,Cy — Oy, Ul = E,Cy — C4, (1.32)
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where the counter-clockwise reading is the negative of the 3, that is, V! = —y;. The

other four combinations are

U?=FE;C, —Cy, U= FECy—Cs,
Vi=Cy— ECs, VP=C3— Ey)(. (1.33)

Their aim was to find linear combinations of these with appropriate offsets applied
to each U® and V' that will lead to cancellation of the laser noise. The total delay,
the number of offsets to apply to ¢, would be a linear combination of the offsets D;
which they expressed as kyD; + koDs + k3Ds3 where k; is an integer applied to the
corresponding offset D;. Using their shift notation this is Ef1E§2E§3 which, for the
static arms assumption, is a polynomial in the three variables (E;, Es, E3). Using p; and
¢; to represent the polynomials associated with V* and U?, respectively, they rephrased
the problem of laser frequency noise cancellation as finding linear combinations of these
that will sum to zero which they gave as

23: Vg U] =0, (1.34)

i=1

This provided a mathematical formulation of the laser frequency noise cancellation
problem. In order to obtain a complete set of solutions they avoided those that would
lead to higher order polynomials and aimed for a simpler set that formed what they
termed “the first module of syzygies”. They also pointed out that to satisfy Equation
1.34 all the coefficients of the laser frequency noises must cancel independently resulting

in a set of only three equations to be solved which they gave as
p1— @1+ E2qe — Ergps = 0,
P2 — G2 + E23q3 — Eoipr = 0,

Ps — @3+ E31q1 — Esope = 0. (1.35)

They obtained a set of six independent generators d/ which are those in the second
column of Table 1.1 [43] that can produce a complete set of solutions to Equation 1.34.
The elements for the noise canceling combinations or modules are linear combinations

of these set of generators [43, 44] which can be obtained from

6
X=> apd, (1.36)
I=1

where o) are polynomial coefficients in E;. These generators provide the coefficients
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Table 1.1: The generators for the TDI variables (noise canceling modules) using the algebraic approach.
The coefficients p and ¢ are associated with the long arm data stream which include laser phase noise
and signal. F; is a delay operator representing time offset in the arm 4 [43].

Generator Coefficients
P1,P2,P3,91,92,43 T1,72,73

dt E3(1— E3 E3), (E1E3 — E3/), (1 — Eg E»2), 0,0, (1— E1E3E»?) E3(E3Ex — 1), E1E3(E3 Ex — 1), (E31Ey — 1)

d? E3/(1— E3Eq/), 0, (E1 — Ep/Esr), (E3r — E1E3), 0, E1(1 — EsEy/)  Es(EsEy —1), E1E3(EsEyr — 1), E1(EsEyr — 1)
a3 0, (1 - Ey/E3), (E2 — EyEyr), (Eyy — E3E2), (1— E3Eq/), 0 Ey (E3Ey — 1), (E3Ey — 1), Ex(EsEy — 1)

d* (Eyr — E3E2>7 (Eerl —1), EQ(E1E2/ — 1), 0, (ElEgEg — 1), 0 E3E2E1(1 — E21E1)7 (1 — Ey Eq) E2(1 — Ey By

& (B3 B2 —1), (EvEy — E1), 0, (B3 Ex — 1), 0, (E1E> — Ey/) (1 - Ey Ez), Ei(1 - Ey Ey), Ey(1— Ey Ep)

db (B3 — EqE3r), 0, (1= EyEn), 0, (B3 — E1E3), (1 — EyE) E3(Ey Eq — 1), E3/(EqyEy — 1), (EyEr — 1)

for p; and ¢; in Equation 1.34. Using this method the coefficients needed to obtain the
Sagnac «, ¢ and Michelson Z combinations with no motion effects given in their first
paper [24] are

a =X°=(1, B3, E\Es, 1, E\Ey, Es),

C :X2 = (Eh E27 E?n El) E2a ES)?

7 =X'=(E\Es—F,, 0, E5 1,0, E\E, — Ey, E; —1). (1.37)
These are the offsets to apply to the U? and V? terms in Equation 1.34. Using the

Sagnac ¢ as an example, to derive the traditional expression insert the corresponding

coefficients from Equation 1.37 into Equation 1.34 which gives
(= E\V' 4+ EV?+ BV + E\U' + E,U? + E3U°. (1.38)
Next the U? and V' terms are replaced with their corresponding optical bench readings
y;i(t) giving
(= —Ewi(t) — Exya(t) — Esys(t) + Exyr (1) + Eaya () + Esys (). (1.39)
The shift operator E; is expanded to give
¢=lyr(t = D1) +yz(t — D3) + yo (¢t — Ds)]
— [y1(t — D1) + ya(t — Do) + ys(t — Ds)], (1.40)

which is the equation for the Sagnac ¢ combination.

The algebraic approach survived the optical bench and orbital motion effects. Like
the conventional Michelson the directional dependence of the arm lengths that occurs
with the orbital motion is incorporated into the shift operator E;. They used the double

notation ij for this but here this is replaced with the prime notation ¢’ to indicate the
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counterclockwise direction. They introduced three more offsets to account for this which
increased the size of the polynomial to six variables (E, By, Ea, Eo, E3, E3). They
adjusted the expressions for U and V' to include the motion and added an extra term
7' for the internal readings z between the optical benches on a spacecraft which were

needed to the noise cancellation. This gave a new set of nine equations which are
U'=EyCy—Cy, U?=FEyCi—Cy, U>=EuCy—Cy,
V=G~ B3Co,  V2=Co—ECy,  VP=0y— EyC,
71 551—51/, Z> 552—6’2/, Z3 553—53/, (1.41)

where CN’Z is the combination of the optical bench motions A; and the laser noises. For

example, for the noises in spacecraft 1 this is
Ci=C,—A;, Cp=0Cp+Ap. (1.42)
The intra-spacecraft readings and corresponding Z; for spacecraft 1 are
0 =C—Cpu4m—28,, z2=Cp—Ci+n+2Ay, (1.43)
where Z is given by
Z' = %(z1 —2)=C, —Cy. (1.44)
The new equation to solved for obtaining laser frequency noise cancellation was

3
i=1

where r; is the polynomial associated with Z;. The conditions for the noise cancellation

now involves six equations which are

p1+ Eiagy +1r1 = 0, Eisps+q1+1m = 0,
p2 + Eas3qz + 19 = 0, Eoypr +q2+12 = 0,

ps+ Es1qp +1r3 = 0, Esops +q3+13 = 0,. (1.46)

The number of generators was the same but the number of coefficients now included
extra terms for r given in column three of Table 1.2 and the set of generators became
d*(ps, g, ;). The noise canceling combinations are obtained by using Equation 1.36 as
shown previously.

This method depends on forming polynomials with the offsets in each arm and with
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Table 1.2: The coefficients for the Sagnac a and ¢ and Michelson X adjusted for optical bench and
orbital motions [43].

TDI Coeflicients
[p1,P2,P3,41,92,93,71,72, 73]
a1 [(1= By By Ey), Bs(1 — By By By), Es(Ex(1— By By By, (1— EsByEy), By Ey(1— EsEaBy), Ey(1— B3ByEy),
Ey B3 EyEy By By — 1, Es(Ey Ey By — 1) + Ey By (BsEaEy — 1), Eg/(EsEa By — 1) + BBy (Ey Ey By — 1)

G [Ev(EyEy — E1), Ey(BsEs — Ey), Es(BEs Ey — E1), Eyi(EsBa — Ey/), Ey(EsEs — By), Es(Bs By — Er),
(Ey/E1 — Ey E3E2Ey), Ey/(Ey — E3Es) + E3Ey/(E1 — Ey Ey), E3(E1 — Ey Ey) + By E1(Ey/ — E3E2)]

X [(1=E3Ey), 0, By/(EyEy — 1), (1 — By Er), E\(E3Ey — 1), 0, (E2Ey —1)(1 — B/ E»), 0, 0]

the simple static array this results in three values and with rotation this requires six.
The flexing introduces a time dependency and hence the possible values for these offsets
are no longer a fixed number. So forming polynomials of these is no longer a simple

matter and hence it does not easily adapt to that case [77, 68].

1.5.5.2 Geometric time delay interferometry

This method was presented by Vallisneri [77] and is based on a physical interpretation of
the time delay interferometry observables as synthesized interferometric measurements.
He arranged the laser noise cancellation at a bench for a particular time ¢ into four
basic groups based on the beams arrival and departure at the optical benches. He gave
three possible types of combinations for the two beams consisting of both simultane-
ously arriving at a bench, both simultaneously departing from a bench, and one arriving
and one departing simultaneously as illustrated in Figure 1.16a. He indicated the di-
rection of the measurements using arrows with the arrowhead terminating where they
are taken. At points where the same parts of the arrows met, that is, two tails or two
heads, the measurements are subtracted and for a combination of a head and a tail the
measurements are added. According to Vallisneri, laser frequency noise cancellation is
obtained by forming a closed loop of these measurements. This was formed by lining up
the arrows which represent the fractional frequency measurements y as head-to-head,
tail-to-tail or head-to-tail. Figure 1.16b gives his illustration one the Michelson time
delay interferometry combination using this method. These loops were enumerated com-
binatorially using an exhaustive search and he pointed out that the generation of the
combinations with 24 links took 10* CPU hours [77]. The shortest combinations that he
obtained for a real LISA model had 16 link terms. He listed all the second generation
TDI combinations with 16 links which contained types resembling the Michelson (X),
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Beacon (P), Monitor (E), and Relay (U) observables. One example of the Michelson

X-type observables is

X1 = Yi132;3202/33 + Y231:22022/3'3 + Y123:2122/3'3 + Y321;02/3'3 + Y123;2/3'3 + Y321,33
+ Y132:3 T Y231 — Y321 — Y123:20 — Y231;22’ — Y132:322 — Y231:3/322 — Y132:33/322/
— Y321;3/33/22" — Y123;2/3/33/322/, (1-47)

where y;ji is called a link and it indicates a reading taken in the direction from 7 to j
to k as recorded by optical bench k over arm j. Transforming this to the match the

structure of the Michelson previously used this becomes

X1 = {[yl + y2/;3] — [y + 93;2’]} + {[yy + y3;2’];3/3 — [y + yz/;3];22'}
+ {[yl’ + ys.o] 033 — [y1 + y2';3];3'322'}

+ {[?Jl + Yor.3] 209233 — [y + 3/3;2/];3/33'322'}' (1.48)

This approach is similar to the conventional method of generating the time delay
interferometry observables in that it finds ways of combining the measurements based
on their structure that leads to laser frequency noise cancellation. The conventional
approach is done manually and uses instinct to determine how to combine them to
obtain the laser noise cancellation. The geometric method replaced instinct with a set of
rules for combining the basic measurements that became the basis for a computer-based
search for the required combinations. So it can be thought of as a computerisation of the
conventional approach using a set of rules instead of instinct. The geometric method,
unlike the others, had no problems with accounting for the real motions of LISA as this
was one of its goals. The other goal was to produce all possible laser noise canceling

combinations.

1.5.6 Summary

This section dealt with the two main problems affecting LISA’s data which are the
overwhelming size of its laser frequency noises and the very large number of overlap-
ping sources. The source confusion problem was dealt with by the Mock LISA Data
Challenges (MLDC) while the laser frequency noises were handled by the time delay
interferometry observables which are linear combinations of LISA’s raw data that result

in their cancellation. The original time delay interferometry observables were manually
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Figure 1.16: The geometric TDI approach of Vallisneri. (a) Ilustrates the four different possible ways
of canceling the laser phase noise at time ¢. (b) Illustrates now the method reproduces the cancellation
in Michelson TDI observable. Reproduced from Vallisneri [77]

generated and based purely on instinct resulting in a small number of the possible com-
binations. This was improved on by the computer-based solutions using the algebraic
and geometric approaches to the problem. The algebraic approach formulated the prob-
lem as a polynomial consisting of the delays in the arms which was viable for static case
producing, at most, six variables. However, it did not adapted easily to time varying
arm lengths. The geometric approach could be thought of as a computerisation of the
manual process in the sense that it obtains the laser noise cancellation by searching
for ways of combining the raw data using a set of rules to guide the search instead of
instinct. Unlike the algebraic approach, it could produce the required observables even

for time varying arm lengths which was one of its goals.

1.6 Simplifying LISA data analysis

The solutions given in the previous section showed that LISA, regardless of these crip-
pling problems, was still a viable project. However, this led to a divide-and-conquer
approach which may not be necessary for doing LISA data analysis and the comput-
erisation of the generation of the time delay interferometry observables pointed to the
possibility of linking the two techniques. This could lead to not only a simpler analysis
process but may also provide a more efficient method of obtaining astronomy from the
raw data with its numerous sources and overwhelming laser phase noises.

Recall that the reason these observables was that they are necessary in order to
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provide the required sensitivity for obtaining useful information from LISA data [24].
However, explicitly generating these observables may not be the only way to meet this
criterion. In trying to find a better approach a question to ask is whether there is
another way of doing the analysis without having to create these observables. In other
words, is there a process that would transform the raw data which are overwhelmed
with laser frequency noise to forms that are free from these noises? Romano and Woan
[54] presented such an approach which is based on eigendecomposition and principal

components.

1.6.1 Data transformation using eigenvectors

Consider data generated from two variables x and y that have a linear relationship as
shown in Figure 1.17a. This data can be transformed to a new basis that results in no
correlations as shown in the Figure 1.17b. This kind of transformation re-expresses the
data in terms of axes that are aligned with the spread of the values in the plots [61, 37].
In the figure the large spread in the values is indicated by the arrow labeled v1 with
arrow v2 indicating a smaller spread in a direction that is perpendicular to v1 which is
assumed to be due to measurement noise [61, 37]. This spread of the values for each
variable about a mean value can be expressed with a single value called the variance

which can be determined from

var(e) =+ (- s () = 1 30— ), (1.49)

where p, and g, are the means of  and y, respectively. The linear relationship between
the two variables can also be described by a single value called the covariance which

can be obtained from
1 N

cov(z,y) = cov(y,z) = + > (@i — ) (i — p1y). (1.50)

i=1
These values can be conveniently expressed in a 2 X 2 covariance matrix, Cy,(7), which

can be written as
var(z) cov(x,y
Cyy(0) = (=) (=:9) : (1.51)
cov(z,y)  var(y)
7 is a lag term indicating how the covariances are measured which is zero in this matrix.

This assumes that the only non-zero covariances that exists between these variables are
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Figure 1.17: Scatter plot showing correlated (a) and uncorrelated (b) data. The arrows vl and v2
indicate the directions of the large and small variances respectively in directions that are perpendicular
to each other.

when they are aligned exactly that is, it is a comparison between z;...x, and y;...y,.
This will be explained in more detail in Chapter 3. It turns out that a certain type of
decomposition of the covariance matrix results in a set of vectors that align with the
variances in the data. These are known as eigenvectors and the number of these is equal
to the size of the matrix. Since the eigenvectors are aligned with the variances in the
data their magnitudes, known as eigenvalues, express the variances in the data. The

data can be transformed to the new basis through the eigenvectors [61, 37].

1.6.2 Principal component analysis

The fact that the magnitudes of the eigenvalues are related to the variances in the
data allows them to be used to determined which of the variables provides important
information. Principal component analysis sorts these eigenvalues in descending order
of their magnitudes and applies a rank according to the order in which they occur. The
largest eigenvalue, associated with the largest variance, is the first principal component
and so on. A subset of these principal components can be used to define the data [37].

So the question is whether the eigenvectors can be used to transform the raw data
that is overwhelmed with laser phase noise to ones that do not contain the noise. In
the data analysis process it is the noise in the LISA’s raw data that are used in the

statistical inference. The total noise is a combination of correlated and uncorrelated
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instrumental noises. The raw data, because they are the outcome of the beating of the
lasers of the two optical benches at the end of each arm, will contain common laser
frequency noises which will result in correlations occurring between the different data.
The number and type of correlations will depend on whether the lasers are allowed
to operate independently or phase locked in order to simulate splitting and reflection.
The independent noises are those associated with the photodetectors which will be the
limiting noises of the antenna. The covariance matrix of the raw data will capture these
correlations. The correlations between the laser noises exist at different time offsets so
that the covariance matrix will have to account for correlations occurring between the
different times of the data. The size of the matrix will reflect the size of the data and
so will the number eigenvalues and eigenvectors. After the transformation to the new
basis, the data will reflect the characteristic of the eigenvalues with largest containing
laser frequency noises while the smallest expected to only contain the photodetector

noise.

1.6.3 Principal component example for LISA data - toy model

The technique will be illustrated using the simple model of LISA used in Romano and
Woan [54] and will use phase shifts measurements as used in that paper. In their
toy example each optical bench data consisted of a common laser phase noise term p,
an independent photodetector noise term n; and a gravitational wave signal h;. The

readings for two photodetectors s; and sy can be written as
s1(t) = p(t) + ni(t) + ha(2), so(t) = p(t) + na(t) + ha(t). (1.52)

Rearranging these in terms of the instrumental noises gives
s1—hi =p+n, S9 — ho = p + no, (1.53)

where the times have been ignored since all terms have the same value. With this
simple model the correlations in the data are due to the same noise occurring in the
two readings existing at the same time ¢ requiring only the zero lag covariances giving a
2 X 2 covariance matrix. Assuming that the laser frequency noises have zero means and
variances az and that the independent photodetector noises also all have zero means but

with variances of o2, then the variances and cross-covariance of the two photodetector
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readings are

var(s1) = ((p+m)p+n)) = @)+ (nf) =0y + 0y,
var(ss) = ((p+n2)(p+na)) = (°) + (n3) =0, + 0y,
cov(sy,s2) = (p+n1)(p+n2)) = (P?) = o, (1.54)
and the covariance matrix is
o |t o | (1.55)
o) o)+ op,

The eigenvalues for this matrix are easy to compute which will be illustrated in Chapter
4. Here, only the values will be given which are 202 +07 and o.. The eigendecomposition
of the covariance matrix will transformed it into another matrix C’ with these two values
occurring the main diagonal giving

200 4+0;, 0

2
0 o

' = (1.56)

The absence of off diagonal terms indicates that there will no longer be any correlations
between the two sets of data when they are expressed in the new basis defined by
the eigenvectors. The eigenvectors for these eigenvalues are (1,1) and (1,—1). The
method for generating these will also be shown in Chapter 4. The correlated data are

transformed to the new basis using a matrix of these eigenvectors by
1 1 Sl—hl (81—h1+82—h2)
1 -1 Sg—hg (Sl—h1+82—h2>
s1+s2) —(hy +h
_ |t =t h) (1.57)
(51— s2) = (h1 — h2)

To see the effects of the transformation on the noises in the data substituting for s; and

s9 using Equation 1.52 gives

s1+ s =p+mn+h +p+na+hy
=2p+ (n1 +ng2) + (h1 + he),
51 =8y =p+ny+h—p—ng—hy
= (n1 —ng2) + (h1 — ho), (1.58)

where the transformed data have different noise contributions. The one that is required

is 51 — s9 which does not contain any laser frequency noise. Recall that the time delay
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interferometry observables are linear combinations of the raw data that lead to the
cancellation of laser phase noises. In this example the difference of the two readings
(s1—s2) does exactly that and is therefore a simple time delay interferometry observable.
So that the principal component approach can be used to generate these observables.
The difference between this and the other computer-based approach is that the time
delay interferometer observables are generated from the data using the data covariance
matrix. The eigendecomposition of this matrix produces the eigenvectors needed for
transforming the data into those that lead to the cancellation of the laser frequency
noises.

This technique should be able to handle real LISA data since it uses the data and its
covariance matrix which will also incorporate the real behaviour of LISA. The covariance
matrix will be generated algebraically and its computation is based on knowledge of the
arm lengths which is also true for the conventional time delay interferometry observables
[77, 78]. The other contributions to the covariance matrix are the instrumental noise
variances. These will not be available during the measurements and will be based on
assumptions made about the noises.

The technique simplifies the data analysis by using the eigendecomposition of the
data covariance matrix in order to obtain the data with the required sensitivity. A
potential limitation will be the ease of computing the eigenpairs (eigenvalue with its
eigenvector). The more realistic inter-spacecraft readings for LISA will contain two sets

of laser frequency noises at different times which can be written as
si(t) = pjlt — Di] — pi(t) +na(t), (1.59)

leading to correlations between the noises at different times requiring a covariance matrix
that will account for the cross-correlations between the different times and hence will
no longer be a simple 2 x 2 matrix but one that is the size of the data. The effects of
the size of the matrix on the computation times using algebraic and numeric methods
will investigated in Chapter 6.

The whole point of LISA is to obtain information about gravitational wave sources in
its data which is obtained through statistical inference based on the instrumental noises
in its data [54]. With the conventional time delay observables this is done on the previ-

ously generated observables. The fact that the principal component approach directly
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acts on the data means that the “generation” of these observables can be incorporated

into the inference which will be illustrated in the next section.

1.6.3.1 Using the principal components in the data analysis

The framework used for the inference in Romano and Woan [54] is Bayesian and in this
framework parameters can be assigned probabilities. This will be explained in Chapter
5. The uncertainty in the estimates of the parameters a is obtained from the posterior

probability which is defined by Bayes’ theorem as

p(a|M) p(d|a, M)
p(d|M) ’

where d is the data, M is the signal model and p(a|M), p(d|a, M) and p(d|M) are the

p(a’d, M):

(1.60)

prior, likelihood and evidence, respectively. For parameter estimation the evidence (the
denominator) will be a constant since it is computed for all the values of the parameters
using the same model and data. Its effect will be to normalise the posterior probability
therefore, it can be ignored. The prior describes the distribution of the values of the
parameters. If we assume equal probabilities for all values for the parameters by using
a uniform prior then this will also be a constant which can be ignored. With these
assumptions Equation 1.60 can be simplified to a proportionality between the posterior

probability and the likelihood that is
plald, M) o< p(dja, M), (1.61)

The data appear in the likelihood as noise. If the laser phase noise and the photodetector
noises are assumed to be Gaussian which is completely defined by the covariance matrix,
then the likelihood function for the noises in the two detectors s; and s» can be defined

as

p(s—h) = W exp( — %[S—h]TC’_l[s—h]), (1.62)

where |C] is the determinant of the matrix and is a constant. The covariance matrix

occurs in the exponential term along with the data as

Q= [s—h]"C'[s — h], (1.63)
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which is where the principal components will enter inference. The eigendecomposition

of the covariance matrix used by the principal component approach can be written as
CV =VA, (1.64)

where A is a diagonal matrix containing the eigenvalues and V is the corresponding

matrix of eigenvectors. Rearranging this equation to obtain C' gives
C=VAV (1.65)
and its inverse is
Ct=VIAV. (1.66)
Inserting this into the Equation 1.63 gives
Q=[s—h]"V'AV[s — h], (1.67)

where the product of the eigenvector and the data occurs as V'[s — h] which is the basis

transformation shown in Equation 1.57 that produced the laser noise free data.
Another point to note is that the inverse transforms the principal components. The

large values will now become the small. For example, with the noise variances given by

o7 =100 and 07 = 1 the inverse becomes

L0 0.005 0
cl= | = : (1.68)
0 1 0 1
The effect on the data is
T
(81 + 82) — (h1 + hg) 0.005 0 (51 + 82) — (hl + hg)
(81 - Sg) - (hl - h2) 0 1 (Sl - 82) - (hl — hg)

[ (s1+ 82) — (b1 + hz)]z + [(81 —59) — (1 — h2)}2

05[(2p + (n1 +ns)]” + [1 — o)’ (1.69)

which diminishes the contributions from the terms containing the laser noise. The
greater the separation between the variances of the two types of noises the smaller will
be the contribution from this term. The laser frequency noise is expected to be 107
times greater than the detector noise which will result in even smaller values for these

in the inverse.
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1.6.3.2 Eigendecomposition in the frequency domain

As mentioned previously, the simple model only had common noises at the current time
p(t) which resulted in a simple 2 x 2 covariance matrix. LISA’s raw data includes laser
noises from two different sources with two different times ¢ and ¢t — D;. This changes the
covariance matrix which now has to include the covariances occurring at different times
because of the time offset and is reflected by including a lag term 7. The covariance
matrix C'(7) will now depend on the size of the data and the number of eigenvalues will
reflect this. So even for a day’s data sampled at 1 Hz the number of eigenvalues for
the six optical benches will be ~ 5 x 10° requiring the decomposition of a very large
covariance matrix.

There are methods for generating the eigenvalues that take advantage of the structure
of the covariance matrix. For the simple model the structure of the matrix in the time
can be defined as a symmetric block banded Toeplitz matrix. In the simplest case this
matrix contains sub- and super-diagonals separated from the main by an offset related
to the time delay in the data. The separation of the outermost diagonal is defined by
the bandwidth. Trench [74, 73| presented a method for generating the eigenvalues that
is based on this bandwidth instead of the size of the matrix which could be useful for
the time domain covariance matrix.

The frequency domain offers the potential to simplify this as, for the toy model,
there are no correlations between frequencies producing a covariance matrix with values
occurring in blocks along the main diagonal. The size of the blocks reflect the number of
optical benches and for the simple two detector model will be 2. The eigendecomposition
of a block diagonal matrix is equal to the eigendecomposition of the individual blocks
and so is the inverse. How trivial this is depends on the size of the blocks. For LISA
this will reflect the number of optical benches and will therefore be 6 x 6. This offers
the potential to simplify the process by changing it to a block-wise decomposition of
smaller matrices. This partitioning of the decomposition also allows the possibility for

parallel computation of the eigenpairs.
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1.6.4 The scope of this thesis

Romano and Woan [54] applied the method to a simple model for LISA assuming
unequal but fixed arm lengths and times were restricted to integer values. The noises
were assumed to be stationary with each type having the same values for the variances
of 012, for the laser and o2 for the photodetector noises. They used a small covariance
matrix with only five values for the times from which they obtained nine degenerate
eigenvalues that were free from laser phase noise. The degeneracy was due to the equality
of the photodetector noise variances. Using a few of the eigenvectors associated with
these eigenvalues they were able to generate one Sagnac combination which hinted at a
possible link between the eigenvectors and time delay interferometry combinations. In
this thesis we not only prove this connection but also that the two approaches to LISA
data analysis are equivalent in that they provide the same outcome in terms of the data

sensitivity and results for the signal extraction.

1.6.5 Outline

In all the literature about the conventional time delay interferometry observables, be-
cause they were manually generated, they are just listed. To our knowledge there are
no illustrations of the process of deriving them or explanations of how they work, there-
fore, we begin by doing this in Chapter 2 using the Sagnac and Michelson time delay
interferometry combinations. The effects of LISA’s orbital motion on the generation of
the time delay interferometry observables is also included to illustrated why the Sag-
nacs fail to cancel the laser phase noises while the Michelson still cancels them under
these conditions. The principal component analysis is performed on the covariance and
power spectral density matrices of the instrumental noises in the raw data and Chapter
3 shows how these are generated. The conventional way to do analysis on LISA data
is through the time delay interferometry observables which have to be generated first
before any inference can be performed. This method also uses these matrices, therefore,
Chapter 3 will include a covariance analysis of the AET observables for a comparison
with the results using the principal components. The principal components are obtained
through the eigendecomposition of the noise covariance and power spectral density ma-

trices which is explained in Chapter 4 using the conventional characteristic equation
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method. We also compare the algebraic and numeric computation of the eigenpairs in
terms of their computation times and results. In this chapter we prove the relationship
between the laser noise free eigenvectors and the time delay interferometry observables
in the time and frequency domains. We illustrate the advantage of using the principal
component approach in the analysis using a Bayesian approach which is done in Chapter
5. In the same chapter we also include the analysis using the time delay interferometry
observables and compare the results from both methods. In Chapter 6 the results of the
investigations of a more realistic model of LISA data are presented specifically those re-
lated to the noise variances, arm lengths and laser phase-locking as these directly affect
the covariance matrix. The aim is to see how the principal components approach han-
dles real LISA data and in doing so determine which of the properties of LISA has the
most effect on the eigenvalues. We are particular interested in finding out what would
break the method which would mean the prevention of the splitting of the eigenvalues
to produce those that are free from laser phase noises which is essential for its success.

Our conclusions are presented in Chapter 7.



Chapter 2

Understanding time delay interferometry

This chapter contains the author’s interpretation of the cancellation of laser noise using
time delay interferometry and how it is used to generate the Sagnac and unequal-
arm Michelson observables. The effect of the phase-locking of the lasers on the noise
cancellation in these observables is also shown. To illustrate how these observables
adapt to real LISA the cancellation is performed with the directional dependence of the
arm lengths caused by the rotational motion. This is then used to explain the breaking

of the Sagnac observables by the motion of the antenna.

2.1 Laser phase noise cancellation in an unequal-
arm Michelson interferometer

One way to understand the laser phase noise problem in LISA and the time delay
interferometry approach to canceling this noise is to illustrate what happens in a simple
Michelson interferometer when the arms have equal and unequal lengths. Figure 2.1
is a schematic of a conventional Michelson interferometer consisting of a single laser, a
beam splitter, a photodetector and two mirrors. The beam from the laser arriving at
the beam splitter is divided equally and diverted to the two perpendicular arms. At the
end of these arms the beams are reflected by the mirrors back towards the beam splitter
where they are redirected towards the photodetector. Since the beam is only separated
at the splitter, the optical path lengths will only be measured from that position to the
photodetector. The lengths of the arm lengths are given by L; and the corresponding
light travel times are D; = L;/c and ¢ is the speed of light.

The laser phase noise p; associated with a particular arm that arrives at the pho-
todetector (PD) at time t is the same noise that left the laser at a time ¢ minus the

total travel time in that arm D; where ¢ = {I, I} is the arm number. The total travel

43
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Figure 2.1: Schematic of a conventional Michelson interferometer with orthogonal arms (I, II), a beam
splitter (S), two mirrors (M, Ms) and a photodetector (PD). The beams are separated for illustration.

times in the arms are
D; =2D,+Ds, Dy = 2D, + D, (2.1)
With equal arm lengths (D; = Dy = D) the total times become
Dy = Dy = 2D + Ds, (2.2)

which are the same so that the laser noise arriving at the photodetector for time ¢ will

be the same and the phase measurements will be
skt (t) = p(t — D) = p(t — 2D — Ds),
siser(t) = p(t — Dry) = p(t — 2D — D3). (2.3)
Since they are the same they can be canceled by differencing the two readings giving
laser o laser laser
S (t) = s/°7(@) — s (¢)
= p(t—2D — D3) —p(t — 2D — Ds)
= 0. (2.4)

With unequal arm lengths the difference in the optical path lengths means that phase

measurements recorded at the photodetector at the same time are
sleser (4 = p(t — D;) = p(t — 2Dy — Ds),
s (t) = p(t — Dyr) = p(t — 2Dy — Ds), (2.5)

which will contain different noises because of the different offsets of D; and D,. This

means that the direct differencing of the readings for the same time t used with equal
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Figure 2.2: Schematic of an unequal-arm Michelson interferometer with a beam splitter (S), mirrors
(M1, M2) and photodetector (PD). The arm lengths are L1 and L2. This difference in arm lengths
causes a difference in the arrival times at the photodetector with the beam from the shorter arm arriving
before the other.

arm lengths will no longer cancel the laser noise.

2.1.1 Unequal arm laser noise cancellation

The inequality of the arm lengths changes the noises that arrive at the photodetector
for a particular time ¢ because they alter the arrival times in each arm. The same noises
still exist in the two arms but are just shifted by the difference between their lengths.
The noise cancellation can still be achieved but by slightly different methods. The two
possible ways of doing this require recording the readings separately in order to track
the noise and then difference them.

The first method is to difference the shifted readings of the two arms by a time that
is equal to the difference in the arm lengths. This is illustrated in Figure 2.2 where
arm I is longer than arm II. In this case when the noise in the arm II (shorter) has
arrived at the photodetector the same noise in arm I has only reached a point A which
is a distance AL from the detector (Figure 2.2a). The noise in arm I will arrive at the
detector at a later time (¢ + AD). To cancel the noise, either difference the reading in

Arm T at time ¢ with that in Arm II recorded at an earlier time later time (t — AD)
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(Figure 2.2b) or difference the reading in Arm II at time ¢ with that of Arm I taken at

an later time (¢t + AD) (Figure 2.2a). For the first case the laser phase noises are
shaser () = p(t), skaser(t — AD) = p(t — AD), (2.6)
and their difference is

Sl[aser(t) _ Sl]a;sﬂ(t — AD) = p(t) - p(t - AD)

=0, (2.7)

which will result in cancellation. The times will be different but the laser noises will
now be the same. The aim is not to have the same times just the same noises.

The second method is to simulate equal arm lengths by making the light travel time
in each optical path the same. This can be done by offsetting each reading by the light
travel time in the opposite arm. For example, the total time in Arm I is (2D; + Ds)
and in Arm II it is (2D, + Dj3) where they differ by twice the times in their respective
arms. To equalize the times add the times of the opposite arm so that the times will be
(2D1 + D3 + 2Ds) for Arm I and (2Dy + D3 + 2D;) for Arm II. The phase readings for

each arm will be at times ¢ minus these offsets which are

st = 2Dy + Dy +2Dy)] = p(t —2D1 — Dy — 2Dy),

Sl[a[ser[t . <2D2 + l)3 + 2D1)] = p(t — 2D2 — D3 — 2D1>, (28)

where the same times result in the same noises. This has the advantage of having same
noises with the same times. Practically, since both these methods rely on the differencing
of readings taken at earlier and later times they are post-processing techniques. Both

methods are used in the time delay interferometry observables.

2.2 Laser noise cancellation using time delay inter-
ferometry

The structure of LISA enables it to simulate different types of interferometers such
as the Michelson and the Sagnac. The Michelson interferometer compares readings
in two arms while the Sagnac compares readings along two closed paths in opposite

directions. One way to approach the laser cancellation is to simulate what occurs in
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Figure 2.3: A schematic diagram of LISA showing the notation used in the labeling the arms, optical
benches and spacecraft.

these interferometers. Initially, the combinations are generated for a stationary rigid
LISA array with three arm lengths of L, L, and L3 as shown in Figure 2.3. The lasers
on each spacecraft are assumed to be phase-locked to each other resulting in only three
independent laser phase noises p;, ps and ps.

Both these assumptions will be relaxed by removing the phase-locking and introduc-
ing a rotational motion in the antenna to see the effects on the cancellation of the noise
and the creation of the observables. The rotational motion introduces a directional
dependence of the arm lengths. The observables that will be generated are the Sagnac

¢ and « and the Michleson X.

2.2.1 Fully symmetric Sagnac

Before even simulating either of the interferometers, an examination of the structure of
the optical bench readings can give a idea of how to approach the cancellation. The
readings for each optical bench is a combination of laser beam received from the other
spacecraft at the opposite end of adjacent arm and its local beam. This means that

there are two laser phase noises occurring in each reading with times separated by the
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light travel times in the arms. The readings for all six benches are

s1(t) = pa(t — D3) — pa(t),

sy(t) = p3(t — D2) — pi(2),

sa(t) = p3(t — D1) — pa(t),

sy (t) = pi(t — D3) — pa(t),

s3(t) =pi(t — D2) — ps(t),

sy (t) = p2(t — D1) — ps(t). (2.9)
The phase readings s; with the same numbers are for the same spacecraft with the primed
and unprimed numbering indicating the right and left optical benches, respectively. The
phase-locking of the lasers on each spacecraft means that the phase noises for their
two optical benches are the same and these are reflected in the noises at the current

times p;(t). So that they can be canceled by differencing their readings. Following the

convention of subtracting left from right the differenced readings for each spacecraft are
si(t) — s1(t) = ps(t — D) — pa(t) — pa(t — D3) + pi(2)
= p3(t — D2) — pa(t — Ds),
s2(t) = s2(t) = p1(t — D3) — pa(t) — ps(t — D1) + pa(2)
= pi(t — D3) — p3(t — Dy),
sy (t) = s3(t) = pa(t — D1) — ps(t) — pa(t — D2) + ps(?)
= pa(t — D1) — pi(t — D). (2.10)
The remaining noises contain two copies of the same noises but with different offsets
and with opposite signs. Summing the readings in Equation 2.10 and grouping the same
noises gives
[s1() — s1(D)] + [s2 () — s2(t)] + [s3/(£) — s3(2)]
= pi(t — D3) = p1(t — D) + pa(t — D1) — pa(t — D)

+ p3(t — D) — ps(t — Dy). (2.11)

This is where the method of equalising the times in the readings by offsetting the
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Table 2.1: The noises remaining in Equation 2.11 with their parent optical benches and the offsets
needed to cancel them in each reading.

Phase noise Parent Shifted Shifted
optical bench phase noise optical bench reading

p1(t — D3) s9/(t) p1(t — D3 — D2) s9r(t — D2)
p1(t — D2) s3(t) p1(t — D2 — D3) s3(t — Ds)
p2(t — D1) s3/(t) p2(t — D1 — D3) sz (t — D3)
p2(t — D3) s1(t) p2(t — D3 — D1) s1(t — D1)
p3(t — D2) s1/(2) p3(t — D2 — D1) s1(t— D1)
p3(t — D1) s2(t) p3(t — D1 — D2) s2(t — Da)

different light arms is used. For example, for noises pi(t — D3) and p;(t — Do) this
requires offsetting the first by Dy and the second by Ds. This means offsetting the
optical bench readings where the noises originated which, for laser noises p;(t — D3) and
p1(t — Ds), are sy and s3, respectively. The remaining noises in Equation 2.11 and their

parent readings are given in Table 2.1. Applying the shifts as shown in the table gives

s1(t — Dy) = po(t — D3 — Dy) — pi(t — D),

s1/(t — D1) = p3(t — Dy — Dy) — p1(t — Dy),

So(t — Da) = p3(t — Dy — Dg) — po(t — Ds),

so/(t — Da) = pi(t — D3 — Da) — pa(t — Do),

s3(t — D3) = p1(t — Dy — D3) — p3(t — Ds),

Sgl(t — Dg) = pg(t — D1 — Dg) — pg(t — Dg) (212)
This not only shifts the noises we are trying to cancel but also shifts the local noises
noises that were canceled. Luckily the local phase noises will still have the same times

needed for their cancellation. The process of first differencing the readings on the same

spacecraft with these new offsets is repeated and then summed to obtain

[s1:(t — D1) —s1(t — D1)] + [s2(t — D2) — so(t — D2)] + [s3/(t — D3) — s3(t — Ds)]
= p3(t — Do — D1) — p1(t — D1) 4+ pa(t — D1 — D3) — ps(t — Ds)

+ p1(t — D3 — Do) — po(t — D3) — pa(t — D3 — Dy) + p1(t — D)

— p3(t — Dy — Ds) + po(t — Do) — p1(t — Dy — D3) + p3(t — D)

=0, (2.13)

where all the laser noises have been canceled. Grouping the terms in the above combi-
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nation in terms of signs gives

[Sll(t — Dl) + 83/(75 — Dg) + 52/<t — Dg)]
—[81<t—D1> +52(t—D2) +83(t—D3)], (214)
which simulates a Sagnac interferometer. The switching of sy (¢) and sy (%) is to show the

direction of the path. This arrangement is the fully symmetric Sagnac (. The process

shows that LISA naturally simulates a Sagnac interferometer. The final equation is

C(t) == Sll(t - Dl) + Sgl(t — Dg) —+ SQI(t - DQ)
— Sl(t—Dl) —Sz(t—Dg) —Sg(t—Dg). (215)
This process could have been achieved by simulating a Sagnac interferometer from
the outset where the readings are combined as the total paths measured in opposite

directions. This is done by differencing the sums of the clockwise and counter-clockwise

readings to obtain

sv(t)+sy (1) + s2(t) — s1(t) — s2(t) — s3(t)
= p3(t — D2) = p1(t) + p2(t — D1) — ps(t) + pi(t — Ds) — p2(t)
— pa(t = Ds) 4+ p1(t) — ps(t — D1) + pa(t) — pa(t — D2) + ps(t)
= p1(t = D3) — pi(t = D2) + pa(t — D1) — p2(t — D)
+ p3(t — D2) — ps(t — D), (2.16)

which is the same result as in Equation 2.11. To cancel the noises follow the same

process that was used for that equation.

2.2.1.1 Laser noise cancellation without phase-locking

The phase-locking of the lasers on each spacecraft had the advantage of allowing the

cancellation of their local laser noises by differencing their inter-spacecraft optical bench
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readings. With independent lasers the inter-spacecraft readings are

s1(t) = pa(t — D3) — p(t),

s1(t) = ps(t — Do) — pu(t),

so(t) = pz(t — D1) — paft),

s (t) = pi(t — Dy) — par(t),

53@) = Pl/(t - D2) - P3(t),

sx(t) = p2(t — Dv) — py (1), (2.17)
where there are no longer any common noises between the optical benches on the same
spacecraft and differencing them will not be useful in canceling any noises. One way

to proceed is to try to recover the combination that was derived with phase-locking by

starting with that equation which is

C(t) = Sll(t — Dl) + Sgl(t — Dg) + Sgl(t — DQ)

— 81(t—D1) —Sz(t—Dg) —Sg(t—Dg), (218)
where the new phase readings are

s1(t — Dy) = py(t — D3 — Dy) — pi(t — Dy),

Sll(t — Dl) = pg(t — D2 — Dl) —pl/(t — Dl),

so(t — Dg) = py(t — Dy — Ds) — pa(t — D),

SQI(t — Dg) = pl(t — D3 — Dz) —p2/<t — DQ),

s3(t — D3) = py(t — Dy — D3) — p3(t — Ds),
sg/(t — D3) = pao(t — Dy — D3) — ps(t — Ds). (2.19)
Substituting these into Equation 2.18 and rearranging the terms to match the times
instead of the noises gives
s1(t — Dy) + s3/(t — D3) + so/(t — Do) — s1(t — D1) — so(t — Do) — s3(t — D3)
=pi(t — D1) — pv(t = D1) +pi(t — D3 — D2) — pu(t — D2 — D3)
+ po(t — D3) — po(t — Ds) + pa(t — Dy — D3) — po(t — D3 — Dy)
+ p3(t — Ds) — py(t — Ds) + ps(t — Dy — D1) — py(t — D1 — Dy).

