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Abstract In this manuscript we study Liouvillian non-
integrability of strings in AdS6 × S2 × � background. We
consider soliton strings and look for simple solutions in order
to reduce the equations to only one linear second order differ-
ential equation called Normal Variation Equation (NVE). We
study truncations in η and σ variables showing their appli-
cability or not to catch (non) integrability of models. With
this technique we are able to study many recent cases consid-
ered in the literature: the abelian and non-abelian T-duals, the
(p, q)-5-brane system, the TN , +MN theories and the T̃N ,P

and +P,N quivers. We show that all of them are not inte-
grable. Finally, we consider the general case at the boundary
σ = σ0 for large σ0 and show that we can get general con-
clusions about integrability. For example, beyond the above
quivers, we show generically that long quivers are not inte-
grable. In order to establish the results, we numerically study
the string dynamical system seeking by chaotic behaviour.
Such a characteristic gives one more piece of evidence for
non-integrability of the background studied.
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1 Introduction

In a recent paper, in the context of the AdS/CFT correspon-
dence [1], a precise relation between type II string theory
and d = 5 conformal field theories was described [2]. Given
the AdS space-time string background, when the BPS equa-
tions ensuring half-SUSY and Bianchi identity are imposed,
a potential function obeying a linear PDE (a Laplace equa-
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tion) is found with proper boundary conditions. This potential
contains all information about the background and, because
of the quantization of Page charges, one of the boundary con-
ditions implies that it is written in terms of a Rank function,
a convex polygonal function, linear by pieces, with integer
values at integer points. Then, this Rank Function is put in
contact with a quiver gauge theory: the ranks of the gauge
and flavour groups are organized in it. Because the Laplace
equation is central in this description, it is referred as an
electrostatic description. In the research for half-BPS back-
grounds of the type AdSD×S2×�8−D the same steps can be
built for several dimensions D [3] (see references therein).
After the field theory string background pair is identified,
various tests and predictions of the correspondence follows
in a simpler way. In this work, we want to take profit of this
formalism to study Liouvillian (non) integrability of strings
in the AdS6 × S2 × � background following the evidence
related to the integrability research in several dimensions
[4,5].

The AdS6 × S2 × � background was in fact found in [6]
and, after this, the correspondence was tested in a long list of
papers [7–20]. The fact that the dual CFT is not unique has
allowed the construction of a lot of 5D quiver theories: +N ,M

in Ref. [16], TN in Refs. [17–19],YN , �+N and +N ,M, j in Ref.
[13], T2K ,K ,2 and TN ,K , j in Ref. [21] and many others (see
[15] and references therein). Beyond this we can also cite the
abelian and non-abelian T-dual backgrounds, in which the
dual CFT is not well known [14,22,23].

As the correspondence signals, several characteristics
should match in the string side and in gauge theory side. An
important characteristic is just the integrability of the model:
it helps us in using powerful techniques to study conjectured
relations nonperturbatively. In the case of the AdS5 × S5

it is already known the existence of integrability structures
behind it. The study of integrability, from a classical per-
spective, can be made by following some specific strategies.
One of them is by searching for existence/non-existence of
chaos in the associated dynamical system given by the string
model: by finding chaotic behaviour (studying, for example,
the Lyapunov exponents and Poincare section‘s structure),
integrability is excluded. There is an good number of refer-
ences of chaos research in string related topics [5,24–40].
Another path is to look for a Lax pair formulation of the
string model. Lax pairs, if they exist for a classical system,
can be used to generate a tower of integrals of motion and this
will give support to integrability. In the case of string theory,
this approach is very successful when the string background
is coset-like, as in the case of AdS5 × S5 [41–43] and the
simple case of R × S3 [44]. But in fact, there is no general
guide to find a Lax pair formulation.

The last path we would like to cite is an analytical method
to discuss the existence of integrability in a dynamical sys-
tem. The idea is to find a string soliton and show that the

dynamics of such an object is (non) integrable in some sense.
This method has been recently used to study integrability of a
lot of string backgrounds, their respective duals and in other
models [4,5,37,38,45–47]. Given a system of differential
equations, the analysis of the variational equation around a
particular solution can show its (non) integrability. In other
words, if a nonlinear system admits first integrals, the varia-
tional equation will admit it too. Disproving this for a given
class of functions will imply in the non integrability of the
initial nonlinear system. The mathematical establishment of
integrability through the normal variation equation (NVE)
has been made by some tests that were improved along the
years. First, there is Ziglin‘s theorem relating the existence
of first integral of motion with monodromy matrices around
the straight line solution, the basis to linearize the system
of differential equations [48,49]. After that, techniques of
differential Galois‘ theory applied to the NVE equation were
introduced [50–52]. In this work we make use of the improve-
ment made by Kovacic [53]. It gives, through an specific
algorithm, an answer to the existence of integrability: once
the NVE is written in a linear form with polynomial coeffi-
cients, it suffices to check a group of criteria. In fact, Kovacic
provided a way to construct the solutions. In the case of string
models, it basically consists in the following: first we find the
equations of motion for the l degrees of freedom of a pro-
posed string soliton. Next, we find simple solutions for (l−1)

of these equations which are replaced in the last one. They
give us the normal variation equation (NVE). It is a linear
second order differential equation given by

z′′ + Bz′ + Az = 0.

With the equation above at hand, we can use the Kovacic’s
criteria to seek if a Liouvillian solution do exist. As will be
explained, the functions A,B and its derivatives determine
the existence of a closed form of Liouvillian solutions. We
should point out that the non-integrability in some of these
backgrounds has been studied in Ref. [54] from the viewpoint
of an independent formalism. The authors use the assumption
that they allow for a regular critical point for the warp factor,
which is necessary to have a GKP string solution. With this
assumption they were able to show non-integrability for the
background of Ref. [55]. However, those backgrounds do not
include D7 branes and further generalizations [10,11,14,21].
In our work we go some steps further by studying explicit
examples with D7 branes, namely, the TN , +MN , T̃N ,P and
+PN . For these, our results enforce the findings of [54] about
non-integrability.

