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We study the ground state energy and the critical screening parameter of the Yukawa potential
in nonrelativistic quantum mechanics. After a short review of the existing literature on these
quantities, we apply fifth-order perturbation theory to the calculation of the ground state energy,
using the exact solutions of the Coulomb potential together with a cutoff on the principal num-
ber summations. We also perform a variational calculation of the ground state energy using a
Coulomb-like radial wave function and the exact solution of the corresponding minimization
condition. For not too large values of the screening parameter, close agreement is found between
the perturbative and variational results. For the critical screening parameter, we devise a novel
method that permits us to determine it to 10 digits. This is the most precise calculation of this
quantity to date, and allows us to resolve some discrepancies between previous results.
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1. Introduction

The Yukawa potential was proposed by Yukawa in 1935 (Ref. [1]) as an effective nonrelativistic
potential describing the strong interactions between nucleons. It takes the form

V (r) = −α e−μr

r
, (1.1)

and thus can be seen as a screened version of the Coulomb potential, with α describing the strength of
the interaction and 1/μ its range. The same potential appears under the name of the Debye–Hückel
potential in plasma physics, where it represents the potential of a charged particle in a weakly
nonideal plasma (Ref. [2]), as well as in electrolytes and colloids. In solid state physics it is known
as the Thomas–Fermi potential, and describes the effects of a charged particle in a sea of conduction
electrons.

In quantum mechanics, the physics of this potential depends strongly on the value of the screening
parameter μ. While for the Coulomb case μ = 0 there is an infinite number of bound states, for any
positive value of μ the screening is sufficient to reduce this number to a finite one (Refs. [3–5]), and
for μ larger than a certain critical value μc, bound states cease to exist altogether. This critical value
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is proportional (Refs. [3,6–11]) to αm:

μc ≈ 1.19αm. (1.2)

Despite its superficial closeness to the Coulomb potential, the Yukawa one shares hardly any of
the exceptional mathematical properties of the former. To this date, for μ �= 0 neither the energy
eigenvalues, nor the eigenfunctions, nor the critical screening parameter are known in closed form.
This combination of physical importance and mathematical intractability makes theYukawa potential
a natural test case for approximation methods in quantum mechanics.

The purpose of the present paper is fourfold. First, in Sect. 2 we will give an overview of the
various approximation methods that have been used to date. Our emphasis here is on the ground
state energy E0(μ) and on the critical screening μc, since these are the quantities that we will then
study ourselves in the rest of the paper. We will use the literature data to construct a literature average
curve E0(μ).

Second, in Sect. 3 we will perform a perturbative calculation of the ground state energy, taking
the exactly solvable Coulomb Hamiltonian as the unperturbed one. The special properties of the
Coulomb case will allow us to push this calculation to an unusual fifth order. We further improve
on this calculation by including in the unperturbed Hamiltonian the contribution from the Yukawa
potential that is linear in μ. We also study the dependence of the perturbative calculation for the
energy on the cutoff in the principal quantum number of the Coulomb wave functions that becomes
necessary starting from second order.

Third, in Sect. 4 we then compare our perturbative results with a variational calculation, using
a trial function of the type of the Coulomb ground state wave function. Although this simple trial
function has been used before, to the best of our knowledge the minimization condition, a third-order
algebraic equation, has been solved only approximately (e.g., in the textbook [12], see problem 7.14).
Here we give its exact solution, and it turns out that, remarkably, it closely matches our result from
fifth-order perturbation theory in the whole range of μ except for the region close to the critical
endpoint.

Fourth, in Sect. 5 we will present a novel, but simple, method to determine the critical screening
parameter. We obtain for it the value

μc

αm
= 1.190 612 210 5(5), (1.3)

which is the most precise value to date. We compare with previous results given for the screening
parameter.

2. Review of the literature

A number of general theorems exist on the existence and number of bound states for a given potential.
In 1951 Pais and Jost (Ref. [3]) showed that for a 3-dimensional spherical potential such that I =
2m

∫∞
0 dr r|V (r)| is finite, bound states must exist for I > 1. One year later, Bargmann (Ref. [4])

proved that the number of bound states nl , for a given angular momentum quantum number l, is
bounded by

(2l + 1)nl < I . (2.1)
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For theYukawa potential, this relation (in our units) is (2l+1)nl <
2m
μ
α. In particular, no bound state

can exist for μ > 2mα. Inequality (2.1) was rederived and further generalized in 1960 by Schwinger
(Ref. [5]).

