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Research on gravitational theories involves several contemporary modified models that predict the existence of a non-Newtonian
Yukawa-type correction to the classical gravitational potential. In this paper we consider a Yukawa potential and we calculate the
time rate of change of the orbital energy as a function of the orbital mean motion for circular and elliptical orbits. In both cases
we find that there is a logarithmic dependence of the orbital energy on the mean motion. Using that, we derive an expression
for the mean motion as a function of the Yukawa orbital energy, as well as specific Yukawa potential parameters. Furthermore,
various special cases are examined. Lastly, expressions for the Yukawa range A and coupling constant « are also derived. Finally, an
expression for the mass of the graviton m,, mediating the interaction is calculated using the expression its Compton wavelength
(i.e., the potential range A). Numerical estimates for the mass of the graviton mediating the interaction are finally obtained at various

eccentricity values and in particular at the perihelion and aphelion points of Mercury’s orbit around the sun.

1. Introduction

Any scientist will agree that Einstein’s general relativity theory
(GR) is one of the most mathematically elegant theories
invented in the human history. Even though the theory
explains many physical phenomena, it is unable to shed light
on the problem of the observed accelerating universe. To do
that, GR introduces a cosmological constant lambda A as well
as the so-called dark energy. Various gravitational theories
exist today which try to explain the observed acceleration of
the universe [1]. These gravitational theories are nonsymmet-
ric, scalar-tensor, quantum gravitational, or F(R) theories of
gravity, etc. As a common denominator in the weak limit, all
theories result in a Yukawa type of gravitational potential. In
a paper by Chan [2], the authors put forward the idea that
observational evidence for the existence of cold dark matter
particles in the cores of dwarf galaxies could be explained

through the interaction of a Yukawa potential. Therefore,
the experimental and observational search for such deviation
might result in new type of physics [3].

In a recent paper by Haranas et al. (2018), the authors
examine dust particle orbits under the influence of Poynting-
Robertson effect in which Newtonian gravity has been
modified by a Yukawa term. Similarly, in Mukherjee and
Sounda [4], the authors investigate the orbits resulting from
various coupling constants « (alpha) of a Yukawa correc-
tion to the Newtonian potential. Quite often in celestial
mechanics, a Yukawa-type potential is proposed to modify
the Newtonian gravity [5-9] (Iorio 2007), and its effect on
various gravitational, astrophysical, and orbital scenarios is
examined. In this contribution, we examine the time rate of
the Yukawa orbital energy of circular and elliptical orbits,
and from that we derive relations for the orbital energy as a
function of mean motion # of the orbiting body. To relate «
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and A to the orbital parameters of the secondary, expressions
are derived that relate them to various orbital parameters.
In particular, considering the expression for A, we obtain
a Lambert function that relates the mass of the graviton
along the orbit of the secondary to the Yukawa parameters,
eccentric anomaly, orbital energy, and eccentricity. This is
done using the already derived expression for lambda and
substituting it into the corresponding equation for the range
of graviton A and then solving for its mass m,,. It is well
known that if gravitation is propagated by a massive field,
the velocity of the gravitational waves (gravitons) will depend
upon their frequency, and the effective Newtonian potential
will have a Yukawa form, i.e., V(r) oc r el AW, where A gr =
h/my,cis the graviton Compton wavelength. Today’s research
for the mass of the graviton includes both theoretical and
observational work. For example, in Stavridis and Will [10]
the authors try to bound the graviton mass using gravitational
effects and their effect in the spin precessions of massive hole
binaries. Similarly, in Mureika and Mann [11], the authors
use an entropic gravity approach to estimate a bound for
the mass of the graviton. Finally, in Zacharov et al. [12],
the authors consider Yukawa gravity interactions of S2 star
orbits near the galactic plane to improve expectations for
graviton mass bounds. At this point we must say that in
today’s gravity research various methods have been employed
in the determination of the graviton mass. Our motivation
for paper emanates from the fact that this work can serve as
another possible observational test in setting solar system as
well as binary system bounds on graviton mass m,,, where
the bound depends on the mass of the source, which in this
case is a sun like type of star.

2. The Yukawa Potential

Let us consider a two-body problem, where a secondary body
of mass m orbits under the influence of a primary body
of mass M. With the potential being central, the two-body
problem can be reduced to a central-force problem, and the
motion of the secondary body can be examined. The effects
of gravity on the secondary in the presence of a Yukawa
correction can be described by the modified potential energy
per unit mass [13].