In this work we study analytical and numerical (non) inte-
grability of strings in AdS6 × S2 × � background in direct
connection to its 5D Holographic Duals, as suggested by
the electrostatic method which is reviewed in Sect. 2 . In
Sect. 3 we study the string dynamics in the given back-
ground and write the NVE that will be basis for the con-
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clusions. In Sects. 4 and 5 we apply Kovacic’s criteria to
several potentials, running for regions where σ = σ0 and
η = η0, including those supporting quiver gauge models. In
Sect. 6 we discuss the potential for a general case, study-
ing how to see and avoid logarithmic terms at the final U -
function in order to apply Kovacic’s criteria. In Sect. 7 we
supplement the results coming from the analytical process
by finding chaotic behaviour in the dynamical system. We
compute string trajectories, power spectra, Lyapunov expo-
nents and Poincaré sections in order to establish the results.
Finally, we present our conclusions.

2 The electrostatic description

In this section we quickly review the correspondence between
strings in AdS6 × S2 × � background and d = 5 SCFT
through the electrostatic viewpoint.

2.1 The background

The type IIB background that is important in this work is
described in Ref. [2]. The full configuration consists of the
metric, the dilaton, B2, C2 and C0-fields in the NS and
Ramond sectors respectively. In string frame it is given by

ds2
10,st = f1(σ, η)

[
ds2(AdS6) + f2(σ, η)ds2(S2)

+ f3(σ, η)(dσ 2 + dη2)
]
, e−2� = f6(σ, η),

B2 = f4(σ, η)Vol(S2), C2 = f5(σ, η)Vol(S2),

C0 = f7(σ, η),

f1 = 3π

2

√
σ 2 + 3σ∂σV

∂2
ηV

, f2 = ∂σV ∂2
ηV

3�
,

f3 = ∂2
ηV

3σ∂σV
, � = σ(∂σ ∂ηV )2 + (∂σV − σ∂2

σV )∂2
ηV,

f4 = π

2

(
η − (σ∂σV )(∂σ ∂ηV )

�

)
,

f5 = π

2

(
V − σ∂σV

�
(∂ηV (∂σ ∂ηV ) − 3(∂2

ηV )(∂σV ))

)
,

f6 = 12
σ 2∂σV ∂2

ηV

(3∂σV + σ∂2
ηV )2 �,

f7 = 2

(
∂ηV + (3σ∂σV )(∂σ ∂ηV )

3∂σV + σ∂2
ηV

)
. (1)

In the equations above the range of η and σ are the intervals
[0, P] and −∞ < σ < ∞ respectively. We also use the
following parametrization

ds2
S2 = dχ2 + sin2 χdξ2, Vol(S2) = sin χdχ ∧ dξ

and

ds2
AdS6

= dρ2 − cosh2 ρdt2 + sinh2 ρd�2
4,

with

d�2
4 = dθ2

1 + cos2 θ1

(
dθ2

2 + cos2 θ2dφ2
1 + sin2 θ2dφ2

2

)
.

The background depends only of one potential function
V (σ, η), which solves a linear partial differential equation
given by

∂σ

(
σ 2∂σV

)
+ σ 2∂2

ηV = 0. (2)

Next, we define

V (σ, η) = V̂ (σ, η)

σ
, (3)

to arrive at a Laplace equation given by

∂2
σ V̂ + ∂2

η V̂ = 0. (4)

The boundary conditions are

V̂ (σ → ±∞, η) = 0, V̂ (σ, η = 0) = V̂ (σ, η = P) = 0.

lim
ε→0

(
∂σ V̂ (σ = +ε, η) − ∂σ V̂ (σ = −ε, η)

)
= R(η). (5)

Due to the Laplace equation above and boundary conditions,
the authors of Ref. [2] called this an “electrostatic descrip-
tion” of the system.

The solution of the equation above is given by

V̂ (σ, η) =
∞∑
k=1

ak sin

(
kπ

P
η

)
e− kπ

P |σ |,

ak = 1

πk

∫ P

0
R(η) sin

(
kπ

P
η

)
dη, (6)

where the rank function is obtained as

R(η) =
∞∑
k=1

ck sin

(
kπ

P
η

)
, 2πkak = −Pck . (7)

R(η) is interpreted as a charge density at σ = 0, extended
along 0 ≤ η ≤ P (P ∈ Z). Because of the quantization
of Page charges, it is fixed to be a convex piece-wise linear
function. It is this function that will make possible the precise
connection between the string model and the quiver gauge
models in the correspondence.

2.2 The holographic duals

Now we review the holographic duals of the background just
described. For this we follow the lines of Refs. [2,15]. In
order to find a general solution, the quantization of the Page
charges is necessary. This and the boundary conditions (5)
enforce the Rank function R(η) to be given by

R(η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N1η 0 ≤ η ≤ 1

Nl + (Nl+1 − Nl)

(η − l) l ≤ η ≤ l + 1, l := 1, . . . , P − 2

NP−1(P − η) (P − 1) ≤ η ≤ P.
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Depending on the choice of the Rank function R, the num-
ber of D7, D5 and NS5 branes can be determined. This also
fix the strong coupling CFT to which a linear quiver the-
ory flows. The gauge group of the linear quiver is given by
�P−1

i=1 SU (Ni ), with each gauge connected by bifundamental
hypermultiplets. Finally, some of the color groups can have
SU (N f ) flavor groups. However, the relation to the holo-
graphic dual is trustable only in the limit of very large P . The
only exception to the general solution above are the abelian
and non-abelian T-duals, in which the boundary conditions
(5) are not satisfied and the dual CFTs are not well known. In
the rest of this section we give the details of some particular
solutions we will consider later.

2.2.1 Abelian and non-abelian T-duals

The first AdS6 solutions to Type IIB supergravity were first
constructed in [22,23] by acting with Abelian and non-
Abelian T-duality on the Brandhuber-Oz solution to mas-
sive IIA. Later, it was shown to fit in the construction of
D’Hoker, Gutperle and Uhlemann [14] and therefore also in
the electrostatic description of [2]. Despite of being the first
IIB constructions, the dual theories are not yet well known
(see [14] and references therein).