(2.20)
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The noises are different on each spacecraft but have the same times, for example, p;(t —
D) and py/(t — Dy). Canceling the noise now requires the measurements taken between

the two optical benches on each spacecraft, the intra-spacecraft readings 7;, which are

Ti(t) = pu(t —di) —pi(t),  Tu(t) = pi(t — di) — pur(?). (2.21)

Ignoring the times d; which are very small (< 1078s), the readings for all six optical

benches can be written as

7(t) =pr(t) — pi(t),
T (t) = pi(t) — pr(t),
72(t) = p2(t) — p2(t),
T (t) = pa(t) — pa (1),
73(t) = py(t) —ps(t),
Ty () = p3(t) — par (¢). (2.22)
The only non-zero option is to subtract the readings associated with each spacecraft
giving
ni(t) — o (t) = [pr(t) = pi(t)] = [p1(t) — P (1)]
= 2pu/(t) — 2pi(t),
To(t) — 2 (t) = (p2' (t) — p2(t)) - (p2(t) — Do (t))
= 2pa (t) — 2pa(t),
73(t) — 73 (t) = (px(t) — ps(t)) — (p3(t) — px (1))
= 2py () — 2ps(t), (2.23)

where there are now two copies of each of the noises. To cancel all the noises in Equation

2.20 the internal readings are offset by the appropriate times giving
Tl(t — Dl) — Ty(t — D1> = 2p1/<t — D1> — 2[)1(25 — Dl),
Tg(t — Dg) — 7'2/<t — DQ) = 2p2/(t — Dg) — 2p2(t — Dg),

7'3('[5 — Dg) — Tg/(t — Dg) = 2p3/(t — Dg) — 2p3(t — Dg), (224)
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and

71(t — Dy — D3) — 11/(t — Dy — D3) = 2py/(t — Dy — D3) — 2p1(t — Dy — D3),

To(t — Dy — D3) — 1o/ (t — Dy — D3) = 2por(t — Dy — D3) — 2pa(t — Dy — Ds),

73(t — Dy — D) — 13/(t — Dy — Dg) = 2p3/(t — Dy — Do) — 2ps(t — Dy — Ds).
(2.25)

The noises occur in these are twice that required for cancellation. Summing the halves

of these differences gives

1[7'1(t—D1) —T(t — Dl)] + % [7'2(75 —Dy) — 1o (t — Dz)] + %[Tg(t — D3) —73(t — D3)}

2
= pr(t — D1) — pi(t — D1) + por(t — Dy) — pa(t — Do)
+ pa(t — D3) — ps(t — Ds), (2.26)

and

%[ﬁ(t — Dy — D3) — 1y:(t — Dy — D3)] + %[Tg(t — Dy — D3) — 1o(t — Dy — Dj)]

+ %[Tg(t — Dy — Do) — 73(t — Dy — Ds)]
=pr(t — D2 — D3) —pi1(t — Do — D3) + px(t — D1 — D3) — pa(t — D1 — D3)

+ py(t — Dy — Dy) — p3(t — Dy — Ds), (2.27)

where the noises appear with opposite signs to the remaining noises in the Equation

2.20. The final noise canceling equation for the { with no phase-locking is

C(t) = sv
_|_

(t — D1) + s3/(t — D3) + so(t — Do) — s1(t — Dy) — sa2(t — Ds) — s3(t — Ds)
[t = Dy) = 7u(t = i) + 7ol — D) = 7t — Do) + 73(t — Dy)

— 73(t = D3) + 11(t — Dy — D3) — 11:(t — Dy — D3) + 7o(t — Dy — Ds3)

— Ty(t — Dy — D3) + 73(t — Dy — D3) — 73 (t — Dy — Dy)]. (2.28)
The structure is the same in terms of its inter-spacecraft readings as for phase-locked
lasers. Although the ¢ observable is the simplest to generate, it has a very low signal
response. However, this property has the advantage of allowing it to be used as an

instrumental noise analysis observable [20)].
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2.2.2 The 6-pulse Sagnac «

This will be done by simulating a Sagnac interferometer directly where the differencing
is of the sum of the readings in two rings measured in opposite directions. One way
to do this for the 6-pulse Sagnacs is sequentially starting with the readings of the two
optical benches on the spacecraft that will act as the splitter and then combining it with
the readings of the next set of optical benches of the same type (primed or unprimed)
in opposite directions. For example, for spacecraft 1 the counter-clockwise path is from
s1/(t) to s3(t) then to sy (t) and the clockwise path is from sq(t) to sy(t) then to s3(t).
The lasers are assumed to be phase-locked on each spacecraft.

For the o Sagnac spacecraft 1 is the beam splitter and the readings are sy and sy,

which are differenced giving

si(t) = s1(t) = [ps(t = D2) = pu(t)] = [pa(t = D3) = pa(t)]

= p3(t — Da) — pa(t — Ds). (2.29)

The next set of readings in the ringed paths are sg(t) and so(t) which when differenced

gives

sz (t) — s2(t) = pa(t) + pa(t — D1) — p3(t) — p3(t — D1), (2.30)

where two sets of the same noises (pg, p3) occur but at different times. These noises also
occur in previously differenced readings therefore, either can be used to cancel them.
For example, noises p3(t) or p3(t — D;) in Equation 2.30 can be used to cancel ps(t — Ds)
in Equation 2.29. However, using ps(t) requires only one offset Dy while using p3(t — D;)
requires offsetting it by D5 and the noise in Equation 2.29 by D;. This is also the same
for the other set of noises in Equation 2.30. For both sets of noises we use the simpler
option of shifting the ones at time ¢ which means shifting s (¢) by D3 and so(t) by Ds

and then differencing these to obtain

Sg/(f — Dg) — Sg(t — Dg) = pg(t — Dg) +p2(t — D1 — DQ)

— ps3(t — Dy) — ps(t — Dy — Dj). (2.31)
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Adding these to Equation 2.29 gives

Sy(t) — 81(t> + 83/(2& - DQ) - Sg(t — Dg)
= p3(t — D) — pa(t — Ds3) + pa(t — D3) + pa(t — Dy — Dy)
— p3(t — D2) — p3(t — D1 — Ds)

= pao(t — D1 — D) — p3(t — D1 — D3). (2.32)
The final readings for each ring are sy (t) and s3(t) which are
Sor(t) = p1(t — D3) — pa(t), s3(t) = p1(t — Dy) — ps(t) (2.33)
where only one set of common noises exist (p;). Differencing them gives
s (t) — s3(t) = p1(t — D3) — p1(t — D) — pa(t) + ps(t). (2.34)

The remaining noises in Equation 2.32 are py(t — Dy — Ds) and ps(t — Dy — D3) and
canceling them requires shifting py(¢) and p3(¢) in Equation 2.34 by —D; — D, and
— Dy — Dj3, respectively. To do this requires applying the same offsets to sy (t) and s3(¢)

which when differenced gives
52/(15 — D1 — Dg) — Sg(t — Dl — Dg)
=pi(t — D3 — D1 — Dy) — pa(t — D1 — Dy)
—p1(t — Do — Dy — D3) + p3(t — D1 — D3)
= p3(t — D1 — D3) — p2(t — D1 — D), (2.35)
where the p; noises have been canceled. Adding this to Equation 2.30 gives
Sll(t) — Sl(t) + 83/<t — D2) — Sg(t — Dg) + Sgl(t — D1 — D2> — Sg(t — Dl — Dg)
= po(t — D1 — D3) — p3(t — Dy — D3) + pi(t — D3 — D1 — Dy)
—p2(t — D1 — Da) — pi(t — Do — Dy — D3) + p3(t — Dy — D3)
= 0. (2.36)
Reordering the combination to reflect the differencing of opposite ringed paths gives
Sll(t) +33/<t — D2> -+ Szl(t — D1 — DQ) — 81<t) — 82<t — Dg) — Sg(t — D1 — Dg)
= a(t) (2.37)

The  and v are derived using spacecraft 2 and spacecraft 3 as the beam splitters,

respectively.
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2.2.2.1 Laser noise cancellation without phase-locking

Without phase-locking the structure remains the same and the local phase noises are
canceled with the internal readings as illustrated for . To show this we adjust the
combination which was generated for phase-locking to show the different laser phase

noises that now appear and group the noises according to times giving

s1(t) 4 sg(t — Do) + s (t — Dy — Dg) — s1(t) — s2(t — D3) — s3(t — Dy — Ds)
= pi(t) —pu(t) + pi(t — D3 — D1y — Da) — pr(t — Do — Dy — Ds)
+ pa(t — D3) — po(t — D3) + pa(t — Dy — D3) — par(t — D1 — Ds)
+ p3(t — Dg) — p3r(t — Do) + p3(t — Dy — D3) — ps:(t — D1 — D3)  (2.38)
where as expected the noises no longer cancel. However, these can be canceled by using
the intra-spacecraft readings with the appropriate offsets. Apply the same process used

for ¢ and difference the corresponding intra-spacecraft readings 7; for the noises in

Equation 2.34 with the required offsets which will give

Ti(t) — (1))

= 2pu(t) — 2pa (),
71(t — Dy — Dy — D3) — 1/(t — Dy — Dy — D3)

= 2py(t — D1y — Dy — D3) = 2py(t — D1 — Dy — D3),
To(t — D3) — 1o/ (t — Ds)

= 2px(t — D3) = 2pa(t — Ds),
To(t — Dy — D) — 1o/ (t — Dy — Ds)

= 2poy(t — Dy — Dy) — 2pa(t — Dy — Ds),
73(t — Do) — 73/(t — Ds)

= 2p3/(t — Do) — 2p3(t — Ds),
73(t — D1 — D3) — 13/ (t — D1 — D3)

= 2p3/<t - D1 - Dg) - 2p3<t - D1 - Dg) (239)
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Sic 2

Figure 2.4: Schematic of LISA showing arms L3 and Ly used in the unequal-arm Michelson X observ-
able.

The new combination that will cancel all the noises is

Sy(t) — 1(t) + Sgl(t - Dg) - Sg(t - D3) + SQ’(t — D1 - Dg) - S3(t — D1 — D3)

n(t) — 7 (t)] + % [71(t = Dy — Dy — D3) — 71/(t — Dy — Dy — Dj)]

Tg(t — Dg) — 7'2/<t — Dg)] + %[TQ(t — D1 — Dg) — Tgl(t — D1 — DQ):|

+ + 4+
NI ORI ORI

— 1

ry(t — Do) — my(t — Dy)] + %[Tg(t Dy~ Dy)— it — Dy — Dy)]. (2.40)

Like the Sagnac ¢ the structure of the inter-spacecraft readings s; for the « is not altered

as the noise cancellation can be achieved by using the intra-spacecraft readings 7;.

2.2.3 Unequal-arm Michelson X

The Michelson has a beam splitter with mirrors at the ends of two arms and for LISA
this is formed using one of the spacecraft and the two arms adjacent to it. For the
X observable spacecraft 1 is the splitter with the arms being Ly and Ls. The phase
readings that are available for this combination are those from the four optical benches
at the end of these arms as shown in Figure 2.4 which are 1, 1’, 2’ and 3. All the optical
bench readings are one way measurements therefore no reflection occurs. To simulate
reflection we alternate between the optical bench readings at the end of each arm until
the noises are canceled. For example, for arm L3 we alternate between readings s; and
Sor.

Assuming that the lasers on each spacecraft are phase-locked, the four optical bench
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readings that are available for a Michelson formed with spacecraft 1 as the beam splitter

are

s1(t) = pa(t = D3) = pr(2),

s (t) = p3(t — Da) — pi(2),

sy(t) = pi(t — Ds) — pa(?),
s3(t) = p1(t — Da) — ps(t). (2.41)
To generate the X observable we can use the same first step as for the Sagnac where

the two optical bench readings on spacecraft 1 are differenced since it is acting as the

splitter which gives

si(t) = s1(t) = [ps(t — D2) = pa(t)] = [p2(t = Ds) — pu(1)]
where local noises are canceled. To simulate reflection, the next set of available readings
that can be used to cancel the remaining noises are those at the ends of the arms adjacent
to optical benches 1’ and 1 which are s3 and so, respectively. To cancel the remaining
noises in Equation 2.42 sy (t) is shifted by D3 and s3 by Dj giving
Sor (t — Dg) = p1<t — 2D3) — pQ(t — Dg),

Sg(t — Dg) = pl(t — 2D2) — pg(t — Dg) (243)
Combining these with Equation 2.42 with the appropriate signs gives

s1(t) — s1(t) — sw(t — D3) + s3(t — Ds)
= p3(t — Dy) — pa(t — D3) — pa(t — 2D3) + pa(t — D3)
+ p1(t = 2D3) — p3(t — D)
=p1(t —2Dy) — pi(t — 2D3). (2.44)
The remaining phase noises are from the same spacecraft but at different times and to
equalise the times each is shifted by the time in the other, that is p; (t —2D5) by 2D3 and

p1(t —2D3) by 2D,. Continuing with the reflection simulation, this means using s; and

sy with the appropriate offsets which are shifting them by 2D5; and 2Dj3, respectively
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giving
Sl(t — 2D2) = pg(t — D3 — 2D2) — pl(t — 2D2>,

Sll(t — 2D3> = pg(t — D2 — 2D3) — pl(t — 2D3> (245)
Combining these with the Equation 2.44 with the appropriate signs gives

s1(t) — s1(t) — sor(t — D3) + s3(t — Da) + s1(t —2D3) — sy/(t — 2D3)
=p1(t —2D3) — p1(t — 2D3) + po(t — D3 — 2Dy) — py(t — 2Ds)
— p3(t — Dy — 2D3) + pa(t — 2D3)
= po(t — D3 — 2D3) — p3(t — Dy — 2Ds3), (2.46)
where two new noises have been introduced. Again, the next available optical benches
are the sy and s3 which are shifted by D3 + 2Dy and Dy + 2Ds3, respectively, to obtain
the required times for the corresponding noises giving
Sor(t — D3 — 2D9) = p1(t — 2D3 — 2Ds) — po(t — D3 — 2Ds),
s3(t — Dy —2D3) = pi(t — 2Dy — 2D3) — p3(t — Dy — 2D3). (2.47)
Combining these with Equation 2.46 with the appropriate signs gives
s1(t)=s1(t) — sy (t — D3) + s3(t — Dg) + s1(t — 2Ds) — s1.(t — 2D3)
— $3(t — Dy — 2D3) + s/ (t — D3 — 2Ds)
= po(t — D3 — 2Ds) — p3(t — Dy — 2D3)
— p1(t — 2Dy — 2D3) + p3(t — Dy — 2D3)
+ pi(t — 2D3 — 2D5) — pa(t — D3 — 2Dy)
= 0, (2.48)
where all the noises have been canceled. Rearranging and grouping according to the
readings along each arm gives
[s1/(t)+s3(t — Da)] — [s51(t) + s2(t — D3)] + [s1(t — 2D2) + s9(t — Dy — 2D,)]

- [81/ (t - 2D3) + Sg(t — Dg - 2D3)], (249)

which is the Michelson X combination.
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2.2.3.1 Laser noise cancellation without phase-locking

With independent lasers the four optical bench readings are

s1(t) = p2(t — D3) — pi(t),

sy(t) = p3(t — Do) — pu(t),

so(t) = pi(t — D3) — px (1),

s3(t) = pr(t — Do) — p3(t)- (2.50)

As in the previous section, the two readings on spacecraft 1 (sy/, s1) to obtain
si(t) — s1(t) = ps(t — D2) — pr(t — D3) + pi(t) — pr (1), (2.51)

where, as expected, this no longer cancel the local laser noises. As was shown for the
Sagnac with no phase-locking, this requires the intra-spacecraft readings 7;. However,
the readings for s and s3 contain noise contributions from the two lasers on spacecraft
2 and 3, respectively, so that the only available set of these readings for the X Michelson

are those on spacecraft 1 which are 7 and 71, and their differenced reading is
T1(t) — 11(t) = 2p1(t) — 2p1 (). (2.52)

As before, only half of these noises are required for canceling the noises in Equation

2.51 and subtracting this amount gives

sult) = s1(8) = Sr(t) = 7(6)] = [ps(t — D) — px(t — Ds) — p(t) + pa(t)]

2
— [p1(t) = pu(1)]
The same process of alternately combining the readings at the end of each arm with the
appropriate delays until all the noises are canceled is used. This means that the next

set of readings are sor and s3 which are shifted by D3 and Ds, respectively to obtain the

required times for the common noises giving

82/<t — D3> = pl(t — 2D3) — pgl(t — Dg),

Sg(t — DQ) = pll(t - 2D2) - pg(t - DQ), (254)
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which are combined with Equation 2.53 with the appropriate signs to obtain the can-

cellation of the py and ps noises, that is,

sut)  52(t) — g lre(t) = 7a(8)] — s (t — D3) + st — D)
= p3(t — D2) — por(t — D3) — pi(t — 2D3) + por(t — Ds)
+pr(t —2Ds) — p3(t — Dy)
= pr(t —2Dy) — pi(t — 2D3). (2.55)
The remaining noises are from the same spacecraft but with different times therefore,
using the internal readings will not help in their cancellation. The next set of available
readings are those of s; and sy/. Since we are trying to recover the original combination

obtained for phase-locked lasers, apply the same offsets by shifting these readings by
2D, and 2D, respectively which gives

Sl(t — 2D2) = pz/(t — D3 — 2D2) — pl(t — QDQ),
Sll(t — 2D3) = pg(t — D2 — 2D3) — pll(t — 2D3) (256)

These are combined with the previous equation to obtain

st) = 51() = lr(t) = (0)] = s (t — Dy) + st — D)
—s1/(t —2D3) + s1(t — 2Dy)
= pr(t —2Dy) — p1(t — 2D3) — p3(t — Dy — 2D3) + py/(t — 2D3)
+po(t — D3 — 2D3) — pi(t — 2D»)
= pp(t — 2D3) — p1(t — 2Ds) — p1/(t — 2D3) + p1(t — 2D3)

—pg(t — DQ — 2D3) + por (t — D3 — 2D2), (257)

which does not result in the cancellation of the p; and py/ as in the phase-locked case at
this stage. However, there are two copies of p; and py/ at offsets of 2Dy and 2D3 which
allows for them to be grouped according to the same times that is, py/(t —2D3), p1(t —
2Dy) and py/(t — 2D3),p1(t — 2D3). The internal readings can now be used to cancel
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these noises and the terms with the required offsets are

Tll(t — 2D3) = pl(t - 2D3) — Pr t— 2D3 s (258)
and their differenced values are

Tl/(t — 2D2) — Tl(t — 2D2> == 2p1(t - 2D2) — 2p1/(t — 2D2),
Tll(t - 2D3) - Tl(t — 2D3) = 2p1<t — 2D3) — 2p1/ (t — 2D3> (259)
Subtract half their values and combine them to Equation 2.57 with appropriate signs

gives

sit) — s1(t) — %[ﬁ,(t) ()] = sy(t — Ds) + ss(t — Dy)

—s1(t —2D3) + s1(t — 2Dy) — % [T/ (t = 2Dy) — 1 (t — 2D,)]
—% [71/(t — 2D3) — 71 (t — 2Ds)]
= py(t —2D3) — p1(t — 2Ds) — py/(t — 2D3) 4 p1(t — 2D3)
—p3(t — Dy — 2D3) + por(t — D3 — 2Ds)
—p1(t = 2D3) + p1(t — 2Ds) + py(t — 2D3) — pi(t — 2D3)
= po(t — D3 —2D2) — ps3(t — Dy — 2Ds). (2.60)
The next set of available readings are sy and s3 which require offsets of (—D3 — 2D5)
and (—Dy — 2D5) to match the noises in the previous equation which are
So(t — D3 — 2Dy) = py(t — 2D3 — 2Ds) — por(t — D3 — 2D5),

Sg(t - DQ - 2D2> = pll(t - 2D2 - 2D3) - pg(t - DQ - 2D3) (261)
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Combining these with Equation 2.60 with appropriate signs gives

silt) — s1(t) — %[ﬁ,(t) ()] = sy(t — Ds) + ss(t — Dy)

—51/(t — 2D3) + s1(t — 2Dy) — % [T/ (t = 2Dy) — 1 (t — 2D,)]
+% [71(t — 2D3) — 71/ (t — 2D3)]
+89/(t — D3 — 2D3) — s3(t — Dy — 2D3)
= po(t — D3 — 2D3) — p3(t — Dy — 2D3)
+p1(t —2D3 — 2D3) — po(t — D3 — 2Ds)
—p1(t — 2Dy — 2D3) + p3(t — Dy — 2D3)
= p1(t —2D35 — 2Ds) — py:(t — 2Dy — 2D3). (2.62)
The remaining noises are from the same spacecraft with the same times. Again use the
internal readings to obtain the noises with the appropriate offsets which are
T1(t — 2Dy — 2D3) = py/(t — 2Dy — 2D3) — pi(t — 2Dy — 2Ds3),

T (t — 2Dy — 2D3) = p1(t — 2Dy — 2D3) — p1/(t — 2Dy — 2D3), (2.63)
and the differenced reading is
T (t — 2Dy — 2D3)—7(t — 2Dy — 2D3)
=2p1(t — 2Dy — 2D3) — 2py(t — 2Dy — 2D3). (2.64)

Adding this to Equation 2.62 gives
si(t) — s1(t) — % () = ma(t)] — s (t — Ds) + ss(t — D)
—51/(t — 2D3) + 51(t — 2Dy) — %[7’1/(75 —2D,) — 11(t — 2D5)]
—% [71/(t = 2D5) — 7 (t — 2Dj3)]
+59/(t — Dy — 2D5) — s3(t — Dy — 2Ds)
+% [71/(t = 2Dy — 2D3) — 11(t — 2Dy — 2D3)]
=p1(t —2D3 — 2D3) — py/(t — 2Dy — 2D3)
—p1(t — 2Dy — 2D3) + py(t — 2Dy — 2D3)

=0, (2.65)
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where all the noises have been canceled. The final expression after rearranging and

grouping the terms is

X(t) = [s1(t) + s3(t — Da)] — [s1(t) + s (t — D3)] + [s1(t — 2D3) + so/(t — D3 — 2D5)]
—[s1/(t = 2D3) + s3(t — Dy — 2D3))]
% [ (8) — 700(8) — 7ur(t — 2D) + 1o(t — 2Dy) + 71 (t — 2Dy)
—711(t = 2D3) 4+ 71/ (t — 2Dy — 2D3) — 71(t — 2Dy — 2D3)], (2.66)
where, like the Sagnac, the structure did not change with respect to the inter-spacecraft
readings. The laser noise cancellation is achieved by incorporating the intra-spacecraft

readings.

2.2.4 Summary

In this section, the process of manually generating of the Sagnac o and ¢ and Michel-
son X combinations was illustrated. This was initially done with the lasers locked on
each spacecraft and then for independent lasers. The structure of both combinations
remained the same in terms of their inter-spacecraft readings with the change being the
need for extra readings to cancel the laser phase noises which were obtained from the

intra-spacecraft readings.

2.3 The effect of orbital motion on the time delay
interferometry observables

This will be demonstrated using the rotational motion only which introduces a de-
pendency on the direction of the measurement of the arm lengths. This difference is
indicated by using L; and L; for clockwise and counter-clockwise measurements, re-
spectively. The arm lengths are assumed to be static. In this section the assumption
will be that lasers are phase-locked on each spacecraft. The time delay interferometry

observables that will be illustrated are the Sagnac ¢ and the Michelson X.
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Table 2.2: The noises remaining in Equation 2.68 with their parent optical benches and the offsets
needed to cancel them in each reading.

Phase noise Parent Shifted Shifted parent
optical bench phase noise optical bench
p1(t — Ds/) s2/(1) p1(t —D3r — D2) sy (t — Da)
p1(t — D2) s3(t) p1(t — Da — D3/) Sg(t — Ds/)
P2 (t — Dll) 83/(t) P2 (t — Dy — Dg) Sg/ (t — Dg)
pQ(t—Dg) Sl(t) p2(t—D3 _Dl/) Sl(t—Dl/)
p3(t — Dqyr) s1/(t) p3(t — Dyr — D1) s1/(t — D1)
pg(thl) Sz(t) pg(thl 7D2/) Sg(thz/)

2.3.1 Sagnac ( with orbital motion

The optical bench readings with the different light travel times are

s1(t) = pa(t — D3) — pi(2),

su(t) = ps(t — Do) — pi(2),

sa(t) = ps(t — Dv) — pa(?),

sy (t) = pi(t — Dy) — pa(?),

s3(t) =pi(t — Do) — ps(t),
sy (t) = p2(t — Dv) — ps(t). (2.67)
The different offsets caused by the directional dependence means that adjusting the final

equation obtained for phase-locked lasers to account for this cannot be done. Instead

we start by simulating a Sagnac by differencing the readings in the opposite arms as

done in Equation 2.16 to obtain

s1(t) + sz (t) + so(t) — s1(t) — s2(t) — s3(t)
= p3(t = Do) = pi(t) +pa(t = Dv) = ps(t) + pi(t = D) = pat)
— p2(t — Ds) + pa(t) — ps(t — D1) + pa(t)
— p1(t — Dy) + ps(t)
= pi(t = Dy) = pa(t — D2) + p2(t — Dv) — pa(t — Ds)
+ p3(t — Do) — ps(t — D). (2.68)
The difference in the arm lengths means that there are now six different offsets in the

result. The remaining noises with their parent optical bench are given in columns 1 and

2 of Table 2.2 and the offsets that need to be applied to these to cancel the noises are
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given in columns 3 and 4. The new readings with these offsets are

Sl(t — D1/> = pg(t — D3 — Dl’) — pl(t — Dl’);

s1/(t — D1) = p3(t — Dy — Dy) — p1(t — Dy),

So(t — Do) = p3(t — Dy — Do) — pa(t — D),

Sy (t — Do) = p1(t — Dy — Ds) — pa(t — Dy),

s3(t — Dz) = p1(t — Dy — Dy/) — p3(t — Dsy/),
sy (t — D3) = pa(t — Dy — D3) — p3(t — Ds). (2.69)
Rewriting Equation 2.68 with these shifts gives
s1/(t — Dy) 4 s3/(t — D3) + so(t — Do) — s1(t — D1/) — s2(t — Do) — s3(t — Dsr)
= p3(t — Doy — D1) — p1(t — D1) + pa(t — Dy — D3) — ps3(t — Ds)

+ pi(t — D3 — D3) — pa(t — Dy) — po(t — D3 — D)

+ p1(t — D) — p3(t — D1 — D) + pa(t — Do)

— pi(t = Do — Dy) + ps(t — Dy)

=pi(t — Dv) — p1(t — D1) + pa(t — Dyr) — pa(t — Dy)

+ p3(t — D3) — ps(t — D), (2.70)
which no longer leads to the cancellation of all the noises because the noises have different
offsets reflecting the directional dependency, for example, pi(t — D;) and py(t — Dy/).
The internal readings 7; are useful when the noises on the same spacecraft are at the
same times but this does not happen in Equation 2.70 therefore they cannot be used to
solve the problem as was done for the independent lasers in Section 2.2.1.1.

This has illustrated why the ¢ Sagnac combination does not survive rotational mo-
tion. This is also true of the 6-pulse Sagnacs. This failure with rotation of the antenna
can also be illustrated intuitively. In an actual Sagnac interferometer if the total length

of the opposite loops are not the same then the noises arriving at the beam splitter will

no longer be the same.
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2.3.2 Unequal-arm Michelson X with orbital motion

The equations for the optical benches needed for the unequal-arm Michelson with new

offsets are

s1(t) = pa(t — D3) — pi(?),
s1/(t) = p3(t — Dar) — pi(t),
sy(t) = pi(t — Dy) — pa(t),
Differencing the readings on spacecraft 1 with the new offsets gives
s1/(t) — 51(t) = p3(t — Do) — pi(t) — p2(t — Ds) + pi(t)
Offsetting sy (t) by D3 and s3(t) by Dy gives
sy (t — D3) = pi(t — Dy — D3) — py(t — D3),
Sg(t-Dy) :pl(t—DQ —DQ/) —pg(t—DQ/). (273)
Combining these with Equation 2.72 gives
S1 (t) — 51 (t) — Sor (t - Dg) + 83<t - Dg/)
= p3(t — Dyr) — pa(t — D3) — pi(t — Dy — Ds3) + pa(t — Ds)
= pl(t — D2 — DQ/) — pl(t - Dg/ — Dg) (274)
The difference in the clockwise and counter-clockwise times means that the 2D, and

2Ds offsets are replaced by —Dy — Dy and — D3 — Ds, respectively. The next set of

readings with the appropriate offsets are

81(7f — Dy — D2’) = Pz(t — D3 — Dy — D2’) _pl(t — Dy — D?’)a

Sll(t — Dg/ — Dg) = pg(t — Dg — Dg/ — Dg) — pl(t — Dg/ — Dg), (275)
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which are combine with the previous equations to obtain

Sll(t) — Sl(t) —Sgl(t - Dg) + 83<t — Dg/) — Sll(t — Dg/ - Dg) + Sl(t — D2 — DQ!)
= pi(t — Do — Dy) — pi(t — D3 — D3) — p3(t — Doy — Dz — D)
+ pl(t — Dg/ — D3> —Fpg(t — D3 — DQ — DQ/) —pl(t — DQ — D2/)

= pQ(t — D3 — DQ — DQ/) — pg(t - DQ/ — Dg/ — Dg) (276)
The next set of readings from spacecraft 2 and 3 for canceling these are

82/(t - D3 — D2 — DQ/) = pl(t - D3/ — D3 — D2 — DQ!) - pg(t - D3 - D2 - DQ!),
s3(t — Dy — D3y — D3) = p1(t — Dy — Dy — D3 — Dg/) — p3(t — Dy — D3y — D3),

(2.77)
which are combined with Equation 2.76 to give

s1/(t) — s1(t)—s2(t — D) + s3(t — Dg) — sy/(t — D3r — D3) + s1(t — Dy — Do)
+ $9/(t — D3 — Dy — Do) — s3(t — Doy — D3 — D3)
= pa(t — D3 — Dy — Dy) — p3(t — Dy — D3 — Ds)
+ pi(t — D3y — D3 — Dy — Do) — pa(t — D3 — Dy — Do)
—pi(t = D2 — Dy — D3 — Dy) + p3(t — Dy — D3 — Dy/)
=0. (2.78)
The unequal-arm Michelson retains its structure even when the directional differences

are accounted for. Its flexibility is due to the 2D; terms occurring in their non-rotating

expressions which are replaced by the D; + D, to account for the directional differences.

2.4 Summary

The laser phase noise in LISA presents a problem because of the inequality of the
lengths of its arms. Laser phase noise cancellation using time delay interferometry was
illustrated using a simple unequal-arm Michelson interferometer to explain the problem
caused by the inequality and how this can be resolved. With unequal arms the same
noises do not appear at the photodetectors at the same time but they still exist in the
different arms just at different times. To accomplish the laser noise cancellation in this

case the readings in each arm have to be obtained separately to allow the noises to be
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tracked in the different arms. Once the readings are located they are differenced to
cancel the noise. Two methods were shown for locating the same reading in the arms.
The obvious method was to difference the readings by the exact difference between the
arm lengths AL. The other was to simulate an equal arm interferometer by offsetting
the measurement in each arm by the length in the other. The conventional time delay
interferometry uses both methods.

We illustrated how these techniques for cancelling the laser noises are was used to
generate the conventional time delay interferometry observables. This was illustrated
using the Sagnac (¢, @) and unequal-arm Michelson X using a simple model of LISA as
a stationary rigid array with the two lasers on each spacecraft phase-locked together.
Under these conditions the laser noise free combinations could be generated with only
the inter-spacecraft readings which are the readings taken along the arms. We then
illustrated the effect of removing phase-locking of the lasers had on the generation of the
combinations. The result was that this did not affect the structure of the combinations
in terms of the how the inter-spacecraft readings were combined, however, the internal
readings 7; were now required for the laser phase noise cancellation. This was true for
both the Sagnac and Michelson combinations.

The toy model initially assumed stationary static arm lengths. We illustrated what
happened to these combinations when the motion of the LISA is taken into account.
This was done with the directional dependence of the arm lengths that occurs with the
rotational motion of the antenna. For this we assumed that the different measurements
were static. The effect was illustrated with the Sagnac ¢ and the Michelson X combi-
nations with spacecraft phase-locking. The directional differences in the offsets broke
the symmetry of the (. The Michelson X combination, however, survived because the
2D offset in some of terms was able to incorporate the different offsets by becoming the
sum of the different offsets, that is, D; + D;.

In using this method the relaxation of the assumptions meant manually regenerating
the combinations making it an inefficient process which is the main reason for only a
few combinations being generated. The potential to generate all these combinations and
provide a more efficient way of generating them led to the computer-based methods such
as the algebraic and the geometric methods mentioned in Chapter 1. Although not all

the combinations would be needed, being able to generate them would offer the possibil-
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ity of obtaining those with better sensitivities to gravitational wave signals for use in the
data analysis process. The principal component approach is another computer-based
method that improves on these by incorporating the laser noise cancellation into the in-
ference process removing the need to generate the laser noise free data before doing the
analysis. This method is based on eigendecomposition of the raw data covariance and
the power spectral density matrices therefore, in the following chapter we will illustrate

how these are generated.



Chapter 3

Generating the covariance and power

spectral density matrices for LISA data

The principal components are obtained from the raw data covariance or power spectral
density matrices. In this chapter we generate the covariances and power spectral den-
sities required for creating these matrices. We also include the power spectral densities
for the optimal AET observables as our analysis will include the conventional approach

for comparison.

3.1 Basic functions

Ideally the covariance matrix would be derived directly from the noises using the auto-
covariance and cross-covariance functions obtained from their time series. However,
because there is no way to simultaneously and independently observe the noises the
covariance functions are generated algebraically and the values are computed based on

assumptions made about the noise characteristics'.

3.1.1 Covariance functions

Auto-covariance

If the noise is represented by a discrete random variable X; with values given by x;
then the auto-covariance which expresses the mutual relationships between the different

values can be determined using

1

Cxx (k) = cov(Xi, Xiwr) = ~- Z [(xi — (X)) (i — <Xi+k>)], (3.1)

wheret = {1,2,...,n} and k = {0, 1,...,n—1}. k is the lag term specifying the separation

between the values of X. A simpler version of this equation will be used which is

!The information sources for this section were [34] and [62]

71
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obtained by expanding the product giving

1

Cxx (k) = N Z [xixi+k — (X)) — (Xo)Tipn + <Xi><Xz‘+k>]

n

n

1
N E xzwz+k — X7 [xz z+k - E wz«Hc

+ = Z z z+l<;
(XKt — (X (Ko, (3.2)

where (X;X;,x) is the mean of the squared values and (X;)(X;,x) is the square of the
means. The auto-covariance is a one to one comparison between the values of the full
time series X; with values from sections of the time series X, where ¢+ is the starting
point for the partial series. The covariances are computed for all values of k to cover
the length of the time series. For zero lag the auto-covariance gives the variance of the

full time series and from Equation 3.2 this is

Cxx(0) = cov(X;, X;) = var[X] = (X7) — <X> (3.3)
There will also be variances for portions of the time series X;,x given by

Ccov(Xip, Xipr) = var[X; i) = (X2,) — (X)) (3.4)

If the means are assumed to be zero Equations 3.2 and 3.4 become

Cxx(k) = (Xi Xiyn),  Cxx(0) = (X7). (3.5)
In matrix format these can be written as
i var(X;)  cov(Xy, Xs) -+ cov(Xj, Xn)-
Cne COV()(?Q, X)) var(‘Xg) : cov(XIQ, Xy) | (3.6)
_cov(Xn, X1) cov(X,,Xse) -+ var(X,) |

where the variances are the values along the main diagonal and the auto-covariances
everywhere else.
Cross-covariance

The cross-covariances expresses relationships between different time series. For two

discrete time series represented by two random variables X and Y with values of z; and
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yi, respectively, the cross-covariance can be defined as

ny(k) = COV(Xz', Y;Jrk) = <($z - <X1>) (yz‘+k - <Y;+k>)>

= (X Vi) — (X Vi), (3.7
which with zero means becomes
Cxy (k) = (X; Yiyr),  Cxy(0)=(X;Y;). (3.8)
The cross-covariance matrix is
_cov(Xl,Yl) cov(Xy,Ys) .- cov(Xl,Yn)_
Cxy (k)= COV().(Q’YO COV(X.Q’W) COV()@Y") : (3.9)
_cov(Xn,Yl) cov(X,,Ys) --- cov(Xn,Yn)_

where, as for the auto-covariance matrix, the zero lag terms are along the main diagonal

with the others providing the off-diagonal values.

The combined covariance matrix

Combining the auto-covariance and the cross-covariance matrices produces a block ma-

trix which is

C111 C{12 e Cln
¢ [ G Ol (310
Cnl On2 e Cnn

where Cj; are blocks. The size of the blocks depends on the number of variables. The

diagonal Cj; and off-diagonal C;; blocks are given by

var(X; cov(X;,Y; cov(X;, X:) cov(X,,Y,
o, | ) evean) L fentxy) v
cov(X;,Y;)  var(Y;) cov(Y;, X;) cov(Y;,Y;)

3.1.2 Power spectral densities

In the frequency domain this is expressed in terms of the auto-power and cross-power
spectral densities which defines how the power of the signal is distributed with fre-
quency. These can be obtained from their corresponding covariance functions through

the Fourier transform. The Wiener-Khinchin theorem gives the relationship between
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the autocorrelation function Ry x(k) and the auto-power spectral density which is

Sxx(k’) = io: RXX(H) G_QWikn/N. (312)

k=—o00

The auto-correlation function is related to the auto-covariance function by
Cxxk = Rxx(k) — (X;)(Xitx) (3.13)

with zero means they are the same. So that the Wiener-Khinchin is also true for the
auto-covariance function. It can be extended to include the cross-correlations and the
cross-power spectral densities are obtained by

Sxy(k) == i ny(n) 6_27T“m/N (314)

k=—o00

where the relationship between the cross-correlation and the auto-covariance functions

[34] is

Cxy (k) = Rxy (k) = (Xi)(Yiqw)- (3.15)

Power spectral density matrix

Unlike covariances which can occur between different times generally there are no corre-
lations between different frequencies. The complex spectra means that the computation
of the power spectral densities involves the use of complex conjugates and the auto-

power and cross-power spectral densities are defined as

Sxx(f) = var[X (f)] = cov[X (f), X*(f)],

Sxv(f) = cov[X(f). Y*(f)], (3.16)

where X *(f) is the complex conjugate of X (f). The lack of correlations between differ-
ent frequencies mean that the power spectral density matrices are diagonal. The auto-

and cross-power spectral densities matrices are respectively

Sxx(1) 0 -0

0 Sxx(2) --- 0
Cxx = ‘ XX( ) . _ , (3.17)
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Sxy (1) 0 0
0 Sxy(2) - 0
Cxy=| XY'< ) . g (3.18)
0 0 cee Sxy(n)

As is the case for the time domain covariance matrices the combined matrix will be a
block matrix with the size of the blocks dependent on the number of variables. The

combined matrix and blocks are

Ci1 0 0
0 C’ 0

o= ‘22' e (3.19)
0 0o - Cy,,

and

0, = |Pxx@ Sxer@)) (3.20)

Sxy (i) Syy(7)

3.2 Raw data covariance and power spectral density
matrices

LISA data consist of time series from the six optical benches monitoring the three arms.
Each optical bench reading is a beating of the beam of local laser with that received
from the other bench at the end of the adjacent arm and will therefore contain two laser
noises and the noise from the recording photodetector. The inter-spacecraft raw data

in terms of noise contributions can be written as
si(t) = py(t — Dy) — pi(t) +ni(t), (3.21)

where p; and p; are the laser phase noises from the receiving and transmitting optical
benches and n; is the photodetector noise of the receiving optical bench [6]. The noises
are assumed to be random therefore, correlations between readings will only occur if the

same noise occurs in different readings. For example, the two optical bench readings
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(i, s;) at the end of arm k can be written as

si(ta) = pjr(ta — D) — pi(ta) + nita),

S (tb) = pi(tb — Dk) — Py (tb) + nj/(tb), (3.22)

where they both contain the same noises p; and p; but they have times that differ
by the same offset Dj. This will cause correlations between the two readings when
ty —t, = £D;. This will also occur between the readings at the ends of the other two
arms.

In this representation of the noises in the data the laser noises are assumed to be
acting independently. With LISA there is the option of locking the phases of the lasers,
that is, phase-locking. Two other possibilities are locking the lasers on each spacecraft
together which will allow of the simulation of a beam splitter on each spacecraft, or
locking all the lasers to one (master) which allows for splitting and reflection. As
expected phase-locking will increase the number of correlations between the different
readings. The interesting option is the latter which will not only cause correlation
between the different optical bench readings but also within in the readings themselves.
With this option the lasers will all be acting as one therefore, p; = p and Equation 3.21

will become
si(t) = p(t — Dy) — p(t) + ni(t),

where there will also be correlations between the lasers in the readings at times ¢ and

t — Dy.