V(r)= —GTM (1 + oce_r/’\) , 1)

In (1), r denotes the distance between the centers of the
two bodies, G is the Newtonian gravitational constant, & =
kK /GmM, where k and K are the coupling constants of the
new force to the bodies relative to the gravitational one, and
A is the range of this interaction (ibid. 2016). Next, let us now
write down an expression of the orbital energy by making
use of the virial theorem which states that for a bounded
unperturbed system the following relation holds [14]:
W)
2

where T is the time average on the system’s kinetic energy and
V the time average of the system’s potential energy. Therefore,

conservation of energy implies that the total energy is equal
to (ibid. 2002)

(T) =~ )
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Anticipating small perturbations, we can add the average
value of the perturbing term to the average of the Newtonian
potential to that of the perturbative term making also use that
the semimajor axis a is the average value of the radial distance
r along the orbit; we can further write that as

& = _GMm (1 +
2a

ae"! ’\) (4)
Now rewriting (1) only the Yukawa orbital energy we have is

GMm , _,
& = _—2rm (oce M). (5)

Next differentiating (5) with respect to time we obtain that
the total time rate of the energy of the Yukawa correction is

w o ) e o

dat’
3. Circular Orbits

To examine the case of circular orbits, namely, we let the
eccentricity e, = 0 and r = a, (6) becomes

oc(1+%>e_“m] %. (7)

d& GMm

dt =~ 242

Next, following Haranas et al. [9], we consider the unper-
turbed relative orbit of the secondary body, in this case
a Keplerian ellipse. If a is the semimajor axis, e, is its
eccentricity and # is its mean motion. On the unperturbed
Keplerian ellipse, this law is expressed as [15]

GM =n*a’. (8)

Differentiating (8) w.r.t. time, the rate of change of the mean
motion can then be expressed as

dn_ _dnda (©)
dt 2a dt

from which we obtain that
da __2a @. (10)
dt 3n dt

Therefore, substituting (10) in (7) and simplifying, we obtain

oc(1+%>e_“m]. (11)

g _ _GMm
dn ~ 3an

Next defining the potential energy at semimajor a to be

%VN (a) = 1 <GMm> ’

3 (12)

a

the Newtonian part of the potential, (11) can written as

follows:
g——VN(Q) oc(1+§>e_“m]. (13)

dn 3n
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Integrating, we obtain the orbital energy dependence on the
mean motion # to be

_ e aVy(a) ay _an <£>
&= 8- L <1+A>e m(). 0

On the other hand, to obtain the dependence of the mean
motion on the Yukawa parameters and orbital energy &, we
use (14) and solving for n we obtain

n(8) = noe—3e””(g—go)/(xVN(a)(1+a/)l)‘ a5)

In the case where the range of the potential equals the
semimajor axis A = a, (15) becomes

n (g) — noe—:’)e(g—gg)/Z(XVN(a). (16)

At this point we can see that value of the mean motion n
depends on the energy difference (& — &,). If (& > &) then
(& — &,) > 0 and therefore the exponent remains negative
and the mean motion reduces exponentially with the energy
difference. On the other hand, if (€ < &) and (& — &) <
0, the exponent is positive and therefore the mean motion
increases. Finally, if (€ — &) = Vy(a), then (15) for the mean
motion becomes

n (&) = nye " /eI (17)
decreasing for « > 0 and increasing for « < 0. Moreover,
solving for the range of the potential A we find that

a

e w (3(8-8,) JeaV (@ n (n/ng)]” &)

where W is the Lambert function of the indicated argument.
Similarly, solving for the coupling constant & we obtain

- 3¢ (& - %)
“= (1+a/A)V (a)ln (n/ng)’ 9)

In the case where (& — &,) = V(a) we find that the range
lambda A of the Yukawa potential is equal to

a

A= 1+ W [3/ealn (n/ny)] (20)

and the coupling contract « becomes

3¢/

T A +a/Mn(n/ng) @

The semimajor axis a is equal to the range of potential A and
according to (20) must satisfy the following equation:

3(8-8,)

brw [ech (a)In (n/no)] = (22)

from which we find that the gravitation satisfies the following
equation:

3e(&-8&,)

via)=- 2aln (n/ny)

(23)

Consequently, the energy difference satisfies the following
equation:

