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Abstract In this paper, the higher-dimensional topological
dS black hole with a nonlinear source (HDTNS) is consid-
ered. First, we obtain the thermodynamic quantities of the
(n+1)-dimensional topological dS black hole, which satisfy
the first law of thermodynamics. Second, based on the effec-
tive thermodynamic quantities and Maxwell’s equal-area law
method, we explore the phase equilibrium for the HDTNS.
The boundary of the two-phase coexistence region in the
P0

eff − T 0
eff diagram is obtained. The critical thermodynamic

quantities as well as the horizon potential are also investi-
gated. Furthermore, we analyze the effect of parameters (the
spacetime dimension n and the ratio of two horizon radii
x = r+/rc) on the boundary of the two-phase coexistence
region and study the latent heat of phase transition for this
system, which corresponds to the Clapeyron equation. The
results indicate that the phase transition in HDTNS spacetime
is analogous to that in a van der Waals (vdW) fluid system,
which is determined by electrical potential at the horizon.
These results help to understand the fundamental properties
of black holes. A more intuitive and profound understanding
of gravity is gained by studying the thermodynamic proper-
ties of different spacetimes. They provide a theoretical basis
for an in-depth study of the classical and quantum properties
of de Sitter spacetime and its evolution.

1 Introduction

As a thermodynamic system, the black hole is closely related
to classical thermodynamics, gravitation, and quantum sys-
tems. The study of the thermodynamic properties and phase
transitions of anti-de Sitter (AdS) black holes or dS space-
times with black holes has received considerable attention
[1–27]. Treating the cosmological constant � as a thermo-
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dynamic pressure and its conjugate quantity as a thermody-
namic volume established the first law of black hole thermo-
dynamics in the extended phase space. This approach allowed
for the investigation of the thermodynamic properties of AdS
black holes. Notably, the thermodynamic properties of black
holes in AdS space differ significantly from those of black
holes in asymptotically flat spacetime or in de Sitter space.
In AdS space, the phase transition can be explained through
the AdS/conformal field theory (CFT) correspondence [28–
30]. The phase transition of charged AdS black holes is quite
similar to that of a van der Waals (vdW) system. Further-
more, black hole chemistry has revealed a broad range of
new phenomena associated with black holes, such as triple
points [31], reentrant phase transitions [32], and heat engines
[33].

Astronomical observations indicate that the expansion of
our universe is accelerating [34–36], suggesting that it will
eventually become an asymptotic de Sitter universe. The
study of the thermodynamics of asymptotic de Sitter black
holes has been motivated by the formulation of the dS/CFT
correspondence [30] and the physical relevance of de Sitter
black holes in cosmology [37]. If we consider the cosmo-
logical constant as dark energy, our universe will eventually
enter a new dS phase. Therefore, a clear understanding of
dS spacetime is essential [38–40]. However, this subject is
not well understood. In dS space, the absence of a Killing
vector, which is time-like everywhere outside the black hole
horizon, raises questions about the notion of asymptotic mass
[38]. Additionally, the presence of both the black hole hori-
zon and cosmological horizon, which have different temper-
atures, suggests that the system does not meet the require-
ments of thermodynamic equilibrium. The thermodynamic
properties of dS spacetime are of direct interest to cosmol-
ogy, but these features present unfortunate difficulties. There
have been a few attempts to investigate the thermodynamics
of black holes in dS spacetime and overcome this problem.
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One way to deal with the thermodynamics of asymptotically
dS black hole spacetimes is to first formulate several sepa-
rate thermodynamic laws, one for each “physical” horizon
present in the spacetime [41–43]. One way to approach this
task is by using the concept of effective temperature [44–46].
This involves focusing on an observer situated in an “observ-
able part of the universe,” located between the black hole
horizon and the cosmological horizon. Another approach is to
examine de Sitter black holes that are enclosed in an isother-
mal cavity at a fixed temperature. This fragment describes
the definition of a grand canonical ensemble in which the
cavity acts as a reservoir, allowing for the existence of ther-
modynamically stable black holes. Brown [47] first explored
this approach, demonstrating the stability of the ensemble.
Later, Carlip and Vaidya [48] found a Hawking–Page-like
phase transition in both the asymptotically flat and de Sitter
cases.

Nonlinear field theories are of interest to various branches
of mathematical physics because most physical systems are
inherently nonlinear. The main reason for considering non-
linear electrodynamics (NLED) is that these theories have
considerably richer content than the Maxwell field, and in
special cases, they reduce to the linear Maxwell theory. The
authors in [49] presented (n + 1)-dimensional topological
static black hole solutions of Einstein gravity in the presence
of NLED. They checked the first law of thermodynamics
and studied the stability of the solutions in both canonical
and grand canonical ensembles [50,51]. Additionally, they
analyzed the effect of the nonlinear charge correction on the
thermodynamic properties of the black hole [52–56]. A natu-
ral question that arises is whether a dS spacetime with a non-
linear charge source has thermodynamic properties similar to
an AdS black hole. In this work, the higher-dimensional dS
spacetime with the nonlinear charge correction is considered
an ordinary thermodynamic system by examining the corre-
lation between two horizons. The focus is on investigating
the thermodynamics and phase transitions of the (n + 1)-
dimensional dS spacetime. The analysis also considers the
effect of nonlinear charge correction on the phase transition.
The results show that the latent heat of phase transition and
the two-phase coexistence region are similar to those of an
ordinary thermodynamic system.