3.2.1 LISA toy model assumptions

The assumptions that will be used for computing the covariances are that the laser
phase and shot noises are both white Gaussian processes with zero means and variances
of Jg and o2, respectively. The conditions for correlations for these noises are

Rule 1 <na[t0]nb[td]> = 5ab60d0'1217 (323)

Rule 2 (naltelpelta]) =0, (3.24)
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where ., and 0.4 are Dirac delta functions [54] which are given by

1, ifa=b, 1, ife=d,
5ab = and 5cd = (325)
0, ifa#b, 0, if c#d.
For independent lasers or for those locked on each spacecraft correlations between the

lasers requires both the optical bench numbers and times have to match. The condition

for correlations is

Rule 3 <pa[tc]pb[td]> = ab(scdo-fy (326)

When they are all locked they will act as a single laser and the optical bench number

no longer becomes necessary. Correlations occur when the times are the same therefore

Rule 4 <p[tc]p[td]> = 5cd0-§- (327)

3.2.2 Generating the covariance matrices

With the assumption of zero means for the noises the definition for the auto-covariance

and cross-covariance functions that will be used are
COV(X“XZ) :<Xz Xz>7 COV(XZ,Y;) :<X7, Y;> (328)

The inter-spacecraft readings with the three phase-locking options are listed in Table 3.1
for equal and unequal arm lengths. The labeling and locations of the optical benches,

arms and spacecraft are shown in Figure 3.1.

3.2.2.1 Covariances with no laser phase-locking

For independent lasers the contributions for the combined laser phase and photodetector

noises in the inter-spacecraft readings can be written as
si(t) = py(t — Dx) — pi(t) + ni(t), (3.29)

where the primed subscript is used to distinguish between the two lasers on each space-

craft.



Chapter 3. Generating the covariance and power spectral density matrices for LISA
78 data

Table 3.1: Optical bench time series showing the expressions for the laser phase and photodetector
noises in each optical bench reading for the different phase-locking options and with unequal and equal
arm lengths.

Phase locking  Phase Time series
Unequal arms(D; = L;/c) Equal arms D = L/c
None s1(t)  p(t—D3) —pi(t) +ni(t)  par(t— D) —p1(t) +na(t)

s1/(t)  p3(t— D2) —py(t) +ny(t)  p3(t — D) — p1r(t) +nus(t)
s2(t)  py(t—D1) —p2(t) +n2(t)  psr(t — D) — pa(t) + na(t)
sor(t)  p1(t— D3) —par(t) +mor(t)  p1(t — D) — par(t) + nar(t)
s3(t)  pr(t—D2) —p3(t) +n3(t) py(t—D)—p3(t) +n3(t)
s3/(t)  p2(t — D1) —ps(t) +n3/(t)  p2(t — D) — par(t) +nar (t)

Spacecraft s1(t) p2(t — D3) — p1(t) + n1(¢) p2(t — D) — p1(t) + n1(t)
817 (t) pg(t — DQ) —p1 (t) + nqs (t) pg(t — D) —p1 (t) + nqs (t)
s2(t)  p3(t—D1) —p2(t) +n2(t)  p3(t — D) —p2(t) +na(t)
sor(t)  p1(t—D3) —p2(t) + n(t)  p1(t — D) — p2(t) + nor (t)
s3(t)  p1(t—D2) —ps(t) +na(t)  pi(t — D) —p3(t) +ns(t)
s3(t)  p2(t—D1) —p3(t) +na(t)  p2(t — D) — p3(t) + nz (t)

All s1(t)  p(t— D3) —p(t) +ni(t) p(t — D) —p(t) +n1(t)
sp(t)  p(t— Da2) —p(t) +nqy(t) p(t — D) — p(t) + ny/ (1)
s2(t)  p(t— D1) — p(t) + na(t) p(t — D) — p(t) + na(t)
sor(t)  p(t— D3) — p(t) + nos(t) p(t — D) — p(t) + no (1)
s3(t)  p(t — D2) — p(t) +n3(t) p(t — D) — p(t) + n3(?)
s3(t)  p(t—D1) —p(t) +nsz(t) p(t — D) — p(t) + na ()

Auto-covariance

Using the reading for the left optical bench on spacecraft 1, for independent lasers this

can be written as
51(t) = par(t — D3) — pr(t) + na(t), (3.30)

and its auto-covariance function is defined as

cov(si(t), s1(t2)] = <[p2/(t1 — D3) — pi(ta) +m(ta)] X [pr(ta — D3) — pi(ta) + nl(tz)]>
= (po(t1 — D3) pr(ta — D3)) — (px(t1 — D3) p1(t2))
+ (po(ti — D3) ni(ta)) — <p1 ) p(ts — Ds))
+ (p1(t1) pa(ta)) — (pa(t1) ma(ta)) +na(ty) por(ts — D))
— (ni(t1) pi(t2)) + (na(t1) nl(t2)> (3.31)

There are no correlations between the laser phase and photodetector noises (Rule 2)

nor between the different lasers (Rule 3) therefore Equation 3.31 becomes

cov(si(tr), s1(t2)] = (po(t1 — Ds) pr(t2 — D3)) + (p1(t) p1(t2))
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Figure 3.1: A schematic diagram of LISA illustrating the positions and labels of the arms (L;), optical
benches (7,i') and spacecraft (S/C 7).

Correlations will only exist when the times are the same, therefore setting t;,t, =t in

Equation 3.32 gives

cov[si(t), s1(t)] = (py(t — Ds)) + (pi(t)) + (ni(t))
= var[s;(t)]. (3.33)
Indicating that the only auto-covariance when the lasers are not phase-locked is for zero

lag which is just the variance. Substituting the values for the variances of the different

noises into Equation 3.33 gives
var[s, ()] = 205 + o3 (3.34)

For the illustrations in the following sections only the contributions from the correlated
noises will be listed that is, terms that are combinations of p; and n; or p; and p; will

be ignored.

Cross-covariances

For independent lasers, the only cross-correlations that will exist are between the raw
data from optical benches at the ends of the same arm because only these will contain
common laser phase noises. The readings for the optical benches at the end of arm Ls

are

s1(t) = pa(t — D3) — pi(t) + na(t),

Sor (t) =P1 (t — D3) — Por (t) + Noy (t), (335)
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where the same laser noises occur in both readings but at different times and their

cross-covariance is

cov([si(ty), so(t2)] = <[p2/(t1 — D3) —pi(t1) + nl(tl)] X [p1(t2 — D3) — py(ts) + n2/(t2)]>
= —(pz(ti = D3) p(t2)) — (p1(tr) pr(t2 — D3)). (3.36)

The same noises exist at different times which are offset by the same value (D3). For

ty = t; — D5 the covariance is

cov[sy(t1), sz (ty — D3)] = —(p2(t1 — Ds) pa(t1 — D3)) — (pi(t1) p1(ts — 2Ds))
= —(p3(t1 — Ds))
— 2 (3.37)

p?

and for t; = t9 — D3 it is

cov[si(ts — D3), sx(t2)] = —(pa (ta — 2D3) po(t2)) — (p1(ta — D3) p1(ts — D3))

= —(pi(ta — D3))
=0 (3.38)

p?

where the contributions are from different optical benches in each case.

Equal arm lengths

For independent lasers the structure of the expressions are not greatly affected by the
nature of the arm lengths. The difference is in the location of the correlations which
instead of being at the three values given by D; will only occur at one location deter-
mined by D. The equations for the auto-covariance and the cross-covariance with equal
arms are easily obtained from Equations 3.33 and 3.36. The auto-covariance with equal

arm lengths is

varls1 ()] = (03 (t = D)) + (B2(1)) + (n3())

2 2
=20, + 0,,. (3.39)
The cross-covariance between s; and sy with equal arms is

COV[Sl(tl), 82/(t2)] = —<p2/(t1 — D) pgl(t2)> — <p1(t1) pl(tg - D>>, (340)

with the covariances occurring at times t; = t; — D and t, = t; — D.
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Figure 3.2: A diagram illustrating the block structure of the covariance matrix showing the times in
(a) and the labeling of the blocks in (b) where s; are the optical bench readings.

Summary

The auto- and cross-covariances for all the raw data with no laser phase-locking are
given in Figure 3.4 where they are arranged in 6 x 6 blocks to mimic the block in
the covariance matrix shown in Figure 3.2. In Figure 3.4 the times are located at the
right edge of the blocks. The results for equal and unequal arm lengths are given. For
independent lasers, the auto-covariances when the times are the same, which are the
blocks along the main diagonal of the matrix, are restricted to the main diagonal of
each block. The values for different times produce two diagonals in the blocks above
and below the main diagonal of the block. However, this structure will only occur
when the arm lengths are equal. For different arm lengths the correlations will occur
in three different blocks because of the three different offsets (D1, Do, D3) occurring in

the values. The differences are illustrated in Figure 3.3.

D
S1 S/ S2 Sor S3 S3r
S1
S17
52
Sor
S3
Sg/
(a)
D3 D2 D1
81 811 82 Sy 83 Sy s1 Sy 82 Sy 83 Sy s1 Sy 82 Sy 83  Sg/
S1
S/
S2
Sor
S3
S3/
(b)

Figure 3.3: The structure of the blocks when the times are not equal illustrating the changes for (a)
equal (D) and (b) unequal arm (D, D2, D3) lengths. The different offsets are shown above the blocks.
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) / 0 O 35 | 0
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sa(th) 0 fz’&izl;})gizl’j (132))>) 0 0 0 0
sy(t1) 0 0 _2’;;%515 (lt?f’i(’le))?)> 0 0 0
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selt) ’ 0 0 0 st Doy 0
| o 0 ’ ’ T I
) | Dy |0 ° ’ ’ °
sa(th) 0 E’?}’)E&;}izfi(%>)>> 0 0 0 0
sy(th) 0 0 {pa(ty = D)pa(t2)) 0 0 0
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Figure 3.4: Raw data covariances when all lasers are operating independently, that is, the lasers are
not phase-locked. The blocks are grouped according to equal times (top) and unequal times (bottom).
The expressions in the cells are the noise covariances between the optical benches.



Chapter 3. Generating the covariance and power spectral density matrices for LISA
83 data

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15

80
L]
40
20
"
12
-20
13
14
-40 15

a

1 2 3 4 5 B 7 85 9 10 11 12 13 14 15

Figure 3.5: Samples of the raw data covariance matrices for no laser phase-locking with (a) equal and
(a) unequal arm lengths.

=
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Sample covariance matrices for independent lasers

The values used for generating the covariances matrices are given in Table 3.2. These
were chosen to allow illustration of the structure of the matrices in a small space,
therefore, they do not represent real values for LISA. The range of values that the
divisions cover in the colour scheme used to display the matrices in the figures is set
by MATLAB. Differences between the covariances that are less than these division will
not show up in the figures. The values for the noise variances were chosen to overcome
this problem. This is more relevant for the case where all the lasers are locked but for
consistency the same values are used for all the phase locking options.

Samples of the covariance matrices for independent lasers with equal and unequal
arm lengths are shown in Figure 3.5. The times are listed at the top and left hand side
of the figures. The matrices are both symmetric about the main diagonal with entries
occurring in 6 x 6 blocks. As expected, with equal arm lengths the matrix has three
diagonals with the blocks on the main diagonal having values only along their main
diagonal. The other diagonals are offset from the main diagonal of the matrix by the
light travel time in the arm length D. For unequal arm lengths the main diagonal of the
matrix is still the same but the two diagonals obtained for equal arms have now been
split into three diagonals at offsets of 4, 5 and 6 which are the light travel times in the

different arms.



Chapter 3. Generating the covariance and power spectral density matrices for LISA
84 data

Table 3.2: Values used for generating the covariances for all sample matrices.

Variable Value
Laser frequency noise variance, 0’% 40
Photodetector noise variance, o2 4
Arm lengths (seconds)
Equal, D 5
Unequal, D; 4,5, 6

3.2.2.2 Covariances with laser phase-locking on each spacecraft

When the lasers are phase-locked on each spacecraft the readings for the two optical

benches on a spacecraft can be written as

si(t) = p;(t — Di) — pi(t) + ni(?),

sir(t) = pr(t — Dj) — pi(t) +na (1), (3.41)
where correlations will now exist between them. There will also be correlations between
the raw data from the optical bench on one spacecraft and those from the two optical
benches on the spacecraft at the end of the adjacent arm. This happens because of they

will now contain the same laser noises. For example, the readings for spacecraft j which

is at the end of arm Lj, are s;(t) and s;/(t) which are
sj(t) = pi(t — Di) — p;(t) +ny(t),
s;(t) = pe(t — D;) — pj(t) + n,(t), (3.42)

where the common laser phase noise p; is also present in s;(¢) in Equation 3.41.

Auto-covariances

The auto-covariance will be the same as for the independent lasers with the only change
being the dropping of the primed notation for the laser noises. Since there still only
two different noises in the readings only the variance will have non-zero values which

for unequal arm lengths is

var[s;(t)] = <p%(t — D3)> + <pf(t)> + <n%(t)>,

(3.43)

with values of 2072 4 o7 in each case which is the same as for independent lasers. With

equal arm lengths the only change is the replacement of D3 with D.
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Cross-covariances

This will be computed for only three combinations of readings to illustrate the different
types correlations between the optical benches. This will be between the raw data from
the optical benches on spacecraft 1, between those at the end of arm L3 and between
the right optical bench of spacecraft 1 and the left optical bench of spacecraft 2. The

equations for these optical benches with spacecraft locking are

s1(t) = p2(t — D3) — pi(t) + na(t),
si(t) = ps(t — D2) — pi(t) + nu(t),
s2(t) = ps(t — D1) — pa(t) + na(t),
So(t) = p1(t — D3) — pa(t) + no (t). (3.44)

The cross-covariance between the raw data form the optical benches on spacecraft 1 is

cov[si(t1), si(t2)] = ([p2(ty — D3) — p1(t1) + na(t1)] x [ps(ta — Da) — pi(t2) + nu(t2)])

= (p(tr) p1(t2))- (3.45)

which will result in correlations when the times are equal giving

cov[si(t), sy (1)] = (pi(t))

=02 (3.46)

p

Since these do not have any offset times the result will be same for equal arm lengths.
The cross-covariance between the raw data from the optical benches at the end of

arm L3 which are s;(t) and so(t) is

cov[sy(t1), sz (ta)] = ([p2(ty — D3) — pr(t1) + na(tr)] x [pi(ta — Ds) — pa(tz) + na(t2)])

= —(pa(ty — D3) pa(t2)) — (pr(t1) pa(ta — D3)), (3.47)

where the only difference between this and the independent lasers is the absence of the
primed values. This will give values of —ag which will occur at offsets of t; —tg = +Ds.
The only change with equal arm lengths is that the offsets are just D.

The cross-covariance between the raw data from the right optical bench of spacecraft

1 and that from the left optical bench of spacecraft 2 is

cov[si/(t1), s2(t2)] = ([ps(ti — D2) — p1(t1) + nu(t1)] x [ps(ta — D1) — pa(ta) + na(ta)])

= (ps(t1 — D2) ps(t2 — D1)), (3.48)
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where the correlation exist at two offset times of t; — Dy and t; — Ds. The correlation
will occur at t; — to = £(D3 — Ds) with values of ag. This time there is a difference

with the equal arm lengths which is

covsy(tr), s2(t2)] = (ps(ti — D) ps(t2 — D)). (3.49)

where, because of the equal offsets, the only times that correlations will occur are when

the times are equal which is

covsu (1), sa(t)] = (3(1))

=02 (3.50)

p

With equal arm lengths this correlation occurs in the block on the main diagonal of the
matrix but with unequal arm lengths it occurs at a time that is the difference of the

offsets D3 — Dy shifting it away from the main diagonal.

Summary

The locking of the lasers on each spacecraft increases the number of correlations between
the raw data which appears in the matrix as an increase in the density of the blocks
as illustrated in Figure 3.6. For the unequal arm lengths, although all the values are

placed in the same block in Figure 3.6, the correlations will not all occur in one block.

Sample covariance matrices

Figure 3.7 shows samples of the covariance matrices for equal and unequal arm lengths
where the variances and arm lengths are the same as used for independent lasers. For
equal arm lengths the number of diagonals is the same but with more values in each
block, that is, the density of the blocks has increased as expected. For unequal arm
lengths the number of correlations in the other diagonals has also increased and so has
the number of diagonals with two appearing close to the main diagonal which are due

to differences of the offsets D; — D;.
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Figure 3.6: The covariances for the raw data when the lasers are phase-locked on each spacecraft for
unequal (top) and equal (bottom) arms.
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0 1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 B 7 8 9 10 11 12 13 14 15
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Figure 3.7: Sample raw data covariance matrices with lasers that are phase-locked on each spacecraft
and with (a) equal and (b) unequal arm lengths.

3.2.2.3 Covariances with all lasers phase-locked to a master

When the lasers are all locked to a master they will all have the same noises and the
readings will reflect this by having no subscripts associated with the laser noises p. The

raw data with all the lasers locked can be written as
5i(t) = p(t — Dy) — p(t) + ni(t), (3.51)

where the two laser noises in the readings are now the same but with different offsets.
This will introduce correlations within the same readings ans also with all the other

readings.

Auto-covariances

Using the raw data from the left optical bench on spacecraft 1 as an example, with all

lasers locked it is

s1(6) = plt = Dy) = plt) + mi(0) (352
and its auto-covariance is
covl(t1),s1(t2)] = ( [p(t = Da) = plt) + ma(t2)] x [plta = D) = plt2) + m(t2)])

= (p(ty — Ds) p(t2 — D3)) — (p(ty — Ds) p(t2)) — (p(t1) p(t2 — Ds))
+ (p(t1) p(t2)) + (na(t1) na(t2)), (3.53)
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where there are four different times for correlations. For equal times t;,t, = t the

auto-covariance for unequal arm lengths is

cov[si(t)] = var[si(t)] = (p*(t — D3)) + (p*(1)) + (ni(t)),
=20, + 0y, (3.54)
giving the same structure and values for the variances as the other two phase-locking
options. The difference here is that correlations have been introduced between the laser
phase noises in the same time series. The different times of these noises in the readings
cause correlations away from the main diagonal where ¢, # t;,. The only change with

equal arm lengths is that the correlations occur at D instead of Dj.

For times that are not the same t, # t;, the covariance for these are

COV[Sl(tl), 81(t2)] = —<p(t1 - Dg) p(t2)> — <p(t1) p(tg — D3)>, (355)

with values of —012) when t; = t, — D3 and t9 = t; — D3. With equal arm lengths the

correlations occur at D instead of Ds with the same value —ag.

Cross-covariances

The illustrations will be done with the raw data from the same optical benches that were
used for space craft locked lasers which are those on spacecraft 1 since the structure of
the cross-covariances are the same for the rest of the optical benches but with different

offsets. The equations for these with all the lasers locked together are
s1(t) = p(t — D3) — p(t) + na(t),
si(t) = p(t — Da) — p(t) +nu(t), (3.56)
The covariances between the raw data from spacecraft 1 is
covlsy(t1), s1/(t2)] = ([p(ts — Ds) — p(t1) +n1(t1)] x [p(ta — Da) — p(t2) + nu(t2)])
= (p(tr — Ds) p(tz — D)) — (p(t1 — D3) p(t2))

—(p(t1) p(ta — D2)) + (p(t1) p(t2))- (3.57)

For t1,ty =t the cross-covariance is

covlsa(t), su(t)] = (1))
=o? (3.58)

p?



Chapter 3. Generating the covariance and power spectral density matrices for LISA
90 data

which will be in the blocks along the main diagonal of the matrix but away from the

main diagonal of the individual blocks. For t; # t5 the covariance is

cov[si(t1), sv(t2)] = (p(ti — D3) p(ta — D2)) — (p(t1 — D3) p(t2))
—(p(t1) p(ta — Da)), (3.59)

with correlation occurring at three different times. For t; = to — Dy and ty = t; — D3

the covariances are

cov(si(ta — Ds), sv/(t2)] = —=(p*(t2 — D)),
covlsi(t1), si(t1 — D3)] = —<p2(t1 — D3)), (3.60)

2

with both having values of —o;. For the combinations with two offsets substituting

ty =t — Dy and ty =t — D3 gives

cov[si(t — Ds), s/ (t — D3)] = <P2(t — Dy — D3)>

=02, (3.61)

where the correlations occur at sums of the offsets in readings D, + D3. With equal

arm lengths the change will be in Equation 3.61 where the equal arm lengths will shift

the correlations to the main where the times are equal.

Summary

The covariances for all the raw data are shown in Figure 3.8 where overall the densities

of the blocks have increased and for equal arms they are completely filled.

Sample covariance matrices

Figure 3.9 show the sample matrices where, as expected, the densities of the matrices
have increased for both equal and unequal arm lengths. For equal arm lengths there
are still three diagonals as seen in the corresponding matrices for the independent and
spacecraft locked lasers but in this case all blocks are now filled. For unequal arm
lengths only the blocks along the main diagonal are full. There is also an increase in

density of the diagonals close the main.
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—(p(ts = D1)p(t2)) —(p(ts = D2)p(t2)) —(p(t1)p(t2 — Dy)) —({p(ts = D)p(t2)) —({p(ts = D1)p(t2)) —(p(t1 — D1) p(t2)
sy (t) —(p(t1)p(t2 — D3)) —(p(t1)p(t2 — D2)) —(p(t1 — D1)p(ta)) —(p(t1)p(t2 — Ds3)) —(p(t1)p(t2 — Dy)) —(p(ta) p(ty — D1))
+(p(ts — D1)p(ta — Dy)) | +(p(t1 — Dy)p(ta — Dy)) | +(p(ty — Di)p(ta — D1)) | +(p(t1 — D1)p(ts — D3)) | +(p(ts — Di)p(ts — D))
Equal arms (D =L/c)
s1(t2) s1(ta) 52(t2) sy(ta) s3(t2) s3(t2)
) —(p(t1 — D) p(t2)) —(p(t1)p(t2 — D)) —{p(t)p(t: — D)) —(p(ty — D)p(t2)) —(p(t1)p(t: — D)) —(p(t)p(t: — D))
o —(p(t1) p(t2 — D)) —(p(t: — D)p(t2)) —{p(t: — D)p(t)) —(p(t)p(t: — D)) —(p(t1 — D)p(t2)) —(p(ts — D)p(t>))
su(ty) | 0t~ Diplta)) —{p(t — D) p(tz)) —{p(t1)p(t2 — D)) —{p(ti = D)p(tz)) —(p(ti — D)p(t2)) —{p(t)p(t2 — D))
o —{p(t)p(t: — D)) —{p(t1) p(t2 — D)) —(p(t, — D)p(t2)) —(p(t)p(t: — D)) —(p(t)p(t; — D)) —(p(tL — D)p(t2))
5s(t1) —(p(ts — D)p(t2)) —(p(tr — D)p(t2)) —(p(t1 — D) p(t2)) —(p(tr — D)p(t2)) —(p(t1 — D)p(t2)) —(p(ts — D)p(t2))
e —(p(ty)p(t2 — D)) —(p(t1)p(t2 — D)) —(p(t1) p(t2 — D)) —(p(t)p(t: — D)) —(p(t)p(t2 — D)) —(p(t)p(t: — D))
sw(t) —(p(t1)p(t2 — D)) —{p(t1)p(t2 — D)) —(p(t1)p(t2 — D)) —{p(t)p(t2 — D)) —(p(t1)p(t2 — D)) —(p(t1)p(t2 — D))
# —{p(ts = D)p(t>)) —{p(tL — D)p(t2)) —(p(t, — D)p(t2)) —(p(t1) p(t; — D)) —{p(t, — D)p(t2)) —{p(ts — D)p(t>))
sa(tr) —(p(t: — D)p(t2)) —(p(t1)p(t2 — D)) —(p(ty)p(t2 — D)) —(p(t1)p(t2 — D)) —(p(t1 — D) p(t2)) —(p(t1)p(t: — D))
s —{p(t)p(t2 — D)) —(p(ts = D)p(t2)) —(p(ts = D)p(t2)) —({p(t)p(t2 — D)) —({p(ts) p(t2 — D)) —({p(ts = D)p(t2))
sy(ty) | Pl = Dip(t2)) —{p(tr — D)p(t2)) —(p(t1)p(t2 — D)) —(p(tr — D)p(t2)) —(p(tr — D)p(t2)) —{p(tr = Dy) p(t2))
o —{p(t)p(t: — D)) —(p(t)p(t: — D)) —{p(t: — D)p(t)) —(p(t)p(t: — D)) —(p(t)p(t; — D)) —(p(t1) p(t2 — D))

Figure 3.8: Raw data covariances with all lasers phased locked to a master for unequal (top) and equal

(bottom) arm lengths.
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Figure 3.9: Sample raw data covariance matrices with lasers that are phase-locked on each spacecraft
and with (a) equal and (b) unequal arm lengths.

3.2.3 Power spectral density matrix

The process is similar to that used for computing the time domain covariances. First
the spectra for the optical bench readings are obtained from the Fourier transform of
the time series. Using the general equation for the optical bench time series which can

be written as

si(t) = p;(t — Di) — pu(t) + mu(?), (3.62)

where [ and j are the optical bench numbers and £ is the number for the arm. Here [ is

used to avoid confusion with the imaginary number i. The corresponding spectrum is

5i(f) = Dy (f) e = pu(f) +7u(f), (3.63)
where §;(f) represents the Fourier transform of s;(¢) which is
si(f) = Flsi(t)] = /00 si(t)e 2t (3.64)

The offset Dy, in the time series corresponds to a phase shift e 2™/P* in the spectrum.
The list of all the raw data spectra for equal and unequal arm lengths is given in Table
3.3. As was done for the time series the generation of the power spectral densities will
be illustrated with a few examples for the different phase-locking options and for equal

and unequal arm lengths.
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Table 3.3: Raw data spectra showing the expressions for different types of phase-locking with unequal
and equal arm lengths.

Phase-locking  Spectrum Contributions
Unequal arms(D; = L;/c) Equal arms D = L/c

None s1(f) Par(f) e 27D — py(f) + 01 (f)  Por(f) e 2P — Ef)+ﬁl(f)

1(
s1(f) p3(f) e72mif P2 p1/(f) +70(f)  P3(f) e 2™ P — 5y (f) + 7y (t)
s2(f) Py (f) e 2™ D1 — o (f) +7m2(f)  Par(f) e 2P — pa(f) + ma(f)
S (f) p1(f) e 2P —pos () + g (f)  Pr(f) e 2P — Pz/(f) + ngr (f)
33(f) P (f) e 2™ D2 —pa(f) +7s(f) P (f) e 2P — p3(f) + As(f)
33/(f) P2(f) e 2P — o (f) + iz (f)  P2(f) e 2P — Bgr(f) + nar (f)
Spacecraft s1(f) p2(f) e 2™ Ps — g (f) +71(f)  p2(f) e > D —pi(f) + 11 (f)
51(f) P3(f) e 2™ P2 —pi(t) + 0y (f)  P3(f) e 2P —pi(f) + 70 (f)
52(f) p3(f) e 2™ P —po(t) +n2(f)  Pa(f) e > —po(f) + 12 (f)
Sar(f) PL(f) e 2™ Ps —po(t) + g (f)  r(f) e > —po(f) + g (f)
33(f) pi(f) e 2™ P2 —p3(t) +n3(f)  Pu(f) e 2L — B3 (f) + 13 (f)
S30(f) p2(f) e 2™ P — B3 (t) + g (f)  P2(f) e 2™ — P (f) + g (f)
All s1(f) p(f) e ™ Ps — j(t) + 11 (f) p(f) e >™ID — p(f) + n1(f)
s1/(f) P(f) e72m P2 — 5(t) + 7y (f) p(f) e 2™ P — p(f) + Ay (f)
s2(f) P(f) e 2™ Pr — (1) + na(f) B(f) e 2™ P — p(f) + n2(f)
S/ (f) P(f) e 2™ Ps — p(t) + nyr (f) P(f) e 2™ D —p(f) + 1y (f)
s3(f) P(f) e72™ P2 — (1) + nz(f) p(f) e72™ P — p(f) + n3(f)
33/(f) B(f) e 27 P —p(t) + g (f) P(f) e 2™ P — p(f) + Az (f)

3.2.3.1 Power spectral densities with no laser phase-locking

As shown in the time domain the only optical benches that will have common laser
phase noises for when the lasers are not phase-locked are those at the end of an arm.

For arm L3 these are s; and sy which are

51(f) =p2(f) ™ —pi(f) + (f),
Sy(f) =pu(f) e 7P — Do (f) + N (f)- (3.65)

For the power spectral densities only the optical bench numbers will be used, that is,

Sij instead of S, .

Auto-power spectra

For optical bench s; the auto-power spectral density is

Su(f) = {[Pr (/e ™ — pi(f) + ()] x [ (F)e™ P = B (f) + 25 (f)])
= (5 () + (B() + (A1), (3.66)

which has the same structure as the time domain auto-covariance. Substituting the

values for the variances which are o7 and o}, gives

Su(f) =202+ o2 (3.67)
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Figure 3.10: A diagram illustrating the block structure of the covariance matrix showing the frequencies
in (a) and the labeling of the blocks in (b) where s; are the optical bench readings.

For equal arm lengths the result is the same.

Cross-power spectra

The cross-power spectral density between the optical benches s; and sy is

S12(f) = ([P (f)e ™ — 51 (f) + na ()] ¥ [ (F)e™ P — 5 (f) + 73 (f)])
= (B (f))e 2P — (Bi(f))e*m P (3.68)

Substituting the values for the variances gives
S (f) = _Ui [6727”']@3 + €2me3}> (3.69)

where they differ from the time domain by having an exponential term. With equal

arm lengths the only change is in the offset.

Summary

As was done for the covariance matrices, the values for all the power spectral densities
are given in 6 x 6 blocks in Figure 3.11 to match the structure in the matrix which
is shown in Figure 3.10. With no correlations between frequencies these blocks occur
along the main diagonal of the matrix. Unlike the time domain the structure of the
blocks will be the actual structure in the matrix as the time offset gives a phase shift
and not a shift off the main diagonal as in the time domain. For no phase-locking, like
the time domain, the non-zero values of the power-spectral densities in the individual
blocks will only occur along the main diagonal and two other diagonals. The difference
in the frequency domain is that these are now combined in the same block. Also, the
power spectral density matrices will contain two sets of values of either the combined

imaginary and real components or the magnitude and phases.
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Unequal arms (D; = L;/c)

51(/) sulf) (/) solf) ss(f) sof)
50| 5 ey ’ ’ Gy ’ ’

v (f) 0 RO ) 0 0 - g&@lﬁﬂﬁ -
=(/) 0 0 B 0 0 ) v
(/) 7_@/83;;:;;3 . 0 RO ) 0 0

s(f) 0 Sy e 0 0 L ) 0

w(f) 0 0 Gl e 0 0 )

Equal arms (D = L/c)
(/) sulf) (/) s2(f) /) s ()

5 | g 0 0 Gy e 0 0

slf) 0 LD Lm0 O 0 G e .
=) " ’ L ) 0 0 i
) | gy 0 0 LU ) 0 0

0 ’ Gy e ° ’ L ’

ow(f) 0 0 Gty o 0 0 B )

Figure 3.11: Raw data power spectral densities for unequal and equal arm lengths and no phase-locking
of the lasers

Sample power spectral density matrices

The values used for generating the matrices are given in Table 3.4. The values for the
arm lengths were chosen to avoid integer values occurring in the exponential terms with
the integer frequencies used in the computations. The sample matrices are given in Fig-
ure 3.12 showing the magnitudes and phases. The matrices containing the magnitudes
show the three diagonals in each block. The values in the phase matrices are just values
of m which is equivalent to a zero phase shift. For these there are no values along the
main diagonal as there are no phase shifts in their values. As expected the magnitudes
are same for both types of arm lengths. The phases should show differences in the values
along the diagonals however, the small differences between the values do not result in

any noticeable variations in the matrix.

Table 3.4: Values used for generating the power spectral densities for all sample matrices.

Variable Value
Laser frequency noise variance, 0127 40
Photodetector noise variance, o2 4
Arm lengths (seconds)

Equal, D 5.3

Unequal, D; 5.3,6.3,7.3
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Figure 3.12: Sample raw data power spectral density matrices for independent lasers showing the
magnitudes (left) and phases (right) for equal (top) and unequal (bottom) arm lengths.

3.2.3.2 Power spectral densities with laser phase-locking on each spacecraft

Some of the different types of correlations will be illustrated using the optical benches

on spacecraft 1 and the spacecraft 2 which are

51(f) = pa(f) e = pi(f) + 7 (f),
51(f) = pa(f) e 202 = pu(f) + 7w (f),
52(f) = Ds(f) e 2™ = Bo(f) + 7o f),
Sy(f) =pu(f) e72™P — Bo(f) + na (f). (3.70)

The full set of power spectral densities are given in Figure 3.13.
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Auto-power spectra

The auto-power spectral density for optical bench 1 with unequal arm lengths is

Sulf) = ([2(fe™>™ P = pi(f) + 7 (f)] x [B(f)e™ P = pi(f) + Ri(f)])
= (B3(1) + i) + (AI(N)
=20, + 0o, (3.71)
which is the same as for no phase-locking and will also be the same for equal arm lengths

since the offset does not appear in the final value.

Cross-power spectra

As in the case for lasers that are not phase-locked, the only other correlation that exists
is between the optical benches at the end of each arm. For arm L3 the cross-power

spectral density with unequal arm lengths this is

S1ar(f) = {[Ba(f)e 2P — By (f) + 7 ()] % [F(F)e2™ P — Fs(f) + 7y (f)])
= —(Da(f))e ™ — (PR (f))e*m I

— g2 [P 4 PiSDs] (3.72)

which is the same as for no phase-locking and with equal arm lengths the result is the
same but with offsets of D.
The cross-power spectral density for the optical benches on the spacecraft 1 with

unequal arm lengths is

S (f) = {[p2(f)e ™ P = pi(f) + na(f)] x Pa(f)e ™ P2 = pi(f) + nw (f)])
= (Pi(h)
=02 (3.73)

p

For equal arm lengths the structure is the same but with offset of D and value is the
same. The cross-power spectral density for the left optical bench on spacecraft 1 (s/)

and the right optical bench on spacecraft 2 (S3) with unequal arm lengths is

Sva(f) = {[ps(f)e”>™P2 — pi(f) + 1w ()] x [5())eX™ P — ps(f) + n3(f)])
= (BA(f))e 2/ (D2=DY)

— o2 ¢ 2rif(Da=Dy), (3.74)
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Figure 3.13: Raw data power spectral densities with lasers that are phased-locked on each space craft
for unequal (top) and equal (bottom) arms

Here the exponential term includes the difference of the time offsets which will disappear

with equal arm lengths.

Summary

The values for all the power spectral densities are given in Figure 3.13. The difference
caused by the locking of the lasers on each spacecraft is to produce correlations between

all the optical benches resulting in full blocks.

Sample power spectral density matrices

The sample raw data power spectral density matrices for the spacecraft phase-locked
lasers are given in Figure 3.14 showing the magnitudes and phases for unequal and equal
arm lengths. The matrices for the different types of arm lengths have magnitudes that

are same with the phases showing small differences.
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Figure 3.14: Sample raw data power spectral density matrices with the lasers that are phase-locked on

each spacecraft showing the magnitudes (left) and phases (right) for equal (top) and unequal (bottom)
arm lengths.

3.2.3.3 Power spectral densities with all lasers phase-locked

The spectra for the readings on spacecraft 1 and 2 which are

51(f) =p(f) e = p(f) + mu(f),
51(f) = b(f) e ™D = B(f) + (),
5(f) =p(f) e ™2 = p(f) + na(f),
Su(f) = B(f) e ™2 = p(f) + Rar (). (3.75)

The power spectral densities for all the raw data are given in Table 3.5 and not in a

6 x 6 blocks as done for the others as the equations are too long.
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Auto-power spectra

The auto-power spectral density for optical bench 1 is

Su(f) = ([P = 5(f) + ()] x [F ()P = 5*(f) + 71 ()])
= (PP(f))[2 — e 2mIPs — (2rifDs] <~2 )
= O'i [2 _ e 2mifDs _ 27rsz3} +o?, -

with the only change for equal arm lengths being the the offsets to D.

Cross-power spectra

For the raw data from the optical benches at the end of arm L3 the cross-power spectral

density is
S (f) = ([P(F)e 2™ —p(f) + ()] x [P(F)e™Ps — 5 (f) + 15, (f)])
_ <f9)2(f)>[2 _ o2mifDs _ 627rz‘fD3}
— 0.2 |:2 . e—27rifD3 . 627rifD3}7 (377)
which has the same structure as the auto-power spectral density for the laser phase
noises but contains no photodetector noise. With equal arm lengths the only change is

with the offsets changing to D.

The cross-power spectral density for the optical benches on the same spacecraft is

Sw(f) = ([P(He™ P = p(f) + ()] x [p*(He™ P2 =5 (f) +n1(f)])

— <}32(f)> |:1 _I_ e—Qﬂ"if(Dg—Dz) _ 6—271”ifD3 _ 627TifD3:|

— 0_}2) [1 + 6—27rif(D3—D2) _ 6—27rifD3 _ GQWifDﬂ. (378)
With equal arm lengths there is a slight change in the structure to

Sll’(f) — <ﬁ2(f>> |:2 . e—27rifD . 627rifD} (379)
which is the same as for cross-power spectral densities between s; and Sor with the same
value.

Summary

All the values for the raw data power spectral densities are given in Table 3.5 which

are the values for the blocks along the main diagonal. The values that will be on the
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Table 3.5: Raw data power spectral densities for equal and unequal arm lengths.

Power Expressions
spectra Unequal arm lengths Equal arm lengths
Sulf)  (B)[2—e P — EmIPa] 4 (3(f)) (B(£))[2 - e72miID — 2T D] 4 (R (f)
S (f) (B2 — e 2T P2 — 2T P2 4 (73, (f)) (P*(f)[2 — e 2™ P — 2T P] (a3, (f))
S(f)  FP(N[2— e 21— 2D 4 (7)) (F()[2 = e 2P = 2miIP] 4 (33(f)
Sara(f) (BA()[2 = e 2P — 27 Da] 4 (R, (1) (B(1))[2— e72mIP — e2mIP] 4 (22, ()
Sss(f)  (BP(F)[2— e 2T P2 — 2T P2 4 (R3(f)) P (f))[2 — e 2P — 2T P] 4 (A3(f))
Syar(f)  (BP(H)[2— e 2™ P1 — 2T P1] 4 (73, (f)) ()2 — e 2P — 2mIP] + (A3, (f))
S12’(f) <ﬁ2(f)> [2 _ e—27m‘fD3 _ 627r7,'fD3] <ﬁ2(f)> [2 6—27r7,fD 271-sz]
51/3(f) <52(f)> [2 _ e—27rifD2 _ 621rifD2] <ﬁ2(f)> [2 —27rsz eszfD]
Szgl(f) (ﬁQ(f)> [2 _ e—27m‘fD1 _ e2m‘fD1] <ﬁ2(f)> [2 —27me eszfD]
Slll(f) (ﬁQ(f» [1 + e—2m‘f(D3—D2) _ e—27rifD3 _ 627rifD2] <ﬁ2(f)> [2 _ 6—27rifD _ emeD]
522/(f) (ﬁQ(f» [1 + e—2‘m’f(D1—D3) _ 6727”'fD1 _ eQwing] <ﬁ2(f)> [2 _ 6727r7,'fD _ 6271-z‘fD]
SSS’(f) <f’2(f)> [1 + e—27m‘f(D2—D1) _ e—2m‘fD2 _ 827rifD1] <ﬁ2(f)> [2 _ e—27m‘fD _ emeD]
SlZ(f) <I~)2(f)> [1 + e—27m‘f(D3—D1) _ e—2m‘fD3 _ 827rifD1] <ﬁ2(f)> [2 _ e—27m‘fD _ emeD]
513(f) (ﬁQ(f» [1 + E—Qwif(Dg—Dz) _ e—2mifD3 _ e27rifD2] <ﬁ2(f)> [2 _e—2mifD _ 6271-z‘fD]
Szg(f) <I~)2(f)> [1 + e—27m‘f(D1—D2) _ e—2m‘fD1 _ eQwing] <ﬁ2(f)> [2 _ e—27rifD _ eQwifD]
Sllgl(f) (ﬁQ(f)> [1 + e—27m‘f(D2—D3) _ e—2m‘fD2 _ 827rifD3] <ﬁ2(f)> [2 _ e—27m‘fD _ emeD]
51/3,(]0) (ﬁQ(f» [1 + B—Qrif(Dz—Dl) _ 6727”'sz _ e27rifD1] <ﬁ2(f)> [2 _ 6727r7,'fD _ 627m‘fD]
52/3/ (f) (ﬁQ(f)> [1 + e—27m‘f(D3—D1) _ e—27rifD3 _ eQwifDl] <ﬁ2(f)> [2 _ e—27rifD _ errifD]
Sls’(f) <f’2(f)> [1 + e—27m‘f(D3—D1) _ e—2m‘fD3 _ eQwifDl] <I§2(f)> [2 _ e—27m‘fD _ eQwifD]
521/(f) (ﬁQ(f)> [1 + B—Qrif(Dl—Dz) _e—2mifDy _ e27rifD2] <ﬁ2(f)> [2 _e—2mifD _ 627m‘fD]
532/(](‘) (p'Q(f)> [1 + e—27rif(D2—D3) —e—2mifDy _ eQﬂifD;;] <ﬁ2(f)> [2 _e2mifD _ eQTrifD]

main diagonals of these blocks are the auto-power spectral densities which are the first

six rows in the table. With equal arm lengths the laser noise contributions all have the

same structure.