The abelian case includes D7/O7-branes and provides
an example of a Riemann surface with the topology of an
annulus [14]. The electrostatic description has a potential
given by

VAT D = b1

σ
− b4(3η2 − σ 2), b1 = 81

512
, b4 = m

486
. (8)

The non-Abelian case arises from the upper half-plane [23].
In the electrostatic description it has potential given by

VN AT D = a1η

σ
+ 4a4(ησ 2 − η3), a1 = 1

128
, a4 = m

432
.

(9)

These potentials can be obtained as partial polynomial expan-
sions for σ ≥ 0 from the full electrostatic description [2]. We
should point that they do not satisfy the boundary conditions
(5).

2.2.2 The TN and +MN theories

The electrostatic description for these models were given in
Ref. [2]. The TN theory was first studied in Refs. [17–19].
It is the strongly-coupled UV fixed point of the linear quiver
gauge with junctions of N D5, N NS5 and N (1, 1) 5-branes.
Its electrostatic description has potential given by

V̂ = 9N 2

32π2

∞∑
k=1

(−1)k+1

k2 sin

(
4kπ

9N
η

)
e− 4kπ

9N |σ |. (10)

N

N

N

M

N

M

N

Fig. 1 Brane diagrams for the a) TN and b) +N ,M theories. The (p, q)-
5-branes are represented by straight lines and 7-branes represented by
filled black dots. The angles are determined by the (p, q) charges and
the 5d SCFTs are realized by intersections at a point

N 2N 3N . . . PN(P-1)N

Fig. 2 The T̃N ,P quiver, with PN D7-branes, N P(P−1)/2 D5-branes
and P NS5-branes

The +MN theory was already studied in Ref. [16] and is
defined on the intersection of N D5 and M NS5-branes.
In field theory it can be defined as the UV fixed point of
the linear quiver gauge theory. In this case, the electrostatic
description has potential given by

V̂ = 9MN

32π2

∞∑
k=1

1 − (−1)k

k2 sin

(
4πk

9M
η

)
e− 4πk

9M |σ |. (11)

In Fig. 1 we give a brane diagram1 in order to visualize
the quivers above.

We should point that both the theories above have N f =
2N . For more examples with this number of flavors see Ref.
[15].

2.2.3 The T̃N ,P and +P,N theories

These theories were both studied in Ref. [2]. The rank func-
tion associated to T̃N ,P theory is given by

R(η) =
{
Nη 0 ≤ η ≤ (P − 1)

N (P − 1)(P − η) (P − 1) ≤ η ≤ P.
(12)

The number of D7-branes is given by PN . The number of
D5-branes is determined by the value of R(η) at the points
η = 1, 2, 3, etc. With this we get a total of N P(P − 1)/2
D5-branes. Finally, we also have P NS5-branes. In Fig. 2 we
give this quiver.2

1 Figure adapted from Ref. [15].
2 Figure adapted from Ref. [2].
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N N . . . NN

P-1

Fig. 3 The +P,N quiver with N D7-branes at η = 1, N D7-branes at
η = P − 1 and (P − 1)N D5-branes

The potential can be computed by replacing (12) in Eq.
(6) and is given by

V̂ (σ, η) =
∞∑
k=1

(−1)k+1 N P3

k3π3 sin

(
kπ

P

)
sin

(
kπ

P
η

)
e− kπ

P |σ |.

(13)

Since the theory is trustable only for large P , we must expand
the potential. The expression was found in Ref. [2] and is
given by

V̂ = i N P2

2π2

(
−Li2

(
−e− π(iη+σ)

P

)
− Li2

(
−e− π(σ−iη)

P

))
.

(14)

For +P,N theory the associated rank function is defined
as

R(η) =

⎧⎪⎨
⎪⎩

Nη 0 ≤ η ≤ 1

N 1 ≤ η ≤ (P − 1)

N (P − η) (P − 1) ≤ η ≤ P.

(15)

In this case we have N D7-branes at η = 1, N D7-branes
at η = P − 1. We also have N D5-branes at each point
η = 1, 2, . . . , P − 1. With this we get a total of N (P − 1)

D5-branes. In Fig. 3 we give this quiver.3

The potential can be found by replacing (15) in Eq. (6)
and is given by

V̂ (σ, η) =
∞∑
k=1

N P2

k3π3 sin

(
kπ

P

)(
1 + (−1)k+1

)

sin

(
kπ

P
η

)
e− kπ

P |σ |. (16)

We should point that, as before, the above theories are
trustable only in the large P limit and we will see that this
will give us the very simple potential [2]

V̂ = i N P

2π2

(
Li2

(
−e− π(σ−iη)

P

)
− Li2

(
−e− π(iη+σ)

P

)

−Li2
(
−e− π(σ−iη)

P

)
+ Li2

(
−e− π(iη+σ)

P

))
. (17)

In the next section we study the dynamics of strings in
these backgrounds in order to seek for integrability in an
analytic way.

3 Figure adapted from Ref. [2].

3 Dynamics of strings in AdS6 × S2 × �

Now we consider the dynamics of strings in the background
(1) that is the subject of this work. The string action is given
by

SP = 1

4πα′

∫
d2σ

(
Gμνη

αβ + Bμνε
αβ

)
∂αX

μ∂βX
ν, (18)

supplemented by the Virasoro constraints

Tσ̃ τ = Gμν Ẋ
μX ′ν ≈ 0,

Tσ̃ σ̃ = Tττ = Gμν(Ẋ
μ Ẋν + X ′μX ′ν) ≈ 0. (19)

Our soliton is a string at the center of the AdS space,
which rotates and wraps on the following coordinates (τ and
σ̃ are the world-sheet coordinates)

t = t (τ ), η = η(τ), σ = σ(τ), χ = χ(τ), ξ = κσ̃ . (20)

Hereκ is an integer number that indicates how many times the
string wraps the corresponding direction. It is straightforward
to check that this truncation is consistent, since they are a
solution of the generic equations of motion. For this, the
coordinates above must be subject to the equations of motion
as described below. We get the effective Lagrangian

L = f1 ṫ
2 + f1 f2(κ

2 sin2(χ) − χ̇2)