2a n
(%—%O)=—§V(a)ln<n—>. (24)

0

Using (24) we find that the mean motion #n for a = A must
independently satisfy the equation

n (%) _ n06—3e(%—%0)/2aV(u). (25)
In particular if (& — &) = V(a), (25) satisfies the equation
n(&) = noe_3e/2”. (26)

Furthermore, using (19) if (€ - &) = —aV(a)e™*/3 we find
that

po o nlim) 27)

(1=1n(n/n,))

Using, (19) it is impossible to find an expression for « since
the resulting equation takes the form

(1+%>ln<n£0)=1 (28)

Moreover, if in (28) we impose the condition A = a, we obtain
that

n = ny\e. (29)

4. Elliptical Orbits

Similarly, for elliptical orbits we have the following expres-
sion:

d& GMm r —r/)t] dr
=2 = 1+— ar 30
dt 2r2 [ ( A)e dt (30)
where r is the orbital radial vector. Using (8) we find that
dr dn
3 = +2nr = = 0. 31
nr o + 2nr e (31)

The resulting simplified equation is expressed in terms of the
eccentric anomaly, i.e., r = a(l — e, cos E) where e is the
orbital eccentricity of the secondary and E is the eccentric
anomaly; equation (31) becomes

dr _ 2rdn_ 2a(l-ecosE)dn

s S Rttt (32)
dt 3n dt 3n dt
Next substituting (33) in (30) we find that
g
dt

GMm ) a(l-eycosE)
== @ +
3an (1 - ey cos E) A (33)

. e—u(l—eo cosE)/A %
dt’



from which we obtain the following equation for the change
of orbital energy w.r.t. the mean motion n:

d_%
dn

B GMm 1+a(1—eocosE)
~ 3an(1-eycosE) * A (34)

i e—a(l—e0 cos E)//\] )

Integrating and rearranging (34) with respect to #, we obtain
that

n 3(&-&,) (1 -e,cos E) e~ cosE)/A
In <— ) = (35)
Mo aVy (a) (1 + (a/A) (1 - e, cos E))
Solving (35) for the mean motion n we find that
n(&)
(36)

_ noe((S(l—eO cos E)e™ 0D Vi () (1+(a/ A) (1-¢o cos EN)(E=50)

Asacheck of (36), let us note that if e = 0 we can easily recover
(15) for the circular orbits. In the case where A = a, (36)
simplifies in the following way:

n (&)

» 37

— 1, ¢3¢ cos E)/a(2—eq cos E)(8=80)Viy(@)e ' 0°*5)
0

At this point we find that value of the mean motion # again
depends on the energy difference (& - &,). If again (& > &)
then (& — &,) > 0 implies that the mean motion reduces
exponentially to the energy difference. On the other hand,
it (& < &) and (& — &;) < 0 the motion increases
exponentially. Finally, if (€ — &) = V(a), (36) for the mean
motion becomes

n (g) _ noe(3(l—eo cos E)e“(HCOSE)M/tx(1+u(1—eo cos E)//\))‘ (38)
Next, if simultaneously (& — &,) = V(a) and A = a, we find

that the mean motion of the orbiting body takes the following
form:

1-eq cos E))

n (E) _ noe((3(l—eg cos E)/a(2—e, cos E))e( (39)

Furthermore, if A = a and (€ - &) = (1/3)VI\,(1’)oae_r/)L and
r = a(l — e cos E) solving for the mean motion n we find that

n(E) = noe(((l—eo cos E)/(2—e, cos E))el! )10 COSE))‘ (40)

Finally, if (& — &) = (1/3)Vy(r)ae"* then we find that
n (E) _ noe((l—eo cosE)e(“m“’/\(ﬁe")COSE)/(1+(a/A)(1—eo cos E))). (41)
Going back to (36) which is the most general equation and
solving for « and A, respectively, we obtain that
A

B a(l-eycosE) (42)
T 1+ W[-3(8-8,) (1-e,cosE) JaeVy (a) In (n/ny)]’
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Similarly, for « we find that

_31(&-&,)(1-eycosE) e?! 0Bt

Vy (@) (A+a(l+eycosE))In(n/n,) )