Sample raw data power spectral density matrices

The sample matrices are given in Figure 3.15 where the values for the auto-power

spectral densities show up as a diagonal in the blocks and the matrices. One interesting

feature is the nature of the blocks for frequencies that do not contain any contribution

from the laser phase noises, for example, blocks 1 and 11. This is because the laser noises

in the equations have two basic structures [2 — e ™27/ Pi — 27/ Di] and [1 4 e~ 27/ (Pi=D;)

e 2mifDi _ 2™ Dj] which both sum to zero when the exponential terms are equal to 1.
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Figure 3.15: Sample raw data power spectral density matrices for lasers that are all phase-locked to
a master showing the magnitudes (left) and phases (right) for equal (top) and unequal arm lengths
(bottom).

3.2.4 A comparison of the covariance and power spectral den-

sity matrices

The instrumental noises in our toy model of LISA data that was used for generating
covariance and power spectral density matrices were the laser phase and photodetector
noises. The raw data from each of the six optical benches included the laser phase noises
from the local laser and from the other laser at the end of the same arm and, the noise
from the local photodetector. Both of these noises were assumed to be independent and
random therefore correlations only occurred if the same noise occurred in the different
readings. For the photodetector noises this meant that the correlations only occurred
between readings from the same optical bench at the same times, that is, only auto-

correlations existed for these noises. In the covariance matrix these only occur along
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the main diagonal. The times of the two laser phase noises each reading are t for the
local laser and t — D; for the laser beam arriving from the optical bench at the other
end of arm. The offset D; is the light travel time in arm ¢. The correlations reflected
these times with possible locations being on the main diagonal, where the times are the
same, and at times shifted from the main diagonal by offsets of D; or a difference of
two offsets of D; — D;. For the laser phase noises the correlations between the readings
depended on how the lasers were phase-locked with the main outcome being an increase
in the number of correlations which increased the density of the matrix.

The samples of the covariance matrices generated in this chapter are reproduced
in Figures 3.16. The entries in these matrices are all 6 x 6 blocks corresponding to
the number of optical benches therefore, the description of the structure relates to the
blocks and not the elements. The properties of LISA that were demonstrated were the
arm lengths and the phase-locking of the lasers. The options for the arms included
static equal and unequal lengths and those for the phase locking the included (i) no
locking, (ii) locking of the two lasers on each together and (iii) locking all lasers to a
single (master) laser. In all cases the variances of the laser phase and photodetector
noises were kept constant with each type having the same values.

As expected, in the covariance matrices the equal arm lengths resulted in three
diagonals with the two diagonals away from the main located at offsets equal to the
light travel time in the arms which is shown in Figures 3.16a, 3.16¢ 3.16e. The diagonals
away from the main showed the correlations between the laser phase noises with times
of t and t — D while those on the main diagonal are between noises with the same
times. With equal arm lengths, the effect of increasing the number of lasers that were
phase-locked was just an increase in the density of the blocks. With three different arm
lengths the diagonals away from the main are split into three diagonals which is shown
in Figures 3.16b, 3.16d and 3.16f. These produced correlations between times ¢ and
t — D; which occurred at offsets of D;. The effects of the phase-locking, in this case, was
more pronounced than for the equal arm lengths. Apart from increasing the number of
correlations, it also produced correlations between the laser phase noises with different
shifted times of ¢ — D; and t — D;. These correlations are located at times that are
differences of these offsets (D; — D;) and are the values occurring close to the main

diagonal in Figures 3.16d and 3.16f. The power spectral density matrices have simpler
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structures than the covariance matrices because there are no correlations between the
different frequencies. The lack of correlations produced matrices that were all block
diagonals as shown in Figure 3.17. The time offsets in the covariance matrices occur
as phase shifts in the power spectral density matrices. Increasing the number of lasers

that are phase-locked also increased the density of the blocks in these matrices.
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Figure 3.16: Sample raw data covariance matrices for laser options of no phase-locking (top), phase-
locking on each spacecraft (middle) and all locked to a master.
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Figure 3.17: Sample raw data power spectral density matrices showing the magnitudes and phases
for no phase-locking (top), phase-locking on each spacecraft (middle) and all phase-locked to a master
(bottom).
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Table 3.6: AET noise spectra

Amplitude spectra Noise contributions
A(f) %{ﬁ](f) [1 _ 6727rifD2] _ ﬁlf(f) [1 _ 672m'f(D1+D3)] + 52(f) [efszp_.j _ e—2m’f(D2+D3)]
4 ;iQ/(f) [e—Qm‘fDl _ e—?m‘f(Dﬁ—D;)] _ ﬁ';(f) [1 _ €—2m’f(D1+D3)} + ﬁfy(f) [1 _ e—Qwing] }

E(f) %{ _ 'ﬁl (f) [1 _ 6727rz'fD2 _ 2672771']'(D1+D2):| 4 ’ﬁl/(f) [1 _ 26727rifD3 4 6727rif(D1+D3:|
+ Tip(f)[2 — e72mIDs — =27l (D+D3)] _ 7, (f)[2 — e 2mif D1 — =2mif (D1=D2)]
_ ,’,‘z3(f) [1 _ 26727rij'D1 + 6727rz'f(D1+D3):| 4 'ﬁg/(f) [1 4 6*27\'Z'fD2 _ 26727rif(D2+D3)]}

_ ﬁ1(f) [1 + e~2mifDa | 6727rif(D|+D2)] + ﬁy(f) [1 4 e 2mifDs 6—2m‘f(D1+D3)]
_ ﬁz(f) [1 4 e—2m‘fD3 + 6—27l‘if(D2+D3)} + ﬁy(f) [1 + e—zm‘fDl + 6—2m‘f(D1+D2)}
— ng( )[ + Ny

(f)[l 4 e—2mifDz 4 e—2m’f(D2+D3)}}

T(f) st

f 1+€727TifDl +e*2ﬂ'if(D1+D3)}

3.3 The power spectral densities for AET.

For the static array assumption of LISA the laser phase noises are completely canceled
in the time delay interferometry observables. This is the main difference between the
computation of the covariance functions for the time delay interferometry observables
and for the raw data. The laser phase-locking which is important for the raw data will
not have any effect on the time delay interferometry covariances since the correlations
in them will be due to the remaining noises which, in our toy model, are the photode-
tector noises. The illustrations will only include an example of an auto-power and a
cross-power spectral density. The noise contributions for the amplitude spectra for the
AFET observables are given in Table 3.6. The auto-power spectral density for the A
combination can be computed from

Saalf) = <%{ﬁ1(f) [1— e2mifP2] 7, (f)[1 — e~2mif Dt Di)] 1
+ ﬁz(f) [6—27rifD3 _ e—27rif(D3+D2)] + ﬁg/(f) [6—27rD1 N 6—27rz‘f(D1+D2)}
— ()1 = e IO Ly ()1 — 2] )

+ 'ﬁ;(f) [627rifD3 . €2m'f(D3+D2)] + ﬁ;(f) [627@1 . 627rif(D1+D2)}
= (N[ = PP i () [1 = 2] L)
= AU + G + G + ()] [2 e 2rise - rirm]
+ [(T) + (R [2— e 2000 — s o]} (3.80)
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Table 3.7: AET power spectral densities.

Power spectra  Noise contributions

Saa(f) SR + @3(F) + (a5 () + (5, (f))] [2 — e¥7IP2 — e72mifP2]
+ [(ﬁ%/(}‘» + <T~L%(f)>] [2 o 627rz‘f(D1+D3) _ e—Zm‘f(D1+D3)}}

=
+
1)

SEE(f) é{ [<ﬁf(f)> + <ﬁg/(f >] [6 — % 2mifDy 29—27TifD] + PZTri,ng + e—21rifD2 _ 2627rif(D|+D2) _ 26727r71f(D|+D2)]
f)] [6 + 627rsz2 + 67271'1sz _ 262771ng _ 26727rz'fD3 _ 2627rif(D2+D3) _ 26727rif(D2+D3)]

><T~l%/(f)> {6 _ 262me1 _ 26—27r1fD1 _ 2627r1fD3 _ 26—2m'fD3 + c27\'1‘f(D1+D3) + C—Zm‘f(Dl-FD;;):I}

>] [3+€27rifD1 +€727'rifD1 +€27rifD2 +€727rifD2 +627rif<D1+D2)+€727rif(D1+D2)}

Srr(f) LRI + (A3 (f)
+ (fzg,(f)ﬂ [3 4 2mifD2 y g=2mifDy | 2mifDs 4 o—2mifDs | 2mif(Da+Ds) 4 6727rif(D2+Ds)J
+ (1

SAE(f) \/%{ _ <7~Z% >[2€27rifD1 4 627r'ifl)2 o 6727rif1)2 _ 2627rif(1)1+l_)2):|
,(f)> [26_27”fDl — 9¢2mifDs + esz(D1+D3) _ 6—27fif(D1+D3)]
(f)>[ 2mifDy __ F—Qﬂ'thz _ 26—27r7',fD3 + 26—27rif(D2+D3)]

)

=2

ny

2

ny

%/(]‘» {26,727'sz1 _ 627r7lfD2 + 672m'fD2 _ 26727rif(D1+D2)]
%(f»[ 2mifD1 _ 9e=2mifDs _ 2mif(D1+Ds) 4 o=2mif (Di+Ds)]
~2
J

,(f))[ 2mifDa _ o=2mifD2 y 9p2mifDs _ 262ﬁif'(D2+D3)”

Sar(f) %{(Tﬁ(f» [ezm‘fpl _ e2mifDy | o=2mifDa _ 62m’j(D1+D2)}

/(f)>[ —2mif D1 _ o2mif Dy _ o2mif (Di+Ds) | e—?frif(DlJng)}
w2(f )>[ 2mifDy _ o=2mifDa 4 o—2mifDs _ 6—2777'f(D2+D3)]
(}‘))[ —2mifD1  o2mifD2 _ o=2wifDs _ 6—27rif(1)1+1)2)}
(f))[ 2mifDy _ o~2mifDs | o2mif(Di+Ds) _ e—27rif(D1+D3)}

(7 ’(f)” 2mifDy _ p=2mifDa _ 2mifDs 4 esz(D2+D3)”

Ser(f) Tk{(ﬁf(f) [sz'fDl — 9e-2mifD1 | o2mifDy | =2mifDa y 2mif(Di+D2) _ 26—2m‘f(D1+D2)]

() [e—ZfrifDl _ 0e2mif Dy (2mifDs _ 9o=2mifDs 4 2mif(Di+Ds) 4 e—Zm‘f(DlJrD;;)]
A2(£)) [627rz'fD2 4+ e 27ifD2 _ 9o2mifDs | o~2wifDs _ 9o2mif(D2+Da) 4 6727rif(DQ+D3)}
) [6—27rif]_)1 _ 9e2mifD1 | o2mifDa 4 o=2mifDy _ 9 2mif(Di+D2) 4 €f2m'f(D1+Dz>]
2(f)) [eszDl — 9e=2mifDi _ 9p2mifDs | o=2mifDs | o2mif(D1+Ds) 4 e—27rif(D1+D3)}

72 ,(f» [621rifD2 + e~ 2mif Dy + e2mifDs _ 9p—2mif Dy + e2mif(Da+Ds) _ 26—2171’,]"(D2+D3)]}

and substituting the values for the variances gives
SAA(f) — 0_721 |:6 . 2627TifD2 . 26—27rifD2 . e??rif(Dg-i—Dl) . 6—27Tif(D3+D1):| ) (381)

With equal arm lengths there are no major changes just a replacement of the D; with D
in Equations 3.80 and 3.81. The cross-power spectral density is computed in a similar
manner. The results for all the power spectral densities are given in Table 3.7. Samples
of the power spectral density matrices are given in Figure 3.18 showing the real and
imaginary values for equal and unequal arm lengths where frequencies and readings are

arranged as shown in Figure 3.19.
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Figure 3.18: Sample AET power spectral density matrices showing the real (left) and imaginary (right)
values for photodetector noise variances of 02 = 1. The matrices are for equal arm lengths of D = 5.3
(top) and unequal arm lengths of D = {5.3,6.3,7.3} (bottom).

f, >

(a)

(b)

Figure 3.19: A diagram illustrating the block structure of the power spectral density matrix for AET

showing the frequencies in (a) and the labeling of the blocks in (b).

3.4 Summary

In this chapter we generated the covariance and power spectral density matrices for

the raw data which are the sources of the principal components. The configuration of
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LISA used for these was that of stationary rigid array. The power spectral densities for
the optimal AET observables were also generated. Results were obtained for equal and
unequal arm lengths and, in the case of the raw data, for the three different laser phase-
locking options. Sample covariance power spectral density matrices were generated. In
the next chapter we will perform the eigendecomposition of the raw data covariance
and power spectral density matrices and prove the connection between the laser phase
noise free eigenvectors and the time delay interferometry observables in both the time

and frequency domains.



Chapter 4

The principal components - time delay

interferometry connection

In this chapter we show the connection between the principal components and time
delay interferometry observables in both the time and frequency domains. For this we
used a toy model of LISA with small covariance and power spectral density matrices
using small arm lengths and equal variances for each noise type. We begin with a brief
explanation of eigenvalues and eigenvectors and illustrate the conventional method for
generating them. We also compare algebraic and numeric methods for computing them

with respect to the values produced and the speed of computation.

4.1 Eigenvectors and eigenvalues

An eigenvector v is a vector that transforms a square matrix A into another vector
which is the same or a multiple of itself. The transformation is a linear operation that

can be written as
Av = v, (4.1)

where the coefficient A is the eigenvalue associated with the eigenvector. The number
of eigenvalues generated are equal to the size of the matrix. The eigenvectors will
be mutually independent but will only be orthogonal if the eigenvalues of the matrix
are all unique. The eigenvalues for a matrix that have multiple occurrences are called
degenerate.

The conventional way to determine the eigenvalues and eigenvectors is by finding

the solution of Equation 4.1 using the homogeneous form which is
Av —Av=(A-X)v =0, (4.2)

where I is the unit matrix [53]. The only non-trivial solution for this is when (A — AJ)

111
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is equal to zero which is solved using the determinant giving
|A—X| =0, (4.3)

where | | indicates the determinant [53]. This equation is called the characteristic
equation which is a polynomial in A of the same size as the matrix A giving the same

number of roots [53]. Expanding Equation 4.3 gives

ap; — A a2 T Ain
a Aoy — A -+ Qop,
A—Arj=| & _ ool =0, (4.4)
an1 An2 ccr App — /\

where a;; are the elements of A. The eigenvectors are found by solving the Equation

4.1 for each eigenvalue.

4.1.1 Determination of the eigenvalues and eigenvectors for a

LISA - toy model example

When the matrix is a data covariance matrix the eigenvectors align with the variances
in the data. In the toy model data that Romano and Woan [54] used the phase measure-
ments consisted of a single laser noise p(t), photodetector noise n;(t) and signal h;(t)

which can be written as
si = hi(t) + p(t) + ni(t). (4.5)
The covariance matrix is based on the noises in the data, therefore, rearranging this
gives
si(t) = hilt) = p(t) + n(t), (4.6)
which for two photodetetors s; and s, gives
51— hi =p+ny,
s2 — ha = p + na, (4.7)

where, because the terms have the same times, they have been dropped. With photode-
tector noises variances of o2 and laser phase noise variances of ag the variances of s;

and s; have the same value of 207 + 0. Since there are no time offsets for the data the
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covariance matrix C' is simple with no lags and is defined as

2 2 2
O o, + 05, o

2 2 2

o, Op + 05

The characteristic equation for this matrix is

o+ 02) =\ o2
P (AR RS
‘7;3 [(05 +02) — )]
= [(012) +02) — )\] (02)2
=0, (4.8)
which easily factorises into
(02 +02) = A" = (022 = { {02+ 02) = ] — 02} { (02 + 02) = A + 02 }.
The two equations to be solved are
0'}22 + 0-,,21 - A= ;2) = 07
o +0o.—A+o,=0, (4.9)

giving solutions of A = o7 and A = 207 407, respectively. The eigenvalues are combined

in a matrix A as
202+ 02 0
A=| 7 : (4.10)

2
0 o

where they occur on the diagonal of the matrix. The matrix version of Equation 4.1 is
CV =VA, (4.11)

where V' is the matrix containing the eigenvectors, respectively. The occurrence of the
V" on both sides means that the matrix of eigenvalues A is equivalent to the covariance
matrix C'. Since this matrix is diagonal this means that the eigendecompostion diag-
onalised the covariance matrix. The corresponding eigenvectors are found by solving
Equation 4.1 for each eigenvalue. The equations with the eigenvalues are

2 2 2
Op + o, o V11

P V11

, =20, + o0, : (4.12)

2 2
Ty Op T 05| | V12 V12

2 2 2
o; + o, g V21 V21
b b =02 : (4.13)

2 2 2
Op Op T 05| | V22 V22
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where v;; are the elements of the eigenvector matrix. Equations 4.12 and 4.13 give

consistent sets with general solutions of v1; = v12 and v9; = —v9y . The eigenvectors are
vy = [k k] and vo = [k — k] where k is non-zero number [53]. For & = 1 the vectors
are vi = [1 1] and vo = [1 — 1] and the matrix is
1 1
V= , (4.14)
1 -1

with the eigenvectors arranged in columns.

4.1.2 Algebraic and numeric computations of the eigenvalues

and eigenvectors

In the toy model example the eigenvalues were determined using the characteristic equa-
tion which requires the computation of the determinant of the matrix. The problem
with this is that this scales badly with matrix size since the computation of the deter-
minant is non-trivial for full matrices of sizes greater than three. The software package
that we used for generating the eigenpairs (eigenvalues and eigenvectors) was MATLAB
which has functions for algebraic and numeric solutions. To illustrate the difference
in the computation times between the two methods and also to show how badly the
algebraic approach scales with matrix size, the eigenpairs were computed for covariance
matrices of different sizes with the values of the other properties that determined the
matrix kept constant. Table 4.1 lists sample algebraic and numeric computation times
for matrix sizes (n) ranging from 30 to 18000 which are plotted in Figure 4.1. The
numeric computation of the 18000 x 18000 matrix took approximately 420 s which is
roughly the time it took the algebraic computation of only a 48 x 48 matrix.

In terms of the values and number of degenerate eigenvalues, both methods seem
to produce the same results. The values of all the eigenvalues were checked for one
matrix and their rounded values were found to be the same. For generating the time
delay interferometry combinations the exact solutions were required for the eigenvectors,

therefore, the the algebraic solutions were only used for this purpose.

LComputed on saturn (x86, 64bit, 1200MHz)
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Table 4.1: Examples of the computation times for the eigenvalues and eigenvectors from algebraic and
numeric solutions obtained using MATLAB.

(a) Algebraic (b) Numeric
Number of  Computation Number of  Computation
timestamps time (s) timestamps time (s)

5 12.982 5 0.00046
6 56.353 6 0.00056
7 215.740 7 0.00062
8 501.246 10 0.00073
10 2289.314 11 0.00077
11 4243.665 12 0.00107
12 8208.799 14 0.00124
13 12314.336 15 0.00165
14 19402.763 20 0.00272
15 31757.095 40 0.00701
100 0.04304
300 0.44765
501 1.64426
800 7.08202
1600 62.41153
3000 435.86898

4.1.3 Independence and orthogonality of the eigenvectors

Independence indicates that there are no linear combinations of all the eigenvectors that

will sum to zero. This can be written as
Tri€1 + x2e9 + --- + €, = 0 (415)
5 T T T T I

—+—algebraic
—¥— numenc

logyglcomputation time) (s)

1 1 1 1
0s 1 15 2 25 3 35
logy g{number of timestamps)

Figure 4.1: The plot of the algebraic and numeric computation times for the values in Table 4.1.
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Table 4.2: The contributions from the raw data for the Sagnac « and ¢ for times ¢t = {1,...,5} and
offsets D = {1,2,3}.

OB# afs] (5

s1 (1) 0 0
81/(1) 0 0
s2 (1) 0 0
82/(1) 0 0
ss (1) 1 1
83/(1) 0 0
s1(2) 0 0
s1(2) 0 0
s2 (2) -1 0
82/(2) 1 0
s3 (2) 0o -1
s3/(2) 0 1
s1 (3) 0 0
s1/(3) 0 0
s2 (3) 0 -1
s/ (3) 0 0
s3 (3) 0 0
83/(3) 1 0
s1 (4) 0 -1
s1/(4) 0 1
s2 (4) 0 0
Sor (4) 0 0
s3 (4) 0 0
83/(4) 0 0
s1 (5) 1 0
s1/(5) 1 0
s2 (5) 0 0
59/ (5) 0 0
s3 (5) 0 0
s3(5) 0 0

where z; are coefficients and 0 is the null vector [53]. For independent vectors the
only combination that will lead to the null vector is the trivial solution where all the
coefficients are zero. For the eigenvectors to be mutually orthogonal their inner products

must be equal to zero, that is,
e; - ej:(). (416)

If the eigenvalues for the covariance matrix are all unique their eigenvectors will be
independent and orthogonal. In the case of degenerate eigenvalues the eigenvectors will

be independent but not necessarily orthogonal.

4.2 Generating the Sagnac observables

Determining the set of eigenvectors that will produce the required time delay interfer-

ometer combination can be obtained by solving a set of linear equations which can be



117 Chapter 4. The principal components - time delay interferometry connection

-50

Figure 4.2: The covariance matrix of Romano and Woan with variances of 012) =50 and o2 = 1, times
of t ={1,2,3,4,5} and offsets of D = {1,2,3}.

written as
rie; + xs€ey + - +Tpe, = b, (417)

where x; are scalar coefficients, e; are the eigenvectors of size n x 1, bis a n x 1
vector containing the corresponding values needed for each time delay interferometry

combinations. In matrix form this can be written as
Ax = b, (4.18)

where A is the matrix of eigenvectors as columns, x is a column vector of coefficients
and b the column vector containing the target values which will reflect the structure
of the matrix. Examples for b values for «(5) and «(5) are given in Table 4.2. The

solution will be obtained by

x=A"'b, (4.19)
which can be done directly in MATLAB using the left divide operator

x = A\Db, (4.20)

or using linsolve function.
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Table 4.3: The degenerate eigenvalues for the covariance matrix in Figure 4.2 used in Romano and
Woan [54].

OB# e] e e3 e, e; e €7 eg €9

ss1) 0 0 0O 0O 0 0 O 0 O
sy) 0 0 0O 0O 0O 0 0 0 O
ss(1) 0 0 0O 0 O 1 0 0 O
sy(), 0 0 0 0 0 0 0 0 O
ss(1) 0 0 0O 1 0 0 0 0 O
sy(1) 0O 1 0 0 0 0 0 0 O
s12) 0 0O 0O 0O 0 0 O 0 O
sy 0 0 0 0 0 -1 0 0 0
s2(2) 0 0 0 0 0O O 1 0 o0
s%(2) 0 0 0 -1 0 0 0 0 0
s3(2) 10 0 0 0 -1 0 0 O
s(2) 0 0 0 0O 0 0 0 0 1
s13 0 -1 0 0 0 0 O 0 O
sy3 0 1 0 1 0 0 -1 0 0
s23 1 0 0 0 0 0 O 0 O
s(3 -1 0 0 0 0 1 0 0 0
33 0 0 1 0 0 0 O 0 0
s(3 0 0 0 0 0 0 0 1 0
ss(4 0 0 0 0 0 1 0 0 -1
sy 0 0 0 0 0 -1 0 0 1
s2(4) 0 0 1 -1 0 0 1 0 0
sy() 0 0O -1 0 0 0 0 0 0
s34 0 0 0O 0O 1 0 0 0 O
sy(4) 0 0 0 0 0 1 0 0 0
ss3) 0 0 0 -1 0 0 1 -1 0
sy 0 0 0 1 0 0 -1 1 0
ss(3 0 0 0 0 1 1 0 0 0
sy 0 0 0 0 -1 -1 0 0 0
s3) ' 0 0 0O 1 0O O 0 -1 0
sy( 0 0 0 -1 0 0 0 1 0

4.2.1 Results for the covariance matrix given in Romano and

Woan

Romano and Woan [54] were able to produce the Sagnac « time delay interferometry
observable from the laser phase noise from the eigenvectors obtained from a 1 x 5
covariance matrix with times ¢ = {1,2,3,4,5} and offsets D = {1,2,3}. The matrix
and the laser noise free eigenvectors that they obtained are given in Figure 4.2 and

Table 4.3, respectively.
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Table 4.4: The values for the current and shifted times appearing in the Sagnac observables for ¢ =
{1,2,3,4,5} and D; = {1,2,3} as used by Romano and Woan.

t t— Dy t— D2 t— D3 t— D1 — Do t— Dy — D3 t— Do — D3
1 0 -1 -2 -2 -3 4
2 1 0 -1 -1 -2 3
3 2 1 0 0 -1 2
4 3 2 1 1 0 1
5 4 3 2 2 1 0

4.2.1.1 Solutions for the Sagnac « and (

The inter-spacecraft phase measurements for the Sagnac observables can be written as

Slt

a(t) = sy (t) + so(t — Dy — Dg) + sg(t — Do) — s1(t) — s2(t — D3) — s3(t — Dy — Dj),
B(t) = sy(t — D3) + s (t) + s3(t — Dy — D3) — s1(t — Dy — Dy) — so(t) — s3(t — Dy),
( ) = s1(t = Da) = s2(t — D3 — Ds) — s3(t),
( ) = s1( )-
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The values for the times occurring in the Sagnacs are given in Table 4.4 for t =
{1,2,3,4,5} and D; = {1,2,3} where they range from —4 to 5. If the covariance
matrix is restricted to positive values including zero, the only time that will have offsets

occurring with all these values is ¢ = 5. The values for all the Sagnacs for this time are

(4.22)

The matrix used by Romano and Woan did not include a zero value, therefore, the
only combinations that could be generated are the «a(5) and ((5). Their solution for

a(5) was —eq — €7 + eg. From Table 4.3 the equations for these are
ey = 83(1) - 82/(2) + 81/(3) — 82(4) - 81(5) + 51/(5) + 83(5) - 83/(5),
e; = 82(2) — 81/(3) + 82(4> + 81(5> — 81/(5) — 83(5) + 83/(5),
eg = 83/(3) - 81(5) + 81/(5>, (423)
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which gives

—ey —er +es= —s3(1) + 52(2) — s1/(3) + 52(4) + 51(5) — s1/(5) — 53(5) + s5(5)
— 52(2) + s1/(3) — 52(4) — 51(5) + s1/(5) + 53(5) — s3(5)
+ 59(3) — 1(5) + 50(5)
= s11(5) + s2(2) + 53(3) — 51(5) — 52(2) — s5(1)
= a(5). (4.24)
This matches the values for a(5) in Equation 4.22. ¢(5) can also be obtained by com-

bining eigenvectors e; and eg of Table 4.3 for which the contributions from the raw data

are

e; = s53(2) + s2(3) — s2(3),

€9 = S3/(2> — 51(4) + Sy (4), (425)
and differencing them gives

C(5) = —€ + €9
= —53(2) — 52(3) + 52 (3) + s3(2) — s1(4) + s1/(4)

= 81/(4) + 82/(3) + 831(2) — 51 (4) — 82(3) - 83(2>. (426)

We have illustrated that two Sagnacs can be obtained from the laser noise free eigen-
vectors of the covariance matrix for the times presented by Romano and Woan. The
conclusion from this is that the limitations came from the matrix size and times which
did not allow for a zero value, therefore, it should be possible to generate the other

Sagnacs by using a larger matrix.

4.2.1.2 Results for a 6 x 6 matrix

To investigate this, a new covariance matrix was generated for times of t = {0,1,2,3,4,5}
with the same offsets used by Romano and Woan. This matrix is shown in Figure 4.3
where, because of the symmetric Toeplitz structure, the only difference from the previ-
ous matrix in Figure 4.2 is the size of the matrix. The degenerate eigenvectors for this
matrix obtained from MATLAB’s eig function are listed in Table 4.5. From this set of

eigenvectors we were able to obtain solutions for all the Sagnacs for time ¢ = 5. The
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Figure 4.3: The covariance matrix for times of ¢ = {0, ..., 9} and offsets of D = {1, 2, 3,4} with variances
of 012) =50 and o2 = 1.

solutions are

a(5) = ez + e + e, B(5) = es + e,

v(5) = es + €12, ((5) =e5+er. (4.27)
For example, for ¢ the raw data contributions for eigenvectors e; and e; are

e5 = —53(2) — $2(3) + s2(3), er = s3(2) — s51(4) + s1/(4), (4.28)
and summing them gives
€5+ e7r = —53(2) — 52(3) + 52(3) + 53(2) — 51(4) + s1/(4)
= 51/(4) + 52/(3) + 83(2) — 51(4) — 83(2) — $2(3)
=((5). (4.29)

The six phase readings occurring in the four Sagnacs in Equation 4.22 do not have
any overlapping times for the same optical benches. Also, the solutions for the four
Sagnacs in Equation 4.27 do not have any overlapping eigenvectors which could reflect

this independence for same times. This will be investigated further in the next section.

Independence and orthogonality of the eigenvectors

The set of eigenvectors in Table 4.3 and 4.5 were determined to be all mutually inde-

pendent but they are not all orthogonal. This is expected as they are associated with
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Table 4.5: The degenerate eigenvalues for times ¢t = {0, ...,5} and offsets D = {1, 2, 3}.

OB# e e €3 € € € € € € €y €] ep
(00 0 0 0 0 0 0 0 0 0 0 0 0
s(0) 0 0 0 0 0 0 0 0 0 0 0 0
So (0) 0 0 0 0 0 1 0 0 o -1 0o -1
s(0) 0 0 0 0 0 0 0 0 0 0 0 0
300 -1 0 0 0 0 0O 0O 0O 0O O0 0 0
sy(0) 0 1 0 0 0 0 0 0 1 0 0 0
ss;(), 0 0 0 0 0 0 0 0 0 O0 0 0
s/(l) 0 0 0 0 0 -1 0 0 0 1 0 1
So (1) -1 0 0 0 0 0 0 0 1 0 0 0
s(), 1 ' 0 0 0 0 0 0 0 0 0 0 0
s3(), 0 0 -1 0 0 0 0 0 0 0 0 0
sy() 0 0 0 1 0 1 0 0 0 -1 0 0
s$5(2) 0 -1 0 0 0O 0O 0O 0 -1 0 0 0
s/(2) 0 1 0 0 0 0 0 0 0 0 0 0
So (2) 0 0 -1 0 0 1 0 0 0o -1 0 0
s»(2) 0 0 1 0 0 0 0 0 0 0 0 0
s3(20 0 0 0 0 -1 0 0 0 0 0 0 0
sy(2) 0 0 0 0 0 0 1 0 1 0 0 0
ss(3 0 0 0 -1 0 0 0 0 0 0 0 -1
s/(3) 0 0 0 1T 0 0O 0O 0 0O O 0 0
(3 0 0 0 0 -1 0 0 0 1 0 0 0
s»(3) 0 0 0 0 1 0 0 0 0 0 0 0
ss(3) 0 0 0 0 0 -1 0 -1 0 1 0 1
sy(3) 0 0 0 0 0O 1 0 0 0 0 0 0
ss(4) 0 0 0 0O 0O 0 -1 0 0O 0 0 0
sy4 0 0 0 0 0 0O 1 0 0 0 0 0
s$(4) 0 0 0 O O 0O 0 -1 0 0 o0 1
s() 0 0 0 0 0 0 0O 1 0 0 0 0
S3 (4) 0 0 0 0 0 0 0 0o -1 0o -1 0
sy() 0 0 0 0 0 0O 0 0 1 0 0 0
ss(5) 0 0 0 0 0O O O O O -1 0 0
s/(3 0 0 0 0 0 0 0 0 0 1 0 0
() 0 0 0 0 0 0 0 0 0 0 -1 0
s/’ 0 0 0 0 0 0 0 0 0 0 1 0
S3 (5) 0 0 0 0 0 0 0 0 0 0 o -1
sy(6) 0 0 0 0 0 0 0 0 0 0 o0 1

eigenvalues that are degenerate. For example, in Table 4.3 eigenvectors e; and e; both
form non-zero inner products with e;, and so does e4 with e;,e;, e3 and e;. The majority
of the eigenvectors in that table were not orthogonal. Table 4.5 had more orthogonal
eigenvectors which could be linked to how they were generated as their non-zero values

have patterns that do not occur in those of Table 4.3.

4.2.2 Results for offsets of D, = {2,3,4}

This section contains the results for a different set of offsets and times that will allow
the generation of combinations for different times from the same matrix. To obtain the

Sagnac combinations for a specific set of offsets, the largest time value for the covariance
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matrix must be equal to or greater than the maximum time offset in the combinations.

For offsets of D; = {2, 3,4} the maximum offset in the Sagnac combinations is Do+ D3 =

7, therefore, the top value in the range of times of the covariance matrix must not be

less than this value. If the times are restricted to positive values including zero, these

only occur for ¢ = 7 as shown in Table 4.6 therefore, to illustrate the generation of the

Sagnacs for more than a single time value we extended the times up to 9 which will

allow for three times values of 7, 8 and 9. The times needed for the phase measurements

for the optical benches in the Sagnacs for these times are also included in Table 4.6.

The covariance matrix is given in Figure 4.4 and its degenerate eiegnvectors are listed

in Table 4.7. The equations for the Sagancs for ¢t = {7,8,9} are

(8) (3) (5)
B(8) = s1(4) + s2(8) + sz (1) — 51
V(8) = 51/(2) + $2:(6) + s3(8) — 51(5
C(8) = 51/(6) + s2(5) + s3:(4) — 1
a(9) = s1/(9) + s2(4) + s3(6) — 51
B(9) = s1/(5) 4 s2(9) + s3(2) — 51(4
1(9) = 51(3) + 52/(7) + 53(9) — 51(6
C(9) = 50(7) + 52(6) + 53(5) — 1(7

— 52(3) — s3(1),
— 52(7) — s3(5),
(0) — s5(7),
(4) — s3(3)

(4.30)

From this set of eigenvectors we were able to obtain solutions for all the Sagnacs listed

in Equation 4.30. The solutions are
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(4.31)
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Table 4.6: The values for the current and shifted times appearing in the Sagnac observables for ¢ =
{0,...,9} and D; = {2,3,4}.

t t— Dy t— Do t— D3 t— D1 — Do t— Dy — D3 t— Do — D3
0 -2 -3 -4 -5 -6 -7
1 -1 -2 -3 -4 -5 -6
2 0 -1 -2 -3 -4 -5
3 1 0 -1 -2 -3 -4
4 2 1 0 -1 -2 -3
5 3 2 1 0 -1 -2
6 4 3 2 1 0 -1
7 5 4 3 2 1 0
8 6 5 4 3 2 1
9 7 6 5 4 3 2

100

-50

Figure 4.4: The covariance matrix for times of ¢t = {0, ...,9} and offsets of D = {2,3,4} and variances
of Ug =50 and o2 = 1.

The difference with this method of generating time delay interferometry observables is
that the combinations are generated for specific times and not for a general time ¢. This
means that the combinations of eigenvectors that work for one time value are not the

same for another as shown in Equation 4.31.
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., 9}, offsets D

=1

=50 and o2

2
P

Table 4.7: The time domain degenerate eigenvectors eigenvectors for time ¢t = {0, ..
{2,3,4} and variances o

€ € €3 € e € €y €3 € €y €e;; €y €3 €y €5 € €7 €y €y ey

OB#

0
0
0

s1(0)
S (0)

0
0

S92 (0)
Sor (0)

0 -1

S3 (0)
531(0)
s1 (1)
51/(1)
So (1)
82/(1)
S3 (1)
831(1)

1

0

0
0
-1

-1

-1

0

311(2)
s9.(2)
52/(2)
831(2)

-1

0
0

0

-1

0
0

s1(3)
511(3)
So (3)
s2(3)
S3 (3)
83/(3)
s1(4)
511(4)
s (4)
321(4)
53 (4)
53/(4)

0

0

0 -1

0
0
0
0
0
0

Sy (6)
S2 (6)
Sor (6)
53 (6)
s3(6)

0

0

0

s (7)
Sor (7)
S3 (7)
53(7)

0

0

0
0
0

s1(8)
51/(8)
S92 (8)
82/(8)
S3 (8)
531(8)
51 (9)
511(9)
So (9)
82/(9)
S3 (9)
831(9)

0
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4.2.2.1 Eigenvectors and correlations in the Sagnac observables

In the eigenvector combinations for the Sagnacs given in Equation 4.31 there are some
combinations that have common eigenvectors. These occur between different combina-
tions at different times, for example, the eigenvector combinations for «(7) and ((8)

are

a(7) = es5 + eiy,

((8) =e5 + e+ eg. (432)
which both contain the eigenvector e;. This could indicate correlations between the
two Sagnacs for those times. However, this depends on whether any of the terms in
es survive in the ((8) as it may just be used to cancel the unwanted terms in the

other eigenvectors in order to obtain those needed for ((8). The eigenvector used for

generating this Sagnac are

€5 = 52(0) — s1/(1) + 5/(2) — 55(3) — s3(1) — 53(2) + 53(2) + 52/(3) — s3(4) + 5 (4),

e7 = —52(0) + s1/(1) = 52/(2) + 52(3) + s3(1) + 55(2) — 53(2) — s2(3) — 52(5) + s2(5)
+53(0) = s (1) + 52(2) — 55(3)

ey = —55(0) + 52(1) — 55(2) + 53(3) — 51(6) + 51:(6), (4.33)

where they have been aligned to show the terms that will cancel. The final combination

will contain two terms from each eigenvector giving
((8) = —s3(4) + s3(4) — 52(5) + 52(5) — 51(6) + s1/(6), (4.34)

where the common optical bench between the two is s3(4). A list of the Sagnacs and
their common eigenvectors is given in Table 4.8. Also, in Table 4.9 the correlated
Sagnacs are listed with their common optical bench readings. All the Sagnacs with
common eigenvectors are correlated but not all the correlated Sagnacs in Table 4.9 have

common eigenvectors.

4.3 Generating the AET observables

The AET observables were generated in the frequency domain therefore, in this section

we investigate the connection between these and the eigenvectors of the raw data power
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Table 4.8: Sagnacs with common eigenvectors.

Sagnacs Eigenvectors
a(7), ¢(8) es

a(7), ¢(9) €12

B(7), v(9) €2, €13
¥(7), ¢(8) er

¢(7), a(9) €4
¢(™), B9) €6

(8), €(9) es

~(8), ¢(9) e10

Table 4.9: Correlations between the Sagnacs for times t = {7,8,9}.

Sagnacs Common terms

a(7), ¢(8) s3/(4)
a(7)7 4(9) 51(7)7 51’(7)

B(7), v(9) 51/(3), 52/(7)
B(7), €(9) 53(5)

Y(7), €(8) 52/(5)
v(7), B(9) 51(4), s3(7)

¢(7), (8) s2(4)
¢(7), v(8) 51(5)
4(7)7 O‘(g) 82’(4)7 53(3)
¢(7), B(9) s1/(5)

a(8), ¢(9) s3(5)
7(8), €(9) s2/(6)

spectral density matrix. The A, F and T spectra can be written as a combination of

the phase reading s;(f) and a complex gain G;(f). For example, A can be written as
1 | |
AU = Zo (N[ = e P] =T ()1 — e/
a7 [ (O] (=P (=D
— 73(f) [1 _ 6—27rif(D1+D3)} + iy (f) [1 _ e—27rifD2] } (4.35)

The complex gains are the terms in square brackets associated with each bench and

Equation 4.35 can be rewritten as

A = 75 [5G — S (NGu() + Bl 1)Gal) + 5 (NG (f)

V2
—53(f)Gs(f) + 53 (f)Gx(f)]. (4.36)
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Table 4.10: The complex gains for AET.

Observable Optical bench Gain

A(f)

1— e—27rifD2

-1 +6727rif(D1+D3)
o—2mifDs _ o—2mif(Da+Ds)
o—2mifD1 _ g—2mif(D1+Ds)
1 4 e—2mif(D1+D3)

1 — g—2mifDa

WN N R =
NN N N~

Wy i i e e

@

_1— e—2mifD2 + 26727T7lf(D1+D2)
1 — 2¢—2mifD3 + 6727rif(D1+D3

2 _ e—QTring _ e—27‘rif(D2+D3)
—9 4 e 27mifD1 4 o—2mif(D1+D2)
—1 4 2e—27ifD1 _ g—27if(D1+D3)
1+ e—2mifDa _ 26727rif(D2+D3)

E(f)

v o i U
SO R R
A~~~ N~

»
«

—1 — e 2mifDy _ o—2mif(D1+D2)
1 +€727'rifD3 +8727T7Lf(D1+D3)
_1_ —2mifDs _ o—2wif(D2+Ds)
1 +e—27rifD1 +e—27‘rif(D1+D2)
—1 — e—2mifD1 _ g—2mif(D1+Ds3)
1 +€72TrifD2 +6727T7Lf(D2+D3)
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The gains for the observables are listed given in Table 4.10. For generating the AET
observables these gains are the target values for the vector b in Equation 4.19. The

normalising fractions associated them will not be included in the computations.

4.3.1 Results

The eigenpairs were generated from the real and imaginary power spectral density
matrix with laser phase noise variance of aﬁ = 50 and photodetector noise variance

02 =1, respectively. Three different sets of offsets were used which are D; = {2, 3,4},

D; = {2.5,3.5,45} and D; = {2.125,3.125,4.125}.