− f1 f3(σ̇
2 + η̇2) + 2 f4χ̇κ sin χ (21)

and

Tσ̃ σ̃ = Tττ = − f1 ṫ
2 + f1 f2(κ

2 sin2(χ)

+χ̇2) + f1 f3(σ̇
2 + η̇2) = 0, Tσ̃ τ = 0. (22)

The equations of motion can be obtained from the
Lagrangian above and are given by

f1 ṫ = E, (23)

f1 f2χ̈ = −χ̇ [σ̇ ∂σ + η̇∂η]( f1 f2)
+ κ sin χ [σ̇ ∂σ + η̇∂η] f4 − κ2 f1 f2 sin(χ) cos(χ),

(24)

f1 f3σ̈ = −σ̇ η̇∂η( f1 f3) − 1

2

E2

f1
∂σ log f1

+ 1

2
∂σ ( f1 f3)(η̇

2 − σ̇ 2)

− 1

2
∂σ ( f1 f2)(κ

2 sin2(χ) − χ̇2) − ∂σ f4χ̇κ sin χ,

(25)

f1 f3η̈ = −σ̇ η̇∂σ ( f1 f3) − 1

2

E2

f1
∂η log f1

+ 1

2
∂η( f1 f3)(σ̇

2 − η̇2)
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− 1

2
∂η( f1 f2)(κ

2 sin2(χ) − χ̇2) − ∂η f4χ̇κ sin χ.

(26)

In the first of the equations above, E is a constant of integra-
tion and has been used in the last three equations. It is easy
to verify that the derivative of the Virasoro constraints (22)
vanishes if Eqs. (23–26) are used. Since Eqs. (23–26) define
the τ evolution of the string configuration, we can study its
(non) integrability. In the next, we consider the possibility
of finding simple solutions and study these aspects for the
configuration (20).

3.1 Finding simple solutions

The first step we take is to look for some simple solutions
of the eom (23–26). As cited in the introduction, the general
procedure is to find a solution to Eqs. (25) and (26) which
must be replaced in the NVE of Eq. (24). However, we just
need to solve (25) or (26) and use the constraint (22). We
will see that, with this at hand, we obtain general conclusions
without choosing any specific form of the background. In the
next sections we will apply this idea to many cases. First we
note that

χ̈ = χ̇ = χ = 0

is a solution to the second equation in (24). Replacing this in
the other equations we get

σ̈ = −σ̇ η̇∂η ln( f1 f3) − 1

2

E2

f 2
1 f3

∂σ ln f1

+ 1

2
∂σ ln( f1 f3)(η̇

2 − σ̇ 2),

η̈ = −σ̇ η̇∂σ ln( f1 f3) − 1

2

E2

f 2
1 f3

∂η ln f1

+ 1

2
∂η ln( f1 f3)(σ̇

2 − η̇2).

The equations above can be further simplified. By using
Eq. (23), the constraint can be written as

σ̇ 2 + η̇2 = E2

f 2
1 f3

. (27)

With this we get

σ̈ = −σ̇ η̇∂η ln( f1 f3) + 1

2

E2

f 2
1 f 2

3

∂σ f3 − σ̇ 2∂σ ln( f1 f3),

(28)

and

η̈ = −σ̇ η̇∂σ ln( f1 f3) + 1

2

E2

f 2
1 f 2

3

∂η f3 − η̇2∂η ln( f1 f3).

(29)

Finally, we fluctuate χ by χ = 0 + z(τ ) in Eq. (24) to get
the NVE

d2z(τ )

dτ 2 + B dz(τ )

dτ
+ Az(τ ) = 0,

B = [σ̇ ∂σ + η̇∂η] ln( f1 f2),

A = κ2 − κ

f1 f2
[σ̇ ∂σ + η̇∂η] f4. (30)

The fluctuation above is useful to see how it evolves in time.
This information will say to us if the system is stable or
not and if that perturbation will grow or not. In particular,
Kovacic’s criteria is based on the NVE behavior and its coef-
ficient’s poles. The coefficients A and B depend on σ, η.
Therefore, in principle, we should solve for σ, η in such
a way that the NVE becomes a linear second order differ-
ential equation. However, if we choose the simple solution
σ = σ0 = constant or η = η0 = constant , we see that a
linear equation can be obtained. We analyse now both cases.

3.2 The Case σ = σ0

We note that we can have a simple solution of Eq. (28) given
by

σ = σ0 if
1

f 2
1 f 2

3

∂σ f3|σ=σ0 = 0. (31)

With this the NVE (30) and η equations are simplified to

z̈ + Bż + Az = 0, B = η̇∂η ln( f1 f2),

A = κ2 − κ

f1 f2
η̇∂η f4, (32)

and

η̈ = 1

2

E2

f 2
1 f 2

3

∂η f3 − η̇2∂η ln( f1 f3). (33)

Despite the simplification, the coefficients of the NVE are
yet η dependent. The general procedure is to choose a spe-
cific background and solve for η. However, depending on the
background, solve Eq. (33) and determine η can be a very
difficult task. Besides this, we would need to choose a spe-
cific background, which would spoil the generality of this
study.

In order to solve that, we remember that the constraint
(27) reduces to

η̇2 = E2

f 2
1 f3

|σ=σ0 . (34)

Now, by using the result above in Eq. (33) we see that the
equation of motion for η can be written as

η̈ = − E2

f 2
1 f3

∂η ln f1
√

f3|σ=σ0 . (35)
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From Eqs. (34) and (35) we see that η̇ and η̈ depends only
on η(τ). This suggests that we use τ = τ(η) and we arrive
at a new NVE given by

z′′ + Dz′ + Cz = 0, D =
(

η̈

η̇2 + B
η̇

)
,

C = 1

η̇2

(
κ2 − κ

f1 f2
η̇∂η f4

)
.

Now we use (34) and (35) to get

z′′ + Dz′ + Cz = 0, D = ∂η ln

(
f2√
f3

)
,

C =
( κ

E

)2
f 2
1 f3 − κ

E

√
f3
f2

∂η f4, (36)

where the quantities above must be taken at σ = σ0 and
z′ means derivative with respect to η. Therefore, there is no
need to solve the equation for η in order to obtain the final
NVE.