5. The Yukawa Potential Range and the
Particle Mediating the Interaction

At this point I would like to bring the readers’ attention to
an issue that might have some of them concerned. This is the
issue of closed bounded orbits under the light of Bertrand’s
theorem which proves that only a Newtonian as well as a
Hook type of potential results in closed bounded orbits. This
is an issue that the authors of this paper will extensively
deal with in a paper to come soon. As a preliminary result
we say that all the applications of the Yukawa potential
in our research are related to the solar system and within
the boundaries of the solar system dimensions where the
following condition, namely, A > r, is true [16]. The
parameter A is the Compton wavelength of the exchange
particle, which in the present case is a graviton. In other
words, the range of the Yukawa potential is always larger than
any distance r away from the primary star the sun in our case
that the secondary body orbits. Our preliminary analysis of
nearly circular orbits has shown that the ratio of a harmonic
oscillator with frequency w oscillating around a point situated
at r to that of the orbital frequency 0 at r is given the ratio
w/0 = 1-(r/+2)1)% In the case of the solar system with sun as
the primary gravitating body producing the interaction, and
since A > r, we obtain to a second order approximation that
w/6 = 1 and therefore the orbits are bounded and closed. As
a support of our findings we refer to a paper by Mukherjee
and Sounda [4]. In this paper the authors find closed and
bounded orbits for various values of the coupling constant «
of the Yukawa potential.

One of the primary motivations for today’s interest in
non-Newtonian gravity emanates from our interest to probe
and understand long-range forces. This interest addresses the
following question: Why a certain class of theories predict
the existence of gravity - like interactions. At this point we
must say that many various models in which gravity is unified
with other forces have been studied in the recent years.
These models are formulated along the consideration that the
product g,

f2
U= (ﬁ)mN = IO_IOeV/cz, (44)

determines the mass of the new field [17]. The Compton
wavelength (or “range”) A associated with the field charac-
terises the distance at which the corresponding field acts and
is given by the equation below:

A= i (45)

mc

In Haranas et al. [13] and Moftat and Toth [16], the strength
« of the potential near the sun in a point source scenario is
given by the following equation:
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MSM?I GOO
az—(——l), (46)

2
( \/Msunl + Cll) GN

where G, = 20Gy and C] = 25000~/M_,,. Similarly, the
range A can be written as follows:

Sun , (47)

and C, = 6250+/M,,,,, kpc". Therefore equating (42) and (45)
we obtain that the mass of the mediating of the interaction
graviton is

],
9 ca(l —ecosE) [

(48)
3(1- E
wi_ (1-eycosE) #-2))|,
aeVy (a)In (n/n,)
and finally using (46) the equation takes the form
S S
Mgr = ca(l —ecosE)

(49)

M, (G, — Gy) Vi (@) In (n/ny)

sun (

W(_scN(mmg)z(g %) (1 eocosE)>:|

In the case of circular motion, i.e., e = 0, (49) simplifies to

(50)
W(— 3GN(\/W+C1)2 (&-8,) >}

Msun (Goo - GN) VN (Cl) In (?’l/?’lo)

Similarly, in the case of circular motion and if (& — &) =
V(a), (50) becomes

mgy,

12
o wl 3Gy (VMg +C)) | (51)
ca M, (Go, — Gy) In(n/n,)

sun (

Equations (48) to (51) give the mass of the graviton field
mediating the interaction, i.e., a massive graviton field.
According to (48) we see that the mass of graviton continu-
ously varies along elliptical orbit with a maximum value at the
perihelion/periastron point (binary star scenario). Its mass
also depends on the ratio of (& —&,)/Vy(a) as well as on ratio
of the initial to final mean orbital motion n/n(0) and finally
on the mass of the primary body producing the Yukawa field,
Moffat and Toth [16].

6. The Extended Source Case

In the case of an extended mass distribution following
Haranas et al. [13], we say that the equation of Yukawa

potential must be modified. For an extended matter dis-
tribution and in relation to the MOG field, there are not
presently any solutions. In this case, authors treat the problem
phenomenologically, seeking to find an effective mass distri-
bution M(x, r) that could be used in (46) and (47). What this
function does simply determines an “effective mass” which
determines « and A. This way, the gravitational influence of
matter located at a point of distance x on the test particle
located at r is calculated. Thus, the point source function
can simply yield a mass proportional to the volume if the
distribution is constant. Therefore, following Haranas et al.
[13], we can write