4.3.1.1 Solutions for integer offsets D = {2,3,4}

The real and imaginary power spectral density matrices for offsets D; = {2,3,4} are
given in Figure 4.5. The blocks in the real matrix are all the same and those in the
imaginary matrix have values that are very small 10~** which will be assumed to be zero.
The eigenpairs can therefore be generated from just one of the bocks in the real matrix.
The values of the first blocks (S11) of both matrices will be used and these are given in
Table 4.11a. The small size of the blocks makes it easy to list all the eigenvalues and
eigenvectors, including those with laser phase noises, which are given in Table 4.11b

where the two distinct values are clearly seen. The laser noise free eigenvectors are
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Table 4.11: The real and imaginary values for the blocks of the power spectral density matrix for offsets
D; ={2,3,4} (a) with their corresponding eigenpairs (b).

(a) Power spectral densities.

Real Imaginary
51 (0) 101 50 -50 -100 -50 50 o 0 0 0 0 O
31/(0) 50 101 50 -50  -100 -50 0O 0 0 0O 0 O
52 (0) -50 50 101 50 -50  -100 o 0 0 O 0 O
39,(0)  -100 -50 50 101 50 -50 o 0 0 0O 0 O
53 (0) -50  -100 -50 50 101 50 o 0 0 O 0 O
33/(0) 50 -50  -100 -50 50 101 o 0 0 0O 0 O
(b) Eigenvalues ()\;) and eigenvectors (v;, ;).
A1 A2 A3 A A5 Ag OB# Vi V2 e] ey e3 e4q
301 0 0 0 0 0 51 (0) -1 1 1 1 0 -1
0 301 0 0 0 0 31/(0) -1 0 -1 0 1 1
0 0 1 0 0 0 52 (0) 0 -1 1 0 0 0
0 0 0 1 0 0 35/(0) 1 -1 0 1 0 0
0 0 0 0 1 0 33 (0) 1 0 0 0 1 0
0 0 0 0 0 1 33/(0) 0 1 0 0 0 1

Table 4.12: The complex gains for AET for integer offsets D = {2,3,4}.

OB# A1) EQ) T(Q)

51 (0) 0 0 -3
51/ (0) 0 0 3
32 (0) 0 0 -3
59/ (0) 0 0 3
33 (0) 0 0 -3
34/ (0) 0 0 3

labeled e; and those with laser phase noises are labeled v;. The eigenvalues of interest
are the degenerate ones, \; = 1, and their corresponding eigenvectors are given by e;.
The four degenerate eigenvalues are all independent but only e; and ez are orthogonal.

Since the power spectral densities are the same for all frequencies the equations for

these can be written in terms of f giving

er = 51(f) = 5v(f) + 52(f),

ey = 51(f) + s2(f),

es = S1(f) + 35(f),

ey = —51(f) + sv(f) + Sz (f)- (4.37)
For these offsets the complex gains for frequencies f = {0, ..,5} are all the same which

are given in Table 4.12 where only the 7' combinations has non-zero values. This is

because of the structure of the A and E observables and the even numbers of 7 being
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Figure 4.5: The optical bench (a) real and (b) imaginary power spectral density matrices for frequencies
f =H{0,...,5}, offsets D = {2,3,4} and laser phase and photodetector noise variances of 012, = 50 and
o2 =1, respectively.

produced in the exponential terms by the integer values. The solution for T is

T(f) = —3e; + 3ex — 3e3 + 3ey
= —3[e1 — ey + €3 — ey
= =3[51(f) = 30 (f) + 5(f) = 51(f) = 32(f)
+30(f) + 33(f) + 51.(f) = 3u(f) — 33 (f)]
= =3[51(f) = Su(f) + 52(f) — 82(f) + 83(f) — 52 (f)]. (4.38)

4.3.1.2 Solutions for real offsets

The previous results showed that having integer offsets and integer frequencies produced
real values for the power spectral densities of all the blocks with only the 7" combinations
having non-zero values. To obtain non-zero values for the A and E real offsets were
used. This was done for two sets of values in which one set provided only real power

spectral densities and the other a combination of real and imaginary values.

Solutions for D; = {2.5,3.5,4.5}

The real and imaginary matrices for the power spectral densities matrices for these
offsets are given in Figure 4.6. For these offsets, there are two sets of values for the
blocks in the real matrix reflecting the even and odd frequencies. The real values for

even frequencies are the same result as those for integer offsets. The imaginary values are
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Table 4.13: (a) The real and imaginary values for the block S1; and Sas of the power spectral density
matrix for offsets D = {2.5,3.5,4.5}. The eigenvalue and eigevectors for these blocks are given in (b)
and (c), respectively.

(a) Power spectral densities.

Real Imaginary
51 (0) 101 50  -50 -100  -50 50 0O 0 00O 0 O
51(0) 50 101 50 -50 -100  -50 0O 0 00 0 O
32 (0) -50 50 101 50  -50 -100 0O 0 00 0 O
S,(0) -100  -50 50 101 50  -50 0O 0 0 0 0 O
33 (0) -50 -100  -50 50 101 50 0 0 00O 0 O
53/(0) 50  -50 -100  -50 50 101 0O 0 00O 0 O
51 (1) 101 50 50 100 50 50 0O 0 0 0 0 O
51(1) 50 101 50 50 100 50 0O 0 0 0 0 O
32 (1) 50 50 101 50 50 100 0O 0 00O 0 O
So/(1) 100 50 50 101 50 50 0O 0 00O 0 O
53 (1) 50 100 50 50 101 50 0O 0 00O 0 O
53(1) 50 50 100 50 50 101 0 0 0O 0O 0 O

(b) Eigenvalues (A;) and eigenvectors (v, e;) for block Sii.

)\1 )\2 /\g, )\4 )\5 )\6 OB# V1 Vo (31 (D) €3 (Y}

300 0 0 0 0 0 &0 -1 1 1 1 0 -1
0 31 0 0 0 0 §0 -1 0 -1 0 1 1
0 0 1 0 0 0 §&@© 0 -1 1 0 0 0
0 0 0 1 0 0 50 1 -1 0 1 0 0
0 0 0 0 1 0 &@© 1 0 0 0 1 0
0 0o 0 0 0 1 &0 0 1 0 0 0 1

(c) Eigenvalues (A;) and eigenvectors (v;, e;) for block Sas.

Al AQ )\3 )\4 )\5 AG OB# Vi Vo V3 €] €9 €3

401 0 0 0 0 0 &1 1 -1 -1 -1 0 0
0o 100 0 0 O 0 &) 1 1 0 0 -1 0
0 0 101 0 0 0 &() 1 0 1 0 0 -1
0O 0 0 1 0 0 §(1) 1 -1 -1 1 0 0
o 0 0 0 1 0 §() 1 1 0 0 1 0
O 0 0 0 0 1 §() 1 0 1 0 0 1

similar to those obtained for integer offsets with values ~ 10~ which will be rounded
to 0. The values for both even and odd frequencies are from blocks Si; and Sy which
are given in Table 4.13 (a). The complete set of eigenvalues and eigenvectors are given
in Table 4.13 (b) and (c).

The eigenpairs for S1; where f = 0 are the same as for the integer values. For block

Soo there are three laser noise free eigenvectors which are mutually independent and
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Figure 4.6: The (a) real and (b) imaginary power spectral density matrices for frequencies f = {0, ..., 5},
offsets D = {2.5,3.5,4.5} and laser phase and photodetector noise variances of 012, =50 and 02 = 1,
respectively.

orthogonal. The equations for these are
e = —51(1) —+ 52/(1), €y = —51/(1) + 53(1), €3 = —52(1) + 53/(1) (439)

The gains for A, I and T for both blocks S;; and Sy are given in Table 4.14. The

solutions for block Sy are

A(l) = —281 —+ 283

= 251 (1) — 282(1) — 255(1) + 255(1)),

E(l) = —281 — 462 — 263

= 251(1) +451/(1) + 282(1) — 25x(1) — 485(1)) — 28 (1),

~

T(l) =e; — ey +e;3

— —51(1) + 51/ (1) = 5(1) + 5 (1) — 85(1) + 5 (1). (4.40)

Table 4.14: The complex gains for AET for integer offsets D = {2.5,3.5,4.5}.

0B#  A(0) E(0) T(0) oB#  A(l) E(1) T(1)
5 (0) 0 o -3 51 2 2 -1
51/(0) 0 0 3 51/(1) 0 4 1
55 (0) 0 0 -3 5 (1) -2 2 -1
55/(0) 0 0 3 (1) -2 -2 1
53 (0) 0 o -3 &(1) o -4 -1
53:(0) 0 0 3 (1) 2 -2 1
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Figure 4.7: The real (a) and imaginary (b) matrices for the power spectral density matrices for fre-
quencies f = {0,1,2,3,4,5}, offsets D = {2.125,3.125,4.125} (e,f) and laser phase and photodetector
noise variances of Jg =50 and 02 = 1, respectively.

Solutions for D = {2.125,3.125,4.125}

These offsets were chosen to give multiples of 7/4 in the exponential terms which give
real and imaginary values of 0.7071 (= v/2/2). The hope was that there would be
algebraic solutions for these values.

The real and imaginary matrices for the power spectral densities for these offsets are
given in Figure 4.7 and the values for all the blocks are given in Table 4.15. The gains
for A, E and T for these offsets are given in Table 4.16. With these offsets imaginary
values were obtained for some of the blocks. Blocks for frequencies of 0 and 4 overlap
with those in the previous sets. The focus will be on those blocks with imaginary values
which are those for frequencies which are 1, 2, 3 and 5 in order to obtain both algebraic

and numeric solutions with them.

Algebraic solution

For an algebraic solution the block for f = 2 was used and the values for the eigenvalues

and eigenvectors are given in Table 4.17. The laser noise free eigenvectors are
ey = —51(2) + (1 +1) 51(2) — (1 + )52 + 52(2),
e = —(1—1)51(2) +50(2) — (1 +1) 52 + 55(2),
e3 = —(1—1)5(2) + (1 —1) 51/(2) — 52(2) + 53(2). (4.41)

For example, the solution for A is
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Table 4.15: The real and imaginary (rounded to nearest integer) values for the blocks of the power
spectral density matrix for offsets D = {2.125,3.125,4.125}.

Real Imaginary
31 (0) 101 50 -50  -100 -50 50 0 0 0 0 0 0
51/(0) 50 101 50 -50 -100 -50 0 0 0 0 0 0
32 (0) -50 50 101 50 -50  -100 0 0 0 0 0 0
5o,(0)  -100 -50 50 101 50 -50 0 0 0 0 0 0
33 (0) -50  -100 -50 50 101 50 0 0 0 0 0 0
33/(0) 50 -50 -100 -50 50 101 0 0 0 0 0 0

51 (1) 101 50 -35 -71 -35 50 0 0 35 0 -35 0
51/(1) 50 101 50 -35 -71 -35 0 0 0 -35 0 35
52 (1) -35 50 101 50 -35 -71 -35 0 0 0 35 0
5o/(1) -71 -35 50 101 50 -35 0 35 0 0 0 -35
53 (1) -35 -71 -35 50 101 50 35 0 -35 0 0 0
53/(1) 50 -35 -71 -35 50 101 0 -35 0 35 0 0
51 (2) 101 50 0 0 0 50 0 0 50 0 -50 0
51/(2) 50 101 50 0 0 0 0 0 0 -50 0 50
52 (2) 0 50 101 50 0 0 -50 0 0 0 50 0
59/(2) 0 0 50 101 50 0 0 50 0 0 0 -50
53 (2) 0 0 0 50 101 50 50 0 -50 0 0 0
53/(2) 50 0 0 0 50 101 0 -50 0 50 0 0
51 (3) 101 50 35 71 35 50 0 0 35 0 -35 0
51/(3) 50 101 50 35 71 35 0 0 0 -35 0 35
52 (3) 35 50 101 50 35 71 -35 0 0 0 35 0
59/(3) 71 35 50 101 50 35 0 35 0 0 0 -35
53 (3) 35 71 35 50 101 50 35 0 -35 0 0 0
53/(3) 50 35 71 35 50 101 0 -35 0 35 0 0
51 (4) 101 50 50 100 50 50 0 0 0 0 0 0
51/(4) 50 101 50 50 100 50 0 0 0 0 0 0
52 (4) 50 50 101 50 50 100 0 0 0 0 0 0
5o/ (4) 100 50 50 101 50 50 0 0 0 0 0 0
53 (4) 50 100 50 50 101 50 0 0 0 0 0 0
53/(4) 50 50 100 50 50 101 0 0 0 0 0 0
51 (5) 101 50 35 71 35 50 0 0 -35 0 35 0
51/(5) 50 101 50 35 71 35 0 0 0 35 0 -35
52 (5) 35 50 101 50 35 71 35 0 0 0 -35 0
59/(5) 71 35 50 101 50 35 0 -35 0 0 0 35
33 (5) 35 71 35 50 101 50 -35 0 35 0 0 0
53/(5) 50 35 71 35 50 101 0 35 0 -35 0 0

AR2)=(1+4i) e —2e,+ (1 —1i) es
= —(14+9)5(2) + (1 +4)250(2) — (1 +10)%5(2) + (1 4+1)52(2)
+2(1 — ) 51(2) — 251/(2) + 2(1 +14) 52(2) — 253(2)
—(1 =) 51(2) + (1 —4)? 51:(2) — (1 — 1)52(2) + (1 —4)33(2)
= [ (1+9)+2(1—i) = (1 =9)?]51(2) + [(1+9)* =2+ (1 = 9)*]50(2)
—[(X+d)? =21 +d) + (1 —0)]52(2) + (1 +4)5y — 255 + (1 — i)s3(2)
= [—1—i+2—2i42i]5(2) + [2i — 2 —2i]51(2)
—[2i —2—2i+ 1 —d]sy 4+ (1 +14)s2(2) — 255(2) + (1 — i)y
= (1—1)51(2) — 25(2) + (1 +1)32(2) + (1 +14)32(2)

—255(2) + (1 — 1)35/(2). (4.42)
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Table 4.16: The complex gains for AET for f = {0, ...,5} and offsets D = {2.125,3.125,4.125}.

0B A E T

51 (0) 0 0 -3

51/(0) 0 0 3

32 (0) 0 0 -3

50/ (0) 0 0 3

55 (0) 0 0 -3

83/(0) 0 0 3

51 (1) 0.2929 - 0.70711i -1.7071 + 1.2929i -1.7071 - 1.70711i
51/(1) -1.0000 + 1.0000i -0.4142 - 0.4142i 1.7071 + 1.70711
S2 (1) 0.7071 - 0.2929i 1.2929 - 1.7071i -1.7071 - 1.7071i
§o/(1)  0.7071 - 0.2929i -1.2929 + 1.7071i  1.7071 + 1.7071i
S3 (1) -1.0000 + 1.0000i 0.4142 + 0.4142i -1.7071 - 1.7071i
§4(1)  0.2929 - 0.7071i  1.7071 - 1.2929i  1.7071 + 1.7071i
51 (2) 1-1i -3 - 1i 0 - 1i
51/(2) -2 + 0i 0-2i 0+ 1i

5 (2) 1+ 1i 3-1i 0-1i

50/ (2) 1+ 1 -3 + 14 0+ 14

53 (2) -2 + 0i 0+ 2i 0-1i

53/ (2) 1-1i 3+ 1i 0+ 1i

51 (3) 1.7071 - 0.70711i -0.2929 - 2.7071i -0.2929 + 0.2929i
51/(3) -1.0000 - 1.0000i 2.4142 - 2.4142i 0.2929 - 0.2929i
So (3) -0.7071 + 1.70711i 2.7071 + 0.2929i -0.2929 + 0.2929i
52/(3) -0.7071 + 1.70711i -2.7071 - 0.2929i 0.2929 - 0.2929i
S3 (3) -1.0000 - 1.0000i -2.4142 + 2.4142i -0.2929 + 0.2929i
53/(3) 1.7071 - 0.7071i 0.2929 + 2.70711i 0.2929 - 0.2929i
5 (4) 2 2 -1

5/ (4) 0 4 1

32 (4) —2 2 -1

5y (4) 2 -2 1

55 (4) 0 -4 -1

50 (4) 2 -2 1

§1 (5) 1.7071 + 0.70711 -0.2929 + 2.7071i -0.2929 - 0.2929i
51/(5) -1.0000 + 1.0000i 2.4142 + 2.4142i 0.2929 + 0.2929i
S2 (5) -0.7071 - 1.7071i 2.7071 - 0.2929i -0.2929 - 0.2929i
52/(5) -0.7071 - 1.70711i -2.7071 + 0.2929i 0.2929 + 0.2929i
S3 (5) -1.0000 + 1.0000i -2.4142 - 2.4142i -0.2929 - 0.2929i
53/(5) 1.7071 + 0.70711 0.2929 - 2.70711 0.2929 + 0.2929i

The solutions for E and T are

E(2) = (=1 +1i) e1 + 2e5 + (3 +1) e,

T(2) =1 e — 1 ey + 1 €es. (443)
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Table 4.17: The eigenvalues and eigenvectors for block f = 2 for offsets D = {2.125, 3.125,4.125}.

Eigenvalues Eigenvectors
A Ao A3 A A5 g OB# Vi Vo V3 e e es3
201 0 0 0 0 0 51 (2) 1 -1-i 14 -1 -1440 -14i
0 201 0 0 0 0 51(2) 14 -1 14 14 1 1-i
0 0 201 0 0 0 52 (2) 14 -1+ 1 -1+ -1-i -1
0 0 0 1 0 0 59/(2) 1 0 0 1 0 0
0 0 0 0 1 0 33 (2) 0 1 0 0 1 0
0 0 0 0 0 1 53/(2) 0 0 1 0 0 1

Table 4.18: The degenerate eigenvectors for block f = {1,3,5} for offsets D = {2.125,3.125,4.125}.

(a)

OB# el e3 €3

51 (1) 0.4082 0.5570 + 0.0079i -0.1518 + 0.0016i
§1/(1) -0.4082 -0.3651 0.0730i -0.3668 - 0.2452i
52 (1) 0.4082 -0.1689 + 0.2469i 0.4914 + 0.0490i

+ 0

0

0

5y(1) -0.4082  0.4776 + 0.0730i =-0.1994 + 0.2452i
53 (1)  0.4082 -0.3881 - 0.2547i -0.3395 - 0.0506i

53/(1) -0.4082 -0.1125 + 0.0000i 0.5663 + 0.0000i
(b)
OB# e] e €3
51 (2) -0.0419 + 0.5507i 0.1050 - 0.1313i 0.4082
51/(2) -0.1568 + 0.0174i -0.2594 - 0.4911i -0.4082
52 (2) -0.4774 - 0.3069i -0.0763 + 0.0732i 0.4082
59/(2) 0.0229 - 0.0174i -0.3022 + 0.4911i -0.4082
33 (2) 0.5193 - 0.24381 -0.0288 + 0.0581i 0.4082
53/(2) 0.1339 + 0.0000i 0.5616 + 0.0000i  -0.4082
(c)
0B# el e2 e3
31 (3) -0.0419 - 0.5507i 0.1050 + 0.1313i 0.4082
51/(3) -0.1568 - 0.0174i -0.2594 + 0.4911i -0.4082
32) (3) -0.4774 + 0.3069i -0.0763 - 0.0732i 0.4082
39/ (3) 0.0229 + 0.0174i -0.3022 - 0.4911i -0.4082
33 (3) 0.5193 + 0.2438i -0.0288 - 0.0581i 0.4082
33/(3) 0.1339 + 0.0000i 0.5616 + 0.0000i -0.4082

Numeric solution

The laser noise free eigenvectors for blocks with frequencies f = {1,3,5} are given in
Table 4.18. The solutions for AET using these eigenvectors are

Z(l) = (0.6746 — 1.7142i) ey + (0.6512 — 1.58921) e,

E(1) = (—2.3501 + 1.82374) e, + (2.5478 — 1.92084) e3,

T(1) = (—4.1815 — 4.1815i) ey,

A(3) = (—0.6006 — 2.59947) 1 + (3.1829 — 0.6392i) e,,
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E(3) = (=5.1417 + 2.2762i) e, + (1.7477 4 4.2776i) e,

T(3) = (—0.7175 + 0.71751) es,

A(5) = (—0.6006 + 2.5994i) e, — (3.1829 + 0.6392i) e,

E(5) = (=5.1417 — 2.2762i) e, + (1.7477 — 4.2776i) ey,

T(5) = (=0.7175 — 0.7175i) es. (4.44)

The same results were obtained for f = {3,5} with blocks that contain the same
real values but different imaginary values for the power spectral densities (Table 4.15).
This seems to indicate that the eigenvalues and eigenvectors can obtained from the real
power spectral density matrix. This might also indicate the possibility of using only
the magnitude spectral densities, however, unlike the real values they do not retain the
signs of the values which are needed, for example, blocks f =1 and f = 3. The eigen-
values for these blocks are (301,301,1,1,1,1) and (401,101,101,1,1,1) where the number

of degenerate values are different.

4.4 Summary

In this chapter we proved the connection between the eigenvalues that are free from
laser phase noises with the time domain Sagnac and the frequency domain AET ob-
servables. In the time domain using integer values for the offsets allowed the eigenpairs
to be generated algebraically. This was only possible for very small matrices since the
computation times increased rapidly with the increase in the size of the matrix. The
algebraic computation times for a small 90 x 90 matrix was approximately 9 hrs. In the
frequency domain the structure of the matrix is a block diagonal and the algebraic com-
putation can be done on each block separately which, in theory, should lead to shorter
reasonable times. However, the conventional method of generating the eigenvalues de-
pends on the determinant of the matrix which is not trivial to compute for matrices
with sizes greater than three. In the frequency domain the speed of the computation
will depend on the size and structure of the blocks. For the raw data the size of the
blocks is the same as in the time domain which is 6 x 6 for which the computation of
the determinant for algebraic solutions will still not be trivial in general. However, the

partitioning of the eigendecompostion makes parallel computation possible which would
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be useful for both methods.

Obtaining LISA data with the required sensitivity for the analysis is accomplished by
transforming the raw data using the laser noise free eigenvectors which are determined
from the eigenvalues. It is the transformation of the data that is important therefore,
exact solutions may not be needed for the generation of the eigenpairs. In this case
numeric solutions were obtained for which the computation times remained reasonably
low. For example, for the largest matrix which was 18000 x 18000 the computation time
was 7 m. For this time, the size of the matrix that the algebraic computation could
produce a solution was for a 48 x 48 matrix. The comparison of the number and values
of the eigenvalues obtained from both methods were the same. The difference was that
the numeric solutions gave eigenvectors with that had contributions from most of the
optical benches and times.

In this chapter we used toy models to obtain algebraic solutions in order to determine
the connection between the laser noise free eigenvectors and time delay interferometry
combinations. We adjusted the model slightly to include real values for the arm lengths
from which we were still able to obtain the distinct groups. In Chapter 6 the model will
be extended even further to handle more realistic LISA data including some mentioned
in Romano and Woan. The success of this approach relies on the splitting of the values
into the two distinct groups, therefore in that chapter we will be checking whether this
will still be the case when using real data. Before doing this, however, we will show how
the principal components approach is used in the data analysis and how it compares
with the conventional approach using the time delay interferometry observables. This

will be done in the next chapter.



Chapter 5

Bayesian-principal component analysis for

LISA data

Recall that the reason for the time delay interferometry observables is to achieve the
required sensitivity for LISA that will allow astronomy to be obtained from its data.
The main obstruction to achieving this goal is the overwhelming laser phase noises
for which the time delay interferometry observables were developed which are linear
combination of the raw data that leads to the cancellation of the noises. The data
analysis is done using these observables which have to be generated before any analysis
is performed. Romano and Woan introduced the principal components approach for
producing the data with the necessary sensitivity required for the analysis. In the
last chapter we proved the connection between these principal components and the
time delay interferometry observables. In this chapter we illustrate the use of these
components in the data analysis and show that they produce the same results as the
conventional method using the time delay interferometry observables. This will be
performed on a toy model of LISA raw data consisting of a single monochromatic source
buried in white stationary Gaussian noises. The signal will be characterised only by its
waveform parameters of amplitude, frequency and phase with the latter two assumed
to be known. Bayesian inference will be used to estimate the amplitude of the signal in
the raw data.

Since the data are time series the inference is initially done using these however, the
frequency domain offers some advantages particularly the possibility of identifying the
frequencies of the signals and of simplifying the matrix inversion and eigendecomposition
because of the diagonal nature of the power spectral density matrix. For this reason
the inference is also performed in this domain. The results from these will be compared

with that obtained using the conventional approach with the optimal AET observables.
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5.1 Bayesian inference

The Bayesian approach to statistical inference uses probability to define uncertainty
which expresses either incomplete knowledge or unpredictability due to randomness
[45]. It is performed on real data which are the outcomes of observations and therefore
they are fixed. The variable quantities, which are the target of the inference, are the
unknown parameters that produce the data and the uncertainties in the estimates of
their values are defined with probability distributions. This differs from the frequentist
approach where the unknown parameters are fixed and the data are random outcomes.
Probabilities are assigned to reflect the possibility of different realisations of the data

based on a particular parameter value which is based on hypothetical data [79].

5.1.1 Bayes’ theorem

The mathematical formulation of Bayesian inference is Bayes’ theorem which is defined

by Bretthorst [16] as

p(D|H, I)p(H|I)
p(DII)

Following Bretthorst, the outcome of the inference is the posterior probability p(H|D, I)

p(H|D, 1) = (5.1)

which expresses the probability of the hypothesis H given the data D and some prior
information I. The prior information defines what is known about the phenomena that
generated the data. The prior probability p(H|I) describes what is known about the hy-
pothesis based only on information obtained before considering the data. The posterior
provides information after considering the data. The direct probability p(D|H, I') gener-
ally expresses the probability of the data given the hypothesis and the prior information.
However, what this represents depends on what is kept constant in the computations.
When the hypothesis is evaluated for different sets of data this is a sampling probability
distribution but when different hypotheses are evaluated using the same data it is a
likelihood function. The prior probability of the data p(D|I) is the probability of the
data based only on the prior information and it is also called the marginal probability,
the global likelihood or the evidence.

Weinberg [79] points out that it is the relationship between the posterior and the

prior probabilities that is the value of the Bayesian analysis since it provides informa-
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tion about the hypothesis before and after considering the data. This also allows the
updating of the estimates when new data are acquired resulting in a sequential applica-
tion of Bayes’ theorem where the posterior probability obtained from one experiment is
used as the prior probability for the next experiment. It provides a way to learn from
experience by including new data/information [45]. Another advantage of the Bayesian
approach is the ability to handle nuisance parameters which are those that are needed
for the computation but are not the required outcome of the inference. This is handled
through a process of marginalisation where the computation are performed for all values

of the nuisance parameter.

5.1.2 Bayesian parameter estimation

In the inference the hypothesis is posed as a question about the values of the parameters
that could be responsible for the observed data for which the prior information I will
contain a model M for the data [5]. For parameter estimation Equation 5.1 can be

written as

p(dla, M) p(a|M)
p(d|M)

where p(d|a, M) is the likelihood, p(a|M) is the prior and is the p(d|M) evidence. The

p(ald, M) = , (5.2)

parameters and data are given by a = {ay, ...,ax} and d = {ds, ..., d, }, respectively.

5.1.2.1 The posterior probability

As the outcome of the inference, the posterior probability p(a|d, M) will be a distri-
bution of the probabilities of the possible values of the parameters responsible for the
data. The results of the inference can be expressed by reporting the whole distribution

or just summary statistics from it, for example, the mean and variance [79].

5.1.2.2 The likelihood

The likelihood p(d|a, M) is the point where the data enters the inference. For model-
based inference this is evaluated for different values of the parameters for the same data
and therefore, it is a likelihood function L(a;D, M). The inference will be based on
the noises in the data with parameters and model defined by statistics and probability

distributions.
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The statistical models express the probability of the joint occurrence of the values
in the observations. If the noise in the data are represented by d = {d;,ds,...,d,}
and if the individual values are all mutually independent, the probability of their joint

occurrence can be expressed as
paldi, ..., dn) = p(di) p(da) - - p(da)

= Hp(dz) (5.3)

With dependencies between the values, the joint probability distribution will contain

conditional probabilities which is given by

Pd(dl, oo dn) = p(d1) p(d2|d1) - 'p(dn|d1, cee 7dn—1)

n

:p(dl)Hp(di\dl,---,dn—l)- (5.4)

.

Although the focus is on the noises, the aim is the extraction of the signals buried
in the noise. The noise models and their parameters are assumed to be previously
known and are used to infer the signal parameters based on knowledge of the different

waveforms expected in the data.

5.1.3 Simplifying Bayes’ theorem

The computation of the posterior probability using Bayes’ theorem as given in Equation

5.2 can be expressed as a proportionality depending only on the likelihood, that is,
p(ald, M) o p(dfa, M). (5.5)

This depends on the properties of the evidence and assumptions made about the prior.

This will be illustrated in the following sections.

5.1.3.1 The evidence

In the context of parameter estimation, the evidence p(d| M), the denominator in Equa-

tion 5.2, is computed for a fixed model and fixed data which can be obtained from
p(d|a, M Zp d|a;, M) p(a;| M). (5.6)

where it is the probability of the data summed over all the values of the parameters

giving a global value for the parameters (global likelihood) or a marginal value for the
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data (marginal likelihood) [33]. The likelihood gives results for a particular value of
the parameter while the evidence is evaluated for all values of the parameter. So for
parameter estimation this will be a constant and its effect would be to normalise the
posterior probability ensuring that it sums or integrates to unity [15]. The product
of the posterior distribution with a constant does not change its mean value or the
structure of the distribution, therefore, it can be ignored and Equation 5.2 reduces to a

proportionality containing the prior and likelihood becoming

p(ald, M) o« p(dla, M) p(a|M). (5.7)

5.1.3.2 The prior

This is the term that can greatly affects the outcome of the inference as it describes
the distribution of the values of the parameters which can have different statistics and
shapes. In our toy model we will be assuming equal probabilities of all values for the
parameter being estimated which can be defined using a flat or uniform prior. This will
also be constant for which the product with the likelihood function will also not change
the structure or location of the mean of the resulting posterior probability distribution.

Ignoring the prior reduces Equation 5.7 to
p(alD, M) o p(dfa, M) (5.8)

which will be the form used in the analysis of LISA data.

5.1.4 The likelihood for the raw data

The raw data time series with the two lasers on each spacecraft phase-locked can be

written as

Si(ta) = pj (ta - Dk) - pi(ta) + ni(ta) + hi(ta)7 (59)

where p;, n;, h; represent the contributions from the laser phase noises, the photodetector
noises and the gravitational waves, respectively. The subscripts ¢ and j indicate the
optical bench number and k£ the arm of the antenna. The likelihood is based on the

noises in the data and these are obtained from Equation 5.9 by subtracting the signal
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hi(t) giving

Si(ta) - hz(ta) = pj(ta - Dk) - pl(ta) + ni(ta)

= di(ta)a (510)

which is a linear combination of the three different noises. In the toy model each of these
noises are assumed to be independent Gaussian processes with no correlations between
their values at different times. This means that there are no correlations between the
same optical bench readings at different times (auto-correlations) but there are cross-
correlations between the different optical bench readings because of the presence of the
same noises in the different readings.

The joint probability distribution for each reading d; will be the product of inde-
pendent Gaussian distributions. The probability distribution of a linear combination
of independent Gaussian processes is another Gaussian with mean and variance equal
to the sum of the individual means and variances. The distribution for the noises in
each optical bench data is therefore d ~ A/ (0,207) where 03 = 20£ + 02 expressing the
joint probability distribution of the combined noises in each optical bench data and the

likelihood is

—

L(a;d;, M) p(di(t))

L) (- b

(27r(2ag + 02 203 + o3

N
I
—

—:

~

1
1 m/2 1 O~ (di(1))?
= (m) exp( ~ 5 ; 2(02(—+l);%>’ (5.11)
which is a multivariate Gaussian. Here d; = {d;(t1),...d;(t,,)} with the subscript ¢
indicating the optical bench number. In matrix form this can be written as
-
(2m) V2|12

where C' is the covariance matrix for each optical bench expressing the correlations

1
L(a;d;, M) = exp( ~3 diTC'_le), (5.12)

between the values at different times, |C/| is the determinant of the matrix and N is the
total number of values. For the individual optical bench readings the matrix will be
diagonal with the values along the main diagonal being the variance which is 2012) + a2
The inference is performed using all six readings simultaneously and with phase-locking

of the lasers on each spacecraft there will be correlations between the readings of the
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different optical benches requiring conditional distributions. The likelihood for all six

readings Equation 5.12 becomes

1
(2m)N|C[' 2

where d is a 6m x 1 vector of the raw data from all the six optical benches grouped

La;d, M) = exp( . % ch—1d>, (5.13)

in blocks of six where the order is 1,1’,2,2',3,3". This covariance matrix is the block

matrix that was generated in Chapter 3.

5.1.4.1 Computing the likelihood

The values that will be used for the noise variances in the our toy model will be chosen
to allow for easy identification of the laser noise free eigenvectors and will have values
integer values with a large separation between them for example, o2 = 100 and o7 = 1.
This leads to very small values in the terms outside the exponential in the multivariate
Gaussian function in Equation 5.13 for any appreciable sized matrix. For a 10 x 10
diagonal matrix the determinant is ~ 103* for which the inverse is ~ 10733, Since these
do not change in the parameter estimation the computation of the likelihood function
will be based only on the last term in the equation which is called the likelihood kernel

[33] and Equation 5.13 can be rewritten as
L ora
L(a;d,M)ocexp(—ad C d). (5.14)

The values within the exponential will also be small and to compensate for this the
relative likelihood Lz will be computed and plotted instead of the likelihood where it is

given relative to the maximum estimate of the parameter [33]. This is computed from

L(a;d)

Lr(a;d) = ———.
WD = L)

(5.15)

The aim of the analysis is to obtain an estimate of the amplitude of the signal buried
in the raw data using the data generated by the principal components. Since we will
be using relative likelihood values we will only be able to compare the values obtained

and not their probabilities.

5.1.4.2 Incorporating the principal components

The target of the principal component analysis is the covariance matrix in Equation

5.13. Recall that the principal components are obtained from the eigendecomposition
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of this matrix which can be expressed as

CV =VA, (5.16)
where V' and A are the matrix of eigenvectors and eigenvalues, respectively.

C=VAV (5.17)
The inverse of the covariance matrix is required which can be written as
C™h = VAV

=VTAV, (5.18)

where the V1 = VT, This is substituted into Equation ??

L(a;d, M) o exp[ . % (Vd)TA (V)] (5.19)

5.2 Bayesian inference using the raw science data

In this section the results of the inference using the principal component approach for
dealing with the laser phase noises are given including details of how the data are
simulated. This is done in the time and frequency domains. In order to compare the
estimates of the amplitude values from both domains the spectra will be generated from

the raw data time series using the MATLAB fft function.

5.2.1 Simulating the raw data time series
Recall that time series for the raw data can be written as
5i(t) = pj(t — Di) — pi(t) +n4(t) + hi(2), (5.20)

where each reading is a combination of the noises associated with the receiving optical
bench (p;,n;), the delayed phase noise of the transmitting optical bench (p;) and the

strain produced by the gravitational wave h; in the arm between them.



147 Chapter 5. Bayesian-principal component analysis for LISA data

5.2.1.1 The laser phase and photodetector noises

The noise contributions for all the optical benches with the laser on each spacecraft

phase-locked to each other are

S1OE(t) = py(t — Ds3) — py(t) 4+ ny(t), s"5(t) = ps(t — Do) — pi(t) + nu (1),
Sgoise(t) = p3(t — D) — pa(t) + nao(t), sg,oise(t) = p1(t — D3) — po(t) + no (1),

SO (H) = py(t — D) — pa(t) + na(t), s85(t) = polt — Dy) — ps(t) + ny(t), (5.21)

where there will only be three independent lasers with phases noises of py, ps and ps
with the numbers indicating the spacecraft. Each laser phase noise occurs in readings
at the current time ¢ and at two shifted times related to the arms adjacent to the parent
spacecraft requiring three copies of each noise. The time series are simulated with three
independent random Gaussian sequences with zero means and variances ag generated
with the MATLAB randn function. The time series for the laser noises with the time
offsets are generated from the current time series by shifting them according to the
corresponding offsets. The photodetector noises are all independent with each occuring
only once in the data at time ¢. These are simulated with six independent random

Gaussian sequences with zero means and variance o2 also using the randn function.

5.2.1.2 Gravitational wave signal

The contributions from the signals in the optical bench data are

s7U(t) = hy(t), (5.22)

(2

where h;(t) is the phase reading associated with the strain produced in the arm adjacent
to optical bench i by the gravitational wave h(t). The equations for signal responses
were obtained from Armstrong, Estabrook and Tinto [6] where the gravitational signal
h(t) is assumed to be a transverse traceless plane wave. The motion and orientation of
the wave is described by an orthonormal propagation frame with unit vectors i, j and
k with the direction of motion being parallel to k. The wave is a combination of two

polarisations h, (t) and hy(t) given by

h(t) = hy (t)es + hy(t)ex, (5.23)
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1 A L, 3

Figure 5.1: A schematic diagram of the plane of LISA showing notation and the location of the vectors
used in deriving the gravitational wave responses based on [6].

where e, and e, are tensors that are transverse to k and traceless. For the orthonormal

frame these can be expressed as

1 0 0 010
e+=1(0 -1 0], ex=11 0 0, (5.24)
0 0 0 000
and Equation 5.23 becomes
h(t) 0 0 0  hy(t) O
ht)=| o —n@®) of+|h@® o0 0] (5.25)
0 0 0 0 0 0

In Armstrong et. al. [6] the wave is assumed to be a first-order spatial metric
perturbation occurring at point O which is a point in plane of the antenna that is
equidistant from the three spacecraft as shown in Figure 5.1. The distance from this
point to three spacecraft is [ and the orientation to the spacecraft is defined by three
unit vectors p; that are in the antenna’s plane. The orientation of the wave with respect

to the antenna given by u; which is the dot product of the k and p; that is

~

1 =k p;. (5.26)
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The expressions given for the responses for the optical benches on spacecraft 1 are

h(t) =1+ Dig(’“ — p12)] [U3(t — pod — D3) — W3(t — puud)], (5.27)
hu(t) = [1 - DiQ(Ms — 1) | [Vt — psd — Dy) — Wy(t — i d)], (5.28)

where D; = L;/c is the light travel time in each arm and d = [/c is the travel time from
O to each spacecraft. The function W,(¢) describes the orientation of the wave to the
arms with respect to the unit vectors n; along each arm and is given by

w(t) = e hlh) M

ST (5.29)

From the above, the responses for the optical benches on the other spacecraft were

generated and determined to be

ho(t) = [1+ Dil(m — p3) | [W1(t — psd — D) — Wy (t — pod)], (5.30)
har(t) = [1 = D%(ul — o) ] [Wa(t — pnd — Dy) — Wy (t — prpd)], (5.31)
hs(t) = [1+ Dil(ug — p3)] [Y1(t — pod — Dy) — Wy (t — psd)], (5.32)
plt) = [ = (s = ) (0ot — pud = D) — Wt = )], (539

where W; for all the optical benches are defined as

1ny -h(t — pod — Dy) - 1 110y -h(t — psd) - 1
\Ill(t—[l,gd—Dl):—nl ( HAZ = 1) n17 \Ijl(t_lu?)d):_nl ( AIM?) nl’
2 1— (k- )2 21— (k-n)?
1 fll . h(t - /1,3d - Dl) : fll 1 fll h(t - /Lgd) : fll
Vi(t —psd—Dy) = = - , Uit — ped) = = - ;
1(t— ps 1) 5 1= (k1) 1(t — p2d) 9 1— (k-f)?
1 flg . h(t — /le — DQ) . flg 1ﬁ2 h(t — /Lgd) . flg
Uy (t — juyd — Dy) = ~ ! Wyt — pgd) = - _
o(t — 2) 5 1= (k- )’ 2(t — pisd) 21— (k-fy)?
1ny-h(t — psd — Dy) - 1 1ny-h(t — pid) - n
\Ijg(t—ﬂgd—Dg):—DQ ( ﬂ? N 2) n2> \112(t_luld):_n2 ( Aui) n2’
2T 1 (ko) 21— (ko)
1ng-h(t — uyd — D3) - 1 113 -h(t — pod) - 1
\113(t—[$1d—D3):—n3 ( H’} - 3) n37 \IIB(t_M2d):_n3 ( "M?) n37
2 T (ko 21— (ki)
1ng-h(t — pod — D3) -1 Ing-h(t —d)-n
\Ilg(t—ﬂzd—Ds):§ : <1 EE ﬁ)23) 3 ‘I’s(t—ﬂld)zi - 1 ((f(u;l §2 :
— - N3 - * 13
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Simplifying the responses

In our simulation the signal will be assumed to contain only the plus polarisation and
the vectors i andj are aligned with the direction of its perturbations. Assuming that the
gravitational wave is traveling in a direction perpendicular to the plane of the antenna,

then p; = k-f, =0 and expressions in the Equation 5.34 reduce to

1. ) 1. .
\Ill(t) = 51’11 -h(t)-nl, \Ifl(t—Dl) = §n1-h(t—D1)-n1,
1. . 1. .
‘Ifg(t) = 5112 . h(t) + 1o, \Ij2<t — DQ) = 5112 . h(t — D2) * 1o,
1. ) 1. .
\Ilg(t) = 51’13 . h(t) - 13, \:[13(75 - Dg) = 51’13 . h(t - Dg) - 13. (535)

Inserting these into Equations 5.28 and 5.33 gives
hll(t) - \Ijg(t - DQ) - \Ilz(t) - flg . h(t - Dg) . flg - flg . h(t) .

hg(t) - \Ijl(t - Dl) - \Ill(t) -

E>

=>
)
—_ | S— | S— | S—

hoy (t) = Ws(t — D3) — W3(t) = = |ng - h(t — D3) - 3 — ng -

=
=

=>
w

hs(t) = Wo(t — Dy) — Wa(t) =

[
[
[0y - h(t — Dy) -0y —ny -h(t) -
[
[0y - h(t — Dy) - 0, — Dz - h(t) - Do),
[

hy () = Uy (t = D1) = Wy(t) = 5[y -h(t — Dy) -0y — iy -h(t) -], (5.36)

O =N =R R~ =N =

A A

Next 1 is set parallel to arm Ly. The relationships between propagation vectors (i, 3 k)

and the unit vectors n; along the arms are

i=-—n cos(fs3), j = 1 sin(6s),
i=ny, j=0,
f= iy cos(f),  § =~y sin(6y). (537

The angles #; and 63 are at the spacecraft 1 and 3, respectively and for an equilateral
arrangement they will be 60°. However, with unequal arms these will be determined by

using the cosine formula giving
D3 + D2 — D?
2DyD3

D? + D2 — D?
2D, D,

cos(0y) = cos(f3) = (5.38)

The expressions for the terms n; - h(¢) - n; in V; are
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h(t) 0 0 —n;cos(f3)

n; -h(t) -n; = (—ﬁlcos(93) n;sin(63) O) 0 —hy(t) O 1 sin(f3)

0 0 0 0
_ a2 2 £ 2
= nihy(t)cos™(03) — nihy (t)sin® (03

= h(t)[cos®(05) — sin®(6s]

= h (t)cos(263), (5.39)
ho(t) 0 0) ([ n
ny - h(t) - hy = <ﬁ2 0 0) 0 —he(t) O]]O
0 0 0 0
= h(t), (5.40)
h(t) 0 0 —ngcos(6;)
n; - ﬁ(f) ‘N3 = (—flgCOS(@l) —ngsin(6;) 0) 0 —hy(t) 0 —ngsin(f;)

= h..(t) [cos®(61) — sin®(6, ]
= h(t)cos(26y).