The remainder of this paper is organized as follows: In
Sect. 2, we briefly present the thermodynamic quantities in
HDTNS and establish the state equation of HDTNS which
corresponds to the ordinary thermodynamic system [57–60].
Then the P0

eff − T 0
eff curves, the phase diagrams in P0

eff − V ,

and the q2

r2n−4
2

− x(y) curves in HDTNS are presented. The

effects of the ratio x between two horizons and the spacetime
dimensions n on them are discussed in Sect. 3. The slope of
the P0

eff − T 0
eff curve for different spacetime dimensions n

is given, which corresponds to the Clapeyron equation. The

latent heat of the phase transition for the first-order phase
transition in HDTNS and the effect of the ratio x between
two horizons and the spacetime dimensions n on it are given
in Sect. 4. Finally, a brief summary is given in Sect. 5.

2 Topological black hole with nonlinear source

The (n+1)-dimensional action of Einstein gravity with non-
linear electrodynamics is [49–51,61]:

IG = − 1

16π

∫
M

dn+1x
√−g[R − 2� + L(F)]

− 1

8π

∫
∂M

dnx
√−γ�(γ ), (2.1)

where R is the scalar curvature and � is the cosmological
constant. In this action,

L(F) = −F + αF2 + O(α2), (2.2)

is the Lagrangian of nonlinear electrodynamics. F=FμνFμν

is the Maxwell invariant, in which Fμν=∂μAν − ∂ν Aμ is the
electromagnetic field tensor and Aμ is the gauge potential.
In addition, α denotes the nonlinearity parameter, which is
small, so the effects of nonlinearity should be considered as a
perturbation. In the second integral,γ and� are, respectively,
the trace of induced metric, γi, j , and the extrinsic curvature
�i, j on the boundary ∂M . The variation of the action (2.1)
with respect to the metric tensor gμν and the Faraday tensor
Fμν leads to

Gμν + �gμν = 1

2
gμνL(F) − 2LF FμλF

λ
μ, (2.3)

∂μ(
√−gLF Fμν) = 0, (2.4)

where Gμν is the Einstein tensor and LF = dL(F)/dF .
The (n + 1)-dimensional topological black hole solutions

can take the form of

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d
2

n−1, (2.5)

where

f (r) = k − m

rn−2 − 2�r2

n(n − 1)
+ 2q2

(n − 1)(n − 2)r2n−4

− 4q4α

(3n7 − 7n + 4)r2n−6 , (2.6)

m is an integration constant which is related to the mass of the
black hole, and the last term in Eq. (2.6) indicates the effect
of nonlinearity. The asymptotic behavior of the solution is
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AdS or dS provided � < 0 or � > 0, and the case of the
asymptotically flat solution is permitted for � = 0 and k = 1.

When � > 0, the black hole horizon r+ and the cosmo-
logical horizon rc exist in spacetime, and the position of two
horizons satisfies the equation f (r+,c) = 0. The radiation
temperature of the two horizons is given by

T+ = f ′(r+)

4π
= 1

2π(n − 1)

×
(

(n − 1)(n − 2)k

2r+
− �r+ − q2

r2n−3+
+ 2q4α

r4n−5+

)
.

(2.7)

Tc = − f ′(rc)
4π

= − 1

2π(n − 1)

×
(

(n − 1)(n − 2)k

2rc
− �rc − q2

r2n−3
c

+ 2q4α

r4n−5
c

)
.

(2.8)

The mass of the black hole

M = Vn−1(n − 1)

16π

×
(
krn−2+ − 2�rn+

n(n − 1)
+ 2q2

(n − 1)(n − 2)rn−2+

− 4q4α

[2(n − 2)(n + 2) + (n − 3)(n − 4)] r3n−4+

)

or

M = Vn−1(n − 1)

16π

×
(
krn−2

c − 2�rnc
n(n − 1)

+ 2q2

(n − 1)(n − 2)rn−2
c

− 4q4α

[2(n − 2)(n + 2) + (n − 3)(n − 4)] r3n−4
c

)
.