3.3 The case η = η0

In the next step, we consider that a simple solution of Eq.
(29) can be found and is given by

η = η0 if
1

f 2
1 f 2

3

∂η f3|η=η0 = 0. (37)

In this case the constraint (27) simplifies and we get

σ̇ 2 = E2

f 2
1 f3

|η=η0 . (38)

From the equations above we could determine σ . However,
as in the σ = σ0 case this will not be necessary. By using
(37) and (38), the σ equation (28) becomes

σ̈ = − E2

f 2
1 f3

∂σ ln( f1
√

f3)|η=η0 . (39)

From Eqs. (38) and (39) we see that σ̇ and σ̈ depend only
on σ(τ). This suggests that we use the parameter τ = τ(σ )

and the NVE, Eq. (30), becomes

z′′ + Dz′ + Cz = 0, D =
(

σ̈

σ̇ 2 + B
σ̇

)
,

C = 1

σ̇ 2

(
κ2 − κ

f1 f2
σ̇ ∂σ f4

)
.

Now, by using (38) and (39) we finally write

z′′ + Dz′ + Cz = 0, D = ∂σ ln

(
f2√
f3

)
,

C =
( κ

E

)2
f 2
1 f3 − κ

E

√
f3
f2

∂σ f4 (40)

where the prime means a derivative with σ and the quantities
above must by taken at η = η0. Again, we point that there is

no need to solve the σ equation in order to obtain the second
order linear differential equation.

The results of the last subsections show that the behaviour
of

1

f 2
1 f 2

3

∂η f3,
1

f 2
1 f 2

3

∂σ f3

is crucial in order to discover what is the consistent truncation
of our system of equations. In the next sections we will apply
the results above and analyse some specific backgrounds.
Later we generalize our results.

3.4 The Kovacic’s criteria of Liouvillian integrability

As shown in the last subsections, we can find consistent
truncations of string equations in order to get the NVE as
a homogeneous second order linear equation. With this at
hand, we can study Liouvillian integrability. Interestingly,
Kovacic provided not only an algorithm to find the solutions,
but also a set of necessary, but not sufficient, conditions to
analyse if an equation is Liouvillian integrable. Consider the
general NVE in Eq. (30). First, we transform it to a first order
differential equation in the following way

z(x) = e
∫
(y(x)−B(x)

2 )dx ⇒ y′(x) − y(x)2 = U (x), (41)

where

4U (x) = 2B′ + B2 − 4A. (42)

With the potential U (x), Kovacic set some general con-
ditions for integrability. First of all, his criteria is valid only
if U (x) is a fractional polynomial. If this is the case, the
conditions are the following:

• Case 1: every pole of U (x) has order 1 or has even order.
The order of the function U (x) at infinity is either even
or greater than 2.

• Case 2: U (x) has either one pole of order 2, or poles of
odd-order greater than 2 .

• Case 3: the order of the poles of U (x) does not exceed 2,
and its order at infinity is at least 2.

If none of the conditions above are satisfied, the analytic
solution (if it exists), is non-Liouvillian. With the help of
the criteria above, we will study integrability of the string
dynamic equations in the rest of our manuscript. The inter-
ested reader can find more detailed explanations and specific
examples of this method in Refs. [4,5,38].

4 The case σ = σ0

In this section study the possibility of obtaining a consistent
truncation given by σ = σ0. We apply the results of the last
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section to some simple specific backgrounds and, later, we
consider the general case. We first consider the T-duals, the
(p, q)-5-brane system and finally we analyse the possibility
σ0 = 0 in a general way.

4.1 Type IIA abelian T-dual

We now study the abelian T-dual of the D4/D8 system in
massive Type IIA theory [14]. In the electrostatic description
the potential is given by Eq. (8)

VAT D = b1

σ
− b4(3η2 − σ 2), b1 = 81

512
, b4 = m

486
, (43)

and therefore we have

1

f 2
1 f 2

3

∂σ f3 = 16b4σ
2

9π2b1
+ 4

9π2σ
. (44)

As said before, in order that σ = σ0 be a solution of Eq. (28)
we must obey

16b4σ
2

9π2b1
+ 4

9π2σ
= 0

for some σ0. From the last expression we see that the bound-
aries σ0 = 0, σ0 = ∞ are not solutions to the equation above.
However, we can try b1 + 4b4σ

3 = 0. Using this in Eq. (36)
we get

C = 3π2

2
− √

3π

√
− 1

a2/3 , D = 0,

where we have used a ≡ b1/(4b4). Since a > 0, we get com-
plex coefficients and σ = σ0 is not a consistent truncation of
the equations of motion.

4.2 Type IIA non-abelian T-dual

The next simple background is given by the non-Abelian T-
dual of the type IIA D4/D8 system. The electrostatic descrip-
tion is given by (9), namely

VN AT D = a1η

σ
+ 4a4(ησ 2 − η3),

a1 = 1

128
, a4 = m

432
, (45)

and

1

f 2
1 f 2

3

∂σ f3 = 64a4σ
2

9π2a1
+ 4

9π2σ
. (46)

For σ = σ0 to be a solution we need that

64a4σ
2

9π2a1
+ 4

9π2σ
= 0

Just as with the abelian case, σ = 0 and σ = ∞ are not
solutions. However, we can try 16a4σ

3 + a1 = 0. In this

case we get, from Eq. ( 36), that

C = 2π
√

3
√−a2/3

2η2 − a2/3 − π
√

3
√

−a−2/3 + 3π2

2
,

D = 2

η
− 4η

2η2 − a2/3 .,

where we have used a ≡ a1/(16a4). Since a > 0 we get
complex coefficients σ = σ0 is not a consistent truncation of
the eom.

4.3 The T̃N ,P and +P,N Theories

As said before, the theory above is trustable only for large P .
The T̃N ,P solution is studied in Ref. [2] with potential given
by Eq. (14). Now we expand it around σ = 0 to get

V̂ = η(N P log(2))

π
− π

(
η2+η

)
N

24P
− 1

2
σ(ηN )+ πηNσ 2

4P
.