The final responses are obtained by inserting these into Equation 5.36 giving

hi(t) = l[ﬁg “h(t — Dy) - iy — Az - h(t) - fg]

2
_ 005(2291) [h(t — Dy) — ha (1),
hoo (1) = %[ﬁg “h(t — D) - fay — fay - (1) - fay]
= %[hur(t — Dy) — hy(1)],
h(t) — %[ﬁl ‘h(t— D1) -y — iy - h(t) - ]
cos(203)

= = [t = D) = ha ()],

L. . .
hg/(t) = 5 [1’13 . h(t — Dg) ‘N3 — 13 - h(t) . ng]
cos(26;)

=— [hi(t = D3) = hy(t)],

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)
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(1) = 3 [1sh(t — Da) - — o (1) - o]

= 2t~ Do) — ()], (5.46)
ha (1) = %[ﬂl ‘h(t - D) - fy — - h(t) - fy]

_ Cosé‘)?’) [ha(t — Dy) — ha(8)]. (5.47)

The signal waveforms

A zero phase cosine waveform is assumed for the gravitational wave signal which is
hy(t) = Hcos(2m fot), (5.48)

where H is the peak amplitude and fj is the frequency. The final responses using this

waveform are

hi(t) = Heos(26,) [cos (27 fo(t — D3)) — cos(2 fot)],

hy(t) = g [cos(27rf0(t — Dg)) — cos(27rf0t)],

ho(t) = HC%(%‘%) [cos (27 fo(t — D1)) — cos(2 fot)],
ho (t) = HC%(%I) [cos (27 fo(t — D3)) — cos(2m fot)],

hs(t) = g [cos (27 fo(t — Ds)) — cos(2m fot)],

Hcos(203)

hy (t) = [cos (27 fo(t — D1)) — cos(2 fot)]. (5.49)

5.2.2 The likelihood function in the frequency domain

The complex data means that the frequency domain likelihood kernel will contain a

complex conjugate which is
1
L(al{d;}, M) = exp| — 3 (s—h)T C™ ! (s—h)|. (5.50)

where “*’ indicate the complex conjugate. In MATLAB the transpose automatically

includes the conjugate.

5.2.2.1 The signal spectra

The gravitational wave was modeled in the time series as a monochromatic cosine signal

with initial zero phase. The Fourier transform of a cosine function [63] can be written
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as

Fleos(2rfot)] = 5 |6(F = fo) +0(f + fo)] (5.51)

DO | —

with the time shifted version being given by
1
Fleos(2m fo(t — D;))] = 3 [e‘ZWfODié(f — fo) + ¥ OPis(f + fo)}, (5.52)

which gives delta responses with amplitudes split in half at +f;.

The raw data time series for the signals from Section 5.2.1 are
Gi
hi(t) = > [cos(2m fo(t — Dy) — cos(2m fot)], (5.53)

where G; represents the gains in arm ¢. The corresponding spectra are

Ru(F) = S [EmPi6(f + o)+ e P (] — )] — S [8(F + o)+ 65 — )] )
= SO+ SN — 1)+ 6(f — fo) (e P — 1), (5.5
and for the single sided spectrum this becomes
Ri(F) = SO — o) oPe - 1), (5.55)

The terms §(f + fo) are complex and for a cosine signal with zero phase this will be

1+ 0i. The signal spectra for all the optical benches are

() = T~ e -0, Rulf) = GO - (e - 1),

’fLQ(f) — [—[C%%(S(f _ fo)(e—ZwifoDl . 1)’ %2/(f> _ ]?C%(Z@l)é(f _ fo)(e—meoD:a _ 1)7

R () = L — o) 1),
(5.56)

For the toy model we are assuming no modulation of its amplitude, frequency or phase
therefore, the location of the values in the spectra will be exactly at the frequency of the
signal. This means that for our model the amplitude search in the frequency domain
can be done just at the frequency of the signal. We also chose the frequency of the

signal to match exactly one of the bins in the spectra to avoid leakage.
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Table 5.1: Values used for the amplitude search.

Parameter Value
Range of times 0-1047 s
Sampling rate (Hz) 1

Offsets (D1,D2,D3)(s) 15, 16, 17
Laser noise means 0

Laser noise variances 10000
Shot noise means 0

Shot noise variances 1

Signal amplitude )

Signal frequency 49x 107 3Hz
Template range for the amplitude 3-7
Number of templates 1000

5.2.3 Raw data results

The values for the parameters used in the model, data and search are given in Table 5.1.
A search was done only for the signal’s amplitude therefore all the values of the other
parameters were fixed. A section of the covariance matrix is given in Figure 5.4 and the
real and imaginary blocks for the power spectral density matrix are given in Figure 5.3.
The relative likelihoods for the signal amplitude for both domains are given in Figure
5.2. The frequency domain results include values for both the full spectra and just at
the signal frequency in order to show that the block eigendecomposition produced the
same results as the full matrix decomposition. The results for all three cases showed
same relative likelihood for the signal’s amplitude with the most likely value being 5.034

which is within a range of about 0.7% of the actual value.
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Figure 5.2: The relative likelihoods for the signal amplitude obtained from the raw data time series
and spectra. All the values of the other signal parameters were kept fixed during the estimation. For
the spectra, results were obtained for the full spectra and for the single frequency. The maximum
likelihood values all occur at 5.034.

= 2 s3 0 10"

3 3 S St 52 g 53 S3'
4 1
. 5
3 5
0.6
2
0.4
sy
1 0.2
) o
ul
-0.2
-1 8o
0.4
- 0.5
53
. R
. sg: 1

Figure 5.3: Samples of the power spectral density matrix block at the signal’s frequency showing the
(a) real and (b) imaginary values. The offsets are 15s, 16s and 17s with noise variances of ag = 10000
and 02 = 1.
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Figure 5.4: A section of the covariance matrix for offsets of D = {15,16,17} with laser and photode-
tector noise variances of Uf, = 10000 and 02 = 1, respectively.
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5.3 Bayesian inference using the time delay inter-
ferometry observables

The current approach to doing LISA data analysis is through the time delay interfer-
ometry observables. In this section the results of the analysis using the optimal AET
observables are presented. Since these observables were generated in the frequency do-
main the results are only for that domain. However, in order to compare the results
with those obtained for the principal components the AET data were generated from
the raw data used in the previous section. The signal amplitude search required the
templates of the signal in the AET data spectra therefore these are included in this

section.

5.3.1 Simulating the AET time series

The time series for the A, F,T" observables in terms of the Sagnacs are

At) = %w) ()
E(t) = %[a@) —28(t) + (1)),
T(t) = —=[a(t) + B(t) + ()], (5.57)

B

where the «(t), 5(t) and ~(t) are given by
a(t) = sp/(t) + sy (t — Dy — Do) + sz (t — Da),
— 51(t) — s2(t — D3) — s3(t — Dy — Ds),
B(t) = s1(t — D3) + sy (t) + sy(t — Dy — Dy),
— $1(t — Dy — D) — s9(t) — s3(t — Dy),
v(t) = s1/(t — D3 — D) + sor(t — Dy) + s3(t)
— $1(t — Dg) — so(t — D3 — Do) — s3(t). (5.58)
The assumption is that the laser phase noises have been canceled, therefore, each phase

reading s;(t) is just a combination of the photodetector noise n;(t) and gravitational

wave signal h;(t) which is

si(t) = na(t) + ha(t). (5.59)
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The raw data used to generate the AET time series therefore, only included the pho-
todetector noises and the signal. The readings s; are shifted according to the offsets in

the Sagnacs given in Equation 5.58.

5.3.2 The AET signal spectra

The signal contributions to the AET data spectra are

g(f) - 5(][‘ f0)|: 271"Lf0D2 _ e27rif0(D1+D3) _ 627Tif0(D1+D2+D3):|

7
_ Hecos(26)

S22

5(f — fo) [1 | 2mifoDy _ 2mifoDa _ 2wifoDs _ o2mifo(Di+Ds)

e2mifo(D1+Ds) 4 2mifo(Da+Ds) 4 627Tif0(D1+D2+D3)]

~ Hecos(263)
S22

5(f — fo)[ (2mifoDy _ 2wifoDz | 2mifoDs | p2mifo(Di+Da)

e2mifo(D1+Ds) _ 2mifo(Da+Ds) | 627rifo(D1+D2+D3)}’

~ H . . . .
E(f) — 5(f . fO) |:€27rzfoD1 o emeoDz o emeo(D1+Dz) + e27rzfo(D2+D3)]

V6

N Hcos(26;)
2v/6

| 2rifo(Di+Ds) _ 2mifo(DatDs) | 3627rifo(D1+D2+D3)}

5(]1‘ _ fO) |:3 _ 627rifQD1 + 627Tif0D2 _ 3627rif0D3 _ 3627T’if0(D1+D2)

N Hcos(203)
2v/6
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6(](‘ _ fO) |:€2ﬂ'if0D2 + eQﬂifng _ e27’rif0(D1+D2) + e?ﬂifo(Dl-i-Dg)]’
(5.60)

which are used for the templates in the amplitude search.

5.3.3 AFT results

The relative likelihood for the signal amplitude is given in Figure 5.5 and the real and
imaginary blocks of the power spectral density matrix used in the analysis are given in

Figure 5.6. From the plot the most likely value for the signal amplitude is 5.05 which
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Figure 5.5: The relative likelihood for the signal amplitude for the optimal time delay interferometry
observable AET where the maximum likelihood value is at 5.05.

is within a 1% range of the actual value.
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Figure 5.6: Sample block of the power spectral density matrix at the signal’s frequency showing the
(a) real and and (b) imaginary values.
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Figure 5.7: The relative likelihoods for the amplitude of the signal obtained from the raw data time
series and spectra using principal components and from the AET spectra. The maximum likelihoods
for the signal amplitudes occur at 5.034, 5.034 for the raw data and 5.05 for AET.

5.4 Summary

The relative likelihood plots for the signal amplitude obtained using the raw data and
the optimal time delay interferometry data for both domains are given in Figure 5.7
where they have the same precision with estimates of the signal amplitudes of 5.034 for

the raw data and 5.05 for the AET observables.



Chapter 6

Principal components for more realistic

LISA data

In the previous chapters the principal component approach was illustrated using a toy
model of LISA in terms of both its configuration and data. The antenna was assumed
to be stationary and rigid with unequal arm lengths. The instrumental noises used in
the data were restricted to the primary and the limiting sources which are the laser
phase and the photodetector (shot) noises respectively, both of which were assumed to
be white, Gaussian and stationary with known means and variances. All noise means

were set to zero with the variances of each type having the same values of 012) and

2

n’

o=, respectively chosen to provide a significant separation between the different types
to reflect the situation in the antenna. All the photodetector noises were assumed to
be independent and the lasers were phase-locked on each spacecraft resulting in only
three laser phase noises. Based on these assumptions, the eigendecomposition of the
noise covariance and power spectral density matrices produced two distinct groups of
eigenvalues with one set having contributions from both types of noises and the other
only photodetector noises. The group of interest is the latter which, because of the
equality of the noise variances, led to multiply degenerate values.

In this chapter we investigate how the principal component approach adapts to more
complex models of LISA data and the focus will be on the noise covariance and power
spectral density matrices as they are the sources of the eigenvalues. The values and
types of the eigenvalues will depend on the matrix structure which is determined by
the variance and covariances of the noises, the phase-locking of the lasers and the arm
lengths therefore a summary of the results of Chapter 3 which outlined their effects
on the matrices is given. The final outcome is to see what aspects of real LISA data
will prevent the laser noise free eigenvalues from being generated without which the

principal components method will not be useful.
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6.1 Time domain

Recall that the readings of each optical bench tracking the relative spacecraft motion
(long arm reading) is a combination of the laser phase (p;(t)) and the photodetector
(n;(t)) noises associated with that bench plus the laser phase noise (p;(t — Dy)) from
the optical bench at the other end of the arm. The time series of phase shifts recorded

by each bench can be written as

where 7, j represent the optical benches, k the arms and D, is the time offset or the light
travel time in the arm between the two optical benches. In the toy model, LISA was
modeled as a stationary array with static arms that could have equal or unequal lengths

which gave a maximum of three values which is indicated by the subscript k£ = {1, 2, 3}.

6.1.1 Matrix definitions

Before proceeding a few terms that will be used in this section to describe the matrices
will be explained. The main diagonal in a square matrix is the central diagonal that
splits the matrix into halves giving upper and lower triangular sections. Super-diagonals
and sub-diagonals are those parallel to the main running above and below it, respec-
tively. In a symmetric matrix the values in the upper triangle are a reflection of those in
lower triangle about the main diagonal. A Toeplitz matrix is one in which all the values
are constant along each diagonal with each diagonal having different values in general.
In a symmetric Toeplitz matrix the sub-diagonals are a reflection of the super-diagonals
across the main diagonal. The entries of a matrix may also be in the form of blocks
where the element appear as smaller matrices within the matrix with the previously
mentioned types also having block equivalents. In the toy model of LISA used in the
previous chapters the noise covariance matrix is a symmetric block Toeplitz where the

diagonals contain the same block repeated along the diagonal.
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Table 6.1: Raw data phase readings showing the contributions for the laser phase p; and photodetector
(n;) noises. The expressions are given for the different types of laser noise phase-locking with unequal
(D; = L;/c) and equal (D = L/c) arm lengths.

phase-locking  Phase Noise contributions in the readings
Equal arms D Unequal arms(D;)

None si(t)  pr(t—D)—pi(t) +n1(t)  par(t— D3) —pi(t) +ni(t)
si(t)  ps(t—D)— p1/ () +nu(t)  p3(t— D2) —p1s(t) +mn ()
s2(t)  py(t—D)—pa(t) +n2(t)  pa(t— D1) —pa(t) + na(t)
sy (t)  pi(t—D)— pg/ () +nx @) pr(t—Ds)— P2/ (t) +mnar (t)
s3(t)  pr(t—D)—p3(t) +n3(t) pr(t— D2)—p3(t) +ns(t)
sy (t)  p2(t—D)— p3' () +ng (1) p2(t—D1)— P3' (t) + na/ (1)

Spacecraft s1(t) p2(t — D) — p1(t) + ni1(t) p2(t — D3) — p1(t) + n1(¢)
Sq1 (t) pg(t - D) (t) + nqs (t) pg(t - DQ) - p1 (t) + nqs (t)
s2(t)  p3(t— D) —p2(t) +n2(t)  ps3(t — D1) — p2(t) +na(t)
sy (t)  pi(t—D)—p2(t) +na(t)  pr(t — D3) —pa(t) + no (1)
s3(t)  pi(t— D) —ps(t) +ns(t)  pi(t — D2) —p3(t) +na(t)
sy (t)  p2(t— D) —p3(t) +na(t)  pa(t — D1) —p3(t) + ny (1)

All s1(t)  p(t— D) —p(t) +na(t) p(t — D3) — p(t) + na(t)
si(t)  p(t— D) —p(t) +n(t) p(t — D2) — p(t) + na/ (t)
s2(t)  p(t— D) —p(t) +n2(t) p(t — D1) — p(t) + na(t)
sy (t)  p(t— D) —p(t) +ny(t) p(t — D3) — p(t) + no (t)
s3(t)  p(t— D) —p(t) +ns(t) p(t — D2) — p(t) + n3(t)
sy (t)  p(t— D) —p(t) +ng(t) p(t — D1) — p(t) + ng (t)

6.1.2 The effects of the laser phase-locking on the covariance

matrix

Recall that LISA has six optical benches which are indicated with the subscripts ¢, j =
{1,1',2,2',3,3'}. Each optical bench has its own laser allowing for several options in
terms of whether they are linked by phase-locking or left to operate independently. The
phase-locking options that are considered are (i) none where all the lasers are acting
independently, (ii) spacecraft locked where the two lasers on each spacecraft are locked
to each other and (iii) all locked where all the lasers are acting as a single laser. The
labeling of the laser noises reflects the phase-locking options. For the independent
lasers the labels reflect the optical bench number (i, 7 = {1,1’,2,2',3,3'}). The primed
notation is dropped for the spacecraft locked lasers giving i, j = {1, 2,3} which indicate
the spacecraft number. When they are all locked the numbers are not used.

The equations for the raw data from all the optical benches are given in Table 6.1
for the different phase-locking options showing the differences with equal and unequal
arm lengths. Although the covariances are not given the existence of correlations can
be easily be determined. Recall that correlations between two optical benches will only
occur if the same noise appear in their readings indicating that the noise type and

times must match. For the lasers this depends on the phase-locking and, because of the
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structure of the readings, also the time offsets. In this section the focus is on the effects

of phase-locking only and the arm lengths will be assumed to be equal.

6.1.2.1 No laser phase-locking

From the equations for this mode of operation in Table 6.1 it can be seen that the
only non-zero entries in the covariance matrix will be from the variances, which are the
auto-covariances at time ¢, and the cross-covariances between the raw data from the
two optical benches at the end of each arm as these are the only readings that have the
same laser phase noises. Recall that auto-covariance expresses the correlations within
the same raw data while the cross-covariances are between different data. For example,
using the raw data from the optical benches at the end of arm 3 which are s;(¢) and

so:(t), with equal arm lengths D the equations are
s1(t) = pz(t — D) — pi(t) + mu(?),
s9:(t) = pr(t — D) — pa:(t) +nae(t), (6.2)

where the same two laser phase noises p; and py occur in each but with different times.
The only auto-covariance within these readings is at time t. For s; () the auto-covariance
is
cov[si(ta), 51(ts)] = (P2 (ta — D) p2(ty — D)) + (p1(ts) p1(ts)) + (na1(ts) na(ts)), (6.3)
which will only produce non-zero values at time t, = ¢, = t, that is,
covlsi(t), s1(t)] = (p3 (t — D)) + (pi (1)) + (ni(t))
= var[sy(t)]. (6.4)

These are the main diagonal entries on the covariance matrix. The cross-covariance

between the two readings is

covlsi(ta), s2(ty)] = —(po(ta — D) pr(t)) = (pr(ta) pr(ty — D)), (6.5)

giving non-zero values when t, — t, = £D which are the locations of the sub-diagonal
and super-diagonal entries. Only one term will contribute at a particular time. For

example, for times t, =t, — D and t, = t, — D the covariances are respectively,

cov[si(ta), sz (ta — D)] = —(p3/(to — D)),

cov(si(ty — D), sz (t)] = —(pi(ty — D)), (6.6)
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where the noise will also be from different lasers and will only give the same result if
they have the same variances. For no phase-locking, the equal arm lengths will produce

three diagonals in the covariance matrix including the main diagonal.

6.1.2.2 Lasers phase-locked on each spacecraft

Locking the lasers on each spacecraft to each other introduces correlations between the
readings of the optical benches along the two arms that are monitored by that spacecraft.
Also, since each arm is monitored by two spacecraft, this also causes correlations with
the optical benches on the other spacecraft. So that the spacecraft locking causes mutual
correlations between all the optical benches. With spacecraft phase-locking there will
only be three independent lasers and this will be reflected in the notation where primed
notation p; will be dropped. The spacecraft phase-locking does not change the auto-
covariance nor the cross-covariance between the readings for the optical benches at the
end of each arm.

Unlike the optical benches at the end of each arm which have two common noises, the
other cross-covariances for the other optical benches will only be due to one common
noise between them. This will produce correlations at times consisting of different
combinations of ¢ and ¢ — D producing three points of correlations. The correlations
at time t will be from the optical benches on the same spacecraft for example, the

cross-covariance between for s; and sy- on spacecraft 1 is

cov(si(t), sv(t)] = (p*(1)), (6.7)

which occur along the main diagonal. The other two will occur between the readings
of the optical bench one spacecraft with the two readings along the arm opposite that
spacecraft. For example, for s; on spacecraft 1 the arm opposite to spacecraft 1 is arm

1 with optical benches s, and s3 and the cross-covariances are

cov[si(ta), s2(ty)] = —(pa(ta — D) p2(ts)),

cov[si(ty), sz (ty)] = (p2(ta — D) pa(ty — D)). (6.8)

In the first equation covariances will occur at t, — t, = D which will be along the
diagonals at +D. In the second, because of the equal arm lengths, the only possible
time for the correlations is for t, = ¢, = t which will also produce values along the

main diagonal. The total number of diagonals is three which is the same as for the
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independent lasers. However, the increase in the number of correlations will increase

the density of the blocks along each diagonal.

6.1.2.3 All lasers phase-locked

Extending the locking to all lasers so that they operate as a single laser means that
they will all have the same laser phase noise p as shown in Table 6.1. This results in
correlations not only between the readings of all the optical benches but also within

each reading. With all laser phase-locked the readings can be written as

si(t) = p(t = D) = p(t) + ni(t), (6.9)

where the only difference in all the readings will be the photodetector noises n;. The

auto-covariances are

cov(si(ta), si(ts)] = (p(ta — D) p(ty — D)) + (p(ta) p(ts)) + (ni(ta) ni(ts))
— (p(ta — D) p(ty)) — (p(ta) p(ts — D)), (6.10)

which now has two extra terms relating to the correlations between the noises within

each reading. With equal times ¢ the auto-covariance is

varls;(1)] = (p2(t — D)) + (2()) + (n2(1)), (6.11)

which occurs along the main diagonal and has the same structure as the other two

phase-locking options. When the times are not equal ¢, # t;, the covariances are

cov[si(ta), si(te)] = —(p(ta — D) p(ts)) — (p(ta) p(ts — D)), (6.12)

with contributions only from the two other terms. These are similar to the terms in
the cross-covariances of Equation 6.5 having non-zero values occurring at t, —t, = £D
which are the sub-diagonals and super-diagonals. The cross-covariances will have similar
expressions with the difference being that they will not contain photodetector noises as

they are all independent. For example, for two optical bench readings given by

si(t) = p(t — D) — p(t) + ni(t),

s;(t) = p(t — D) — p(t) + n;(t), (6.13)
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their cross-covariances will be

cov[s;(ta), s;(ty)] = (p(ta — D) p(ty — D)) + (p(ta) p(ts))

— (p(ta — D) p(ty)) — (p(ta) p(ty — D)). (6.14)

For t, =t, =t and t, # t; the covariances are

covls;(t),s;(1)] = P°(t — D)) + p*(t)),

cov[si(ta), 5;(ty)] = =(p(ta = D) p(ts)) — (p(ta) p(ts — D)), (6.15)

where covariances will occur at ¢ (main diagonal) and ¢, —t, = D (two other diagonals)
giving the same three diagonals and in the other cases. The difference in this case is

that the blocks will all be full because all the readings are correlated.

6.1.2.4 Summary of the effects of laser phase-locking

The phase-locking affects the matrix by increasing the number of correlations between
the readings from the different optical benches. This appears as an increase in the
density of the blocks occurring in the diagonals in the matrix. It determines what is
correlated and not where the correlations occur in the matrix in that it defines what

occurs in the blocks at the points of correlations.

6.1.3 The effects of the arm lengths on the covariance matrix

Although the previous section was focused on the effects of the phase-locking on the
covariance matrix from it we were able to see that the correlations away from the main
diagonal were located at positions related to the arm lengths which for equal arm lengths
occurred at +D. In this section we show the effects of unequal arm lengths and, because
LISA is a moving detector with its structure disturbed by other objects, the effects of

motion on the arms will also be considered.

6.1.3.1 Static unequal arm lengths

Recall that with unequal arm lengths the optical bench readings can be written as

si(t) = p;j(t — Dg) — pi(t) + ni(t), (6.16)
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and with static values D;, will have three different offsets of Dy, Dy and D3. Starting
with the basic LISA model with no phase-locking of the lasers, recall that the only
non-zero values in the matrix are the variances (auto-covariances at same time t) and
the cross-covariances between the readings of the optical benches along each arm. The
general equation for the variances which are sums of the variances of the different noises

can be written as

var[s;(t)] = (p}(t — Dp)) + (P} (1)) + (nf (1)) (6.17)

These are the values occurring on the main diagonal and the inequality of the arm
lengths has not changed their value nor their location. The cross-covariances however,
will be affected by the different lengths as these are associated with the correlations
between laser phase noises with times ¢ and ¢t — D;. Using the general equations for the

optical benches at the end of each arm which can be written as

si(t) = pj(t — Dx) — pi(t) + ni(t),

5i(t) = pit = Di) = p;(t) +n;(t), (6.18)

and the cross-covariance will be

cov(si(ta), sj(ts)] = = (p;(ta — D) p;j(ts)) — (P (ta) pi(ty — Di)). (6.19)

The locations of the correlations will depend on Dy, and will produce three sub-diagonals
and three super-diagonals if the arm lengths are all different.

With spacecraft phase-locking the main diagonal will be affected because of the cross-
covariances between laser phase noises with times shifted by different offsets ¢t — D, and

t — D;. For example, for s; and sy with equal arm lengths the covariance is

cov[si(ta), sz (ty)] = (p2(ta — D) pa(ty — D)), (6.20)

producing values when the times are equal and will occur along the main diagonal.

With unequal arm lengths this becomes

cov[si(ta), sz (ty)] = (p2(ta — D3) p2(ty — D1)), (6.21)

where the correlations will occur at times that are differences of the offsets t, — ¢, =
+(D3 — D;) shifting them away from the main diagonal. There will be two other
differences of (D; — Ds) and (Dy — D3) producing a maximum of three new diagonals

all located between the main diagonal and those at the offset +£D; with the smallest
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Table 6.2: Raw data phase measurements showing the contributions for the laser phase p; and photode-
tector (n;) noises for directionally dependent arm lengths D; # D,. These are given for the different
types of laser noise phase-locking.

Phase-locking  Optical bench  Noise contributions in the readings
phase shift

None s1(t) por (t — D3) — p1(t) + ni(t)
s1/(¢) p3(t — Dar) — py/(t) + ny/(2)
s2(t) p3/ (t — D1) — p2(t) + na(t)
sor(t) p1(t — Dgr) — par (t) + nor (1)
s3(t) p1 (t — D2) — p3(t) +na(t)
s3/(t) p2(t — Dys) — p3r () + nz/(t)

Spacecraft s1(t) p2(t — D3) — p1(t) + n1(¢)
897 (t) pg(t — DQ/) —p1 (t) + nqs (t)
s2(t) p3(t — D1) — p2(t) + na(t)
sor(t) p1(t — D3r) — pa(t) + no (t)
s3(t) p1(t — D2) — p3(t) + n3(t)
s3/(t) p2(t — Dy/) — p3(t) + na (t)

All s1(t) p(t — D3) — p(t) +ni(t)
s1/(t) p(t — Dyr) — p(t) +ny (1)
s2(t) p(t — D1) — p(t) + n2(t)
sor(t) p(t — Dar) — p(t) + nor(t)
s3(t) p(t — D2) — p(t) + n3(t)
s3/(t) p(t — D) — p(t) + na (1)

value. The actual number of diagonals depends on the values of the offsets.

When the lasers are all phase-locked the number of diagonals that the main diagonal
splits into will not increase for the same set of arm lengths. This is because there are
still only the three options for the differences between the offsets. The difference in the
matrix between this and the spacecraft locking will be in the density of the blocks of
these shifted diagonals.

6.1.3.2 Directionally dependent static arm lengths

LISA will be orbiting the Sun with its guiding centre located on the ecliptic. Each of
its spacecraft are in their own orbit and the relative motion between them causes an
apparent rotation of the plane of the antenna in a clockwise direction with a period of
one year. Simulating this motion by assuming a rotating rigid array the effect leads
to the light travel times in each arm being dependent on the direction of measurement
[20]. From Cornish and Hellings [20], because of the rotation a beam transmitted from
a spacecraft will have to lead or aimed ahead the receiving spacecraft. If the actual arm
length has a travel time of D; and D; and D; are the measured times in the clockwise and
counter-clockwise directions then the rotation will result in the D; < D; and D; > D;.

The raw data showing the directional dependence are given in Table 6.2. With the

assumption of fixed values, the directional dependence has increased the number of
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Figure 6.1: The changes in the arm lengths as modeled by Dhurandhar et. al. [23].

offsets in the readings to six since each arm now has two offsets associated with it. The
effects are similar to those of the static unequal arms of the previous section but will
reflect the increase in the number of offsets. There will be six sub-diagonals and six
super-diagonals for all phase-locking options.

For the main diagonal, like the equal arms case, only the phase-locking of the lasers
will produce a different number of diagonals. With spacecraft phase-locking although
there are six offsets the actual number of differences are still limited to three because
they are restricted by the offset times shared by the same laser noises as the correlations
occur between times of t —D; and t—D,. As shown in Table 6.2 the differences restricted
to D3 — Dy, Doy — Dy and D3 — Dy. However, when all the lasers are phase-locked the
differences will include all the offsets. As in the unequal arms case, the actual number

of diagonals in both cases will dependent on the values of the offsets.

6.1.3.3 Time varying arm lengths

Apart from the rotational effects, the relative motion between the spacecraft coupled
with tidal forces cause continuous changes in the arm lengths that oscillate about a
nominal value reflecting orbital period [39, 36]. This produces a breathing or flexing
effect [39, 23] with changes in the arm lengths of 1% or approximately 50 x 10°m [36].
Figure 6.1 is an example of the changes as modeled by Dhrurandhar et. al. [23].

In the optical bench readings this will produce time varying offsets which will be
expressed as functions of time D;(t). All the other properties related to the arm lengths

discussed previously were modeled as static resulting in the diagonal patterns in the
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covariance matrix. This is one of the properties that will break the Toeplitz structure
of the covariance matrices.

The auto-covariance with the time varying offsets can be written as

var[s;(t)] = (pj, (t — Di(t))) + (b} (£)) + (na(t)), (6.22)

which will not be affected by the time varying arm lengths. For the readings at the end

of each arm the cross-covariance with the time varying offsets can be written as

cov(si(ta), 5;(te)] = —(p;(ta — Di(t)) p;(ts)) — (pi (ta) p;j (ts — Di(t))), (6.23)

with the correlations occurring at t, — ¢, = £D(t) which is now time dependent. To
show the effects near the main diagonal readings s; and s3 will be used and the cross-

covariance with time varying offsets is

cov(si(ta), sz (t)] = (p2(ta — D5(t)) pa2(ty — Di(t))), (6.24)

giving correlations at ¢, — t, = &= (Ds(t) — D:(t)) which is also time dependent.

6.1.3.4 Summary of the effects of the arm lengths

The lengths of the arms determine where the correlations occur in the covariance matrix.
With static values the matrix has a Toeplitz structure with diagonals occurring away
from the main at locations that depend on the values of the arm lengths and on whether
there are dependencies in the direction of the measurements of the arm lengths. With
time varying arm lengths the diagonals are no longer guaranteed as the location of the
correlations will reflect the temporal variations in the arm lengths which destroys the

Toeplitz structure.

6.1.4 The effects of the noise variances on the covariance ma-
trix

The variances of the noises determine the values of the covariances in the matrix. When

the noises are stationary, that is, their variances do not change with time, the values

at times t and (¢ — D;) will be the same and the covariance matrix will be Toeplitz.

In the simple toy model each noise type was assumed to have the same variances of
2

o, and o2. Here this assumption will be relaxed allowing the noises in each optical
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bench to have different values. We also look at the effects of temporal changes in the
variances (non-stationarity) and the reduction of the separations between the values for

the variances of the two noise types.

6.1.4.1 Unequal noise variances

As done in the previous sections examples will be illustrated for the auto-covariance
which determines the values along the main diagonal and one cross-covariance for the

sub/super-diagonals. The auto-covariance with independent lasers can be written as

var(s;(t)] = (p} (t — Di)) + (07 (1)) + (ni(t)), (6.25)

where there are contributions from two different laser phase noises and a photodetector
noise. For stationary noises with equal variances for each type of noise of 012) and o2

Equation 6.25 becomes

var(s;(t)] = 207 + 0. (6.26)

2

With unequal variances, which will be indicated by O'iz- and o;;, the auto-covariance

using Equation 6.25 is
varsi(1)] = 0% + 0% + 0%, (6.27)

where the difference will be a change in the total variance that will reflect the different
noise contributions. This will also be true for the cross-covariances, for example, from

the general equation optical benches at the end of an arm is

cov[si(ta), sj(ts)] = —(pj(ta — Di) Py (ts)) — (pi(ta) pi(ty — Dy)), (6.28)

giving values of —agi or —ogj depending on the times of the correlations.

6.1.4.2 Time varying variances

This would be reflected in the changes of the variances with time and, as with the
time-varying arm lengths, would break the Toeplitz structure of the Matrix. However,
the breaking will be due to different values along all the diagonals. For example, from

Equation 6.25 the auto-covariance is

var([s;(t)] = (p3: (t — Di)) + (P} (1)) + (ni(t)), (6.29)
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where there will be no change in the structure of the equation. The temporal variations
will be show up as different values for the different times t. Assuming that the variances

are the same for each noise type, that is, az and o2 then the time varying values will be
var(s;(t)] = o2 (t — Dy) + o.(t) + o4 (t), (6.30)

where o2(t — Dy), 02(t) and o (t) are the variances for the noises at those times.

6.1.4.3 Separation between the laser phase noise and photodetector noise

variances

This was one of the concerns of Romano and Woan [54] in terms of the effects on the
splitting of the eigenvalues into the two different groups. In the current design the laser
phase noise is expected to be about 107 times greater than the photodetector noises
giving large separations between the two noise types. In the covariance matrices these
are reflected in the values where the laser noise variances overwhelm the photodetector
noises which appear only in the elements along the main diagonal. For example, for
the independent lasers for variances of o) = 1000 and o7 = 1 the values along the
diagonal are 207 + 07 = 2001 with the other diagonals being —o> = —1000. As the laser
variance approaches the photodetector variances the contributions to the variances are
more evenly spread. For example, for the same photodetector noise variances with laser
noise variance of 013 = 2, the values are now 2012) +02=5and —0'12) = —2.

However, the reason for the time delay interferometry observables is the size of the
laser phase noises, therefore if these are reduced to the level of the secondary noises by
improvements in the laser frequency stability then there is no longer any need for these
observables. With that said this investigation will investigate the separations up to the

limit that they become close to the secondary noises but will be just to determine if

they affected by the size of the separations.

6.1.4.4 Summary of the effects of the noise variances

The noise variance determine the values of the covariances in the matrix. They do not
affect the location of the correlations. For stationary values and static arm lengths the

matrix is Toeplitz but this will be broken by non-stationarity.
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6.1.5 Summary

The purpose of this section was to illustrate how the properties of LISA affect its noise
covariance matrix and hence determined how these will change the eigenvalues when
adapting our approach to a more realistic model of LISA. The actual values of the
elements in the matrix are determined by the variances of the different noises. The
structure or layout of the matrix is determined by the phase-locking of the lasers and
the arm lengths with the former determining the number of correlations and hence the
density of the matrix while the latter determines their location. Static values of the
arm lengths and variances result in Toeplitz structures which disappears when either

has time dependent values.

6.1.6 Results

After determining the effects of each of the properties of the LISA on its noise covari-
ance matrix the next step would be to algebraically generate the eigenvalues from the
different matrices to show how they are affected by the different properties. This would
be the preferred method as they would show the contributions from each noise source to
the eigenvalues. However, as seen in Chapter 4 even for small matrices the computation
times for the algebraic solutions are very long. Instead, the effects will be determined
using actual values using numeric solutions which are the results presented in this sec-
tion. The matrices with Toeplitz structures are illustrated with tables of the non-zero

values of their first rows.

6.1.6.1 The effects of laser phase-locking and static arm lengths

Initially to illustrate only the effects of phase-locking the arm lengths all had the same
value with light travel time of D = 16. Also, the variances of each noise type had the
same values of Uf) = 1000 and ¢2 = 1 for the laser phase and photodetector noises,
respectively. The covariance matrices for the three phase-locking option of none, space-
craft locked and all locked for times of ¢ = {0,1,...,23} are given in Figure 6.2. For
these the arm lengths are the same and they all have a main diagonal and two others
separated from the main by the offset value D. The blocks in the diagonals show the

increase in their density with the increase in the number of phase-locked lasers. The
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matrix for no phase-locking in Figure 6.2a also differs from the others by having blocks
in the main diagonal having only a main diagonal.
The eigenvalues for these covariance matrices are given in columns two to seven of

Table 6.3 where the noticeable results are:
e only the phase-locked lasers produced the required laser noise free eigenvalues,
e clear separations exist between the eigenvalues with and without laser noise,

e the number of laser noise free eigenvalues increased with the number of phase-

locked lasers.

This seems to indicate that phase-locking of the lasers, which determines the amount
of correlations between the optical bench readings, is an important factor in obtaining
the laser noise free eigenvalues.

For spacecraft phase-locked lasers the number of eigenvalues is 40 and for all phase-
locked lasers it is 120. The separation between the eigenvalues with and without laser
phase noises also increased with the increase in phase-locking from 1000 for spacecraft
phase-locking to 2000 when they were all phase-locked. The lack of laser noise free
eigenvalues for the independent lasers in relation to the structure of the matrix might

be due to the blocks along the main diagonal being simple diagonals.

Results for unequal static arm lengths

Next, the restriction on the arm lengths was relaxed by allowing them to have different
values with corresponding offsets of D; = {15,16,17} to see how the structure of the
matrix in terms of the location of the correlations affects the distribution and nature
of the eigenvalues. The covariance matrices for these values are given in Figure 6.3
where the expected increase in the number of diagonals in the matrices occurs. The
common feature for the three phase-locking options is the splitting of the sub-diagonal
and super-diagonals that occurred at the offset of 16 for the equal arm case into three
diagonals each reflecting the number of different arm lengths now occurring at offsets
from the main diagonal of 15, 16, and 17. The closeness of these values makes the
diagonals appear as a bands but this will depend on the sampling rate. The effect of

the phase-locking is to introduce other diagonals close to the main diagonal reflecting
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the correlations between different offset times e.g. t; — D; and t, — D, giving values at
t1—to£D; — D;.