(2.9)

Vn−1 = 2πn/2

�(n/2)
, S+,c = Vn−1r

n−1+,c

4
,

V+,c = Vn−1rn+,c

n
, Q = q

4π
Vn−1,

�+,c = q

(n − 2)rn−2+,c

− 4q3α

(3n − 4)r3n−4+,c

,

P = − �

8π
, M = Vn−1(n − 1)m

16π
. (2.10)

Thermodynamic quantities corresponding to two horizons
satisfy the first law of thermodynamics

dM = T+,cdS+,c + �+,cdQ + V+,cdP. (2.11)

Treating the spacetime of HDTNS, which includes the hori-
zons of both black holes and cosmology, as a thermodynamic
system, it must adhere to the universal first law of thermody-
namics according to Eq. (2.11). [27]

dM = Teff dS + Peff dV + �eff dQ, (2.12)

Here, the thermodynamic volume is that between the black
hole horizon and the cosmological horizon, namely [38]

V = Vc − V+ = Vn−1rnc
n

(1 − xn). (2.13)

Taking the dimension into account, we set the entropy of the
spacetime as follows

S = Vn−1rn−1
c

4
Fn(x). (2.14)

with Fn(x) as a function of x , where x = r+/rc denotes
the position ratio between the black hole horizon r+ and the
cosmological horizon rc, and the effective temperature Teff ,
the effective pressure Peff , and the effective potential Qeff of
the system are determined from Eq. (2.12), respectively

Teff = f1(x)

rc
+ q2 f2(x)

r2n−3
c

− 4q4α f3(x)

r4n−5
c

, (2.15)

with

f1(x) = k
(
(n − 2 − nx2)(1 − xn) + 2(n − 1)xn(1 − x2)

)
4πx(1 + xn+1)

,

f2(x) = nxn(1 − xn−2) − (n − 2)(1 − x3n−2)

2πx2n−3(1 + xn+1)(n − 1)(n − 2)
,

f3(x) = −(3n − 4) + (3n − 4)x5n−4 + nxn(1 − x3n−4)

π(1 + xn+1)(3n − 4)(n − 1)x4n−5
,

Fn(x) = 3n − 1

2n − 1
(1 − xn)(n−1)/n

− n(1 + x2n−1) − (2n − 1)xn−1(1 + x)

(2n − 1)(1 − xn)
. (2.16)

�eff =
(

∂M

∂Q

)
S,V

= (n − 1)(1 − x2n−2)q

(1 − xn)rn−2
c xn−2

[
1

(n − 1)(n − 2)

− 4q2α

(3n2 − 7n + 4)r2n−2
c

(1 + x2n−2)

x2n−2

]
. (2.17)

Peff = f4(x)

r2
c

+ q2 f5(x)

r2n−2
c

− q4α f6(x)

r4n−4
c

(2.18)

with
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f4(x) = −k

16π(1 + xn+1)

(
Fn(x)(n − 1)(n − 2 − nx2 + 2xn)

x(1 − xn)
− F ′

n(x)(1 − x2)(n − 2)

)

f5(x) = −1

8πx2n−3(n − 1)(1 + xn+1)

(
Fn(x)(n − 1)[2(n − 1)xn − (n − 2) − nx2n−2]

(n − 2)(1 − xn)
+ xF ′

n(x)(1 − x2n−2)

)

f6(x) = − Fn(x)(n − 1)[(3n − 4) + 4(n − 1)xn − nx4n−4] + xF ′
n(x)(3n − 4)(1 − xn)(1 − x4n−4)

4πx4n−5(1 + xn+1)(1 − xn)(3n − 4)(n − 1)
. (2.19)

substituting Eq. (2.15) into Eq. (2.18), one obtain

Peff = f6(x)Teff

rc f3(x)
− f1(x) f6(x) − f4(x) f3(x)

r2
c f3(x)

+ q2( f5(x) f3(x) − f2(x) f6(x))

r2n−2
c f3(x)

. (2.20)

The thermodynamic quantities presented above are obtained
by treating the whole HDTNS spacetime as a thermodynamic
system. Therefore, this approach enables us to obtain ther-
modynamic quantities that reflect the thermodynamic prop-
erties of the HDTNS spacetime. Based on this analysis, the
thermodynamic properties of the HDTNS spacetime can be
evaluated.

3 The construction of the equal-area law in the P − V
diagram

When the ratio x of the two horizons in the HDTNS spacetime
is constant, the effective temperature is T 0

eff (T 0
eff ≤ T c

eff ),
and T c

eff is the critical temperature. For the system to sat-
isfy the thermodynamic equilibrium condition, the horizon-
tal coordinates of the boundaries of the two-phase coex-
istence region in the HDTNS spacetime must be V2 and
V1, respectively, and the vertical coordinate of the pres-
sure is P0

eff . The value of P0
eff is determined by the cos-

mological horizon radius rc. By Maxwell’s equal-area law
[27,57,58,60]

P0
eff(V2 − V1) =

∫ V2

V1

Peff dV, (3.1)

through Eq. (3.1), we obtain

P0
eff = f6(x)T 0

eff

r1 f3(x)
− f1(x) f6(x) − f4(x) f3(x)

r1 f3(x)

+ q2( f5(x) f3(x) − f2(x) f6(x))

r2n−2
1 f3(x)

P0
eff = f6(x)T 0

eff

r2 f3(x)
− f1(x) f6(x) − f4(x) f3(x)

r2 f3(x)

+ q2( f5(x) f3(x) − f2(x) f6(x))

r2n−2
2 f3(x)

, (3.2)

where r2 and r1 stand for the positions of the cosmological
horizons of two regions of phase coexistence, respectively.