As was mentioned in the introduction, no exact results exist to date for the wave functions and
energies of the Yukawa potential. As to approximate calculations, the most widely used method has
been the variational principle. In 1962, Harris (Ref. [6]) used trial wave functions constructed from
the 1s, 2s, and 3s solutions of the Coulomb potential to obtain very good values for the ground
state and the first 45 excited energies of the system. In 1990, Garavelli and Oliveira (Ref. [8])
applied the variational method using the 1s Coulomb solution together with a second wave function
involving a screening parameter to be determined. In 1993, Gomes et al. (Ref. [9]) devised a two-
step procedure where optimized few-parameter trial functions are obtained from an initial linear
combination of atomic orbitals (LCAO) with up to 26 basis functions. This allowed them to obtain
very precise values for E0(μ) and μc, and also to demonstrate the delocalization of the ground state
wave function in the bound–unbound transition, i.e., ψ0(r) → 0 for μ → μc. They were also able
to determine the critical exponents for ψ2

0 (0) and E0 for this transition.
Somewhat less popular in this context has been perturbation theory. The work by Harris already

cited (Ref. [6]) was also the first to treat the Yukawa potential as a perturbation of the Coulomb
one, although only in first-order perturbation theory. Gönül et al. (Ref. [13]) in 2006 combined the
perturbative treatment with an expansion of the exponential factor e−μr . In 1985, Dutt et al. (Ref. [14])
used a scaled Hulthén potential instead of the Coulomb one as the unperturbed Hamiltonian.

As to numerical approximations, in 1970, Rogers et al. (Ref. [7]) solved the Schrödinger equation
numerically. For the same purpose, in 2005Yongyao et al. (Ref. [11]) used Runge–Kutta and Numerov
algorithms, as well as Monte Carlo methods.

There have also been less standard approximations to analyze the Yukawa potential. Garavelli and
Oliveira (Ref. [8]) used an iterative process to solve the Schrödinger equation in momentum space.
In 2012, Hamzavi et al. (Ref. [15]) used the generalized parametric Nikiforov–Uvarov method for
obtaining approximate analytical solutions of the Schrödinger equation, and showed that this works
well for μ � 0.15mα.

In Fig. 1 we show a plot of E0(μ) obtained by averaging over the results given by various authors,
based on Table I of Ref. [8] (we have not included here the results of Ref. [9], since they consider
only 4 different values of μ).

The μc values given by a number of authors are listed in Table 1.

3. Perturbative calculation of the ground state energy

Of the many ways of finding approximate solutions to the Schrödinger equation for a system that
cannot be solved exactly, probably the most widely used is perturbation theory, where one builds on
the known exact solutions of some other, usually simpler system. However, the perturbative expansion
becomes quickly cumbersome at higher order, so that most textbooks on quantum mechanics, e.g.,
Griffiths (Ref. [12]), give the explicit formulas only to second order. Exceptionally, Landau and
Lifshitz (Ref. [16]) give them to third order, the fourth order is worked out in an unpublished article
(N. Wheeler, Higher-Order Spectral Perturbation, by a New Determinantal Method, Reed College
Physics Department, 2000), and Wikipedia (Ref. [17]) has the expressions for the energy levels to
fifth order (for the nondegenerate case). Those expressions, whose correctness we have verified by
an independent calculation, are included in Appendix for easy reference. Here we wish to apply them
to the ground state energy of theYukawa Hamiltonian, taking advantage of the fact that the Coulomb
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Fig. 1. A literature average of the Yukawa ground state energy E0(μ) (for m = α = 1).

Table 1. Comparison of (·) values for different works and our results.