M (x,7) = J p (%) e IERIED g (52)
\%4

where the coefficient & is to be determined by observation,
for example, comparison with Bullet Cluster Data. For a mass
density function, p(x) = p,; then we will have that M(r, x) o<
|r — xl3 . Furthermore, in the case of a nonconstant density p,
the coupling constant « and range of the potential A become
(ibid. 2016)

o= M) )2@—0;—1), (53)

(\/M (x,1)+C!

and

A= % (54)
2

In the case of an extended mass distribution, calculation of
and A will result in better estimates of the two corresponding
parameters and therefore a better estimate of the effect.
With reference to Haranas et al. [13] in the case of an
extended source we can write the gravitational potential in
the following way:

[e¢]
\% (7, A) =2mpG, J rdr’
0

. T A (55)
- j sin6' 46
0 Vr'2 + 12 = 2r1 cos 0
which finally integrates to
V(7,1)
—r/A
‘o (5) r=R| (56)
=GoM | p2 "R ! sinh (r/))
_ e RAZ 17
2R3r? [1 <1+ )e r/A ] r<k
where
3
D, (x) = = (x cosh x — sinh x), (57)
x
and x = R/A, and it has the following limits:
2 4
®S=1+x—+x—+...x<<1, (58)
10 280
3e”
CDS = ﬁ x> 1. (59)



In a paper by Branco et al. [18], by examining the g,
component of the metric the authors identify a Newtonian
potential plus a Yukawa perturbation of the form (ibid. 2014)

V) = —GZTWS (1 ‘ (% _ 45) Am, Rs)e_’/’\), (60)

where A = 1/m is the characteristic length, a = 1/3 —4& is the
strength of the Yukawa addition to the field, and A(m, R,) is
the form factor defined as follows [18]:

4
mM

N

A(m,R,) = LRS rp (r) sin (mr) dr, (61)

which integrates to

A(m,R,) = 3(

mR, cosh (mR,) _ sinh (mR;) > . (62)
(mR,)
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Equation (62) admits the following limiting cases (ibid. 2014):

mR?
A(m,Rs)%H( 105) =10 ifmR <1 (63)
3¢
A(m,R,) = if mR, > 1. (64)
2 (mR,)

For a sun like central body (ibid. 2014) the more accurate
NASA model has been used for the density of the sun
that obeys the following conditions p(R,,) = 0 and
dp(R,,,,)/dr = 0. Thus, the density function is of the form

2
p(r)=p0[1—5.74<i)+11_9<L>
R, R,
r 3 r 4
—10.5<—) +3.34<—> ]
R, R,

Integrating (65) the authors obtained the following func-

tion for the form factor A(m,Rg) (http://spacemath.gsfc
.nasa.gov/(2014)):

sun

- (7.3 x 10* +3.6 x 10°x% — 14.6x4) sinh x

| [46x10% + 2.1 x10°x7 + x (2.7 x 10* + 131x% ) cosh x
A(m,R,) =x , (66)

with limiting cases given by x = mR_, and m = 1/A with the
limiting cases

A(mR)=1+6x102(mR) ~1 ifmR <1, (67)

emRS

A(m,R,) =73 if mR, > 1. (68)

3
S
In the case of an extended source we only consider a sun like
star. In this case according to Haranas et al. [13] and Moffat
and Toth [16] A = 4.937 x 10" m will imply mR_ = R,/A < 1
and therefore A(m, R,) = 1+6x 10_2(mRS)2 = 1. Therefore, in
the case of a sta,r our analysis above does not need to involve
the A(m, R,) factor function.

7. Discussion and Numerical Results

To obtain numerical results, we first start with circular orbits.
Using (13) and the relation GM = n*a’ to eliminate n from
the equation, we obtain that

de = —%txm\/GMa (1 + E) e, (69)

dn A
Furthermore, using the fact that h = +/GMa(l-¢?) =
VGMa or angular momentum per unit mass and for circular
orbits, i.e., e = 0, we write (69) in the following way:

d& 1 a\ _, 1
o —gocmh<1 + X)e " —gmthuk (a,1). (70)

In other words, we find that the rate d&/dn has the units of
angular momentum. Similarly, in the elliptic case, (33) results
in (71) below:

dg amh (1
dn 341 -¢€Z(1-eycosE)