P0
eff

rn2
n

(1 − yn) = T 0
eff f6(x)r

n−1
2 (1 − yn−1)

(n − 1) f3(x)

− [ f1(x) f6(x) − f4(x) f3(x)]rn−2
2 (1 − yn−2)

(n − 2) f3(x)

+ q2( f2(x) f6(x) − f5(x) f3(x))(1 − yn−2)

(n − 2)rn−2
2 yn−2 f3(x)

.

(3.3)

Through Eq. (3.2), we obtain

0 = − f6(x)T
0

eff(1 − y)

+ ( f1(x) f6(x) − f4(x) f3(x))(1 − y2)

r2y

− q2( f5(x) f3(x) − f2(x) f6(x))(1 − y2n−2)

r2n−3
2 y2n−3

,

(3.4)

P0
eff = f6(x)T 0

eff(1 + y)

2r2y f3(x)

− ( f1(x) f6(x) − f4(x) f3(x))(1 + y2)

2r2
2 y

2 f3(x)

+ q2( f5(x) f3(x) − f2(x) f6(x))(1 + y2n−2)

2r2n−2
2 y2n−2 f3(x)

.

(3.5)

where y = r1/r2 is the cosmological (black hole) horizon
position ratio of the two-phase coexistence region. Through
Eqs. (3.3) and (3.5), we obtain
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f6(x)T 0
eff [(1 + y)(1 − yn) − n(1 − y)(1 + yn)]

2(n − 1)

+ ( f1(x) f6(x) − f4(x) f3(x))[(n − 2)(1 − yn+2) − (n + 2)y2(1 − yn−2)]
2r2y(n − 2)

= q2( f5(x) f3(x) − f2(x) f6(x))[(n − 2)(1 + y2n−2)(1 − yn) − 2nyn(1 − yn−2)]
2r2n−3

2 y2n−3(n − 2)
. (3.6)

Through Eqs. (3.4) and (3.6), we obtain

q2

r2n−4
2 y2n−4

= f1(n, y)

f2(n, y)

[ f1(x) f6(x) − f4(x) f3(x)]
[ f5(x) f3(x) − f2(x) f6(x)] ,

(3.7)

with

f1(n, y) =
[

(1 + y)
[
(1 + y)(1 − yn) − n(1 − y)(1 + yn)

]
(n − 1)

+
[
(n − 2)(1 − yn+2) − (n + 2)y2(1 − yn−2)

]
(n − 2)

]

f2(n, y) =
[[

(n − 2)(1 + y2n−2)(1 − yn) − 2nyn(1 − yn−2)
]

(n − 2)
+ (1 − y2n−2)

[
(1 + y)(1 − yn) − n(1 − y)(1 + yn)

]
(n − 1)(1 − y)

]

From Eq. (3.2), we obtain

P0
eff = f1(x) f6(x) − f4(x) f3(x)

r2
2 y f3(x)

×
(

1 − (1 − y2n−3)

(1 − y)

f1(n, y)

f2(n, y)

)
(3.8)

T 0
eff = f1(x) f6(x) − f4(x) f3(x)

r2y f6(x)

×
(

(1 + y) − (1 − y2n−2)

(1 − y)

f1(n, y)

f2(n, y)

)
(3.9)

Combining Eqs. (3.8) and (3.9), the P0
eff − T 0

eff curve for the
two-phase equilibrium coexistence is shown in Fig. 1.

From Fig. 1, the effective transition temperature T 0
eff and

pressure P0
eff of the two-phase coexistence are affected by the

spacetime dimension n and the ratio x when the phase transi-
tion occurs in the HDTNS spacetime. As shown in Fig. 1a, the
position of the critical point in HDTNS spacetime increases
with increasing x , the critical temperature T c

eff and the pres-
sure pceff (the endpoint of the curve) increase with n, and the
behavior of the effective transition pressure P0

eff decreases
with increasing n for a given effective transition temperature
T 0

eff . Figure 1b shows that the behavior of the critical temper-
ature T c

eff in HDTNS spacetime decreases with the increase
in the value of x . However, the behavior of the critical pres-
sure Pc

eff in HDTNS spacetime increases with the increasing

value of x . The behavior of the effective transition pressure
P0

eff increases with the increasing value of x for a given effec-
tive transition temperature T 0

eff .
When y → 1, by Eq. (3.7), the position of the critical point

of the cosmological horizon, rcc, for different dimensions n
in HDTNS spacetime satisfies

r2n−4
cc = q2(n − 1)(2n − 3)( f5(x) f3(x) − f2(x) f6(x))

f1(x) f6(x) − f4(x) f3(x)
.

