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Abstract The development of dissipative and electrically
charged distributions in five dimensions is presented by using
the post-quasistatic approximation. It is an iterative technique
for the evolution of self-gravitating spheres of matter. We
construct non-adiabatic distributions by means of an equa-
tion of state that accounts for the anisotropy based on electric
charge. Streaming out and diffusion approximations are used
to describe dissipation. In non-comoving coordinates, we
match the higher dimensional interior solution with the cor-
responding Vaidya–Reissner–Nordström exterior solution.
Hence, a system of higher dimensional surface equations
results from generalized form of the post-quasistatic approx-
imation. Surface equations are essential for understanding
physical phenomena such as luminosity, Doppler shift, and
red-shift at the boundary surface of gravitating sources.

1 Introduction

The study of charged relativistic fluid balls is a topic that
physics and astrophysics researchers from many different
fields are interested. There is general agreement that astro-
nomical objects with a lot of charge can’t exist in the natu-
ral world [1,2]. This point of view has been questioned by
numerous researchers [3–6]. It is not impossible that matter
might pick up significant electric charge during gravitational
collapse or accretion onto a compact object. This was con-
sidered in Diego et al. [7] and Shvartsman [8].

In this article, we look into account relativistic compact
objects with a fluid that dissipates energy and a spherical
distribution of charged matter. The generated electric field
in self-gravitating systems is thought to be regulated by the
requirement that it not be greater than 1016 V cm−1 [9], which
is considered the critical field for pair creation. This critical
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field restriction has been challenged [10–13]. The quasi-static
approximation (QSA) [14] is clearly unreliable for intensive
dynamical activity with time scales on the order of the hydro-
static time scale. The majority of research on electric charge
has been done in static conditions [15–18]. Recent research
has focused on charged quasi-black holes [19,20] and their
growth into a quasi-spherical world [21]. Electrically charged
distributions can be conceived of as anisotropic [22,23] in
the real world. The authors combine anisotropy and electric
charge using an equation of state, but not as a single entity
[24,25].

Spherically symmetric solutions in general relativity (GR)
are important in the study of compact objects. The gravita-
tional fields of astronomical bodies can be modeled by using
spherically symmetric solutions to the Einstein field equa-
tions (EFEs). Indeed, most studied exact solutions to EFEs
are spherically symmetric. If the metric components of spher-
ical symmetry are static then exterior space time is taken as
Schwarzschild solution [26]. Reissner [27], Weyl [28] and
Nordström [29] developed the Reissner–Nordström solution
to describe impact of electromagnetic field on gravitating
system. The exact vacuum solution of EFEs that describes
a rotating, stationary, axially symmetric black hole was dis-
covered by Kerr [30]. This solution describes a black hole
because it describes the spacetime generated by a singularity
with a curvature hidden by a horizon. Myers and Perry inves-
tigated the Schwarzschild, Reissner–Nordström, and Kerr
solutions for higher dimensional spacetimes [31]. Shen and
Tan [32] discussed Wyman’s solution in higher dimensions.
Chatterjee [33] obtained an exterior solution for spherically
symmetric Kaluza–Klein (KK) type metric.

The development of GR to higher dimensions has gained
a lot of attention in recent years. The five dimension and
higher manifolds presented by KK are used in various grav-
ity theories that extends Einstein’s GR. After a couple of
decades of the introduction of special relativity, Kaluza [34]
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and Klein [35] postulated the existence of an extra spatial
dimension that can be considered as an extension to rela-
tivistic theory. Their motivation for doing so was to give a
unified description of electromagnetism and gravity in terms
of a five-dimensional metric. The considerable work in this
domain after KK was presented by Wesson’s [36], he studied
the properties of matter in KK theories. The space-time mat-
ter theories [37] have become increasingly prominent in grav-
itation and cosmology in the fifth dimension. Liu and Over-
duin [38] investigated light deflection and time delay results
for massless test particles in higher dimensions. Rahaman
et al. [39] studied the usual solar system phenomenon, such
as the perihelion shift, light bending, gravitational red-shift,
gravitational time delay and motion of test particles that are
compatible with the existence of higher spatial dimensions.
Bars and Terning [40] introduced the extra time dimension.
The solution was based on gauge symmetry. They devel-
oped the general framework by using the extra time dimen-
sion coordinate and found that the results are consistent with
standard models of general relativity. The higher dimensional
gravstars were also studied by Rahaman et al. [41]. Moreover,
many researchers have worked on higher derivative gravities
in connection to extension of GR [42–50].