¥ a (1 — € COS E) ) e—a(l—e0 cosE)/A _ _ mh (71)
A 341-¢
: quk (Cl, A’) B

where we define as “Yukawa function” the term appearing
in (71) and (72) that is originally derived from the term
ar {(1+7/ )L)e_’/ A Assuming circular orbits and a semimajor
axis equal to the semimajor axis of Mercury a = 5.79 x 10" km
and Yukawa coupling constants « = 3.039 x 10~ Moffat and
Toth [16] and « = 3.57 x 10" ** and range A = 4.937 x 10 mas
in [13] in the case where A > a we obtain that
d&

— =-1.19%x 10 . (72)
dn

Similarly, if a = A we obtain that

4% _ _§755x 107, (73)
dn
Finally, if a = A and using « as it is given in Moffat and Toth

[16], we obtain the following relation:
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TABLE 1: Table of the rate d&/dn as a function of eccentric anomaly
for an elliptical orbit in a Yukawa potential.

Eccentric Anomaly C(il_g [kgm?s™']
n

E[’]
40 -4.738x10"%h
60 -4.450x10h
80 -4.141x10%h
100 -3.856x10"%h
120 -3.622x10"h
140 -3.451x10"h
160 -3.348x10"%h
180 -3.314x10"%h
200 -3.348x10"%h
220 -3.451x10"h
240 -3.622x10"h
260 -3.856x10"*h
280 -4.141x10h
300 4.450x10h
320 -4.738x10"%h
340 -4.946x10"%h
360 -5.023x10"%h
2.5 T T T T T

< 20[ ]

S - :

g

=]

: = 4

st ]

< [ 4

2z

131

=

= 1.0

0.5 L.

0 50 100 150 200 250 300 350
Eccentric — Anomaly E (deg)
FI1GURE 1: Plot of the “Yukawa function” for elliptical orbits of various

eccentricities and eccentric anomaly during one full blue e = 0.01, red
e =0.205, olive green e = 0.6, green e = 0.9.

de _ ~1.013 x 10 %h. (74)
dn

Similarly, in Table 1 looking at elliptical orbits, we consider
Mercury’s actual orbit with semimajor axis a = 57,909,050 km,
and eccentricity e = 0.205 and thus we have obtained the
values shown in Table 1 for the rate d&/dn as a function of
eccentric anomaly.

In Figure 1 the Yukawa function is plotted for elliptical
orbits of various eccentricities, i.e., blue e = 0.01, red e =

Mercury — YukawaFunction

0 50 100 150 200 250 300 350
Eccentric — Anomaly E (deg)

FIGURE 2: Plot of the Yukawa function for planet Mercury as a
function of eccentric anomaly during a full revolution.

12F ' ' ' ' ™

m(per)/m(apo)

0.0 0.2 0.4 0.6 0.8
Eccentricity [e]
FIGURE 3: Mass ratio of the mediating the Yukawa interaction
particle as it is felt by Mercury at perihelion and aphelion is plotted

as a function of eccentric anomaly for A= 5.79 x 10 m and a =
3.04x107%, 3.57x 107",

0.205, olive green e = 0.6, and greene = 0.9, and for eccentric
anomaly values during one full revolution. Similarly, in
Figure 2 we plot the Yukawa function for planet Mercury as a
function of eccentric anomaly and during one full revolution.
Next, in Table 2 we tabulate the parameters A& = & - &, and
Q as related to the graviton mass at perihelion as is “felt” from
an orbiting around a sun like star body. For this numerical
calculation for planet Mercury, & = 3.04 x 107, A = 4.937 x
10 m, and e = 0.205. Similarly, in Table 3 we tabulate the
same parameters as in Table 2 for Mercury using o = 3.57 x
107 and A = 4.937 x 10"® m. In Table 4 we tabulate the ratio of
the mediating of the interaction graviton mass at perihelion
and aphelion points as a function of various eccentricities
using Q, = 138.326. In Figure 3 the mass ratio m,/m,, of
graviton particle mediating the Yukawa interaction as is felt
from Mercury at perihelion and aphelion position is plotted,
as a function of eccentric anomaly for A = 5.79 x 10" m
and @ = 3.04 x 1078, 3.57 x 107!}, respectively. Here m,
and m,,, indicate the mass of the massive graviton mediating
the interaction at the perihelion and aphelion points on the
orbit of the secondary. In Table 5, we tabulate the ratio of the
graviton mass ratios as a function of orbital eccentricities and
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TABLE 2: Tabulation of parameters A& = & — &, and Q, relating to the mediating graviton mass at perihelion for a sun like star as is “felt” by
the secondary i.e. Mercury for & = 3.04x10™® and A = 4.937 x10"° m, e= 0.205.