(3.10)

The critical temperature T c
eff and the critical pressure Pc

eff
satisfy the following equation

T c
eff = 4(n − 2)[ f1(x) f6(x) − f4(x) f3(x)]

(2n − 3) f6(x)rcc

= 4(n − 2)[ f1(x) f6(x) − f4(x) f3(x)]
(2n − 3) f6(x)

×
(

f1(x) f6(x) − f4(x) f3(x)

q2(n − 1)(2n − 3)( f5(x) f3(x) − f2(x) f6(x))

)1/(2n−4)

,

Pc
eff = (n − 2)( f1(x) f6(x) − f4(x) f3(x))

(n − 1) f3(x)r2
cc

. (3.11)

The values of x in Eqs. (3.10) and (3.11) can take on any
value of 0 < x < 1. However, for a thermodynamic system,
these values must satisfy rcc > 0, Pc

eff > 0, T c
eff > 0. The

critical values for the reaction in Fig. 2 vary depending on
the value of x .

Figure 2 shows the critical horizon position rcc, the critical
temperature T c

eff , and the critical pressure Pc
eff of spacetime

for a fixed x increase with increasing spacetime dimension
n.
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Fig. 1 The P0
eff − T 0

eff curve in two-phase equilibrium coexistence (setting q = 1)

Fig. 2 The behavior of r2n−4
cc , T c

eff , and Pc
eff as a function of x (setting q = 1)

Fig. 3 The behavior of χ as a function of y

Taking T 0
eff = χT c

eff , from Eqs. (3.9) and (3.11) we obtain

χ = (2n − 3)

4(n − 2)(1 − y)

(
(n − 1)(2n − 3) f1(n, y)

f2(n, y)

)1/(2n−4)

×
[
(1 − y2) − (1 − y2n−2) f1(n, y)

f2(n, y)

]
. (3.12)

Figure 3 shows the change in the effective temperature Teff

of spacetime as a function of the cosmological (or the black
hole) horizon position ratio y of the two-phase coexistence

region during a first-order phase transition. Figure 3 shows
that the effective temperature T 0

eff of the coexistence region
for a fixed y decreases with increasing spacetime dimension
n.

Because of the existence of gravity in the system, the inter-
play between the black hole and cosmology horizons should
be considered, and we say that the thermodynamic volume
is that between the black hole horizon and the cosmological
horizon, V = Vc − V+, i.e., Eq. (2.13) in this work. On the
other hand, for the space between the black hole outer hori-
zon (generally called the black hole horizon) and cosmology
horizon, the different Hawking temperatures on the two hori-
zons prevent a dS spacetime with a black hole in equilibrium
as similar to an ordinary thermodynamic system, while there
are common parameters M , Q on the black hole and cosmo-
logical horizons. Thus, the thermodynamic quantities on the
two horizons are not independent. The interplay between the
two horizons must be taken into account when constructing
the effective quantities of a dS spacetime with a black hole
in thermodynamic equilibrium. From V+,c in Eq. (2.10) and
the definition x = r+/rc, the relationship of the effective
pressure Peff and the ratio x is established. Based on these
and Ehrenfest’s classification of phase transitions, the system
undergoes a phase transition that satisfies the conditions for a
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Fig. 4 The behavior of the effective pressure Peff as a function of V , a for different χ , b for different x , c for different n (setting q = 1)

first-order phase transition when 0 < x < 1. By substituting
Eq. (3.12) into Eq. (2.20), we obtain

Peff = χ
4(n − 2) [ f1(x) f6(x) − f4(x) f3(x)]

(2n − 3)rc f3(x)rcc

− f1(x) f6(x) − f4(x) f3(x)

r2
c f3(x)

+ q2 ( f5(x) f3(x) − f2(x) f6(x))

r2n−2
c f3(x)

, (3.13)

The Peff − V curve for different χ , x , and n can be plotted
from Eqs. (2.13) and (3.13) in Fig. 4.

The values of V2 and V1 for different effective temper-
atures Teff (i.e., different values of χ ) can be found using
Eqs. (2.13) and (3.7). The red dots in the Fig. 4a indicate the
boundary point of the coexistence region, and the intervals
between the parallel horizontal coordinates of the two red
dots represent the two-phase coexistence region. Figure 4b
shows the behavior of effective pressure Peff as a function of
thermodynamic volume V under fixed spacetime dimension
n and effective critical temperatures T c

eff for the occurrence of
the phase transition in HDTNS. By examining Fig. 4b, from
the position ratio x of the two horizons, it is observed that the
behavior of the effective pressure Peff is different in different
thermodynamic volume ranges, keeping the thermodynamic
volume V constant. In the small (large) thermodynamic vol-
ume range, the effective pressure Peff during the phase tran-
sition increases (decreases) with an increase in the position
ratio x of the two horizons in the case of fixed V . Figure 4c
shows that for the same thermodynamic volume V and posi-
tion ratio x of the two horizons, the effective pressure Peff

increases with increasing spacetime dimension n.
The Gibbs free energy in HDTNS spacetime can be

expressed as follows:

G(rc, x) = M − Teff S + PeffV . (3.14)

The GTeff − Peff curves for different χ are plotted in Fig. 5.