In Ref. [56] the author gives this potential up to order σ .
However we introduced terms of order σ 2 since the back-
ground functions depends on second derivative of σ . With
the potential above we get

1

( f1 f3)2 ∂σ f3

= 16ησ

−3π2η2 − 18π2ησ 2 − 3π2η + 72ηP2 log(2) + 2π2σ 2

and therefore σ = 0 is a good truncation. With this we get

C = 9π2

4
− 5

(
π2

)

4P
√

log(2)

1√
η
,

D = 2

η
− 4

(
5π4η3 − 12π2ηP2

)

5π4η4 − 24π2η2P2 + 12P4

+ 3π

2
(
πη − √

6P
) + 3π

2
(
πη + √

6P
) .

Then the potential becomes

U (η) = −9π2 + 9

4η2 + 5π2

P
√

log(2)

1√
η

− 7π2

16P2(η log(2))
.

This last potential is not polynomial and we cannot use the
Kovacic’s criteria. However we can change the η variable to
y = √

η, compute a new NVE and write the following Ũ (y):

Ũ (y) = 3

4y2 − 9π2y2 −
3
√

3
2 Pπ

2
(
−√

6P + πy2
)2

− 39π

2
(
−√

6P + πy2
) +

3
√

3
2 Pπ

2
(√

6P + πy2
)2

− 39π

2
(√

6P + πy2
) + 4032P4π4y6

(
12P4 − 24P2π2y4 + 5π4y8

)2
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+ 10
(
18P2π2y2 + 19π4y6

)

12P4 − 24P2π2y4 + 5π4y8 + 5πy

4
√

log(2)
. (47)

Now we have it in a polynomial form and, even after that pro-
cedure, this last potential does not obey any of the Kovacic’s
criteria: we conclude that this model is not integrable.

Next we consider the +P,N theory. This solution, studied
in Ref. [2], has potential given by Eq. (17). By expanding it
in σ we get

V̂ = N

4π

(
−2ηLog

(
1 − η2

)
−

(
η2 + 1

)
log

(
η + 1

1 − η

)

+η(6 + 4 log(2)) − 4η log
(π

P

))
.

From the result above, we have

1

( f1 f3)2 ∂σ f3 = σh(η)

with

h(η) = −
8 log

(
η+1
1−η

)

9π2
(
η2 log

(
η+1
1−η

)
+ 2η log

( 1
4

(
1 − η2

)) − 6η + log
(

η+1
1−η

)
+ 4η log

(
π
P

))

− 16η

9π2
(
η2 − 1

)2 log
(

η+1
1−η

) + O(σ 3).

Hence the truncation σ = 0 is consistent. We can also obtain
the U function. Nevertheless, we see that we get a logarithm
dependence in η. This potential, thus, cannot be written as
a polynomial function and we cannot apply the Kovacic’s
criteria.

We point that the cases above were studied in Ref. [56].
The author used a further truncation η = 0. However, if we
use η = σ = χ = 0 in (22), we find ṫ f1 = 0. Then we
get ṫ = 0 or f1 = 0. The first choice is not consistent and
the second give us a null background making the equations
of motion trivially null. Therefore, with this choice it is not
possible to conclude about integrability. From the viewpoint
given in our work there is no need to fix η = 0 to make
the truncation consistent. Despite this, due to the shape of
the potential, the Kovacic’s criteria were applied only for the
T̃N ,P .

5 The case η = η0

In the previous section we learnt that σ = σ0 sometimes is a
good solution for the string’s equations of motion, sometimes
not. In this section we apply the results of Sect. 3 to search
the other possibility of obtaining a simple solution for η =
η0. We show that this works for several backgrounds: the
abelian and non-abelian T-duals, the TN , +MN , T̃N ,P and

+P,N theories. Finally, we consider the general case, which
includes any long quiver.

5.1 Type IIA abelian T-dual

As we already know, in this case the potential is given by Eq.
(8) and therefore we have

1

f 2
1 f 2

3

∂η f3 = 0. (48)

We should point out that the equation above is valid for any
value of η. Then, the coefficients of the NVE (40) becomes

C = − 9π2b1

4
(
2b4σ 3 − b1

) , D = 9b1

2σ
(
2b4σ 3 − b1

) + 4

σ
,

where we have used κ = E . The coefficients are already
rational functions and can be analysed with the Kovacic’s
criteria. We get a potential (42) given by

4U = 9a2/3

4
(
a2/3 + 3

√
aσ + σ 2

)2 − 3
(
1 + π2a2/3

)
σ

3
√
a

(
a2/3 + 3

√
aσ + σ 2

)

+ 3
(
1 + 4π2a2/3

)

2
(
a2/3 + 3

√
aσ + σ 2

)

+3
(
π2a2/3 + 1

)
3
√
a

(
σ − 3

√
a
) − 3

4
(
σ − 3

√
a
)2 + 5

4σ 2 .

In the expression above we have used b1 = 2ab4 in order to
simplify it. By analysing the U -function, we see that it does
not satisfy all the three possible necessary Kovacic’s condi-
tions described above. The solution to the equation should
then be non-Liouvillian. Then η = η0 give us a consistent
truncation in order to study integrability.

5.2 Type IIA non-abelian T-dual

For this case we have the potential given by Eq. (9) and

1

f 2
1 f 2

3

∂η f3 = 0. (49)

As in the abelian case, again we have the equation above
valid for any value of η and a simple solution to (29) is given
by η = η0. Therefore, the coefficients of the NVE ((40))
become

123



  189 Page 10 of 22 Eur. Phys. J. C           (2023) 83:189 

C = −
9πa2η0

√
σ

a−σ 3

2σ
(
a2 + 9aη2

0σ − 2aσ 3 + σ 6
)

−
45πaη0σ

2
√

σ
a−σ 3

2
(
a2 + 9aη2

0σ − 2aσ 3 + σ 6
)

+ 9π2a

4
(
a − σ 3

) ,

and

D = − 3
(
3aη2

0 − 2aσ 2 + 2σ 5
)

a2 + 9aη2
0σ − 2aσ 3 + σ 6

+ 9σ 2

2
(
σ 3 − a

) + 1

2σ
,

where we have used κ = E and a = a1/(8a4). We see that
the coefficients above are not rational functions. We could try
to solve this with a change of coordinate but, since the term in
the square root is cubic, it is not possible to find an inverse.
But we can note that all terms with square roots cancel at
η0 = 0. Therefore we choose this particular value to get

C = − 9π2a

4
(
σ 3 − a

) , D = 1

2σ
− 3σ 2

2
(
σ 3 − a

) .