The eigenvalues for these matrices are given in Table 6.3 in columns 8 to 13 with
results that are similar to those for equal arms. Only the phase-locked lasers produced
the laser noise free eigenvalues with an increase in their number with the number of
locked lasers. The separation between the eigenvalues with and without laser noises
is not as clear as with equal arms. The smallest eigenvalue is 1 and the assumption
is that this is associated with the photodetector noises that have variances of o2 = 1.
Some of the other values especially for spacecraft phase-locking are small compared
to the laser phase noise variances and may also only contain photodetector noises, for
example, values of 10, 44 and 69. Based on the smallest eigenvalues only, the number
of laser noise free eigenvalues for the spacecraft and all locked lasers are 28 and 104,
respectively. These are less than the corresponding values for the equal arms indicating

a decrease in their number with the increase in the number of different arm lengths.
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Figure 6.2: Sample covariance matrices for different laser phase-locking options with lasers that are
(a) independent, (b) spacecraft locked and (c) all locked. The arm lengths are all assumed to equal
with light travel times of D = 16 and the laser phase and photodetector noise variances are crg = 1000
and 02 = 1, respectively. The values on the right are for the non-zero blocks of the first rows of the
matrices which are the same along the diagonals containing them.
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Figure 6.3: Sample covariance matrix for unequal offsets D = {15, 16,17} with lasers that are (a) not

locked, (b) locked on each spacecraft. The laser phase and photodetector noise variances of 0127 = 1000

and o2 = 1, respectively. The non-zero blocks of the first rows of the matrices are shown on the right.
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Table 6.3: Time domain eigenvalues for the different laser noise phase-locking options of none, spacecraft
locked and all locked with values for equal and unequal arm lengths with light travel times of D = 16 and
D; = {15,16, 17}, respectively. The laser phase noise and photodetector noise variances are 0127 = 1000
and 02 = 1 and time values are t = {0,...,23}.

phase-locking Eigenvalues
Equal arms Unequal arms

None 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
Spacecraft 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 10 44
1 1 1 1 1 1 69 89 139 224 261 315
1 1 1 1 1001 1001 444 454 470 479 639 692
1001 1001 1001 1001 1001 1001 7 06 731 752 947 960 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1269 1269 1269 1269 1001 1001 1001 1001 1001 1001
1269 1269 1269 1269 1269 1269 1001 1123 1146 1221 1236 1269
1269 1269 1269 1269 1269 1269 1269 1269 1269 1329 1376 1391
2001 2001 2001 2001 2001 2001 1649 1711 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 4001 4001 3224 3231 3278 3437 3592 3906
4001 4001 4001 4001 4001 4001 4001 4001 4001 4001 4001 4140
4733 4733 4733 4733 4733 4733 4423 4466 4688 4733 4733 4733
4733 4733 4733 4733 4733 4733 4733 4823 4881 4906 5044 5072
4733 4733 4733 4733 6001 6001 5111 5256 5289 5374 5436 5475
6001 6001 6001 6001 6001 6001 5551 5575 5717 5719 5921 5925
All 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 318 345 1165 1292
1 1 1 1 1 1 1910 2583 2938 3769 4202 4430
1 1 1 1 1 1 4530 4849 5204 5282 5659 5694
6001 6001 6001 6001 6001 6001 6001 6001 6001 6001 6001 6001
6001 6001 12001 12001 12001 12001 6001 6417 6505 7375 7636 8135
12001 12001 12001 12001 18001 18001 9133 10096 10888 11599 12048 12398

18001 18001 18001 18001 18001 18001 12711 12989 14030 15456 16768 17677
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Table 6.4: Time domain eigenvalues for directionally dependent arm lengths with offsets of D =
{15,14,17,16, 19, 18} and variances of Jg = 1000 and o2 = 1.

phase-locking Eigenvalues

None 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001

Spacecraft 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 34 36 65 68 94 131 148 183 190 205 226 269 280 298 355 369

371 377 393 407 428 444 567 597 636 672 685 729 790 849 859 911 924 967

991 1001 1009 1075 1127 1191 1224 1256 1307 1335 1378 1432 1467 1512 1516 1595 1647 1737

1773 1785 1848 1853 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001

2001 2001 2001 2170 2189 2269 2566 2570 2874 2899 2940 3061 3106 3144 3174 3220 3244 3302

3321 3324 3440 3586 3589 3775 3810 3813 3845 3951 3952 4064 4157 4213 4224 4371 4592 4665

4761 4850 4909 4991 5000 5043 5179 5199 5243 5338 5392 5438 5464 5539 5579 5680 5693 5774

All 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 852 1135 1383 2049 2899 3669

4284 4555 4901 4985 5123 5150 5298 5388 5453 5649 5680 5789 6001 6001 6001 6001 6001 6282
6391 6449 6696 6739 6886 7103 7663 8311 9095 9961 10796 11340 12061 12171 12253 12535 14299 16764

Directionally dependent arm lengths

The rotation produces a dependence of the lengths of the arms on the direction of
motion. This effect is modeled by giving each arm two static values to represent
the different light travel times in the different directions. The values used are D; =
{15,14,17,16, 19, 18} where they occur in order of {1,1',2,2' 3,3’} for the numbers
associated with each arm. The static assumption means that this just increases the
number of arm lengths. The covariance matrices for this effect are given in Figures 6.4
and 6.5 where there are increases in the numbers of the diagonals due to the increase
in the number of offsets D;. The actual number of diagonals that are produced close
to the main diagonal will depend on the values with the matrix for the all locked lasers
showing a large increase in the number of diagonals.

The effects on the eigenvalues is expected to reflect the two previous examples since,
as mentioned before, this is essentially just increasing the number of diagonals in the
matrices. The number of laser noise free eigenvalues for independent, spacecraft locked
and all locked lasers are 0, 20 and 102, respectively showing a decrease in the last two.
The separation between values reflects the situation for the three unequal arms where
the next value above the photodetector noise variance is 34 which is much smaller than

the laser phase noise variances of 1000.
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Figure 6.4: Sample covariance matrices for directionally dependent arm lengths with corresponding
light travel times of D; = {15,14,17,16,19, 18} for lasers that are (a) independent and (b) spacecraft
locked. The laser phase noise and photodetector noise variances are 012J = 1000 and o2 = 1, respectively.
The values on the right are the non-zero blocks of the first row of each matrix.
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{15,16,17} for

lasers that are all phase-locked. The laser phase and photodetector noise variances of 0127 = 1000 and
02 =1, respectively. The non-zero block values are given on the right.



183 Chapter 6. Principal components for more realistic LISA data

Table 6.5: Time domain eigenvalues for time varying arm lengths with laser noise and photodetector

noise variances of og = 1000 and 2 = 1. The values are for a section of the larger matrix corresponding

to times of t = {0, ..., 23}.

Phase-locking Eigenvalues

None 587 587 587 587 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001
1001 1001 1001 1001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001
2001 2001 2001 2001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001 3001
3001 3001 3001 3001 3001 3001 3001 3001 3415 3415 3415 3415 4001 4001 4001 4001 5001 5001

Spacecraft 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 44 55 67 89 102 132 147 180 189 190 229 243 255 281 329 372 377

391 419 434 471 481 512 530 540 585 595 650 684 720 738 771 788 836 867

944 1001 1001 1032 1086 1107 1164 1192 1293 1332 1345 1368 1379 1450 1491 1520 1553 1581

1602 1630 1648 1775 1792 1831 1843 1897 1927 1980 2001 2001 2001 2001 2001 2001 2001 2001

2001 2001 2214 2360 2440 2455 2611 2720 2753 2806 2909 3051 3094 3113 3140 3184 3242 3280

3321 3374 3440 3522 3577 3645 3801 3835 3908 4113 4158 4233 4248 4298 4336 4351 4513 4657

4732 4898 4976 4995 5085 5086 5170 5186 5280 5327 5369 5398 5441 5531 5564 5684 6266 6341

All 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1112 1227 1383 1737 1770 1881

2239 2498 2668 2950 3084 3491 3768 3867 4222 4577 4674 4890 5237 5385 5484 5766 5983 6341
7055 7260 7698 8403 9073 9535 9699 10068 10805 11372 12021 12772 12927 13007 14300 14687 15081 16043

6.1.6.2 The effects of time varying arm lengths

LISA will have time varying arm lengths with changes of about 1% or 50 x 10°m which
is be approximately 0.17s. For arm lengths of 5 x 10°m the light travels times will be
about 16.67+0.17s over a period of one year. In order to illustrate this in a small matrix
the separations between the arm lengths and their period of change are exaggerated.
Only three arm lengths are used with 4 s separations between them with sinusoidal
variations based on those in Figure 6.6a. The covariance matrices for the three phase-
locking options are shown in Figures 6.9 where the locations of the correlations are
seen to mimic the temporal variations in the arm lengths. The eigenvalues in Table 6.5
are for a smaller matrix with the times that match those in the previous sections in
order to compare the eigenvalues. As expected only the phase-locked lasers produced
the required laser noise free eigenvalues with the numbers for the spacecraft locked and
all locked lasers being 18 and 102, respectively. These were close to the values of the

directionally dependent arm lengths with similar separations values.
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Figure 6.6: Sample covariance matrices for time varying arm lengths. Three different arm lengths were
used initially separated by 4s and allowed to vary according to the patterns shown in (a) which was
based on information from Larson [39].
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6.1.6.3 The effects of the noise variances

In the previous sections the variances of the two noise types were equal with values of
02, =1000 and o2 = 1 which provided a large separation between them. In this section
these restrictions will be removed allowing the lasers and photodetectors to have differ-
ent variances and also reducing their separation. Each change will be done separately

for different phase-locking options.

Different noise variances

In the first set the photodetector noises have the same variances of 02 = 1 and the laser
phase noise variances are given different values which depend on the phase-locking. The
only two phase-locking options that can be used in this case are none and spacecraft
locked for which the values for will be afn- = {900, 1200, 1500, 1800, 2100, 24000} and
Ufn- = {900, 1500, 2100} respectively. The arm length used in this case will be unequal
with light travel times of D; = {15,16,17} and the times are ¢ = {0,...,23}. The
covariance matrices for the two phase-locking options are given in Figure 6.7 along with
the values for the non-zero blocks of the first row that are included in the figure.

In the second set the laser phase noises had the same variances of 012) = 1000 while the
photodetector noises variances were 02, = {1,2,3,4,5,6}. Although the photodetector
noises only affect the diagonal and are not affected by the phase-locking the three options
were done to show how the values are reflected in the eigenvalues. The times and offsets
are the same as in the previous section. The covariance matrices are given in Figure 6.8
also with the values of the non-zero blocks of the first row.

The eigenvalues for both cases are given in Table 6.6 with those for the different
phase noises in columns 2 to 7 and those for photodetector noises in columns 8 to 13. In
both cases the independent lasers did not produce any laser noise free eigenvalues. For
the different laser noise variances with spacecraft locked lasers the number of eigenvalues
is 29 which is just one more than that obtained for the corresponding unequal arms case.

The noticeable result is that of the different photodetector noises where the eigen-
values reflect the values of the photodetector noise variances. This was one of the issues
mentioned by Romano and Woan. Although the degeneracy no longer exists because
of the different values it is the splitting of the values into those with and without laser

phase noises that is important and this was obtained. However, not all the photodetec-
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Figure 6.7: Sample covariance matrices for different laser phase noise variances of (a) 0% =

{900, 1200, 1500, 1800, 2100, 2400} for independent lasers and (b) 012, = {900, 900, 1200, 1200, 1500, 1500}
for the spacecraft locked lasers. The phototdetector noise variances are 02 = 1 and the offsets are
D ={15,16,17}. The values for the non-zero blocks are given on the right.

tor noise variances were represented in the eigenvalues for the spacecraft locked lasers
which may just be due to the size of the matrix. The number of eigenvalues obtained
for the spacecraft and all locked lasers are 29 and 104 which are similar to those of the

corresponding unequal arms.
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Figure 6.8: Sample covariance matrix for different photodetector variances of 02 = {1,2,3,4,5,6} with
laser noise variances of 012) = 1000 for no phase-locking with offsets of D = {15,16,17}. The values for
the non-zero blocks are given on the right.
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Table 6.6: The eigenvalues for different laser phase noise and photodetector noise variances. In columns
2-7 the laser phase noises are Jg = {900, 1200, 1500, 1800, 2100, 2400} for independent lasers and Ug =
{900, 1500, 2100} for spacecraft locked lasers. In both cases the photodetector noise variances are kept
constant with values of 02 = 1. In columns 8-13 the photodetector noises are o2 = {1,2,3,4,5,6} and
the laser phase noises variances are kept constant with values of 0127 = 1000.

phase-lock Eigenvalues
Different laser phase noise variances Different photodetector variances

None 901 901 901 901 901 901 1002 1002 1002 1002 1002 1002
901 1201 1201 1201 1201 1201 1002 1002 1002 1002 1002 1002
1201 1201 1201 1501 1501 1501 1002 1002 1003 1003 1003 1003
1501 1501 1501 1501 1501 1501 1003 1003 1003 1003 1003 1003
1801 1801 1801 1801 1801 1801 1003 1003 1003 1003 1003 1003
1801 2101 2101 2101 2101 2101 1004 1004 1004 1004 1004 1004
2101 2101 2101 2401 2401 2401 1004 1004 1004 1004 1004 1004
2401 2401 2401 2401 2401 2401 1004 1004 1004 1004 1004 1004
2701 2701 2701 2701 2701 2701 2001 2001 2001 2001 2001 2001
2701 2701 2701 2701 2701 2701 2001 2001 2001 2001 2002 2002
2701 2701 2701 2701 2701 2701 2002 2002 2002 2002 2002 2002
2701 2701 3301 3301 3301 3301 2003 2003 2003 2003 2003 2003
3301 3301 3301 3301 3301 3301 2004 2004 2004 2004 2004 2004
3301 3301 3301 3301 3301 3301 2004 2004 2004 2004 2005 2005
3601 3601 3601 3601 3601 3601 2005 2005 2005 2005 2005 2005
3601 3901 3901 3901 3901 3901 2006 2006 2006 2006 2006 2006
3901 3901 3901 3901 3901 3901 3003 3003 3003 3003 3003 3003
3901 4501 4501 4501 4501 4501 3003 3003 3003 3003 3003 3003
4501 4501 4501 4501 4501 4501 3003 3003 3004 3004 3004 3004
4501 4501 4501 4501 5401 5401 3004 3004 3004 3004 3004 3004
5401 5401 5401 5401 5401 5401 3004 3004 3004 3004 3004 3004
5401 5401 5401 5401 5401 5401 3005 3005 3005 3005 3005 3005
5401 5401 5401 6301 6301 6301 3005 3005 3005 3005 3005 3005
6301 6301 6301 6301 6301 6301 3005 3005 3005 3005 3005 3005
Spacecraft 1 1 1 1 1 1 2 2 2 3 3 3
1 1 1 1 1 1 3 3 3 3 3 3
1 1 1 1 1 1 3 3 3 3 3 3
1 1 1 1 1 1 3 3 3 3 4 4
1 1 1 1 1 51 4 5 5 5 5 47
78 101 162 250 301 358.5 71 91 142 226 264 318
498 525 546 560 668 765.6 447 456 473 482 642 694
787 802 830 993 993 993.4 708 733 754 949 963 1002
993 993 1002 1010 1032 1034.5 1003 1003 1003 1003 1003 1004
1147 1183 1263 1329 1341 1342.9 1004 1004 1004 1004 1004 1004
1343 1343 1343 1343 1357 1386.1 1004 1125 1148 1223 1239 1271
1451 1455 1560 1593 1655 1698.2 1271 1271 1271 1332 1378 1394
1783 1895 1922 1987 2100 2108.7 1651 1713 2002 2002 2002 2002
2255 2287 2328 2359 2370 2401.0 2003 2003 2003 2003 2003 2003
2401 2401 2401 2422 2529 2582.2 2004 2004 2004 2004 2004 2004
2679 2737 2817 2838 2937 2938.6 2004 2004 2005 2005 2005 2005
3081 3081 3081 3081 3081 3137.3 3003 3003 3003 3003 3003 3003
3151 3543 3588 3674 4121 4120.6 3003 3004 3004 3004 3004 3004
4121 4121 4121 4359 4470 4532.2 3225 3232 3282 3439 3596 3908
4810 4867 4867 4867 4867 4866.6 4004 4004 4004 4004 4004 4143
4896 4908 5076 5085 5195 5208.2 4426 4468 4690 4736 4736 4736
5575 5649 6031 6350 6361 6363.8 4736 4825 4883 4909 5047 5075
6401 6404 6422 6429 7286 7292.2 5114 5258 5292 5376 5438 5478
7311 7313 7344 7354 7455 7456.8 5553 5578 5719 5722 5923 5928
All 1 1 1 1 1 1
1 1 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3
3 3 4 4 4 4
4 4 4 4 4 4
4 4 4 4 4 4
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 6
6 6 6 6 6 6
6 6 321 348 1168 1294
1912 2586 2941 3771 4205 4433
4532 4851 5207 5285 5661 5697
6004 6004 6004 6004 6004 6004
6004 6419 6507 7377 7638 8138
9136 10099 10890 11602 12051 12401
12714 12992 14032 15459 16770 17679
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Table 6.7: Time domain eigenvalues for variable laser phase and photodetector variances. The offsets
are D = {15,16,17} and the lasers are locked on each spacecraft.

Eigenvalues
0.8 0.8 0.8 0..8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0..9 0.9 0.9 0.9 0..9 0.9 0.9
0.9 0.9 0.9 0..9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 984 99.4 110.9 118.0 305.8 340.8

387.1 401.5 407.8 416.3 432.4 489.3 511.3 524.0 560.1 563.5 631.9 637.4 672.8 696.2

700.8 721.0 743.5 779.7 803.6 815.0 869.8 892.2 943.8 948.3 1.008.6  1009.3 1047.0 1068.2
1072.1  1087.1 1093.8 1103.5 1191.3 1197.2 1203.7 1215.4 1250.1 1263.0 1273.1  1283.9 1287.3  1297.5
1304.3  1324.7 1336.4 1339.2 1349.9 1378.5 1389.2 1394.2 1434.5 1458.8 1477.3  1483.4 1509.7  1517.8
1528.0 1548.6 1558.6 1560.3 1571.7 1577.0 1582.2 15829 1601.4 1609.6 1611.1 1618.0 1627.3 1635.5
1640.8 1651.8 1827.4 1828.8 1832.0 1836.5 1841.0 1846.6 1848.8 1852.7 1859.9  1862.4 1864.7 1878.1
1880.0  1887.2 1899.3 1907.6 2345.2 2547.2 2958.1 2975.5 2978.1 2981.8 3026.9 3103.6  3172.0 3306.0
3390.6 3439.6 3508.3 3553.5 3626.5 3638.1 3677.5 3705.3 3716.9 3726.5 3827.3  3927.5 3964.3 3973.2
3983.4 4013.2 4139.1 4164.2 4188.8 4190.7 4260.7 4275.5 5008.9 5022.7  5043.5 5057.3 5107.3 5125.2
5164.1 5188.7 5200.2 5234.6 5272.7 5335.6 5361.0 5440.8 5459.4 5472.1 5500.0 5515.6  5520.1 5523.2
5635.0 5643.6 5706.2 5720.0 5735.6 5738.2 5760.3 5778.9 5785.7 5827.6 5901.8 5922.2 5970.9 5975.6
6038.3 6079.6 6246.8 6253.0 6277.3 6367.2 6430.2 6453.6 6496.3 6510.2 6705.5 6716.1 6874.6 6878.6

Variable laser phase and photodetector noise variances

To model non-stationarity in the noises the values of their variances were varied sinu-
soidally about their mean values of o> = 1000 and ¢, = 1 as illustrated in Figure 6.9a.
The covariance matrix was only generated for the spacecraft phase-locked lasers which
is given in Figure 6.9b where the temporal changes of the variances result in changes
in the values along the diagonals. The eigenvalues for this matrix are given in Table
6.7 and the number of laser noise free values is 78. The larger matrix was used here to
illustrate the variations along the diagonals. For a similar sized matrix as those in the
other sections the number of eigenvalues is 29. The large separation in the variances
allowed the two groups to be easily determined and their values reflected the changing

values of the variances.

Small separations between the laser and photodetector noise variances

For this section only the covariance matrices for spacecraft locked lasers and unequal
arm lengths with times of D = {15,16,17} will be used. Three sets of values were
investigated for equal and unequal variances with integer and real values which are (i)
o2 =9 and o) =1, (ii) 07 = 2 and 0p = 1 and (iii)oy;, = {2.3,2.4,2.5,2.6,2.7,2.8}
and o2, = {0.8,0.9,1.0,1.1,1.2,1.3}. In the last set the smallest laser noise variance
differs from the largest photodetector noise by 1. Only the matrix for the the first set is
presented which is in Figure 6.10 to illustrate the differences between the values when

the separation between the two types of noises are small. The values of the non-zero

blocks are also included.
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Figure 6.9: Sample covariance matrix (b) for time varying laser phase and photodetector noise variances
with the values varying according to the patterns shown in (a).
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Figure 6.10: Sample covariance matrix for smaller separations between the laser phase noise and

photodetector noises variances. The values for the variances are O'z =9 and 02 = 1 with spacecraft

locked lasers and offsets of D = {15,16,17}. The values on the right are non-zero blocks of the first
row.

The eigenvalues are given in Table 6.8 where in all three sets they do still split into
the two groups relating to those with and without laser phase noises. The splitting
is judged from the actual values where those that match the phototdetector noises
variance are assumed be from them. Values closer to the laser phase noise variances are
assumed to be related to combinations of these noises and the phototdetector noises.
Note that in all three sets there are values between the two which are much closer to the
phtotodetector noises which may just contain this type but are not included in the laser
noise free group. As the values get closer to it becomes more difficult to distinguish
between the two sets of values.

In the first set with the noise variances for each noise type being equal with values

02 =9 and 02 = 1 and the number of eigenvalues equal to the 1 is 30. The values close

p
to the laser noise are 8 and 10 which could be a}% +02. The range of values between the
photodetector noise values and these are 2 to 7. In the second set where the values are
still integers with the laser noise variance reduced to ag = 2 resulting in a separation
from the photodetector noises of only 1, the splitting still occurred with the number of

values associated with the only photodetector noises increasing to 34. The next set of

eigenvalues are equal to 2 where now it is impossible to tell what this is associated with
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Table 6.8: Time domain eigenvalues for smaller separations between the variances of the two noise
types. The offsets are {D = 15,16, 17} and the lasers are locked on each spacecraft.

Eigenvalues
Variances (62 =9, 02 = 1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 4

5 5 5 5 7 7 7 8 8 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 11 11 12 12 12 12 12 12 13 13 14
16 16 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
19 19 19 19 19 19 28 28 28 28 28 28 28 28 28 28 28 28
30 30 30 32 33 36 37 37 37 37 37 38 41 41 43 44 44 44
44 44 45 45 46 47 47 48 49 49 50 50 51 51 52 52 54 54

Variances (02 = 2, 02 = 1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7
7 7 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10
10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 13 13

Variances (o7 = 1.5, 02 = 1.0)

10 10 10 10 10 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 10 10 10 10 10 10 10 10 1.0 1.0 1.1 1.1 1.1 1.2 1.3 1.4 1.5
17 17 17 17 20 20 21 21 21 24 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5
25 25 25 25 25 25 25 27 27 28 2.9 2.9 2.9 2.9 2.9 3.0 3.1 3.1
35 36 40 40 40 40 40 40 40 40 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
40 40 40 40 40 40 55 55 55 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
58 59 60 62 64 69 70 70 70 70 7.0 7.2 7.6 7.7 8.0 8.1 8.1 8.1
81 82 83 84 86 86 87 89 89 9.1 9.2 9.2 9.3 9.4 9.6 9.6 9.9 9.9

Variances (o2 = 1.5, 02, = {0.8,0.9,1.0,1.1,1.2,1.3})
09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 1.0 10 1.0
10 10 10 10 11 11 11 11 11 1.1 12 12 12 12 13 14 15 15
1.7 1.8 1.8 1.8 20 21 21 21 22 23 24 25 25 25 25 25 25 26
26 26 26 26 26 26 26 27 27 28 29 30 30 30 30 30 31 32
35 36 39 39 39 40 40 40 40 40 41 41 41 41 41 41 41 4.1
41 41 42 42 42 42 55 55 55 55 55 55 55 56 56 56 56 5.6
58 58 60 61 66 69 71 71 71 71 71 73 78 78 81 81 81 81
81 83 84 84 87 87 87 89 90 91 92 93 94 94 96 96 99 99

Variances (azi ={1.5,1.6,1.7}, 02, = {0.8,0.9,1.0,1.1,1.2,1.3})

09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 10 10 1.0
10 10 10 10 11 11 11 11 11 1.1 12 12 12 12 13 14 15 1.6
1.8 1.8 1.8 19 21 21 22 22 22 25 25 26 26 26 26 26 26 26
2.7 2.7 2.7 27 27 27 27 28 29 30 30 31 31 31 31 32 32 33
3.6 3.7 40 4.0 41 41 41 41 42 42 42 42 43 43 43 43 44 44
44 44 45 45 45 45 56 56 56 56 56 56 57 6.0 60 61 61 6.1
61 61 63 66 70 71 75 75 75 75 75 7.7 83 83 84 84 85 85
85 86 9.0 91 91 93 94 95 95 96 100 100 10.1 10.1 103 10.3 10.6 10.6

as this is also the value of the laser noise. Even the third set where the values are no
longer integers and were also all given different values there are still values that reflect
the value of the photodetector noise variances. In this case the number of these values

1s 32.
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6.2 Frequency domain

In this section we investigate the effects of laser phase-locking, arm lengths and the
noise variances on the power spectral density matrix. LISA’s raw data data are time
series so that a frequency domain analysis involves the Fourier transform therefore,
understanding what occurs with the data is needed. This is especially important when

the noise properties are time dependent, for example, in the case of non-stationary.

6.2.1 The power spectral density matrix

For the toy model the power spectral density matrices will only contain non-zero values
in the blocks along the main diagonal since there are no correlations between different
frequencies. The effects of the different properties will be confined to these blocks. The
size of each block is 6 x 6 with the auto-power spectral densities occurring on the main
diagonal and the cross-power spectral densities elsewhere. Recall that the raw data time

series can be written as
si(t) = py(t — Di) — pi(t) + ni(t), (6.31)
and its spectrum is

Si(f) =By (f) ™ = pi(f) + (), (6.32)

where the time offset Dy becomes a phase shift and s;(f) represents the Fourier trans-

form of s;(t) given by

5(f) = / h si(t) e 2t (6.33)

o0

For no phase-locking with unequal arm lengths the auto-power spectra can be written

as

Sia(f) = [y (f) e P = Bi(f) + ()] x [By () ™2 = B f) + ()]
= B3 () + B () + (A (f))- (6.34)
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Figure 6.11: The raw data power spectral densities showing the contributions for the all blocks in the
matrix for the independent and spacecraft locked lasers. The arm lengths used are static and unequal
with no directional dependence.

An example of the cross-power spectral density using the readings from the optical

benches at the end of arm k is

Siy(f) = ([Bs(f) e P = Bi(f) + 7 f)] x [Bif) P = B;(f) +75()])

= —(B5(f)) e Pe — (pI(f)) ™I, (6.35)

6.2.1.1 The effects of laser phase-locking

The contributions for all the elements in each block are given in terms of ¢2; and o7,
in Figure 6.11 for independent and spacecraft locked lasers with unequal static arm
lengths with no directional dependencies. The values for all locked lasers are not given
because of space limitations. The general format of the auto-power when all the lasers

are phase-locked can be written as

ni

Sii(f) = o2[2 — e 2P — 2TIDH] 4 62 (6.36)
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The cross-power densities for the readings along each arm is similar to the auto-power

densities but without the photodetector noises which is
Sii(f) = aﬁ [2 - e 2D _ eszD’“], (6.37)

where Dy, is the offset in the arm. Comparing this to the block representing the inde-
pendent lasers in Figure 6.11, these will replace the values in the two diagonals away

from the main. For all the others, the cross-power can be expressed as

Sy = 05 [e—Qm‘f(Dk—Di) _ e 2mif Dy _ 2mifDi 1}’ (6.38)

where Dj, and D; are the offsets in the arms adjacent to optical benches ¢ and j re-
spectively. Again, using the block for the independent lasers, these will replace the zero
values. So all the elements in the block for all locked lasers will be occupied. From this
it can be seen that the effects of the arm lengths D, are not the same as in the time
domain. Here they are just phase shifts in the values and do not affect the location of
the values.

Since the arm lengths do not have the same effects as in the time domain in discussing
the phase-locking the unequal arms will be used instead. As seen in Figure 6.11 the
effect of phase-locking is to increase the number of correlations which increases the
density of the blocks. Without phase-locking only the optical benches at the ends of the
arms are correlated resulting in only three diagonals in each block. With phase-locking
all the optical benches are correlated resulting in the blocks being full. This is the same

as in the time domain.

6.2.1.2 The effects of static arm lengths

The arm lengths occur as phase shifts in the spectra and so they affect the values in
the blocks. With equal arm lengths the values that will show major changes from the
unequal arms are those that include differences of offsets which only occur with phase-
locking. For example, for space-craft locked lasers the cross-power spectral density for

o2mif(D1—Ds)

s1 and sy is 07, which becomes ¢2, with equal arm lengths. The same is

true for all locked lasers where the cross-power in Equation 6.38 which is

Sz] — 0_}2} [e—QWif(Dk—Di) - 6—271’1'ka o 627rifDi + 1:|’ (639)
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which becomes

Sij = 02[2 — e PP — 2P (6.40)

The effects of directionally dependent arm lengths

The directional dependence of the arm lengths will mean that the equations will contain
offsets reflecting the directional differences indicated by D, and D,.. The only set that
will show changes in the structure of the equations is the cross-power between the optical
benches at the ends of each arm when the lasers are all locked. The equation for these

is given by Equation 6.37 which is
Sij = oa[2 — e 2Pk — 2T Pr] (6.41)
With directional dependence this becomes

Slj(f) — 012) [e—Qﬂif(Dk—Dk/) . 6—27rika . e?m’ka/ + 1:| (642)

6.2.1.3 The effects of the noise variances

As in the time domain the values of the variances determine values of the power and
not the location of the correlations. The differences in their values will be reflected in

the values in the blocks.

6.2.1.4 Time varying arm lengths and non-stationarity

Recall that the Fourier transform of a time series with an offset is given by

Flsi(t — D)] = /_00 si(t — D)e 2™t (6.43)

o0

Letting u = t— D will give t = u— D and dt = du which when substituted into Equation
6.43 gives

o0

Flsi(u)] :/_ si(u)e 2 w=D) gy,

[e.e]

= / si(u) e 2T e 72D gy, (6.44)

—2mifD

When D is constant the exponential term e will also be constant for each value

of f and can be taken out of the integral giving

Flsi(u)] = e 2™/P /_00 si(u) e ™ dy (6.45)

o0



197 Chapter 6. Principal components for more realistic LISA data

where the term in the integral is the Fourier transform of s;(u), therefore
Flsi(w)] = e P 5(f). (6.46)
For time dependent offsets D(t) Equation 6.43 becomes

Flsi(t — D(t))] = /_Oo si(t — D(t))e >t dt, (6.47)

o0

With u =t — D(t) then t = u — D(t) and dt = du giving

Flsi(u)] :/ si(u)e_me(“_D(t))du

[e.e]

:/ si(u)e 2mifu g=2mifD®) gy (6.48)

o0

where the exponential term with the time offset is no longer a constant value and
therefore cannot be taken out of the integral. In computing the power spectral densities
it is easier to combine it with the non-stationarity.

In dealing with non-stationarity it is easier to view the power spectral densities
through the Wiener-Khinchin theorem [47] where it is the Fourier transform of the

auto-covariance function C,,(7) which for the continuous case van be written as

:/ Coe(T) e 2T dr (6.49)

=00

where 7 is the lag and each contribution to a frequency bin is the sum of all the lag values.
This can be extended to cross-power spectral densities S,,(f) and cross-covariances

Cyy(T) to give

Say(f) = FlCay(7)]
:/ Coy () e 2™ qr. (6.50)

=00

The covariance function will include the time dependent arm lengths and variances and
since each frequency value is the sum of all the lag values the variations will not be

visible in the spectra. They will be averages of all the time values.

6.2.1.5 Summary

With the toy model there are no correlation between frequencies and the power spectral
density matrix is a block diagonal. The phase-locking has the same effects as in the

time domain and increases the density of the blocks. The arm lengths do not define
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Figure 6.12: Raw data power spectral densities for the first block when the frequency is equal to zero
showing the contributions for the all blocks in the matrix for all three phase-locking options. Values
for some of the blocks are given on the right.

the structure of the matrix as in the time domain as they appear as phase shifts which
determines the values in the blocks and not the locations of the correlations in the

blocks. Also, the variances determine the values of the power.

6.2.2 Results

Although in the power spectral density matrices the blocks have small sizes of 6 x 6
which should be possible to solve algebraically the exponential terms occurring in the
some of the power spectral densities increases the complexity of the matrix and the
increases the computation times. This means that solutions are obtained as was done
in the time domain.

An interesting feature in the matrices is the structure of the zero frequency block
for the different phase-locking options. These are given in Figure 6.12 where all the
exponential terms disappear and their values are all real. The most striking being the
block for all locked lasers where all the laser phase noises cancel leaving only the main

diagonal which contains only photodetector noises. For example, for zero frequency
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Equations 6.36 and 6.37 with for the equal arm lengths become
Si(f) =o02[2—e" =] + 02, =0,

Sii(f) =02]2— € —€°] =0, (6.51)

leading to cancellaion of the laser phase noises.

6.2.2.1 The effects of laser phase-locking

In Figure 6.13 the absolute values of the power spectral density matrices for the three
phase-locking options are given. The arm lengths are all equal with values of D = 16.3
and the noise variances are 012) = 1000 and o2 =1 for the laser phase and photdetector
noises, respectively. The matrices show the expected differences between the densities
of the blocks for the independent and phase-locked lasers. The cancellation of the laser
phase noises is seen in the first block (f = 0) for all locked lasers. For all the other
blocks the values away from the main diagonal are all the same differing from the main
diagonal by 1.

The eigenvalues for these matrices are given in Table 6.9 in columns 3 to 8 where
they are grouped by blocks with the block numbers given in column 2. As in the time
domain the values that are assumed to be due to only photodetector nosies are those
that are equal to their values. The results mostly reflect those of the time domain for the
corresponding covariance matrices with the phase-locked lasers providing the splitting of
the eigenvalues into groups with and without laser noises. However, for the independent
lasers the first block differs from the rest of the blocks in that it also produced the two
groups of values. Also, the tenth block contains three values of 9 which are close to
the photodetector noises and could also be free from laser noise. For the case where all
the lasers are locked, the first block which contains only the photodetector noises has
eigenvalues that are equal to their values with no further decomposition occurring.

As in the time domain, the number of eigenvalues increased with the number of
lasers that are phase-locked. Ignoring the first blocks, the number of laser phase noise
free values are 3 and 5 for spacecraft locked and all locked lasers, respectively. Also,
note the large separations between the two sets of values with the only exceptions being

the tenth blocks of the phase-locked options.
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Figure 6.13: Sample power spectral density matrices for phase-locking options of (a) none, (c) spacecraft
locked and (e) all locked with equal arm lengths of D = 16.3. The laser phase and photodetector noise
variances are 012) = 1000 and 02 = 1, respectively. Values for some of the blocks are given on the right.
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Table 6.9: Frequency domain eigenvalues for the different phase-locking options with equal of D = 16.3
and unequal arm lengths of D = {15.3,16.3,17.3}. The laser phase and photodetector noise variances
0?, = 1000 and o2 = 1, respectively.

Phase-locking  Block Eigenvalues
Equal arms Unequal arms

None 1 1 1 1 4001 4001 4001 1 1 1 4001 4001 4001
2 1673 1673 1673 2329 2329 2329 1106 1673 1733 2270 2329 2896
3 108 108 108 3894 3894 3894 73 108 0801 3201 3894 3929
4 1053 1053 1053 2949 2949 2949 33 1053 1215 2787 2949 3969
5 419 419 419 3583 3583 3583 284 419 1440 2562 3583 3718
6 535 535 535 3467 3467 3467 535 535 0754 3248 3467 3467
7 899 899 899 3103 3103 3103 129 619 0899 3103 3383 3874
8 174 174 174 3828 3828 3828 174 383 1792 2210 3619 3828
9 1498 1498 1498 2504 2504 2504 316 1053 1498 2504 2949 3686
10 9 9 9 3993 3993 3993 9 129 0284 3718 3874 3993
11 1852 1852 1852 2150 2150 2150 1556 1852 1852 2151 2151 2446

Spacecraft 1 1 1 1 1 6001 6001 1 1 1 1 6001 6001
2 1 1 1 3346 4329 4329 1 1 1 3104 3836 5063
3 1 1 1 2108 2108 7786 1 1 1 1833 2802 7368
4 1 1 1 3053 3053 5896 1 1 1 1445 4581 5977
5 1 1 1 837 5583 5583 1 1 1 1929 3442 6632
6 1 1 1 1069 5467 5467 1 1 1 2459 2754 6790
7 1 1 1 2899 2899 6205 1 1 1 1072 5021 5909
8 1 1 1 2174 2174 7655 1 1 1 1662 3794 6548
9 1 1 1 2995 4504 4504 1 1 1 2247 3580 6176
10 1 1 1 17 5993 5993 1 1 1 0278 5703 6022
11 1 1 1 3702 4150 4150 1 1 1 3556 3917 4530

All 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 10035 1 1 1 1 1 10093
3 1 1 1 1 1 23357 1 1 1 1 1 22041
4 1 1 1 1 1 17687 1 1 1 1 1 16260
5 1 1 1 1 1 2508 1 1 1 1 1 6525
6 1 1 1 1 1 3204 1 1 1 1 1 8631
7 1 1 1 1 1 18612 1 1 1 1 1 13224
8 1 1 1 1 1 22964 1 1 1 1 1 12001
9 1 1 1 1 1 8982 1 1 1 1 1 12470
10 1 1 1 1 1 49 1 1 1 1 1 15196
11 1 1 1 1 1 11104 1 1 1 1 1 12293

6.2.2.2 The effects of different static arm lengths

This section will also include the directional dependence of the arm lengths as they are
modeled using static values giving six different arm lengths. The absolute values of the
power spectral density matrices for arm lengths of D; = {15.3,16.3,17.3} are given in
Figure 6.14 where the matrix with the most changes is the one for all locked lasers. The
matrices for the directional values D; = {15.3,14.3,17.3,16.3,19.3,18.3} are given in
Figure 6.15.

The eigenvalues for the D; = {15.3,16.3,17.3} are given in columns 9 to 14 of Table
6.9 where they show the same pattern as for equal arm lengths. Ignoring the first block
of the independent lasers, the splitting of the values into the two groups is linked to the
phase-locked lasers with large separations between their values. The numbers of laser
noise free eigenvalues are the same as for equal arms with 3 and 5 for spacecraft and

all locked lasers, respectively. For the independent lasers, as for equal arm lengths, the



202

Chapter 6. Principal components for more realistic LISA data

0000 0048 0095 0.143 0190 0238 0286 0333 0381 0429 0476

2000

g Su,u 52,2
oo o i g 1 e 2001 0 0 2000 0 0 | 2001 0 0 1200 0 0
voiel : d | 0 2001 0 0 2000 0 0 2001 0 0 1893 0
= o 0 0 201 0 0 200| 0 0 20 0 0 1928
noes - . pemh 11 oo 2000 0 0 2001 0 0| 1200 0 0 2001 0 0
ol Lt L ) o] 0 2000 0 0 2001 0 0 1893 0 0 2001 0
L 120 0 0 2000 0 0 2001 0 0 1928 0 0 2001
0.190 B - ~
0zl Y . i 70 St S
. : o 2001 0 0 895 0 0 | 2001 0 0 1968 0 0
o2ms) ke 1 0 2001 0 0 328 0 0 2001 0 0 948 0
. : - 0 0 2001 0 0 268 0 0 2001 0 0 786
= o 1 895 0 0 2001 0 0| 1968 0 0 2001 0 0
ool " | e 0 328 0 0 2001 0 0 948 0 0 2001 0
0 0 268 0 0 2001 0 0 786 0 0 2001
04291 4 200
st
S N WS W S S BN+ .

0000 0048 0095 0.143 0190 0238 0266 0333 0381 0429 0476

0048

0035

0143

0190

023}

0286

0333}

0381}

0429

2000

N T U U N U U oo S S00 S22
H : 2001 1000 1000 2000 1000 1000 | 2001 1000 1000 1200 1000 1000
: 1 o 1000 2001 1000 1000 2000 1000 | 1000 2001 1000 1000 1893 1000
ﬁ : 1000 1000 2001 1000 1000 2000 | 1000 1000 2001 1000 1000 1928
ﬂ | | 1400 2000 1000 1000 2001 1000 1000 | 1200 1000 1000 2001 1000 1000
: 4 1000 2000 1000 1000 2001 1000 | 1000 1893 1000 1000 2001 1000
ﬁ 1200 1000 1000 2000 1000 1000 2001 | 1000 1000 1928 1000 1000 2001

ﬂ : | 1000 Six Sus
ﬂ : 500 2001 1000 1000 895 1000 1000 | 2001 1000 1000 1968 1000 1000
1 1000 2001 1000 1000 328 1000 | 1000 2001 1000 1000 948 1000
E | e 1000 1000 2001 1000 1000 268 | 1000 1000 2001 1000 1000 786
ﬂ 895 1000 1000 2001 1000 1000 | 1968 1000 1000 2001 1000 1000
8l [ 1000 328 1000 1000 2001 1000 | 1000 948 1000 1000 2001 1000
ﬁ o0 1000 1000 268 1000 1000 2001 | 1000 1000 786 1000 1000 2001

0000 0048 0095 0.143 0190 0233 0286 0333 0381 0429 0476
T T T T

(c) (d)

So0 Ss.g
1 0 0 0 0 0]3686 2349 1969 3685 2349 1969
0 1 0 0 0 0]2349 1498 1255 2349 1497 1255

0.000F

00481

0.095 -

0.1431

0.190F

0238

02861

03331

0381

04291

0476

: 0 0 0 1 0 03685 2349 1969 3686 2349 1969
. : 1k oo 0 0 0 0 1 0] 2349 1497 1255 2349 1498 1255
: foed 0 0 0 0 0 111969 1255 1052 1969 1255 1053
13000
] 51,1 So.0
I - 1106 1360 1584 1105 1360 1584 | 3718 173 3794 3717 173 3794

0 0 1 0 0 01969 1255 1053 1969 1255 1052

1360 1673 1948 1360 1672 1948 | 173 9 177 173 8 177
7 om0 1584 1948 2269 1584 1948 2268 | 3794 177 3873 3794 177 3872
1 1105 1360 1584 1106 1360 1584 | 3717 173 3794 3718 173 3794
F 1360 1672 1948 1360 1673 1948 | 173 8 177 173 9 177

1500

m R 1584 1948 2268 1584 1948 2269 | 3794 177 3872 3794 177 3873

H 100 Sa2 S1o,10
1 3201 3529 3545 3200 3529 3545 | 1852 1851 2127 1851 1851 2127
ﬁ 500 3529 3894 3910 3529 3893 3910 | 1851 1852 2127 1851 1851 2127
¢ g g - 3545 3910 3929 3545 3910 3928 | 2127 2127 2446 2127 2127 2445
i L 1 i L i L 1 o 3200 3529 3545 3201 3529 3545 | 1851 1851 2127 1852 1851 2127

Figure 6.