Fig. 5 The behavior of Gibbs free energy GTeff as a function of the
effective pressure Peff given fixed x = 0.4, n = 3 for different χ

(setting q = 1)

Comparing Fig. 4a with Fig. 5, when χ = 0.9, that is,
the effective temperature Teff < T c

eff , it is found that the
GTeff −Peff curve contains an intersection, which is similar to
that of the van der Waals system and the Ads black hole. The
first-order phase transition occurs at the intersection of the
isothermalGTeff −Peff curve in HDTNS spacetime according
to the Gibbs free energy criterion at isothermal and isobaric
conditions. When χ = 1, the isothermal GTeff − Peff curve
varies continuously with a single value, indicating that the
HDTNS spacetime is in a single state. This state corresponds
to the vapor phase of the VdW system.

To ensure that the thermodynamic system meets the
requirements of equilibrium stability, the isothermal Peff −V
curve cannot have negative pressure, and therefore the lowest
temperature meets the requirements of

(
∂Peff

∂V

)
Teff

=
(

∂Peff
∂rc

)
Teff

(
∂rc
∂V

)
Teff

= 0, Peff(V, Teff)

= 0. (3.15)

From Eq. (3.12), we obtain

q2

r2n−4
cmin

= f1(x) f6(x) − f4(x) f3(x)

(2n − 3) ( f5(x) f3(x) − f2(x) f6(x))
. (3.16)
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Fig. 6 The behavior of the lowest effective temperature Tmin
eff as a func-

tion of x for different n

The minimum temperature Tmin
eff of the spacetime satisfies

Tmin
eff = 2(n − 2) ( f1(x) f6(x) − f4(x) f3(x))

(2n − 3) f6(x)

×
(

f1(x) f6(x) − f4(x) f3(x)

(2n − 3)q2 ( f5(x) f3(x) − f2(x) f6(x))

)1/(2n−4)

.

(3.17)

The ratio of the minimum effective temperature Tmin
eff to

the critical temperature T c
eff of the spacetime

Tmin
eff

T c
eff

= (n − 1)1/(2n−4)

2
, (3.18)

is independent of the ratio x of the positions of the two hori-
zons, and is only related to the dimension n of the spacetime.
The Tmin

eff − x curve is plotted in Fig. 4 for different space-
time dimensions n. The behavior of Tmin

eff for a fixed x also
increases with increasing n, which is consistent with Fig. 2b
(Fig. 6).

The q2

r2n−4
2

− x and q2

r2n−4
2

− y curves for different n are

plotted in Fig. 7 from Eq. (3.7). Figure 7 displays the corre-
lation between the potential at the horizon and the spacetime

dimension n during a phase transition. Additionally, Fig. 7a
depicts the behavior of the potential at the transition point as
a function of the ratio x , which represents the black hole hori-
zon position to the cosmological horizon position, for a given
ratio y of the cosmological (or the black hole) horizon posi-
tion of the two-phase coexistence regions. Furthermore, the
potential at the boundary of the coexistence region decreases
as the spacetime dimension n increases. Figure 7b illustrates
the behavior of the potential at the phase transition point as
a function of the ratio y, which represents the cosmological
(or black hole) horizon position of the two-phase coexistence
regions in spacetime, for a given ratio x of the black hole
horizon position to the cosmological horizon position. It is
evident from Eqs. (3.7) and (3.10) that the phase transition
of the HDNTS spacetime depends on the cosmological (or
black hole) horizon potential for a given effective tempera-
ture Teff (i.e., χ is fixed), rather than that between a large
black hole and a small black hole. The potential ϕ1 = q

r2n−2
1

at phase 1 with a small cosmological horizon radius is larger
than the potential ϕ2 = q

r2n−2
2

at phase 2 with a large cos-

mological horizon radius, i.e. ϕ1 > ϕ2. In fact, for the given
effective temperature Teff , the HDTNS spacetime will be in
a two-phase coexistence state if the corresponding potential
satisfies ϕ1 ≥ ϕ ≥ ϕ2, while it will be in a single-phase state
if the potential satisfies ϕ > ϕ1 or ϕ < ϕ2. Therefore, the
HDTNS spacetime with the potential satisfied by ϕ > ϕ1

or ϕ < ϕ2 corresponds to the liquid or gas phase of the
vdW system, respectively, and the HDTNS spacetime with
the potential in the interval of ϕ1 ≥ ϕ ≥ ϕ2 corresponds to
the gas–liquid coexistence region.

4 Two-phase equilibrium coexistence curve

In the two-phase coexistence region of a thermodynamic sys-
tem, the Gibbs free energies must be equal. If pressure and

Fig. 7 The behavior of q2

r2n−4
2

as a function of x and y for different n, respectively
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temperature are altered during two-phase coexistence, the
Gibbs free energy of both phases must change by the same
amount, i.e. dG1 = dG2. However, the Gibbs free energy
of the two phases is not yet fully known for ordinary ther-
modynamic systems. To gain a better understanding of the
two-phase coexistence region, the slope of the P−T curve at
the boundary of the two-phase coexistence, i.e. the Clapeyron
equation, is provided.

dP

dT
= L

T (V2 − V1)
, (4.1)

Here, L = T (S2 − S1) represents the latent heat of the phase
transition, and V1 and V2 stand for the volume of the sys-
tem in phase 1 and phase 2, respectively. The Clapeyron
equation agrees well with the experimental results for ordi-
nary thermodynamic systems, providing direct verification
of thermodynamic correctness. For the HDTNS spacetime
thermodynamic system, by substituting Eq. (3.7) into Eqs.
(3.6) and (3.5), we obtain the following.