The Rosen’s bimetric field equations in higher dimensions
for the static spherically symmetric space-time with charged
anisotropic fluid distribution were solved by Pandya and Has-
mani [51]. Singh et al. [52] investigated two distinct cos-
mological models with massive strings in five dimensional
relativistic theories. The first produces a five-dimensional
model of the Universe, while the second produces the vacuum
Universe. The properties of the model Universe are investi-
gated and compared to the properties of the four-dimensional
model. Baro et al. [53] investigated a model of the universe
that is isotropic throughout its evolution, non-sharing and
free from the initial singularity.

Debnath et al. [54] used a higher-dimensional extension of
the quasi-spherical Szekeres metrics with a non-zero cosmic
constant to study gravitational collapse in (n+2) dimensions.
They discovered that the possibility of a naked singularity
depends on the initial density of a space-time with more than
five dimensions. The results are comparable to the collapse
in Tolman–Bondi–Lemaitre space-times with spherically
symmetric space-times. Yamada and Shinkai [55] investi-
gated the gravitational collapse of collisionless particles in
spheroidal structures in both four and five dimensions of
space-time using numerical methods. The collapsing behav-
iors are quite similar to the cases in four-dimension, but they
also found that five-dimensional collapses proceed rapidly
than four-dimensional collapses. Khan et al. [56] presented
the five-dimensional spherically symmetric anisotropic col-
lapse with a positive cosmological constant. They employ
the Schwarzschild–de Sitter and five-dimensional spherically
symmetric metrics for the inner and outer regions, respec-

tively. They found that the entire collapse process is impacted
by the cosmological constant. The collapse process is slowed
down by the cosmological constant.

Barnaföldi et al. [57] investigate the higher dimensional
neutron star with compactified fifth-dimensional excitations.
They showed that neutron stars with hyperon or extra-
dimensional cores are remarkably similar objects in a simple
model of a compact star. The Tolman–Oppenheimer–Volkoff
(TOV) equation produces a comparable structure with a
clearly defined stability area in the extra-dimensional case,
where the lowest KK modes may be observed. Additionally,
they introduced a new dimension, which contributed about
the emergence of new stability areas and the presence of
many stable hybrid star configurations. The double neutrino
shower from SN 1987A supports this conclusion. Paul [58]
studied the relativistic solutions of higher dimension compact
star in hydrostatic equilibrium with spherically symmetric
space-time. He found that the presence of higher dimensions
directly affects the star’s central density. The square of the
dimensions of space and time causes the density of the star’s
core to increase roughly proportionally. As a result, if a star
is surrounded in dimensions other than the standard four of
space-time, its centre density is relatively higher for a given
radius. It is also obvious that for a given radius, more space-
time dimensions than four allow for a more massive compact
star. Bhar et al. [59] provided evidence for the existence of
higher dimensional anisotropic compact stars in noncommu-
tative space-time. They found that the physical behaviors of
the conservative variables, such as energy density, radial pres-
sure, transverse pressures, anisotropy, and other characteris-
tics, are generally consistent throughout the stellar structure.
They also mention that as one goes to higher dimensions,
the central densities abruptly decrease, and that the measure
of anisotropy gradually increases, reaching its maximum at
five dimensions. A star’s central density is greatest in four
dimensions and lowest in higher dimensions.

Numerical techniques enable mathematicians to study
systems that are complicated to handle analytically [60].
Numerical models have proven to be beneficial in the inves-
tigation of strong field scenarios and for revealing unex-
pected occurrences in GR [61]. Nonetheless, it is clearly
more straight forward to solve ordinary differential equa-
tions (ODEs) than partial differential equations in general.
However, numerical solutions frequently make it difficult to
express general, qualitative, aspects of this process. The sug-
gested method produces a system of ODEs for quantities
determined at the fluid distribution’s boundary surface (BS)
starting from any interior static spherically symmetric seed
solution to the EFEs. The static limit of the numerical solu-
tion, which simulates dynamical self-gravitating spheres, is
the initial seed solution.