Study Methoda Value Study Methoda Value

Harris (Ref. [6]) V 1.15 Harris (Ref. [6]) VC 1.0
Harris (Ref. [6]) P 0.828 RGH (Ref. [7]) N 1.190 607

GO (Ref. [8]) A 1.189 621 YXK (Ref. [11]) N 1.1906
GO (Ref. [8]) VC 1.0 HL (Ref. [20]) 1.1906
GO (Ref. [8]) V 1.190 213 Us VC 1.0

GCM (Ref. [9]) V 1.190 610 74 Us P with H ′
0 1.006

GCM (Ref. [9]) LCAO 1.190 612 27 Us P with H0 1.006

a V = variational, VC = variational taking as trial wave function the ground state wave function of the Coulomb poten-
tial, P = perturbation theory, N = numerical, A = analytical method by Garavelli and Oliveira (Ref. [8]), LCAO = linear
combination of atomic orbits by Gomes et. al. (Ref. [9]).

case is exactly solvable:

HYuk ≡ − 1

2m
∇2 − α

e−μr

r
= − 1

2m
∇2 − α

r︸ ︷︷ ︸
H0

+ α

r

(
1 − e−μr)︸ ︷︷ ︸
�H

. (3.1)

We recall that the eigenvalues of H0 are

En = −mα2

2

1

n2 , (3.2)

with eigenfunctions

ψnlm(r, θ ,φ) =
((

2

na0

)3
(n − l − 1)!
2n(n + l)!

)1/2

exp
(

− r

na0

)(
2r

na0

)l

L2l+1
n−l−1

(
2r

na0

)
Y m

l (θ ,φ),

(3.3)

where n = 1, 2, 3, . . . ; l = 0, 1, 2, . . . , n−1; m = −l, . . . , l, and a0 = 1/mα is the Bohr radius. Here
Y m

l (θ ,φ) are the spherical harmonics, and Lk
n the associated Laguerre polynomials (our convention

for the latter is given in Eq. (A.6) in theAppendix and corresponds to that of MATHEMATICA). Since
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Fig. 2. The ground state energy E0(μ) of theYukawa Hamiltonian at various orders of perturbation theory (for
m = α = 1), with a cutoff at n = 19, together with the literature average curve.

both the unperturbed ground state and the perturbation �H are spherically symmetric, it is easily
seen that the eigenstates with nonvanishing angular momentum, i.e., with l > 0, will not contribute
to any order in the perturbative expansion. This greatly simplifies the expansion, and in particular
reduces it to the nondegenerate case, so that we can use the formulas for nondegenerate perturbation
theory as given inAppendix, restricting them to the spherically symmetric eigenfunctionsψn ≡ ψn00

from the beginning. They involve, apart from the energy differences�nm ≡ En −Em, only the matrix
elements Vnm ≡ 〈ψn|�H |ψm〉, which we obtain in closed form in Eq. (A.8). From the second-order
correction onwards the expressions involve infinite sums over the principal quantum number n,
which we were unable to do in closed form. However, all these sums converge very rapidly (at least
as 1/n3), so that a cutoff could be used on them; using C++, we were able to sum over the first 19
terms for each infinite sum.

In Fig. 2 we show a plot of the results of this calculation for the ground-state energy as a function
of μ at various orders of perturbation theory (choosing m = α = 1), together with the literature
average curve obtained in the previous section. We observe that perturbation theory works well up to
μ � 0.5 and breaks down for μ � 0.8. As one would expect, the addition of the higher-order terms
delays the onset of this breakdown, but not very significantly. It is also interesting to note that, in
the range where perturbation theory works, the perturbation series for fixed μ still shows apparent
convergent behavior to fifth order, even though it is known that the perturbation series in quantum
mechanics (as well as in quantum field theory) is generically an asymptotically divergent one (see,
e.g., Ref. [18]). It would be interesting to push this calculation to even higher orders to see the onset
of asymptoticity.

As a check on the cutoff that we have used for the principal number summations, let us also show
in Fig. 3 the corresponding plot obtained by summing over only the first 10 terms, rather than 19, for
all these sums. The plots are indistinguishable in the range of μ where perturbation theory works.

The expansion in�H is effectively an expansion in μ, which suggests that better results might be
obtained by using the same perturbation series with a different break-up of theYukawa Hamiltonian:
instead of Eq. (3.1), let us try moving the term linear in μ contained in the Yukawa potential, which
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Fig. 3. The ground state energy E0(μ) of theYukawa Hamiltonian at various orders of perturbation theory (for
m = α = 1), with a cutoff at n = 10, together with the literature average curve.

corresponds to a constant term in the Hamiltonian, from �H to H0:

HYuk = − 1

2m
∇2 − α

r
+ μα︸ ︷︷ ︸

H ′
0

+ α

r
(1 − μr − e−μr)︸ ︷︷ ︸

�H ′

. (3.4)

The new H ′
0 has the same eigenfunctions as H0 and eigenvalues shifted by the constant μα:

E′
n = −mα2

2

1

n2 + μα. (3.5)

Redoing the perturbative calculation with this modification, up to fifth order and with the same cutoff
at n = 19, we have obtained the results for E0(μ) shown in Fig. 4.