Coupling constant Eccentric Anomaly AE=8-8, Q
o E[’] 0] 0
0.0 -7.708x10**
3.04x1078 45 -7.685x10%*
0 e 13.83408952
180 -7.555x10%*
270 -7.593x10**
360 -7.708x10%*

TaBLE 3: Tabulation of parameters relating to the ratio of the mediating graviton mass at perihelion for a sun like star as is “felt” from the
orbiting secondary i.e. Mercury for & = 3.57x107 and A = 4.937 x 10"° m and for various values of the eccentric anomaly.

Coupling constant Eccentric Anomaly AE=8-8,

« E[] il %
0.0 -9.052x10%
-10 22
3.57x10 45 -9.025x10 138,326
90 -8.961x10*
180 -8.872x10*
270 -8.916x10*
360 -9.052x10%

TaBLE 4: Ratio m,/m,, of the mediating the interaction graviton Moreover, since the graviton mass must be a positive number,

as a function of various eccentricities as is “felt” by the orbiting (48) implies that the following equation must be satisfied:
secondary body Q, = 138.326 between perihelion and aphelion

positions. 1 1
— (1-eycosE)
Eccentricity e, m,/m,, (77)
0.0 1.000000 3(1-eycosE)
- (-8, || =-1

0.001 1.001660 aeVy (@) In (n/ng)
0.1 1.182141 . . . ..
02 1400340 This can be true if the following conditions are met for all the

' ’ corresponding parameters separately. First from (77) solving
0.3 1.671480 for the coupling constant «, we find that (83) is satisfied if
0.4 2.018540 ) .
05 2.482622 oo 2(E-8)(1-¢cosE) el (78)
0.6 3142260 eVy (a) (2 —eycos E)In (n/n,) ~
0.7 4170730 where e is the exponential function. For circular orbits, (78)
0.8 6.049680 takes the form
0.9 10.90870 3e (% _ %o) o)

~ 2Vy (@) In (n/n,)’

for Q, = 13.83408952. Using (48) we find that at perihelion

the mass of the graviton is given by Similarly, for the mean motion # from Eq. (77) we find that

satisfied if:

mp "= ’/1063(g—go)(1—e0 cos E)e* ™% cOSE/e(xVI\,(a)(Z—eO cos E) ln(n/no), (80)

- h . 3(8-8y) (1-¢p) (75) which for circular orbits becomes

T ca(l-e aeVy (a)In (n/n,) 1 = nye @ B RVN(@ Iniafr) | (81)
Similarly, at aphelion we find that Next, in relation to the final orbital energy, (77) is satisfied if
Mgy, & =28,
_ [1+W<_3(%—%0)(1+60))]_ (76) ey (@) (2 eycos E) D) 1n<ﬂ> (82)
ca(l+eg) aeVy (a)In (n/n,) 3(1-eycosE) ny)’
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TABLE 5: Ratio of the mediating the interaction particle as a function of various eccentricities as is “felt” by the orbiting secondary body for

Q, = 13.83408952.

Eccentricity

e my[mg, m,(p) [g] my(ap) [g]
0.0 1.00000 1.00000x10% 1.000x10™%
0.001 1.00155 1.00155x10™% 9.984x10°%
0.1 1.16851 1.16851x107% 8.558x107%
0.2 1.36960 1.36959x10™% 7301x107%
0.3 1.61576 1.61574x107% 6.190x107%
0.4 1.92698 1.92695x10~% 5.190x10™%
0.5 2.33765 2.33761x10™% 4.277x107%
0.6 2.91303 2.91297x10™% 3.433x107%
0.7 3.79632 3.79623%10™% 2.634x107%
0.8 5.38523 5.38508x10™% 1.856x107%
0.9 9.46986 9.46964x10™% 1.056x107%
which for circular orbits takes the form and
2aVy(a), (n 1+e,\[1+W(138.326(1—¢))
E=8+ 3, ln<n—0>. (83 "= <1—e0)[ s W (13326 (17ey) | M &)

Moreover, solving for the value of Vy(a) satisfying (77) we
obtain

3 (% - %0) (1 - eo) e

Ve (a) = , 84
v (@) ea (2 — ey cos E) In (n/n,) (84
which for circular orbits becomes
3e(&-8,)
V. =—"< 85
n (@) 2aln (n/ny) (85)

Next using (75) and (76) we can obtain a relation for the ratio
of the graviton mediating the interaction at perihelion and
aphelion correspondingly, to be

14\ [1+W(Qy(1-¢))
m=(; —eo) [1+W(QO(1 o)) 9
where the Q, is given by
(3-8
Q= aeVy (@) In (n/ny)” (87)

Next calculating we calculate the orbital energy difference
A& = &-&,, for planet Mercury using & = 3.04 x 10 ®and A =
4.937 x 10" m and for various values of the eccentric anomaly.
We tabulate the results in Tables 2 and 3.