The pioneer work of Oppenheimer and Snyder [62]
urged researchers to explore relativistic aspects of gravitating
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source their formation and inner structure. The motivation for
such interest is based on the fact that the relativistic collapse
of massive stars is one of the main visible process in which
GR is predicted to play a vital role. However, self-gravitating
compact objects may experience periods of extreme dynami-
cal activity as they evolve over time. The static or quasi-static
(QS) approximation is unreliable for some phenomena, such
as the origination of neutron stars as a result of quick col-
lapse. In such conditions, it is necessary to consider con-
cepts that describe departures from equilibrium. Herrera et
al. [63] initially presented the post-quasistatic (PQS) approx-
imations essence using radiative Bondi approach. Herrera
and his coworkers [64] have made considerable use of it. In
Bondi approach, the concept of QS approximation is absent:
the system proceeds immediately from static to PQS evolu-
tion. The PQS approximation depends on “effective” vari-
ables, such as effective pressure and energy density [65].
Because the effective variables of the QS approximation cor-
respond to the physical variables. This approximation can
be assumed as an iterative technique, with each successive
step representing a greater deviation from equilibrium. More
precisely, the authors [61] employed a method for modeling
the evolution of compact objects that does not necessitate
complete integration of the EFEs with respect to the time
coordinate. Zahra et al. presented the general framework of
the PQS approximation with heat flow in five dimensional
noncomoving coordinates [66].

The purpose of this work is to investigate the evolution
of compact objects in the PQS regime in five dimensions.
We study, a self-gravitating spherical distribution of charged
matter containing dissipative fluid. The emission of photons
and/or neutrino particles causes dissipation, which is a com-
mon procedure in the evolution of compact objects. In fact,
neutrino emission appears to be the only viable technique
for removing the majority of the binding energy from a col-
lapsing star. However, there are only two approximations,
diffusion and streaming out are frequently employed in the
analysis of radiative transport within compact objects. The
diffusion approximation assumes that likewise thermal con-
duction, the energy flux of radiation is approximately equal to
the temperature gradient. This assumption is generally viable
because the mean free path of the particles responsible for
energy transmission in star interiors is usually quite short in
comparison to the object’s normal length. A star, such as the
sun, has a mean free path of massless particles photons on
the order of 2 cm. The mean free path of trapped neutrinos
is less than the size of the star core in compact cores with
densities of about 1012 g.cm−3 [67,68].

The emission of energy through streaming-out radiation is
a highly efficient mechanism that results in the redistribution
of electric charge throughout the sphere. As the distribution
of the sphere continues to collapse over an extended hydrody-
namic time scale, this process ensures that the electric charge

is evenly distributed. During the initial stages of the collapse,
the free streaming process is responsible for this redistribu-
tion, while the diffusion approximation becomes increasingly
applicable as the collapse progresses towards its final stages
[69]. In addition, data from the 1987A supernova show that
during the emission phase, the predominant radiation trans-
port regime is closer to the diffusion approximation than the
streaming out limit [70].

In this article, we will discuss physical variables such
as energy density, pressure, unpolarized radiation of energy
density, proper velocity and electric charge. These physi-
cal variables predicted to play a vital role in the evolution
of self-gravitating objects. Although employing comoving
coordinates is the most usual way to solve EFEs, we will use
noncomoving coordinates, which means that the velocity of
every fluid element must be taken into consideration as a rel-
evant physical variable [71,72]. The layout of this work is as
follows. We describe the conventions and provide the higher
dimensional Einstein-Maxwell field equations in Sect. 2 and
3. The exterior spacetime is presented in Sect. 4. The Method-
ology of this paper is discussed in Sect. 5. Finally, conclusion
and discussion is presented in Sect. 4 that are followed by a
list of references.

2 Higher dimensional field equations

We consider non-static spherically symmetric distributions
of a collapsing fluid confined by a spherical surface

∑
, where

dissipation occurs due to free-streaming radiation and/or heat
flow and anisotropy induced by electric charge. By using five
dimensional Schwarzschild-like coordinates [73], the metric
is then written as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2dφ2) − eμdw2, (1)

where ν, λ and μ are general functions of time and radial
coordinates. The spacetime coordinates are x0 = t, x1 =
r, x2 = θ, x3 = φ, x4 = w. The corresponding system
of equations for the Maxwell-EFEs in tensorial form is as
follows:

Gν
μ = −8πT ν

μ . (2)

That leads to following set of equations

− 8πT 0
0 = − 1

r2 + e−λ

(
1

r2 + (μ′ − λ′)
r

+
(
(μ′)2 − μ′λ′)

4
+ μ′′

2

)

+ e−ν

(
μ̇λ̇

4

)

, (3)

−8πT 1
1 = − 1

r2 + e−λ

(
1

r2 + (ν′ + μ′)
r

+ μ′ν′

4

)

−e−ν

4

(

2μ̈ + (μ̇)2 − μ̇ν̇

)