Comparing with Fig. 2 we see that the new break-up does not show any improvement.An important
remark is that increasing the cut-off above n = 19 leads to numerical instability in the fifth-order per-
turbation theory due to delicate cancelations between large numbers (generated by the combinatoric
factorials present in the equations in the appendix). Various ad hoc modifications to the methods of
calculating the summands become necessary to alleviate these problems.

4. Variational principle

For the case of the ground state energy, the variational principle provides an approximation method
that is more universally applicable than perturbation theory, and often yields accurate results with
relatively little effort. It states that to obtain the ground state energy of a system described by the
Hamiltonian H , in the case that it is not possible to solve the Schrödinger equation exactly, then one
can pick any normalized wave function ψ whatsoever and, using the spectral representation of the
Hamiltonian, it is easily seen that one always has

E0 ≤ 〈ψ |H |ψ〉. (4.1)
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Fig. 4. The ground state energy E0(μ) of the Yukawa Hamiltonian using H ′
0 (for m = α = 1), together with

the literature average curve, with a cutoff at n = 19.

That is, unless ψ is the true ground state, the expectation value of H in the state ψ is certain to
overestimate the ground state energy (Ref. [12]).

For the Yukawa Hamiltonian (1.1), the simplest possible choice is a trial wave function ψt(r) that
mimics the ground state wave function of the Coulomb potential, that is the ψ100 of Eq. (3.3):

ψt(r) ≡ 1√
πb3

exp
(
− r

b

)
. (4.2)

This wave function is normalized, and b is the variational parameter that needs to be adjusted to
minimize the expectation value of the Hamiltonian (3.3). Since there is only radial dependence, the
calculations are simple and lead to

Et ≡ 〈ψt(r)|H |ψt(r)〉 = 1

2mb2 − 4

a0mb(2 + bμ)2
, (4.3)

where we have also used the relation α = 1/(ma0).
The minimization of the expression (4.3) leads to an algebraic third-order equation. Curiously,

although the variational method has been applied to the Yukawa potential by a number of authors,
and the trial function (4.2) was used in Ref. [12] (in problem 7.14), the exact solution of this equation
does not seem to be in the literature. MATHEMATICA gives it as

b0(μ) = 1

3a0μ3

[
− 6μ(−2 + a0μ)

+ i62/3(i + √
3)μ2(−6 + 5a0μ)(

−36μ3 + 45a0μ4 − 9a0μ5 + a0μ4
√

3(−9 − 20a0μ+ 27a0μ2)
)1/3

+ 61/3(1 + i
√

3)
(
−36μ3 + 45a0μ

4 − 9a0μ
5 + a0μ

4
√

3(−9 − 20a0μ+ 27a0μ2)
)1/3

]
.

(4.4)
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Fig. 5. Variational solution to the ground state energy of the Yukawa potential, together with the literature
average curve and the fifth-order perturbative ones.

This solution is real, although it is not obviously so. The physically relevant one among the 3 solutions
of the third-order equation was determined by assuming that b0(μ) should go to the Coulomb value
a0 for μ → 0. Thus for μ � 1 it expands out as a0 plus perturbations in powers of μ:

b0 = a0 + 3

4
a3

0μ
2 − a4

0μ
3 + 21

8
a5

0μ
4 − 6a6

0μ
5 + O (

μ6). (4.5)

In Fig. 5 we show the result of using Eq. (4.4) in Eq. (4.3), together with the literature average curve
and the curves from both versions of fifth-order perturbation theory (the curves for H0 and H ′

0 are
practically indistinguishable at the scale of the figure). Note that, for very small μ, the numerical
evaluation of the variational curve becomes unstable; a smooth result can be obtained by replacing
the exact b0(μ) of Eq. (4.4) by its small μ approximation (4.5). Remarkably, the variational and the
fifth-order perturbative curves are in close agreement.