When n = 3,

T 0
eff = ( f1(x) f6(x) − f4(x) f3(x))4y(1 + y)

q f6(x)(1 + 4y + y2)

×
(

f1(x) f6(x) − f4(x) f3(x)

( f5(x) f3(x) − f2(x) f6(x))(1 + 4y + y2)

)1/2

,

(4.2A)

P0
eff = 3y2( f1(x) f6(x) − f4(x) f3(x))2

f3(x)q2( f5(x) f3(x) − f2(x) f6(x))(1 + 4y + y2)2 .

(4.3A)

When n = 4,

T 0
eff = 3( f1(x) f6(x) − f4(x) f3(x))y(1 + y)3

q1/2 f6(x)(1 + 3y + 7y2 + 3y3 + y4)

×
(

( f1(x) f6(x) − f4(x) f3(x))

( f5(x) f3(x) − f2(x) f6(x))

× 1

(1 + 3y + 7y2 + 3y3 + y4)

)1/4

, (4.2B)

P0
eff = 2y2( f1(x) f6(x) − f4(x) f3(x))(1 + 3y + y2)

q f3(x)(1 + 3y + 7y2 + 3y3 + y4)

×
(

( f1(x) f6(x) − f4(x) f3(x))

( f5(x) f3(x) − f2(x) f6(x))

× 1

(1 + 3y + 7y2 + 3y3 + y4)

)1/2

. (4.3B)

When n = 5,

T 0
eff = ( f1(x) f6(x) − f4(x) f3(x))

f6(x)(1 − y)

×
(

( f1(x) f6(x) − f4(x) f3(x))

q2( f5(x) f3(x) − f2(x) f6(x))
F1(y)

)1/6

×
[
(1 − y2) − F1(y)(1 − y2n−2)

]
, (4.2C)

P0
eff = y2( f1(x) f6(x) − f4(x) f3(x))

f3(x)

×
(

( f1(x) f6(x) − f4(x) f3(x))F1(y)

q2( f5(x) f3(x) − f2(x) f6(x))
F1(y)

)1/3

×
[
(1 − y2) − F1(y)(1 − y2n−2)

y(1 − y)
− 1 + y6F1(y)

]
,

(4.3C)

with

F1(y) = (3 + 4y + 3y2)

(3 + 12y + 30y2 + 60y3 + 70y4 + 60y5 + 30y6 + 12y7 + 3y8)
.

The slope of the two-phase equilibrium P0
eff − T 0

eff curve
from Eqs. (4.2A) and (4.2B) for HDTNS satisfies the follow-
ing.

When n = 3,

dP0
eff

dT 0
eff

= 3 f6(x)

4q f3(x)

(
( f1(x) f6(x) − f4(x) f3(x))

( f5(x) f3(x) − f2(x) f6(x))

)1/2 F ′
1A(y)

F ′
2A(y)

,

(4.4A)

with

F1A(y) = y2

(1 + 4y + y2)2 , F2A(y) = y(1 + y)

(1 + 4y + y2)3/2 ,

(4.5A)

F ′
1A(y) = dF1A(y)

dy
, F ′

2A(y) = dF2A(y)

dy
.

When n = 4,

dP0
eff

dT 0
eff

= f6(x)

q1/2 f3(x)

(
( f1(x) f6(x) − f4(x) f3(x))

( f5(x) f3(x) − f2(x) f6(x))

)1/4 F ′
1B(y)

F ′
2B(y)

,

(4.4B)
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with

F1B(y) = y2(1 + 3y + y2)

(1 + 3y + 7y2 + 3y3 + y4)

×
(

1

(1 + 3y + 7y2 + 3y3 + y4)

)1/2

,

F2B(y) = y(1 + y)3

(1 + 3y + 7y2 + 3y3 + y4)

×
(

1

(1 + 3y + 7y2 + 3y3 + y4)

)1/4

. (4.5B)

When n = 5,

dP0
eff

dT 0
eff

= f6(x)

f3(x)

(
( f1(x) f6(x) − f4(x) f3(x))

q2( f5(x) f3(x) − f2(x) f6(x))

)1/6 F ′
1C (y)

F ′
2C (y)

,

(4.4C)

with

F1C (y) = y2 (F1(y))
1/3

×
[

(1 − y2) − F1(y)(1 − y2n−2)

y(1 − y)
− 1 + y6F1(y)

]
,

F2C (y) = (F1(y))1/6

(1 − y)

[
(1 − y2) − F1(y)(1 − y2n−2)

]
. (4.5C)

Equations (4.4A-C) represent the slope of the P0
eff − T 0

eff
curve when the two phases coexist in equilibrium.

The latent heat L of the phase transition of the HDTNS
spacetime thermodynamic system can be obtained from Eqs.
(4.1) and (4.4).