, (4)
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−8πT 2
2 = −8πT 3

3

= 1

4

[

− e−ν

{

2
(
μ̈ + λ̈

) + μ̇
(
μ̇ − ν̇ + λ̇

) + λ̇
(
λ̇ − ν̇

)
}

+e−λ

{

2
(
ν′′ + μ′′) + (ν′)2 + (μ′)2 − ν′λ′ − μ′(λ′ + ν′)

}]

+2

r

(

ν′ − λ′ + μ′
)

, (5)

−8πT 4
4 = 1

r2 − e−λ

(
1

r2 + ν′′
2

+ (ν′)2

4
− ν′λ′

4
+

(
ν′ − λ′)

r

)

+ e−ν

4

(

2λ̈ + (λ̇)2 − ν̇λ̇

)

, (6)

−8πT01 =
(

μ′μ̇
4

− μ̇ν′
4

− μ′λ̇
4

+ μ̇′
2

− λ̇

r

)

, (7)

where (.) and (′) denote partial differentiation in terms of t
and r respectively. We use the Bondi technique [74] to give
physical meaning to the components of energy stress tensor
Tμ

ν .
Thus, in the accordance with Bondi, we will introduce

Minkowski coordinates (τ, x, y, z, h), in five dimension as

dτ = eν/2dt, dx = eλ/2dr, dy = rdθ,

dz = rsinθdφ, dh = eμ/2dw.

Then, using a bar to represent the higher dimensional
Minkowski coordinates of the energy stress tensor, we obtain

T̄ 0
0 = T 0

0 ; T̄ 1
1 = T 1

1 ; T̄ 2
2 = T 2

2 ; T̄ 3
3 = T 3

3 ;
T̄ 4

4 = T 4
4 ; T̄01 = e− (ν+λ)

2 T01.

The five-dimensional Lorentz transformation then demon-
strates that

T 0
0 = T̄ 0

0 = ρ + Pω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε, (8)

T 1
1 = T̄ 1

1 = − P + ρω2

1 − ω2 − 2Qωe
λ
2

√
(1 − ω2)

− ε, (9)

T 2
2 = T̄ 2

2 = T 3
3 = T̄ 3

3 = T 4
4 = T̄ 4

4 = −P, (10)

T01 = e
(ν+λ)

2 T̄01 = − (ρ + P)ωe
(ν+λ)

2

1 − ω2

−Qe
ν
2 eλ(1 + ω2)

√
(1 − ω2)

− e
(ν+λ)

2 ε, (11)

with

Q ≡ q̂e
−λ
2

√
(1 − ω2)

, (12)

and

ε ≡ ε̂
(ω + 1)

(1 − ω)
. (13)

It is worth noting that in (t, r, θ, φ,w) system, the coordinate
velocity dr

dt is associated with the proper velocity ω by

ω = dr

dt
e

(λ−ν)
2 . (14)

Applying Lorentz transformed Eqs. (8–11), in field Eqs. (3–
7), we obtain

ρ + Pω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε + s2e−μ

8πr4

= − 1

8π

{

+ e−λ

(
1

r2 + (μ′ − λ′)
r

+
(
(μ′)2 − μ′λ′)

4
+ μ′′

2

)

− 1

r2 + e−ν

(
μ̇λ̇

4

)}

, (15)

P + ρω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε − s2e−μ

8πr4

= − 1

8π

{
1

r2 − e−λ

(
1

r2 + (ν′ + μ′)
r

+ μ′ν′
4

)

+ e−ν

4

(

2μ̈ + (μ̇)2 − μ̇ν̇

)}

, (16)

P + s2e−μ

8πr4

= −1

32π

[

e−ν

(

2
(
μ̈ + λ̈

) + μ̇
(
μ̇ − ν̇ + λ̇

) + λ̇
(
λ̇ − ν̇

)
)

−e−λ

(

2
(
ν′′ + μ′′) + (ν′)2 + (μ′)2 − ν′λ′ − μ′(λ′ + ν′)

)]

−2

r

(

ν′ − λ′ + μ′
)

, (17)

(ρ + P)ωe
(ν+λ)

2

1 − ω2 + Qe
ν
2 eλ(1 + ω2)

√
(1 − ω2)

+ e
(ν+λ)

2 ε

= − 1

8π

{(
− μ′μ̇

4
+ μ̇ν′

4
+ μ′λ̇

4
− μ̇′

2
+ λ̇

r

)}

. (18)