The coefficients above are already rational functions and we
find from Eq. (42) that

4U = − 3

4σ 2 − 15a2/3

4
(
a2/3 + 3

√
aσ + σ 2

)2

+−12π2a2/3 − 6π2 3
√
aσ + 5

2
(
a2/3 + 3

√
aσ + σ 2

)

+ 3π2 3
√
a

σ − 3
√
a

+ 5

4
(
σ − 3

√
a
)2

Analysing the U−function, we see that it does not satisfy
all the three possible necessary Kovacic’s conditions and the
solution must be non-Liouvillian. However, this case is less
general if compared to the abelian one, since we had to choose
η0 = 0. We can also conclude that η = 0 provides a consis-
tent solution that allow us to analyse the integrability of the
system.

5.3 TN theory

This solution is studied in Ref. [15]. Its electrostatic descrip-
tion has potential given by (10) [5]

V̂ = 9N 2

32π2

∞∑
k=1

(−1)k+1

k2 sin

(
4kπ

9N
η

)
e− 4kπ

9N |σ |.

Since we look for a solution with η = 0, we can expand the
potential above to obtain

V̂ (σ, η) ≈ ηρ(σ ) − η3

6
β(σ) + η5

24
γ (σ ) + O(η7), (50)

with

ρ = − N

8π

∞∑
k=1

(−1)k

k
e− 4kπ

9N |σ | = − N

8π
Li1(−e− 4π

9N |σ |)

= N

8π
ln(1 + e− 4π

9N |σ |),

β = − 2π

81N

∞∑
k=1

(−1)kke− 4kπ
9N |σ | = − 2π

81N
Li−1(−e− 4π

9N |σ |)

= 2π

81N

1

(e
2π
9N |σ | + e− 2π

9N |σ |)2
,

and

γ = − 1

2σ

(
4π

9N

)3 ∞∑
k=1

(−1)kk3e− 4kπ
9N |σ |

= − 1

2σ

(
4π

9N

)3

Li−3(−e− 4π
9N |σ |)

= 1

2σ

(
4π

9N

)3 e− 4π
9N |σ |(1 − 4e− 4π

9N |σ | + e− 8π
9N |σ |)

(1 + e− 4π
9N |σ |)4

. (51)

With the quantities above we get

1

( f1 f3)2 ∂η f3 = η
A(σ )

4374N 4B(σ )
+ O(η2) (52)

where

A(σ ) = σe
4πσ
9N

(
2916πN 4σ − 6561N 5 − 20480π5

)

+σe
8πσ
9N

(
−2916πN 4σ − 6561N 5 + 5120π5

)

+11520π4N
(
−3e

4πσ
9N − 3e

8πσ
9N + e

4πσ
3N + 1

)

× log
(
e− 4πσ

9N + 1
)

(53)

and

B(σ ) = 24πσ + e
8πσ
9N

(
24πσ + 18Nσ 2

)

+e
4πσ
9N

(
48πσ + 18Nσ 2

)

+54N
(
e

4πσ
9N + 1

)3
log

(
e− 4πσ

9N + 1
)

. (54)

With this, it is clear that in the limit η = 0, Eq. (52) is null.
Therefore, it is a consistent truncation in order to study the
NVE (40). The same kind of procedure will be repeated in
all the next cases. The coefficients are given by
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C =
9π2

(
σ

(
4π

(
e

4πσ
9N + 1

)
+ 3Nσe

4πσ
9N

)
+ 9N

(
e

4πσ
9N + 1

)2
log

(
e− 4πσ

9N + 1
))

4
(
e

4πσ
9N + 1

) (
9N

(
e

4πσ
9N + 1

)
log

(
e− 4πσ

9N + 1
)

+ 4πσ
) ,

and

D =
2π

(
4πσ − 9N

(
e

8πσ
9N − 1

)
log

(
e− 4πσ

9N + 1
))

9N
(
e

4πσ
9N + 1

) (
9N

(
e

4πσ
9N + 1

)
log

(
e− 4πσ

9N + 1
)

+ 4πσ
) .

The potential (42) will be given by

U = 20π2

81N 2
(
e

4πσ
9N + 1

)2 − π2
(
729N 2 − 4

)

81N 2

+
2187πN 3σ 2 + 72πN log

(
e− 4πσ

9N + 1
)

− 144πN − 64π2σ

324N 2σ
(
e

4πσ
9N + 1

)

−
π

(
9N log

(
e− 4πσ

9N + 1
)

+ 4πσ
) (

729N 3σ 2 + 24N log
(
e− 4πσ

9N + 1
)

− 48N + 32πσ
)

108N 2σ
(

9Ne
4πσ
9N log

(
e− 4πσ

9N + 1
)

+ 9N log
(
e− 4πσ

9N + 1
)

+ 4πσ
)

+
20π2

(
9N log

(
e− 4πσ

9N + 1
)

+ 4πσ
)2

81N 2
(

9Ne
4πσ
9N log

(
e− 4πσ

9N + 1
)

+ 9N log
(
e− 4πσ

9N + 1
)

+ 4πσ
)2

We cannot apply the Kovacic’s criteria to the case above
since the coefficients are not fractional polynomials. How-
ever, for very large σ it reduces to

U = 243N 2

16
− 9π2 − 27πNσ

4

− 2187N 3

16(9N + 4πσ)
+ 20π2

(9N + 4πσ)2 + O(e−cσ )

where O(e−cσ ) means terms which decrease exponentially.
Therefore, in this region, the potential has the desired shape.
Nevertheless, the order of the fractional polynomial is nega-
tive and does not satisfy all Kovacic’s conditions. Since we
are analysing only one particular point, this is only a hint and
we cannot conclude that the solution is not integrable. We
need more regions to enforce this.