Taking the numerical values of Q, into account as in
(87) we can write the mass of the graviton at perihelion and
aphelion to be

mp

_<1+e0> 1+ W (13.84208952 (1 - ¢,)) " (88)
- 1+W (13.84208952 (1 +¢p)) |

1-¢

where W is the Lambert function of the indicated argument.
In Table 4 we calculate and plot the variation of the mass
of the mediating particle for the fixed values of the coupling
constant alpha and range lambda of the potential as a function
of eccentricity e.

With reference to Ohanian and Ruffini [19] looking at
(91) and referring to Yukawa gravitational potential according
to relativistic quantum theory, we say that the mass of the
graviton is inversely proportional to the range A. Relying on
the observational limit of A >10** cm we find that m g < 107%

g- Next, assuming the graviton mass to be m, = 107%g
we tabulate the corresponding mass values of graviton at
perihelion and aphelion as “felt” by the orbiting Mercury.

8. Conclusions

In this paper we have derived the rate of change of the
energy of an orbiting body with respect to mean motion
in the influence of Yukawa potential of coupling constant
a and range A. We have found that the rate of change
of the orbital energy of circular and elliptical orbits w.r.t.
the mean motion is a logarithmic function of the mean
anomaly 7. Furthermore, using this expression we have
derived expressions for the mean anomaly as a function of the
Yukawa parameters («, A) and the orbital energy difference
which simplifies considerably in the case where that range
of the Yukawa potential is equal to the semimajor axis, i.e.,
A = a. Furthermore we have found that in the case where
the energy difference A€ = & — &, is negative the orbital
mean motion n increases exponentially. If A& = & - &,
is positive, then mean motion decreases exponentially. In
the special case where A& = & - &, = Vy(a), the mean
motion also decreases exponentially for « > 0 and increases
for « < 0. Similarly, for circular orbits we have derived
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expressions for the Yukawa parameters o and A. We have
found that A is given in terms of a Lambert function of
argument W(3(Ae)/eaV(a)In(n/n,)). Similarly, for circular
orbits we find that A = —3¢"*Ae/(1 + a/A)V(a)ln(n/ny).
Analogous relations have been derived for elliptical orbits.
Next expressions for the mass of graviton have been derived
in terms of the orbital elements of the orbiting secondary for
circular and elliptical orbits, from which special conditions
have been extracted for a positive graviton mass. We have
found that there is no graviton mass difference effect for
circular orbits, as to what the mass of the graviton between
perihelion and aphelion is. Therefore, the strength of the
gravitational interaction along the orbit propagates with the
help of a constant mass graviton. As the eccentricity increases,
the mass of the massive graviton appears to increase, being
larger at perihelion where at aphelion it is always less by at
least two orders of magnitude from its assumed mass, i.e.,
m, = 107 g. Our motivation for this paper emanates from
the hope that this work can add an extra possibility in the
estimation of the graviton mass. This will be the addition of
one more observational test in setting solar system as well
as binary system bounds for the graviton mass m,, in terms
of orbital energy mean motion relations. This is in the case
where the bound depends on the mass of the source, which
in this case is a sun like type of star. Thus near the massive
body we would expect the graviton mass to have its higher
value where its lowest value will be at the aphelion point,
respectively. In other words, the strength of the interaction
of gravity will reduce and this is something we already know.
The only difference is that now we can have an explanation for
the strength of gravitational interaction in terms of a massive
graviton mass change as the new theories predict.

Appendix

The Lambert W function is defined as the inverse function
of the x| — xe* mapping and thus solving the equation
ye” = x. This solution is given in the form of the Lambert W
function, y = W(x) which according to the relation ye” = x

satisfies the following equation: W(x)eV™ = x [20]. The
function is also known as Omega or Product Log function.
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