3 Electric charge induced anisotropy in five dimensions

To express the EFEs in terms of an anisotropic fluid, we
present

e−λ = e−μ = 1 − ξ

r2 , (19)

where

ξ(t, r) = m(t, r) − s2

3r2 , (20)

m represent the total mass. The corresponding mass function
is defined as

m =
∫ r

0
4πr2ρ̃dr. (21)
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Thus the field equations (16)–(18) read

p̃ = − 1

8π

[
1

r2 − (r2 − m)

r2

(
1

r2 + ν′
r

+ m′r − 2m

r2(r2 − m)

+ν′
4

(
m′r − 2m

r(r2 − m)

))

+ r2

4(r2 − m)

(
2m̈

r2(r2 − m)
+ 2(ṁ)2

(r2 − m)2

)]

, (22)

pt = − 1

32π

[

e−ν

(
9(ṁ)2

r2 − m

2

+ (
4(m̈)

r2 − m
)

)

− (r2 − m)

r2

(

2ν′′ + 2m′′r2 − 8m′r + 12m

r2(r62 − m)

+ (−2m′r + 4m2)

r2(r2 − m)2 + ν′2 − 2ν′m′r + 4ν′m
r(r2 − m)

)

− 2ν′
r

]

,

(23)

and the conservative variables represent as

ρ̃ = ρ + Prω2ω

1 − ω2 + 2ωq

1 − ω2 + ε
1 + ω

1 − ω
, (24)

S = (ρ + Pr )ω

1 − ω2 + 1 + ω2

1 − ω2 q + ε
1 + ω

1 − ω
, (25)

and the flux variable

P̃ = Pr + ρω2

1 − ω2 + 2ωq

1 − ω2 + ε
1 + ω

1 − ω
, (26)

where the P̃ and ρ̃ represent the effective pressure and
energy density in PQS approximation respectively. Formally,
Eqs. (21)–(23) correspond to those for an anisotropic fluid,
with ρ̂ = ρ +ρe, pr = p− pe, pt = p+ pe, and the electric
energy density ρe = E2/8π , where E = s/r2 is the local
electric field intensity.

4 Higher dimensional exterior spacetime

The corresponding Reissner–Nordström–Vaidya exterior
geometry for higher dimension electromagnetic field is con-
sidered as [75]

ds2 =
(

1 − 2M(u)

(n − 1)Rn−1 + 2q2

n(n − 1)r2n−2

)
du2+2dudR

−R2
(
dθ2

1 + sin2θ1

(
dθ2

2 + sinθ2
2 dθ3

2

))
, (27)

where M(u) represent the total mass of the system inside
the BS denoted as �, u denotes the retarded time and q is
the total charge. At the BS and outside it, the two coordinate
systems (t, r, θ, φ, h) and (u, R, θ1, θ2, φ) are connected by

u = t − r − 2Mln
( r

2M
− 1

)
, R = r�, (28)

following necessary and sufficient conditions for two metrics
(1) and (27) shall be fulfilled to match smoothly.

eν� = e−λ� = e−μ� = 1 − M

R2
�

+ q2

3R4 , (29)

and

ν� = −λ� = −μ�. (30)

The � subscript shows that the quantity is determined at
the BS. This last condition ensures that there are no unusual
behaviours on the surface. It is simple to verify this

p� = q�, (31)

which expresses the radial pressure’s continuity over the dis-
tribution’s border as R = r(t). The fluid in this study is
considered to be anisotropic and dissipative in the form of
free streaming radiations and/or heat flow, where ε is the
radiation density and q is the heat flow are considered as

Tμν = (ρ + P)uμuν − Pgμν + qμuν + qνuμ

+εlνlμ + Eμν, (32)

where uα , lα , qα are the four velocity, the four null vec-
tor and the heat flux four vector respectively, which satisfy
uαuα = 1, qαuα = 0, lαlα = 0 and Eμν is the electromag-
netic energy–momentum tensor

Eμν = 1

4π

[

Fk
μFνk − 1

4
gμνFσk F

σk
]

, (33)

where the Maxwell equations are satisfied by the Maxwell
field tensor, Fμk :

F[μν;σ ] = 0, (34)

and

(
√−gFμν),ν = 4π

√−gJμ, (35)

where Jμ = σuμ represents for electric current five vector,
σ stands for electrical conductivity, “,” and “;” respectively,
represent partial differentiation and covariant derivative with
respect to the stated coordinate. Only the radial electric field,
Ftr = −Frt , is nonzero due to spherical symmetry. Con-
versely, the inhomogeneous Maxwell equations change into

s,r = 4πr2 J t e
ν+λ

2 , (36)

and

s,t = −4πr2 Jr e
ν+λ

2 , (37)

where J t and Jr are the current four vector’s respective
temporal and radial components. The function s(t, r) nat-
urally yields the charge that is present inside the radius
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r at the time t . We develop the definition of the function