5. The critical screening parameter μc

As we mentioned in the introduction, an important difference between the Coulomb and Yukawa
cases is that, for the latter, bound states cease to exist ifμ becomes larger than a critical valueμc. Such
a transition in quantum mechanics holds important information on the dynamics of the system. For
example, in solid state physics the existence of bound states makes it possible to condense electrons
around protons and get an insulating system, while in their absence the system is a metal (Ref. [19]).
The transition between both regimes is called Mott transition. The value ofμc = (·)mα is not known
exactly. In Table 1 we give some values for (·) found in the literature, together with the ones that
follow from our approximate calculations above, determined by the intersection of the E0(μ) curve
with the E0 = 0 axis.

Further, we will now present a method for the calculation of μc that is quite simple, but which we
have not been able to find in the literature. For μ = μc we have the lowest eigenvalue E0 = 0 with
corresponding radial Schrödinger equation
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− 1

2m

(
d2

dr2 + 2

r

d

dr

)
ψ0(r)− α

r
e−μrψ0(r) = 0. (5.1)

In terms of g(r) ≡ rψ0(r), this can be written as

g′′(r)+ αm
2

r
e−μrg(r) = 0. (5.2)

According to Eq. (1.2) the critical value μc is proportional to αm, so that we can also set αm = 1.
Equation (5.2) describes, for μ just below the critical value μc, a bound state solution, and for μ just
above μc a scattering solution (here we neglect an infinitesimal contribution to the right-hand side
of Eq. (5.2), −2mE0g(r), that is present whilst μ �= μc). In either case we must have g(0) = 0, for
regularity of the wave function at the origin, and in the bound state case also g(∞) = 0, since the
wave function must decrease (much) faster than 1/r for large r to be square integrable. This suggests
(Ref. [20]) that one could distinguish betweenμ < μc andμ > μc by checking numerically whether
Eq. (5.2) can be solved with the boundary conditions

g(0) = g(∞) = 0. (5.3)

However, these boundary conditions are not the most convenient ones for numerical purposes. It is
thus important to observe that we can also replace them by the conditions

g(0) = 0, g′(0) = g1, (5.4)

where g1 is an arbitrary nonzero number, and check whether the numerical solution of Eq. (5.2)
leads to g(∞) = 0 or not. These procedures are equivalent, since the boundary conditions (5.3) are
homogeneous, so that a solution of Eq. (5.2) fulfilling them can be rescaled to make g′(0) take any
given nonzero value g1 (nonzero, since g′(0) = g(0) = 0 leads to the trivial solution g(0) ≡ 0).
Moreover, it is easy to check the behavior of g(r) at large r, since Eq. (5.2) implies that g′(r) rapidly
converges to a constant for large r. Thus, the critical μc can be found by starting with a μ somewhat
below it, and then hiking it up little by little, each time solving Eq. (5.2) numerically with some
arbitrary g1 > 0, and checking whether the slope of g(r) still becomes negative for large r, as it
must for g(r) to represent a bound state solution (in the bound state case, the slope of g(r) ultimately
must go to zero for very large r; in an exact calculation, this would be ensured by the tiny positive
contribution to the right-hand side of Eq. (5.2) that is present whilst μ < μc).

In Figs. 6 and 7 we show plots obtained by setting g1 = 1 and using the NDSolve command of
MATHEMATICA 10. Since r = 0 cannot be used in the numerical evaluation, here we have replaced
the exact conditions (5.4) by the approximate ones

g(r0) = g(0)+ r0g′(0) = r0g1, g′(r0) = g′(0) = g1, (5.5)

with g1 = 1 and the small radial cutoff r0 = 10−10.
From these plots we conclude that μc/αm lies between 1.190 612 210 and 1.190 612 211. This is

compatible with the LCAO result of Ref. [9], μ = 1.190 612 27(4) (except for their last digit) and
Ref. [11], but not with Refs. [7] and [8]. We have also checked that this result is stable under a further
reduction of the radial cutoff r0.

6. Conclusions

In this paper, we have summarized the existing literature on the ground state energy E0 and the critical
screening parameterμ for theYukawa potential, and we have performed 3 calculations that, although
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Fig. 6. MATHEMATICA plot of g(r) for μ = 1.190 612 210, just below its critical value.