L = 4π (1 + y)
(
1 − y3

)
q

y2 f3(x)
(( f5(x) f3(x) − f2(x) f6(x))

× ( f1(x) f6(x) − f4(x) f3(x)))
1/2 F ′

1(y)

F ′
2(y)

, (4.6A)

L = V3(1 − y4)

4y4 f3(x)

q2 ( f5(x) f3(x) − f2(x) f6(x))1/2 ( f1(x) f6(x) − f4(x) f3(x))1/2

1 + y + y2

× (1 + 3y + 7y2 + 3y3 + y4)3/4(1 + y)3 F
′
1B(y)

F ′
2B(y)

, (4.6B)

L = qV4
(
1 − y5

)
5y5 (F1(y))2/3 (1 − y)

F ′
1C (y)

F ′
2C (y)

0
[(

1 − y2
)

− F1(y)
(

1 − y2n−2
)]

× ( f5(x) f3(x) − f2(x) f6(x))1/2 ( f1(x) f6(x) − f4(x) f3(x))1/2

f3(x)
. (4.6C)

The latent heat of the phase transition can be expressed as
a function of x and y by using Eq. (4.6) with q set to 1. The
plotted L − y curve is shown in Fig. 8.

Figure 8a shows that the latent heat L of a first-order phase
transition in spacetime decreases as the ratio x of the posi-
tions of the two horizons increases for a fixed y, while keep-
ing the spacetime dimensions n fixed. The data presented
in Fig. 8b show that the latent heat L of the phase transi-
tion increases as the spacetime dimensions n increase, while
keeping the ratio x of the positions of the two horizons fixed.
Additionally, based on Fig. 8, the effect of the ratio x of the
positions of the two horizons on the latent heat L of the phase
transition for first-order phase transition in spacetime is less
significant than that of spacetime dimensions n, provided that
all other factors remain constant.

5 Conclusion

Black hole thermodynamics serve as a connection between
general relativity, classical thermodynamics, and quantum
mechanics. The topic is of significant interest due to its
direct relation to various fields of physics, including gravity,
statistics, and particle and field theory, in which black hole
thermodynamics play a crucial role. Although the statisti-
cal description of the corresponding thermodynamic states
of black holes remains unclear, the study of the thermody-
namic properties of black holes and the critical phenomena
remain of interest. This paper extends the study of black
hole thermodynamic properties to the HDTNS spacetime and
discusses the extended phase transition based on the effec-
tive thermodynamic quantities in HDTNS spacetime. The
phase transition of HDTNS spacetime is analyzed by apply-
ing Maxwell’s equal-area law, revealing similarities to the
van der Waals system. The potential at the horizon depends
on the horizon position, the potential charge, and the position
ratio x between the two horizons, as given by Eq. (3.7), when
the effective temperature T 0

eff of spacetime is provided. It is
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Fig. 8 The behavior of L as a function of y for different x and n, respectively (setting q = 1)

important to note that this differs from the phase transition
observed in AdS black holes [57,58]. Figure 7 illustrates the
relationship between the potential at the horizon and the posi-
tion ratio x between two horizons, as well as the spacetime
dimension n, when a phase transition occurs in spacetime.
In the vdW system, the phase transition at a fixed temper-
ature is primarily due to the interaction between molecules
within the system. In HDTNS spacetime, however, the phase
transition is mainly caused by the magnitude of the electric
field experienced by the “molecules” of this system. For the
system in the high potential state, where the “molecules”
are arranged in an orderly manner under the influence of a
strong electric field, the system is in an ordered phase. Con-
versely, in the low potential phase, where the “molecules”
are arranged in a disorderly manner under the influence of a
weak electric field, the system is in a disordered phase. The
molecules affected by thermal fluctuations and electric fields
are in the phase transition region between disorder and order,
or order and disorder, when the system is in the two-phase
coexistence state.

According to the discussion in Sect. 3, when the HDTNS
spacetime has a temperature greater than its minimum effec-
tive temperature, Tmin

eff , its effective pressure, Peff , is also
greater than zero. This meets the requirement for the thermo-
dynamic system to be in a stable equilibrium state. Therefore,
we consider the sign in front of the PeffdV term in Eq. (2.12)
to be a positive sign, which satisfies the first law of thermody-
namics relative to HDTNS spacetime. This is different from
the literature [62], where the PeffdV term in Eq. (5) is taken as
a negative sign. Equation (3.18) demonstrates that the ratio
between the minimum effective temperature Tmin

eff and the
critical effective temperature T c

eff of the HDTNS spacetime
is independent of the ratio x between the two horizons. This
conclusion is consistent with the findings for AdS black holes
[63,64].

This work examines the thermodynamic properties of
HDTNS spacetime and investigates the effect of spacetime
dimensions n and the ratio x between two horizons on these
properties. The microstates of the internal “molecules” dur-
ing the phase transition of spacetime are useful for explor-
ing the microstructure of dS spacetime in depth. The study
of the microstructure of black holes is particularly important
for understanding their fundamental properties in gravity and
for the establishment of quantum gravity.
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