Ftr = se
−(λ+ν)

2 /r2, with

s(t, r) =
∫

4πr2 J t e− (λ + ν)

2
dr. (38)

In a fluid-comoving sphere, the conservation of charge is
stated as

uα
s,α = 0. (39)

The conservation equation can be expressed in a way that is
more suitable for numerical purposes

s,t + dr

dt
s,r = 0. (40)

The contravariant components of the four velocity, the null
outgoing vector and the heat flux four vector are

uμ =
(

e−ν/2
√

(1 − ω2)
,

ωe−λ/2
√

(1 − ω2)
, 0, 0, 0

)

, (41)

lμ =
(

e−ν/2, e−λ/2, 0, 0, 0

)

, (42)

and

qu = Q
(
ωe

λ−ν
2 , 1, 0, 0, 0

)
. (43)

After some lengthy but simple computations, the radial com-
ponent of conservation law is used to calculate Tμ

ν;μ = 0, we
obtain following equation

P ′ = −
(ν′ + μ′

2

)(
ρ + P

)
, (44)

which represents the static case of the Tolman–Oppenheimer–
Volkoff (TOV) equation.

5 The methodology

While dealing with self-gravitating compact objects, the
most basic scenario is static equilibrium. This shows that
ω = ε = Q = 0, all time-dependent derivatives vanish
and a modified TOV equation is obtained. The QS regime,
the hydrostatic time scale, which is the typical time scale on
which the sphere responds to small changes in the hydrostatic
equilibrium, is very long in comparison to the slow rate of
change of the sphere. As a result, the system is constantly
near to hydrostatic equilibrium in QS regime. Its evolution
can be seen as a series of static models linked together by (18).
This theory is sensible because the hydrostatic time scale is
relatively short for several stages of a star’s life. It is approxi-
mately 4.5 s for a white dwarf, 27 min for the Sun and 10−4 s
for a neutron star with a mass of one solar mass and a radius of
10 km [76]. Any of the star configurations mentioned above
have been observed to change over the period of time that are
unusually long in comparison to their respective hydrostatic

time scales. As was previously stated, this approximation is
no longer accurate in some crucial instances and departures
from quasi-equilibrium must be taken into account. We will
discuss such departures, in the PQS approximation given in
following subsections.

5.1 The effective variables and PQS approximation in
higher dimension

The effective variables for the PQS approximation are
defined as follows:

ρ̃ = T 0
0 = ρ + Pω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε, (45)

P̃ = −T 1
1 = P + ρω2

1 − ω2 + 2Qωe
λ
2

√
(1 − ω2)

+ ε. (46)

The effective variables in the QS regime satisfy the TOV
Eq. (44) as the corresponding physical variables. As a result,
effective and physical variables have similar radial depen-
dency in a QS condition (and likely in a static one as well).
Substituting Eq. (46) into Eq. (16):

ν = ν�

+
∫ r

r�

2(8π P̃r4(r2 − 2m) − 2r3m′ + 6r2m − 12m2 + 4rmm′)
(2r3(r2 − 5m) + 12rm2 + r4m′ − 2r2mm′)

+ r2

r2 − 2m

( m̈

(r2 − 2m)
+ 4ṁ2

(r2 − 2m)2

)
dr, (47)

μ = μ�

+
∫ r

r�

2(8π P̃r4(r2 − 2m) + 2r3m′ − 2r2m + 4m2 − 4rmm′)
(2r3(r2 − 3m) + 4rm2 − r4m′ + 2r2mm′)

+ r2

r2 − 2m

( m̈

(r2 − 2m)
+ 4ṁ2

(r2 − 2m)2

)
dr. (48)

The radial dependency of metric functions is completely
determined for a given radial dependency of effective vari-
ables. Now, we will discuss the PQS regime as one that cor-
responds to a system that is not in equilibrium (or quasi-
equilibrium), however effective pressure and energy density
have similar radial dependency as the associated physical
variables in an equilibrium (or quasi-equilibrium) state. As
an alternative, metric functions with similar radial depen-
dence as those in the static or QS regime define the system in
the PQS regime. The logic behind this formulation is simple:
we seek a regime that, while not in an equilibrium condition,
represents the closest possible scenario to a QS evolution.