Fig. 7. MATHEMATICA plot of g(r) for μ = 1.190 612 211, just above its critical value.

straightforward, to the best of our knowledge have not been done before: (i) a fifth-order perturbative
calculation of E0 using the exact solutions of the Coulomb potential together with a cutoff on the
principal number summations; (ii) a variational calculation of E0 using a simple Coulomb-like radial
wave function and the exact solution of the corresponding minimization condition, a third-order
equation; (iii) a high-precision determination ofμc by numerical integration of the radial Schrödinger
equation with appropriate boundary conditions. Our main findings are the close agreement between
the fifth-order perturbative result with the variational one, and a calculation of μc to 10 significant
digits. This is one digit more than was obtained in the LCAO calculation of Ref. [9], previously
the most precise determination of this parameter available in the literature, with an incomparably
greater effort. Our calculation essentially confirms their value, and shows the inaccuracy of some
other values found in the literature. Moreover, since our new approach essentially amounts to a form
of interval bisection, its rate of convergence, being linear, is an improvement on the computational
complexity of many other approaches, making it easier—and less time consuming—to increase the
accuracy of our determination of μc to greater numbers of decimal places. The result presented
here should also become useful as a benchmark for future approximative calculations. Moreover,
the method proposed here for the calculation of μc may find generalizations to other spherically
symmetric potentials.
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Appendix A. Formulas needed for the fifth-order perturbation expansion

For easy reference, let us list here the expressions given in Wikipedia (Ref. [17]) for the energy level
corrections up to fifth order in (nondegenerate) perturbation theory:

�E1
n = Vnn, (A.1)

�E2
n =

∑
m�=n

V 2
nm

�nm
, (A.2)

�E3
n =

∑
m�=n

∑
r �=n

VnrVrmVmn

�nm�nr
− Vnn

∑
m�=n

V 2
nm

�2
nm

, (A.3)
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2
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2
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, (A.4)
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. (A.5)

Here we have used the short-hand notation Vnm ≡ 〈ψn|�H |ψm〉 and �nm ≡ En − Em.
Using the formula for the associated Laguerre polynomials

Lb
n(x) =

n∑
i=0

(
n + b

n − i

)
(−x)i

i! , (A.6)

we can write

ψn00(r) = 1

n2
√

nπa3
0

exp
(

− r

na0

) n−1∑
i=0

(
n

n − 1 − i

)
1

i!
(

− 2r

na0

)i

. (A.7)
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Considering first the case of �H ′ = α
r (1 − μr − e−μr), here we find

〈ψn00|�H ′|ψp00〉

= 4πα

n2p2√npπa3
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, (A.8)

where in particular cases the sums over i and j can be calculated in closed form:

〈ψ100|�H ′|ψ100〉 = −μ
2α(3mα + μ)

(2mα + μ)2
, (A.9)

〈ψn00|�H ′|ψ100〉 = 4mα2
√

n

(n + 1)2

[(
n − 1

n + 1

)n−1

(A.10)

−
(

(n + 1)mα

(n + 1)mα + nμ

)2 (
(n − 1)mα + nμ

(n + 1)mα + nμ

)n−1

+ n(n + 1)2
μ

8mα
s(n)

]
,

where

s(n) ≡
{

−2, n = 1,

0, n > 1.
(A.11)

With these expressions in hand, the corrections to any order to the ground state energy could be
calculated in principle. The remaining task is to deal with the infinite sums.

12/13
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/8/083A01/4092946/The-Yukawa-potential-ground-state-energy-and
by CERN - European Organization for Nuclear Research user
on 02 October 2017



PTEP 2017, 083A01 J P. Edwards et al.

To get the respective expressions for �H = α
r (1 − e−μr), we just have to ignore the last term in

the square brackets in Eq. (A.8). The particular cases (A.9), (A.10) become

〈ψ100|�H |ψ100〉 = mμα2
[

4mα + μ

(2mα + μ)2

]
, (A.12)

〈ψn00|�H |ψ100〉 = 4mα2
√

n

(n + 1)2

×
[(

n − 1

n + 1

)n−1

−
(

(n + 1)mα

(n + 1)mα + nμ

)2 (
(n − 1)mα + nμ

(n + 1)mα + nμ

)n−1
]

. (A.13)
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