3529 3893 3910 3529 3894 3910 | 1851 1851 2127 1851 1852 2127
3545 3910 3928 3545 3910 3929 | 2127 2127 2445 2127 2127 2446

() (f)

14: Sample power spectral density matrices for unequal arm lengths of D = {15.3,16.3,17.3}

for phase-locking options of (a) none, (c) spacecraft locked and (e) all locked. The laser noise and

photodet

ector noise variances are 012) = 1000 and 02 = 1, respectively.
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Table 6.10: Frequency domain eigenvalues for directionally dependent arm lengths with values of
D ={15.3,14.3,17.3,16.3,19.3, 18.3} for lasers that are (a) independent, (c) spacecraft locked and (e)
all locked. The laser phase and photodetector noise variances are O’% = 1000 and o2 = 1, respectively.

Phase-locking Block Eigenvalues

None 1 1 1 1 4001 4001 4001
2 419 1383 1440 2562 2619 3583
3 316 383 1498 2504 3619 3686
4 383 495 1215 2787 3507 3619
5 254 1160 1383 2619 2842 3748
6 1 23 23 3979 3979 4001
7 619 1383 1733 2269 2619 3383
8 174 383 1792 2210 3619 3828
9 383 708 950 3052 3294 3619
10 129 899 1383 2619 3103 3873
11 1 90 90 3912 3912 4001

Spacecraft 1 1 1 1 1 6001 6001
2 1 1 1 2393 3682 5928
3 1 1 1 1473 4306 6224
4 1 1 1 1581 4157 6265
5 1 1 1 1919 4099 5985
6 1 1 1 1091 3118 7795
7 1 1 1 2382 4178 5442
8 1 1 1 1662 3793 6548
9 1 1 1 2221 3154 6629
10 1 1 1 1600 4319 6084
11 1 1 1 793 3711 7499

All 1 1 1 1 1 1 1
2 1 1 1 1 1 8759
3 1 1 1 1 1 17353
4 1 1 1 1 1 13619
5 1 1 1 1 1 12477
6 1 1 1 1 1 14868
7 1 1 1 1 1 12619
8 1 1 1 1 1 12001
9 1 1 1 1 1 13360
10 1 1 1 1 1 11383
11 1 1 1 1 1 11131

first block differs from the rest producing the two groups of eigenvalues. Also, the tenth
block the low value of 9 still appears but only once.

The eigenvalues for the directionally dependent arm lengths are given in Table 6.10.
Again the results are similar to those of the previous case with the space-craft locked
lasers being the ones that, in general, produced the two groups of eigenvalues with large
separations between their values. The numbers of the laser noise free values are the
same being 3 and 5 for spacecraft and all locked laser, respectively. For the independent
the first block is still the exception for that option but now there are other 1’s occurring
in blocks 6 and 11. Also, in these two blocks there are values of 23 and 90 which again

could be associated with photodetectors noises.
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Figure 6.15: Sample power spectral density matrices for directionally dependent arm lengths with
values of D = {15.3,14.3,17.3,16.3,19.3,18.3}. The laser phase and photodetector noise variances are
012, = 1000 and o2 = 1, respectively.
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Figure 6.16: Sample power spectral density matrices for different laser noise variances of 012, =

{900, 1200, 1500, 1800, 2100, 2400} for independent lasers and 012, = {900, 1500,2100} for spacecraft

locked lasers. The photodetector noise variances is ¢2 = 1 and the arm lengths are D =

{15.3,16.3,17.3}.

6.2.2.3 The effects of the noise variances

In this section the results for the effects of different values for the noise variances and
of small separations between the two noise types are given. For the case of different
variances this was done for each noise type separately. The variances used for the laser
phase noises were agi = {900, 1200, 1500, 1800, 2100, 24000} for no phase-locking and
o2 = {900, 1500, 21000} for spacecraft locked lasers with ¢ = 1. For different photode-

tector noises the values used were o2, = {1,2,3,4,5,6} with the laser phase noise vari-

ance with the same values of o2 = 1000. The offsets used were D; = {15.3,16.3,17.3}.
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Table 6.11: Frequency domain eigenvalues for different laser phase and photodetector noise variances.
In columns 2-7 the laser phase noises are o2 = {900, 1200, 1500, 1800,2100,2400} for independent

P
lasers and 012, = {900, 1500, 2100} for spacecraft locked lasers. In both cases the photodetector noise
variances are kept constant with values of 02 = 1. In columns 8-13 the photodetector noises are

02 ={1,2,3,4,5,6} and laser phase noise variances are kept constant with values of 0'12) = 1000.

Phase-locking  Block Eigenvalues
Different laser variances Different photodetector variances
None 1 1 1 1 5401 6601 7801 2 3 4 4003 4004 4005
2 1250 2262 2867 4152 4341 4935 1108 1676 1736 2273 2331 2897
3 134 165 929 4473 6437 7668 7 111 803 3202 3896 3932
4 40 1548 2159 5054 5363 5643 35 1056 1218 2791 2951 3970
5 521 633 1552 3850 5969 7281 288 421 1442 2563 3586 3721
6 629 806 1370 4773 5796 6432 536 537 758 3251 3469 3470
7 154 1129 1334 5249 5268 6674 130 622 902 3105 3387 3875
8 264 702 1763 3640 6338 7100 176 386 1793 2212 3623 3831
9 375 1890 2098 4504 5027 5912 317 1057 1500 2507 2952 3688
10 13 236 338 5064 6589 7566 12 132 286 3719 3877 3995
11 1781 2370 2667 3621 4232 5135 1559 1853 1854 2152 2153 2450
Spacecraft 1 1 1 1 1 6162 8240 2 3 4 5 6003 6004
2 1 1 1 3085 5050 6268 2 3 5 3107 3839 5065
3 1 1 1 2232 2992 9179 3 3 5 1835 2804 7371
4 1 1 1 1554 6228 6622 2 4 4 1448 4584 5979
5 1 1 1 2346 3590 8467 2 4 5 1931 3445 6635
6 1 1 1 2451 3670 8283 2 3 5 2462 2756 6792
7 1 1 1 1198 5850 7355 2 4 4 1075 5024 5912
8 1 1 1 1969 4052 8383 3 3 5 1664 3796 6550
9 1 1 1 2328 4667 7408 2 3 5 2250 3582 6178
10 1 1 1 320 5933 8150 2 4 5 280 5705 6025
11 1 1 1 3577 4561 6266 2 4 5 3559 3919 4533
All 1 1 2 3 4 5 6
2 1 2 4 4 6 10096
3 1 2 4 5 6 22044
4 1 3 3 5 6 16262
5 2 3 3 5 6 6526
6 1 2 4 5 5 8634
7 1 2 4 4 6 13227
8 1 3 3 4 6 12003
9 2 2 3 5 6 12472
10 2 2 4 5 5 15198
11 1 2 4 5 6 12296

The effects of different noise variances

The matrices for the different laser phase noises for the two phase-locking cases are
given in Figure 6.16 and those for the different photodetector noises are in Figure 6.17.
The eigenvalues for the matrices are given in Table 6.11. For both sets, the results
are the same as in the previous sections where the independent lasers did not produce
the two groups of values except for the first block. Also, for the spacecraft locked
lasers, the number of laser noise free eigenvalues is 3 for all blocks except the first with
large separations between their values and those with laser phase noises. For the case
with different photodetector noise variances the laser noise free eigenvalues reflect the

different values but not all are present for each block.
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Figure 6.17: Sample power spectral density matrices for different photodetector noise variances of
o = {1,2,3,4,5,6} with laser phase noises of g7 = 1000 for lasers that are (a) independent, (c)
phase-locked on each spacecraft and (e) all locked. The arm lengths used are D = {15.3,16.3,17.3}.
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The effects of small separation between the laser phase and photodetector

noise variances

As in the time domain the laser phase noise variances were reduced to values that
were close to the photodetector noises variances. Five combinations of variances were
used which are given in Table 6.12 along with the eigenvalues for 11 blocks. The power
spectral density matrix given in Figure 6.18 is the only one presented which corresponds
to the first set of variances in the table where the laser phase variances are aﬁ =9 and
the photodetector noises variances are o2 = 1. As in the previous cases the assumption
here is that the eigenvalues with same values as the photodetector noise variances will
be the ones that are assumed to be free from laser phase noise. The other eigenvalues
that are not equal to these are ignored especially because of the closeness in two types

of variances.

2

For the first set in Table 6.12 the variances are o

= 1 and crf) = 9 where the
closeness of the values does not affect the separation into the two groups which are still
be easily distinguished because of the reasonable differences between the two sets of
eigenvalues. Even when there is only a difference of 1 between the two noise variances
which is the second set of values in Table 6.12 the two groups of eigenvalues are still
obvious even though there has been a large drop on the differences between their values.
The same is true for the other three sets with separations between smallest laser phase
noise variance and the largest photodetector noise variances being difference of only 0.5

and 0.2. The Fourier transform sums all the values in the time series and this produces

larger separations in their values in the spectra.

6.3 Summary

In this section the aim was to determine how certain properties of LISA relating to its
noise covariance and power spectral density matrices affect the nature if the eigenvalues.
We were interested in finding out what would prevent the eigenvalues from splitting
into the two distinct groups related to those with and without laser phase noises. The
properties that were investigated are the phase-locking of the lasers, the arm lengths
and the variances of laser phase and photodetector noises. This was done in the time

and frequency domains which included summaries of the effects these properties on the
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Table 6.12: Frequency domain eigenvalues for small separations between the laser phase and pho-
todetector noise variances with the lasers locked on each spacecraft and with arm lengths of D =
{15.3,16.3,17.3}.

Set  Noise Variance Block  Eigenvalues

1 o2 =1,02=9 1 1 1 1 1 55 55
2 1 1 1 29 36 47
3 1 1 118 26 67
4 1 1 1 14 42 55
5 1 1 118 32 61
6 1 1 1 23 26 62
7 1 1 1 11 46 54
8 1 1 1 16 35 60
9 1 1 1 21 33 57
10 1 1 1 3 52 55
11 1 1 1 33 36 42

2 02 =1,02=2 1 1 1 1 1 13 13
2 1 1 1 7 9 11
3 1 1 1 5 7 16
4 1 1 1 4 10 13
5 1 1 1 5 8 14
6 1 1 1 6 7 15
7 1 1 1 3 11 13
8 1 1 1 4 9 14
9 1 1 1 5 8 13
10 1 1 1 2 12 13
11 1 1 1 8 9 10

3 02 =10,02=15 1 1.0 1.0 1.0 1.0 10.0 10.0
2 1.0 1.0 1.0 57 68 86
3 1.0 1.0 10 38 52 121
4 1.0 1.0 1.0 32 7.9 100
5 1.0 1.0 1.0 39 62 11.0
6 1.0 1.0 10 47 51 11.2
7 1.0 1.0 1.0 26 85 99
8 1.0 1.0 1.0 35 6.7 108
9 1.0 1.0 1.0 44 64 103
10 1.0 1.0 1.0 14 9.6 100
11 1.0 1.0 1.0 63 69 7.8

4 02,=1{08,09,1.0,1.1,1.2,1.3}, 62 = 1.5 1 09 10 11 1.2 100 10.1
2 09 10 12 57 68 86
3 1.0 10 12 38 53 121
4 09 1.1 11 33 80 10.0
5 09 11 12 39 6.2 11.0
6 09 1.0 1.2 47 52 11.2
7 09 1.1 11 27 86 9.9
8 1.0 1.0 1.2 35 67 109
9 09 10 12 44 65 103
10 09 11 12 15 96 10.1
11 09 11 12 64 69 79

5 02, ={0.8,09,1.0,1.1,1.2,1.3}, 02, = {1.5,1.6, 1.7} 09 10 1.1 1.2 102 11.1
09 10 1.2 58 75 90
1.0 1.0 12 40 54 129
09 11 1.1 34 88 103
09 1.1 1.2 41 64 118
09 10 1.2 48 56 119
09 1.1 1.1 28 93 103
1.0 1.0 12 37 69 117
09 10 1.2 46 7.0 108

E OO0 Uk W~

09 11 12 6.8 7.0 8.5

respective covariance and power spectral density matrices.

The overall results were that in both domains the property that had the major effect



210 Chapter 6. Principal components for more realistic LISA data

So.0 So9
9 9 9 18 9 9119 9 9 15 9 9
919 9 9 18 919 19 9 9 4 9
0.000 0.043 0,035 0.143 0,190 0.238 0,285 0.333 0.31 0.428 0478 9 919 9 9 189 919 9 9 9
: : 2 18 88 9 919 9 9115 9 9 19 9 9
0.000 H ........ ................ cood 9 18 9 9 19 9 9 4 9 9 19 9
ok ) : : : - 16 9 9 18 9 9 1919 9 9 9 9 19
UU%""""E .............. o 14 S S10.10
O 0 . w0 0ts 0
g E : : 919 9 9 3 919 19 9 9 18 9
ST 1] A b oo WA RS S T M——— e " 9 919 9 9 2/ 9 919 9 9 17
: : ﬁ : 8§ 9 919 9 9|15 9 9 19 9 9
075 e B ﬂ ‘ o 5 9 3 9 919 9[9 18 9 9 19 9
QBB oo b S I O 9 9 2 9 9 199 9 17 9 9 19

oo Tm
0333 R e U SEREEREERREE

: : : ﬂ g Sao St
0381 : g : ; 4 9 9 9 11 9 9 9

L . ] ] 19 9 19 9
: : ; ﬁ 919 9 917 9/ 919 9 9 1 9

oz : f st E K 9 919 9 9 17| 9 9 19 9 9 4
- - L S 1M 9 919 9 9/ 1 9 919 9 9
17 9 919 9/ 9 1 9 9 19 9

9 9 17 9 919, 9 9 4 9 9 19

(a) (b)

Figure 6.18: Sample power spectral density matrix for laser phase and photodetector noise variances of
ag =9 and 02 = lrespectively. The arm lengths are D = {15.3,16.3,17.3} with the lasers phase-locked
on each spacecraft. The values shown on the right are for some of the blocks of the matrix.

on the splitting of the eiegenvalues into the two distinct groups was the phase-locking
of the lasers. When the lasers were all independent (no phase-locking) no laser phase
noise free eigenvalues were obtained. The other properties were mostly tested with the
three phase-locking options and the results did not change for the independent lasers,
that is, the other properties did not override this result. For the noise variances, having
different and real values just led to the eigenvalues reflecting these values which was
also true for time varying variances. When the laser phase and photodetector noise
variances had values that were close the two groups were still produced but being able
to distinguish between them depended on how close their values were. In general it
easier to do this in the frequency domain. More detailed summary of the results for

each domain are given in the following sections.

6.3.1 Time domain

The structure of time domain covariance matrix in terms of the locations of its values
is determined by the type of laser phase-locking and by the arm lengths. The phase-
locking determines the number of correlations that occur between the optical benches

therefore, defined the density of the blocks while the arm lengths determine the location
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Table 6.13: Summary of the laser noise free eigenvalues in the time domain for the matrices with time
values of t = {0, ..., 23}.

Property Option Number of eigenvalues
None Spacecraft  All
Arm lengths Equal 0 40 120
Unequal 0 28 104
Directional 0 20 102
Time varying 0 18 102

Variances Unequal laser 0 29 -
Unequal photodetector 0 29 104

Variable (both) - 29 -

of the blocks within the matrix. The values of the entries are determined by the noise
variances.

It was discovered that the property prevented the splitting of the eigenvalues into the
two groups was the absence laser phase-locking, that is the covariance matrices for inde-
pendent lasers did not produce any laser noise free eigenvalues. The behaviour/nature
of the arm lengths and noise variance did not override this result. A summary of the
eigenvalues for the different options investigated is given in Table 6.13. With phase-
locking the number of these values increased with the number of locked lasers but they

decreased with the increase in the number of different values for the arm lengths.

6.3.2 Frequency domain

In the toy model there are no correlations between the different frequencies and the
power spectral density matrices are all block diagonals. As in the time domain the
laser phase-locking determines the number of correlations between the optical benches
readings which is reflected in the structure of the individual blocks. It is also the
property that determines the location of the correlations within each block. The arm
lengths appear as phase shifts in the power spectra therefore contribute in the blocks
along with the noise variances. The contributions to each frequency in the spectra is the
sum of the time domain values therefore, the time varying arm lengths and variances
do not have the same effects on the power spectral density matrix as they do in the
covariance matrix.

In general the results reflect those of the time domain in terms of what prevents the
splitting in to the two groups of eigenvalues but with a few quirks. The property that

prevented the splitting in to the two groups is the absence of phase-locking. However,
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Table 6.14: Summary of the eigenvalues in the frequency domain for the different options.

Case Block Number of eigenvalues
Number None Spacecraft All

Generally 1 3 4 6
2-11 0 3 5

For directionally dependent arms 1 3 4 6
2-5,7-10 0 3 5
6, 11 1 3 5

note that the first blocks of the matrices where the frequency is zero have slightly
different properties than the other blocks. So the absence of laser noise free eigenvalues
for the power spectral density matrices with independent lasers excludes the first block.
As in the time domain the nature of the variances did not override the results for
independent lasers nor did change the number of eigenvalues. The arm lengths mostly
followed this pattern however, with the directionally dependent values there were a few
laser noise free eigenvalues appearing in two of the blocks for the non zero frequencies.
Also the number of laser noise free eigenvalues seem to be defined by the phase-locking
where they were greater for all locked lasers. A summary of the eigenvalues is given in
Table 6.14 where they are all grouped since the numbers did not change for the different
properties with the exception of the directionally dependent arm lengths which is shown

separately.



Chapter 7

Conclusions

Space-based laser interferometer gravitational detectors will allow observations below
1 Hz which is out of the range of ground-based systems due to limitations caused
by gravity gradient noises and restrictions on the physical arm lengths. LISA was
the original NASA-ESA design for a space-based detector consisting of three satellites
that maintain a nearly equilateral triangle formation with sides of 5 x 10° m as they
orbit the Sun in a location that is about 20° behind the Earth. The time varying
unequal arm lengths coupled with the significant travel times between the spacecraft
prevents the cancellation of the overwhelming laser phase noises by the methods used
in ground-based interferometers. This was resolved with the time delay interferometry
observables which are linear combinations of the raw data with appropriate time offsets
that result in their cancellation. The conventional way of doing LISA analysis is through
these observables which have to be generated before any weak signal extraction can be
performed. However, another way of obtaining the sensitivity for the data was presented
by Romano and Woan that allowed it to be accomplished during signal extraction which
was achieved by performing a principal component analysis of the raw data. They
illustrated how this provided two distinct groups of eigenvalues that were distinguished
by the absence of laser phase noises in one set, the target group, which could be used
to factorise the likelihood function used in the Bayesian inference. Their investigations
were done in the time domain using a small covariance matrix with integer values for
times, arm lengths and noise variances.

In this thesis we implemented the principal component approach using a toy model
of LISA based on a static rigid array with unequal integer arm lengths and with data
consisting of a simple sinusoidal signal, laser phase noises and photodetector noises.
The analysis was done in the time and frequency domains and, for comparing of the
results, we also performed the analysis using the conventional approach with the fre-
quency domain optimal AET observables. The principal components are obtained from

the noise (data) covariance and power spectral matrices therefore, in testing how this
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method handled real LISA data we focused on the properties of LISA that affect them
including the laser phase-locking, arm lengths and noise variances. We were interested
in how the method adapted to time varying arms as this proved to be the breaking
point of some of the traditional time delay interferometry observables. We were also
interested in what could prevent the occurrence of the laser noise free eigenvalues as
this is necessary for the success of this method. Romano and Woan found that it was
possible to use the eigenvectors of the principal components to generate one of the time
delay interferometry observables suggesting a connection between them therefore this
was also investigated.

For testing the connection between the principal components and the TDIs we used
a small covariance matrix in order to obtain exact solutions using algebraic methods.
From this we were able to generate the four Sagnac observables for different times from
the time domain eigenvectors and also the AET observables from the frequency domain
eigenvectors which indicates that this method is just another way of obtaining the time
delay interferometry observables. The difference is that the observables generated in
this manner are tied to the length of the data and are not general expressions like the
traditional observables, for example, Sagnac «(7) and «(8) were generated from different
sets of eigenvectors. Also, multiple eigenvalues that are free from laser phase noises are
produced with this method which means that it allows the simultaneous generation of
many time delay interferometry observables.

The property that prevented the generation of the eigenvalues that were free from
laser phase noises was the absence of phase-locking. This was also true for the frequency
domain but with some exceptions with the zero bin. For the separation between the
values of the variances of the two noises this was reduced to 0.2 and this did not prevent
the two distinct groups but it was more difficult to distinguish between them. However,
the reason for the time delay interferometry observables is the size of the laser phase
noises which result in the weak signals being overwhelmed, therefore, if the values are
reduced to the levels of the secondary noises which are close to the signals this is no
longer an issue and their cancellation would no longer be required. In terms of the time
varying arm lengths, this did not affect this method in the same way that it does the
traditional time delay interferometry observables. In this method the variations will

appear in the covariance matrix and from our toy model investigations this did not
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prevent the occurrence of the eigenvalues with no laser phase noises.

For the signal detection we performed an amplitude search for a simple sinusoidal
gravitational wave and obtained the same accuracy and precision as that acquired using
the conventional approach with the time delay interferometry observables. The sugges-
tion by Romano and Woan was to factorise the likelihood with analysis done only on
the laser noise free data however, we found that this was not required as the size of the
laser phase noises meant that the inverse reduced their contribution in the transformed
data. The signal extraction process uses templates of the signals which depend on the
structure of the data used and for real LISA data the minimum number of terms in the
geometric observables is 16. The principal component approach uses the raw data that
contain only two copies of the signal in the raw data. The laser phase noise free data,
the time delay interferometry observables, are obtained by transforming the raw data
using the eigenvectors.

The overall results are that (i) the principal components approach is another way of
producing the time delay interferometry observables which are obtained from the eigen-
decomposition of the covariance matrix, (ii) analysis using these principal components
produced the same results as the conventional time delay interferometry observables
and (iil) this approach adapts readily to real LISA data especially in dealing with time
varying arms. The advantage of this method is that it simplifies LISA data analysis
by incorporating the laser noise cancellation in the statistical inference achieving the
same results as the conventional approach. Future work could include a real test of the
method by applying it to the more realistic data of the Mock LISA Data Challenges.

This method depends on capturing the variances and covariances in the data which
defines the principal components therefore, the covariance matrix must match what is
occurring in the data. In our investigation these were generated algebraically based on
assumptions made about the noise characteristics and behaviour. One of those assump-
tions was Gaussian distributed noises which are completely defined by the covariance
matrix therefore, this could be a problem for distributions for which this does not occur.
Determining the noise characteristics and behaviour is also a problem with the tradi-
tional time delay interferometry observables. However, for these observables there are
some that will have low responses to gravitational waves, zero signal observables, that

would provide information about the noises. One other option is to include a search on
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(a) (b)

Figure 7.1: Samples of the raw data covariance and power spectral density (absolute) matrices for
spacecraft phase-locked lasers and equal arm lengths.

the noise characteristics in the inference. Another major problem, which is also shared
with the conventional approach, is the matrix inversion. The PCA has the advantage of
diagonalising the covariance matrix which is trivial to invert but the problem is trans-
ferred to the eigendecomposition. However, for the algebraic solution the characteristic
equation only requires the determinant of the covariance matrix while the inversion also
uses the matrix of cofactors. In the time domain the computation times for the eigen-
decomposition of the matrix using algebraic solutions scales very badly with the size of
the matrix, for example, it took approximately 9 h to obtain results for a 90 x 90 matrix
which just covers a time span of 15 s. Computation times using numeric solutions scaled
better with time but overall they were still slow, for example, it took 7 m to compute a

18000 x 18000 (50 m) square matrix which is extremely small for the size of LISA data.

7.1 Future work

Potential for future work is on the eigendecomposition of these large matrices which is
essential for the principal components and would also be useful for the matrix inversion
for the conventional approach. The covariance matrix has non-zero contributions that
are restricted to narrow bands near the main diagonal which will not change in width
with the increase in the size of the matrix. The bandwidth will change slightly with

the temporal changes but will not go beyond the maximum that reflects the 1% change
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due to flexing. Samples of the matrices in the time and frequency domains in Figure
7.1 are for static stationary array with the laser phase-locked on each spacecraft and
equal arm lengths. While for full matrices computing the determinant is non-trivial, the
sparseness of LISA’s covariance matrix could lead to simplification of the computation.

The determinant is in the characteristic equation used for algebraic solutions which is
|IC— M| =0, (7.1)

where C is the covariance matrix and [ is the unit matrix. The traditional way to
compute the determinant is to use one row or column of the matrix. Using the first
with elements given by c;; the equation for computing the determinant from Petersen

and Pederson [48] is

n

det(C) = > (—1)*'¢y; det([C]y;) (7.2)

j=1
where [C];; is a smaller matrix obtained from C by deleting the row 1 and column j.
For LISA most of the elements in the row are zero with a possible maximum of D; — D;
band near the main diagonal and the D;. There will also be zeros within the band as
shown in Figure 7.1a and the quantity will depend on the lengths of the arms, phase-
locking and sampling rate. In that example there are only five non-zero values. Also,
because the determinant is a sum of the values computed for each element in the first
row as given in Equation 7.2, there is the opportunity for parallel computation with the
values for each element c;; computed separately and then summed.

Other possibilities are from transforming the matrix into forms that have trivial
solutions for the determinant such as diagonal and triangular matrices or have closed
form solutions such as tridiagonal matrices. A block diagonal structure was obtained
in the frequency domain for our toy examples as shown in Figure 7.1b where eigende-
composition it allowed the decomposition to be performed on individual blocks. This
structure was obtained because of the assumption of the lack of correlations between
frequencies. In theory the small size (6 x 6) should allow algebraic solutions with rea-
sonable times but this depended on the values in the blocks which includes exponential
terms. Despite this the partitioning allows parallel computation which can also be used
for numeric methods. The diagonal structure of the matrix will be lost if there are
correlations between the frequencies and the problems will be similar to those of the

time domain.
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(b) (c)

Figure 7.2: Matrix partitioning possibilities for the covariance matrix. The small blocks represent the
6 x 6 blocks for the optical benches and the larger red and yellow blocks are the partitions. This would
represent the case for equal arm lengths and all lasers phase-locked with the separations between the
diagonals reduced for illustration.

Other ways of obtaining the diagonal and tridiagonal structure is by partitioning the
matrix into blocks. Unfortunately, there is no way to partition the covariance matrix
to obtain independent blocks. This is illustrated in Figure 7.2b which would represent
the case of equal arm lengths and all lasers phase-locked. The separation between the
diagonals have been reduced for illustrative purposes. In this figure the small blocks in

the matrices represent the 6 x 6 blocks of the covariance matrices with the blue ones
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indicating non-zero values and the coloured squares are used to show the partitioning.
The only possibility for diagonal solution is with overlapping blocks Figure 7.2a. This
could be investigated to determine if there is a solution that will account for the shared
blocks. In this illustration the small size of the partition made the overlap large but
with large blocks the contribution from each block will be reduced.

For the tridiagonal case which are illustrated in Figures 7.2b and 7.2c giving three
types of blocks including those centred on the main diagonal, those next to the main
diagonal, and the others which will all be zero. A simple example is for a matrix
consisting of the four blocks in Figure 7.2c where the determinant is given by Petersen

and Pederson [48] as

Ay A
det( oo ) — det(As,) - det(Cy) = det(Ayy) - det(Cs), (7.3)
A21 A22

where

Ci=An — ApAy Ay,
CQ - A22 - AQlAfllAlg, (74)

with possibility of checking how this expanded to the larger matrix. There are methods
that take advantage the symmetric structure and give closed form solutions such as that
given for symmetric banded Topelitz matrices by Trench [74] with solutions related to
the bandwidth and both the matrix size. Also, there are solutions for general block
tridiagonal matrices [56] but require nonsingular blocks which can be avoided by par-
titioning the matrix allow for this. These cases will only work for some simplification
of LISA such as fixed arm lengths, however, they may still be useful depending on how
much the breathing of the arms affect the matrix structure which will depend on the

phase-locking and sampling rate.



Bibliography

1]

[10]

[11]

ABBOTT, B. P., ET AL. GW150914: The Advanced LIGO Detectors in the Era
of First Discoveries. Phys. Rev. Letters 116, 131103 (2016).

ABBOTT, B. P., ET AL. GW151226: Observation of Gravitational Waves from
a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Letters 116, 241103
(2016).

ABBOTT, B. P., ET AL. Observation of Gravitational Waves from a Binary Black

Hole. Phys. Rev. Letters 116, 061102 (2016).

Apams, M. R., AND CORNISH, N. J. Discriminating between a stochastic gravi-

tational wave background and instrumental noise . Phys. Rev. D 82, 022002 (2010).

ANDRAE, R. Error estimation in astronomy . arXiv:1009.275503 (October 2010).
DOI:10.1016/S0003-4916(02)00025-8.

ARMSTRONG, J. W., ESTABROOK, F. B.; AND TINTO, M. Time-delay Interfer-

ometry for Space-based Gravitational Wave Searches. Ap. J. 527 (1999), 814.

ARMSTRONG, J. W., ESTABROOK, F. B., AND TINTO, M. Time delay Interfer-

ometry. Class. Quantum Grav. 20 (2003), S283.

ARNAUD, K. A., ET AL. An Overview of the Mock LISA Data Challenges. AIP
Conf. Proc. 873 (2006), 619.

BABAK, S., ET AL. The Mock LISA Data Challenges: from Challenge 1B to
Challenge 3 . Class. Quantum Grav. 25, 184026 (2008).

BENDER, P., ET AL. LISA: Laser Interferometer Space Antenna for the detection
and observation of gravitational waves. LISA: Pre-Phase A Report MP(Q 233,
NASA, July 1998.

BENDER, P., ET AL. LISA: A cornerstone mission for the observation of grav-
itational waves. System and Technology Study Report ESA-SCI(2000)11, ESA,
2000.

220



221

Bibliography

[12]

[17]

[18]

[19]

[20]

23]

[24]

[25]

BErRry, C. P. L., AND GAIR, J. R. Observing the Galaxy’s massive black hole
with gravitational wave bursts. MNRAS 429 (2013).

BrAIR, D. G., Ju, L., ZHAO, C., AND HOWELL, E. J. Gravitational Waves. In

Advanced Gravitational Wave Detectors. Cambridge Books Online, 2015.
BouwMm, D. The Special Theory of Relativity. Routledge, 1996.

Box, G. P., AND Tiao, G. C. Bayesian Inference in Statistical Analysis.
Addison-Wesley Publishing Co., 1973.

BRETTHORST, G. L. Bayesian Spectrum Analysis and Parameter Estimation. In

Lecture Notes in Statistics, vol. 48. Springer, 1988.

CHENG, T.-P. Relativity, Gravitation and Cosmology. Oxford Scholarship Online,
February 2010.

CornNisH, N. J. Gravitational Wave Confusion Noise. arXiv:gr-qc/030402v1
(April 2003).

CornisH, N. J., AND CROWDER, J. LISA data analysis using Monte Carlo
methods. Phys. Rev. D 72, 043005 (2005).

CornisH, N. J., AND HELLINGS, R. W. The effects of orbital motion on LISA

time delay interferometry. Class. Quantum Grav. 20 (2003), 4851.
CRAMER, B., STEBBINS, R. T., AND PRINCE, T. A. Tech. rep.

CROWDER, J., AND CORNISH, N. J. LISA Source Confusion. Phys. Rev. D 70,
082004 (2004).

DHURANDHAR, S. V., NAvak, K. R., KosaTi, S., AND VINET, J.-Y. Funda-

mentals of the LISA stable flight formation. Class. Quantum Grav. 22.

DHURANDHAR, S. V., NAvAk, K. R., AND VINET, J.-Y. Algebraic approach to

time-delay data analysis for LISA. Phys. Rev. D 65, 102002 (May 2002).

DWYER, S., SicG, D., AND BALLMER, S. W. Gravitational wave detector with

cosmological reach. Phys. Rev. D 91, 082001 (2015).



222

Bibliography

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

EASTABROOK, F. B., TINTO, M., AND ARMSTRONG, J. W. Time-delay analysis

of LISA gravitational wave data: Elimination of spacecraft motion effects. Phys.

Rev. D 62, 042002 (2000).

EINSTEIN, A. Relativity: The Special and General Theory. Methuen & Co. Ltd.,
1920.

ESA.INT. European Space Agency: LISA Pathfinder Completes First Operations
Phase, 2016. http://sci.esa.int/lisa-pathfinder/58006-lisa-pathfinder-completes-

first-operations-phase/.

FaurLks, H., ET AL. LISA: Study of the Laser Interferometer Space Antenna.

LISA-Final Technical report LI-RP-DS-009, NASA, April 2000.

GAIR, J. R., VALLISNERI, M., LARSON, S. L., AND BAKER, J. G. Testing

General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detec-
tors. Living Rev. Relativity 16, 7 (2013).

GIAMPIERI, G., HELLINGS, R. W., TiNTO, M., AND FALLER, J. E. Algorithms

for unequal-arm michelson interferometers. Optics Comm. 699 (1996).

GSFC.NASA.GOV. Mock LISA Data Challenge, 2016.
http://astrogravs.gsfc.nasa.gov/ docs/mlde/, Accessed: April 2016.

HELD, L., AND BOVE, D. S. Bayesian Inference. In Applied Statistical Inference.

Springer-Verlag, 2014.

Hsu, H. Schaum’s Outline of Probability, Random Variables, and Random Pro-
cesses. McGraw-Hill, 2011.

HuLse, R. A., AND TAYLOR, J. H. Discovery of a Pulsar in a Binary. Astrophys.

J. 195 (January 1975).

JENNRICH, O. LISA technology and instrumentation. Class. Quantum Grav. 26,

153001.

JOLLIFFE, 1. T. Principal Component Analysis. Springer, 2002.



223

Bibliography

[38]

[42]

[43]

[46]

[47]

[48]

[49]

LANCE, A. L., SEAL, W. D., AND LABAAR, F. Phase Noise and AM Noise
Measurements in the Frequency Domain. Infrared and Millimeter Waves 11, 239

(1984).

LarsoN, S. L. LISA: A Modern Astrophysical Observatory. In Gravity in the
Quantum World and the Cosmos, no. SLAC-R-819, T023.

LIGO.ORG. Introduction to LIGO and Gravitational Waves: Sources of Gravita-

tional Waves. Accessed: 28 November 2015.

LISAPATHERFINDER.ORG. LISA  Pathfinder: Fact  Sheet,  2016.

http://sci.esa.int /lisa-pathfinder/47363-fact-sheet /, Accessed: 19 April 2016.

Navak, K. R., DHURANDHAR, S. V., AND VINET, J.-Y. Improving the sensi-

tivity of LISA. Class. Quantum Grav. 20.

Navak, K. R., AND VINET, J.-Y. Algebraic approach to time-delay data analysis
for orbiting LISA. Phys. Rev. D 70, 102003 (November 2004).

Navak, K. R., AND VINET, J.-Y. Algebraic approach to time-delay data analysis:

orbiting case. Class. Quantum Grav. 22, 10 (April 2005).

O’HAGAN, A., AND Luck, B. R. A Primer on Bayesian Statistics in Health
Economics and Operations Research. MEDTAP International, Incorporated, 2003.

Online version.

OT1TOo, M., HEINZEL, G., AND DANZMANN, K. TDI and clock noise removal for

the split interferometry configuration of LISA. Class. Quantum Grav. 29, 205003.

PaprouLis, A., AND PiLLAIL S. U. Two Random Variables. In Probability, Random

Variables and Stochastic Processes. McGraw-Hill.

PETERSEN, K. B., AND PEDERSON, M. S. The Matrix Cookbook, January 2012.

Http://matrixcookbook.com.

PuINNEY, E. S. eLISA: Astrophysics and cosmology in the millihertz regime.
arXw:1201.5621v1 .



224 Bibliography

[50] PrTkIN, M., REID, S., ROWAN, S., AND HOUGH, J. Gravitational Wave Detec-

tion by Interferometry: (Ground and Space). Living Rev. Relativity 14, 5 (2011).

[51] PrRINCE, T. A., TINTO, M., AND LARSON, S. L. LISA Optimal Sensitivity.
Phys. Rev. D 66, 122002 (2002).

[52] RiLes, K. Gravitational Waves:  Sources, Detectors and Searches.

arXiw:1209.0667v3 (February 2013).

[53] RiLEY, K. F., HoBsoN, M. P., AND BENCE, S. J. Mathematical Methods for
Physics and Engineering. Cambridge University Press, 2006.

[54] RomanoO, J. D., AND WOAN, G. A Principal Component Analysis for LISA -
the TDI Connection. Phys. Rev. D 73, 102001 (May 2006).

[55] RYDER, L. Introduction to General Relativity. Cambridge University Press, 2009.

[56] SANDRYHAILA, A., AND MOURA, J. M. F. Eigendecomposition of Block Tridi-

agonal Matrices. arXiv:1306.0217v1.

[57] SATHYAPRAKASH, B. S., AND ScHUTZ, B. F. Physics, Astrophysics and Cos-

mology with Gravitational Waves. Living Rev. Relativity 12, 2 (2009).

[58] SAULSON, P. R. Terrestrial gravitational noise on a gravitational wave antenna.

Phys. Rev. D 30, 4 (1984).

[59] SHADDOCK, D. A. Operating LISA as a Sagnac interferometer. Phys. Rev. D. 69
(2004), 022001,

[60] SHADDOCK, D. A., TINTO, M., EASTABROOK, F. B., AND ARMSTRONG, J. W.

Data combinations accounting for LISA spacecraft motion. Phys. Rev. D 68, 061303
(2003).

[61] SHLENS, J. A Tutorial on Principal Component Analysis. arXiv:gr-qc/030402v1
(April 2014).

[62] SPEIGEL, M. R., SCHILLER, J., AND SRINIVASAN, R. A. Schaum’s Outline of

Probability and Statistics. McGraw-Hill, 2011.

[63] STOECKLIN, M. P. Tables of common transform pairs.



225

Bibliography

[64]

[68]

[69]

TAYLOR, J. H., AND WEISBERG, J. M. A new test of genral relativity: gravita-
tional radiation and the binary pulsar PSR 1913+16. Astrophys. J. 253 (February
1982).

THORNE, K. Gravitational Waves. arXiw:9506086v1 (Jul 1995).

TINTO, M., AND ARMSTRONG, J. W. Unequal-arms Michelson Interferometers.

PTTI 30 (1998), 173.

TINTO, M., AND ARTMSTRONG, J. W. Cancellation of Laser Noise in an Unequal-
arm Interferometer Detector of Gravitational Radiation. Phys. Rev. D 59, 102003
(1999).

TiNTO, M., AND DHURANDHAR, S. V. Time delay interferometry. Living Rev.

Relativity 8, 4 (2005). http://www.livingreviews.org/Irr-2005-4.

TiNTO, M., EASTABROOK, F. B., AND ARMSTRONG, J. W. Time-delay for

LISA. Phys. Rev. D 65, 082003 (2002).

TiNTO, M., EASTABROOK, F. B., AND ARMSTRONG, J. W. Time delay inter-

ferometry with moving spacecraft arrays. Phys. Rev. D 69, 082001 (2004).

TiNTO, M., AND LARSON, S. L. LISA time-delay interferometry zero-signal

solution: Geometrical properties. Phys. Rev. D. 70, 062002 (2004).

TINTO, M., AND LARSON, S. L. The LISA zero-signal solution. Class. Quantum

Grav. 22 (2005), S531.

TrRENCH, W. F. Banded symmetric Toeplitz matrices: where linear algebra bor-

rows from difference equations.

TrRENCH, W. F. On the eigenvalue problem for Toeplitz band matrices. Linear

Algebra and its Applications 64 (January 1985).

UMSTATTER, R., ET AL. Bayesian modeling of source confusion in LISA data.

Phys. Rev. D 72, 02001 (July 2005).

UMSTATTER, R., ET AL. LISA source confusion: identification and characteriza-

tion of signals. Class. Quantum Grav. 22, 18 (August 2005), S901.



Bibliography

VALLISNERI, M. Geometric time delay interferometry. Phys. Rev. D 72, 042003
(2005).

WANG, Y., HEINZEL, G., AND DANZMANN, K. First stage of LISA data pro-

cessing: Clock synchronization and arm-length determination via hybrid-extended

Kalman filter. Phys. Rev. D 90, 064016 (September 2014).
WEINBERG, D. Astronomy 810: Statistics Notes.

WEISBERG, J. M., NICE, D. J., AND TAYLOR, J. H. Timing measurements of

the relativistic binary pulsar PSR 1913+16. Astrophys. J. 722 (October 2010).