5.2 The algorithm in higher dimension

The approach we are going to use is outlined below

1. Consider an analytic interior (seed) solution to the EFEs,
which represents a fluid distribution of matter in an equi-
librium state, given as ρst = ρ(r); Pst = P(r).
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2. Assume that effective pressure P̃ and energy density ρ̃

are dependent on the same r as Pst and ρst .
3. One may obtain m, μ and ν up to some t functions using

Eqs. (21), (47) and (48), as well as the radial dependence
of P̃ and ρ̃, which will be explored in more detail below.

4. For these t functions, there are three ODEs, which are
characterized as surface equations.

• Evaluate Eq. (14) on r = r� .
• The equation that illustrates the relationship between

the energy flux (Ê) and mass loss rate along the BS.
• Determine non-static TOV equation on r = r� .

5. The additional information is needed to close the given
system of surface equations to determine some physical
variables on the BS.

6. Once it has been closed, the system of surface equations
can be integrate for any given set of initial conditions.

7. These two functions are completely determined by sub-
stituting the integration results in the expressions for m,
μ and ν.

8. The EFEs develop a system of equations for physical
variables after appropriately defining metric functions,
can be obtained for any kind of fluid distribution.

5.3 The surface equations in higher dimension

The system of surface equations is the critical point in the
algorithm, as should be obvious from the preceding. For this,
dimensionless variables are introduced as

A = r�
m�(0)

, F = 1 − M

A2 + q2

3A4 , M = m�

m�(0)
,

β = t

m�(0)
� = ω�.

We obtained the first surface equation with the total initial
mass m�(0) by evaluating Eq. (14) at r = r� . As a result,

d A

dβ
= F�, (49)

by using junction conditions, one may then obtain from (15),
(18) and (29) computed at r = r� , yields

dM

dβ
= −F2

Ŝ

(
(1 + �)(ε̂� + q̂�) − �ρ�

2
+ �ρ� B̂

)
Ê,

(50)

where

Ê = 8πr5
�, (51)

Ŝ = m′
�r�(3 + r2

� − 2m�) + 26m� − 16r2
�, (52)

B̂ = 3r2
� −12(r2

� − 2m�)−12πr�ρ� −6r� +8πr3
�ρ� −6πr3

�ρ��2

3r�(r2
� −2m�)

.

(53)

The gravitational redshift and Doppler shift are represented on the right of
Eq. (50). The observer’s perceived luminosity at infinity is then defined as

L = −dM

dβ
. (54)

The second surface equation is

dF

dβ
= 2

A

(

1 − F − q2

3A4

)

F� + L

A2 . (55)

Evaluating the law of conservation Tμ

ν;μ = 0 at the BS yields
the third surface equation, we obtain

P̃ + (ρ̃ + P̃)

(
ν′ + μ′

2

)

= e−ν

4πr(r2 − 2m)

(

2m̈

+ 7ṁ2

r2 − 2m
− ṁν̇

)

+ 2

r
(P̃ − Pt ). (56)

This hydrostatic support equation, a generalisation of the
higher dimensional TOV equation, is the same as the equation
for an anisotropic matter. Equation (56) is the conservative
form of the field equation, which leads to the surface’s third
equation, everything up to this point is completely general
within spherical symmetry. To properly describe the dynam-
ics for any given initial conditions and luminosity profile,
a third surface equation is needed. For this reason, which is
obviously model dependent, we can employ the field Eq. (17)
or the conservation Eq. (56) stated in terms of the effective
variables.

6 Conclusion and discussion

In this work, we study the evolution of a self-gravitating
spherical distribution of charged matter with a dissipative
fluid in higher dimensions. By using the PQS approxima-
tion with noncomoving coordinates, we may analyze elec-
trically charged fluid spheres in the streaming out limits and
diffusion approximation as they move away from equilib-
rium. The PQSA can be considered in this context as a non-
linear perturbation technique for evaluating the stability of
solutions in equilibrium. A five-dimensional Schwarzschild-
like non-moving coordinate system is used in this paper to
develop a general framework for discussing relativistic col-
lapse of spherical systems. To analyze astrophysical sce-
narios in higher dimensions, mathematicians used the KK
theory, the M theory, string theory, and superstring theory.
In this paper, we assumed non-comoving five-dimensional
Schwarzschild coordinates. The fifth dimension represents
radial spatial coordinates. The five-dimensional geometry is
used to develop the higher dimension PQS approximation.
The physical features of the stellar structure of gravitational
objects are analysed, and a general framework for the higher
dimensional PQS approximation is developed. We started
with an interior (analytical) seed solution to the EFEs. The
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proposed technique provides a set of ODEs for quantities
estimated at the BS. The numerical solution allows for the
simulation of self-gravitating spheres.

The inner fluid distribution is assumed to be anisotropi-
cally configured, with a heat flow, electrically charged and
radiation factor that causes dissipative effects within the grav-
itating system. Dissipation is a phase of giant star evolution
caused by the emission of massless particles. In fact, neutrino
emission appears to be the only viable method for remov-
ing the bulk of the binding energy from a collapsing star,
resulting in the formation of a neutron star or black hole.
Electric charge also favours collapse regardless of the trans-
port mechanism, in a similar way to anisotropy with radial
pressure less than tangential pressure. In any instance, a huge
electric charge is required to alter the gravitational collapse’s
path. The gradient of the electric charge gradually reduces
toward the surface as it is redistributed over time, becoming
unexpectedly linear and stationary. Up to a critical total elec-
tric charge, the system evolves under the constraints of the
Einstein-Maxwell system of field equations (or anisotropy
parameter). Outer space is considered as Vaidya–Reissner–
Nordström spacetime for smooth matching at the boundary
of sphere.

In the discussion of departure from equilibrium there are
three possible situations which are (a) static equilibrium, (b)
QS equilibrium and (c) PQS equilibrium.

• Static Equilibrium: In case of static equilibrium all the
components of the EFEs have radial dependency.

• QS Equilibrium: The system is predicted to evolve slowly
enough in this regime to be deemed in equilibrium at any
given time. This indicates that the compact object evolves
very slowly, on a time scale significantly longer than the
time it normally takes for the sphere to react to a small
perturbation of hydrostatic equilibrium. The system is
assumed to be static between two small variations of time
due to very slow evolutionary process.

• PQS Equilibrium: The system which is not in the state of
equilibrium or departure from equilibrium is known as
PQS equilibrium.

The TOV equation is derived using a higher dimension con-
servation law. The TOV equation is satisfied by effective vari-
ables such as effective pressure and energy density, as well
as physical variables. In the static and QS equilibrium, the
effective and physical variables have the same radial depen-
dency. This process is iterative, with each successive step
reflecting a deeper understanding of the deviation from the
equilibrium state.

Motivated by the fact that noncomoving coordinates are
frequently used in relativistic collapse research, requiring the
definition of the PQS approximation. This method is based
on “effective” variables as well as a heuristic approach to the

latter, the rationale and justification for which is revealed in
the context of the PQS approximation in the five-dimensional
regime.

In this work, we restricted ourselves to the five-dimensional
PQS level. In higher dimension, we developed a system of
surface equations using the PQS approximation algorithm.
We established a higher-dimensional surface equation sys-
tem and studied realistic features of stars like Doppler shift,
gravitational redshift, and total mass loss rate, all of which
are related to total mass loss energy flux Ê over the BS.

In higher dimensional spherically symmetric gravitational
collapse is observed for non-comoving coordinate system
in PQS approximation. The effects of heat flux and unpo-
larized radiation in anisotropic conditions were studied by
considering five dimensional Vaidya outer space. The dis-
cussion of this phenomena is not available in higher dimen-
sional space-time in any previous work. To comprehend the
nature of gravitational collapse in five dimensions, a general
framework for the PQS regime must be developed, which
necessitates the solution of nonlinear differential equations.
Gravitational collapse is a well-known energy-dissipating
process that dominates star formation and stellar evolution.
We considered dissipation, which is an important factor in
the gravitational collapse process. The dissipative model is
described by the five-dimensional null outgoing vector in
diffusion approximation.

In higher dimensional space-time, compact stars, neutron
stars, and hybrid stars exist. These astrophysical phenom-
ena motivate us to study the higher dimensional gravitational
collapse. In literature, the gravitational collapse in the PQS
approximation for higher dimensions has not been modeled.

In this article, we developed the higher dimensional gen-
eral framework for the PQS approximation. The PQS approx-
imation can be applied in two distinct ways using two dif-
ferent kinds of models: Schwarzschild-like structures can
be found in two different limits: diffusion and free stream-
ing. These models describe the characteristics of electrically
charged and dissipative collapse. This work can be extended
to the PQS regime’s gravitational collapse in co-moving coor-
dinates.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This is theoretical
study so, no data will not be deposited.]
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