5.4 +MN theory

This solution is studied in Ref. [15], with electrostatic
description given in Ref. [5]. The potential is given by (11)

V̂ = 9MN

32π2

∞∑
k=1

1 − (−1)k

k2 sin

(
4πk

9M
η

)
e− 4πk

9M |σ |.

Now we expand in η as in the last subsection to get

ρ = N

8π

∞∑
k=1

1 − (−1)k

k
e− 4πk

9M |σ | = N

8π

(
Li1(e

− 4π
9M |σ |)

)

− N

8π
Li1(−e− 4π

9N |σ |) = N

8π
ln

(1 − e− 4π
9M |σ |)

(1 + e− 4π
9M |σ |)

,

β = 2πN

81M2

∞∑
k=1

(1 − (−1)k)ke− 4πk
9M |σ |

= 2πN

81M2

(
Li−1(e

− 4π
9N |σ |) − Li−1(−e− 4π

9N |σ |)
)

=

= 2πN

81M2

(
1

(e
2π
9N |σ | − e− 2π

9N |σ |)2
+ 1

(e
2π
9N |σ | + e− 2π

9N |σ |)2

)

= 4πN

81M2

e
4π
9N |σ | + e− 4π

9N |σ |

(e
4π
9N |σ | − e− 4π

9N |σ |)2
,

and

γ = 2πN

81M2

(
4π

9M

)2 (
Li−3(e

− 4π
9N |σ |) − Li−3(−e− 4π

9N |σ |)
)

=
2e− 4π

9N |σ |
(
e− 8π

3N |σ | + 23e− 16π
9N |σ | + 23e− 8π

9N |σ | + 1
)

(
1 − e− 8π

9N |σ |
)4 .

With the expressions above we find that

1

( f1 f3)2 ∂η f3 = η
64A(σ )

81B(σ )
+ O(η2),

123



  189 Page 12 of 22 Eur. Phys. J. C           (2023) 83:189 

with

A(σ ) = 405MN
(
−21e

8πσ
9N + 21e

16πσ
9N + e

8πσ
3N − 1

)

log

(
e

4πσ
9N − 1

e
4πσ
9N + 1

)
− 2e

4πσ
9N

(
4πσ

(
(45M + 1)e

16πσ
9N

+(990M + 6)e
8πσ
9N + 45M + 1

)
+ 9N

(
e

16πσ
9N − 1

))

and

B(σ ) = 8πσe
4πσ
9N

(
e

8πσ
9N − 1

) (
4πNσ

(
e

8πσ
9N + 1

)

−27M2
(
e

8πσ
9N − 1

))

+243M2N
(
e

8πσ
9N − 1

)3
log

(
e

4πσ
9N − 1

e
4πσ
9N + 1

)
.

Again we see that the last expression is null for η = 0.
Therefore, this is a good truncation of our system and we can
study the NVE (40). The coefficients are given by

C =
π2

(
8πσe

4πσ
9N

(
4πNσ

(
e

8πσ
9N + 1

)
− 27M2

(
e

8πσ
9N − 1

))
+ 243M2N

(
e

8πσ
9N − 1

)2
log

(
e

4πσ
9N −1

e
4πσ
9N +1

))

12M2
(
e

8πσ
9N − 1

) (
9N

(
e

8πσ
9N − 1

)
log

(
e

4πσ
9N −1

e
4πσ
9N +1

)
− 8πσe

4πσ
9N

)

and

D =
2π

(
32πσe

4πσ
3N − 9N

(
−5e

8πσ
9N + 5e

16πσ
9N + e

8πσ
3N − 1

)
log

(
e

4πσ
9N −1

e
4πσ
9N +1

))

9N
(
e

4πσ
9N − 1

) (
e

4πσ
9N + 1

) (
e

8πσ
9N + 1

) (
9N

(
e

8πσ
9N − 1

)
log

(
e

4πσ
9N −1

e
4πσ
9N +1

)
− 8πσe

4πσ
9N

) .

Finally, the potential (42) is given by

U = − 9π2 +
64π2

(
e

16πσ
9N + 2e

24πσ
9N + 2e

8πσ
9N

)

81N 2
(
e

16πσ
9N − 1

)2 + 3π2N 2

2M2

(
e

4πσ
9N + e− 4πσ

9N

)
log

(
e

4πσ
9N − 1

e
4πσ
9N + 1

)
+

4π3N
(
e

8πσ
9N + 1

)
σ

3M2
(
e

8πσ
9N − 1

)

+
20π2

(
e

8πσ
9N + 1

)2
log2

(
e

4πσ
9N −1

e
4πσ
9N +1

)

(
8πσe

4πσ
9N − 9N

(
e

8πσ
9N − 1

)
log

(
e

4πσ
9N −1

e
4πσ
9N +1

))2 −
π2

(
e

8πσ
9N +1

)(
64M2e

8πσ
9N +243N 4

(
e

8πσ
9N −1

)2
log2

(
e

4πσ
9N −1

e
4πσ
9N +1

))

18M2Ne
4πσ
9N

(
e

8πσ
9N −1

)(
9N

(
e

8πσ
9N −1

)
log

(
e

4πσ
9N −1

e
4πσ
9N +1

)
−8πσe

4πσ
9N

)

−
16π2

(
−4e

8πσ
9N + e

16πσ
9N + 1

)
log

(
e

4πσ
9N −1

e
4πσ
9N +1

)

9N
(
e

8πσ
9N − 1

) (
9N

(
e

8πσ
9N − 1

)
log

(
e

4πσ
9N −1

e
4πσ
9N +1

)
− 8πσe

4πσ
9N

) .

Again, we have that the potential above is not a fractional
polynomial. However, it is simple to show that for very large

σ we have

U = −9π2 − 3π2N 2

M2 + 4π3Nσ

3M2

− 40π2

(8πσ + 9N )2 + 27π2N 3

M2(189N + 8πσ)
+ O(e−cσ )

where O(e−cσ ) means terms which decrease exponentially.
Therefore, in this region, we can test the Kovacic’s criteria
by analysing the U−function. We see that it does not satisfy
all the conditions. As before, this is a hint and we cannot
conclude that the solution is not integrable.

5.5 The T̃N ,P and +P,N theories

In this subsection we analyse the integrability of the T̃N ,P

and +P,N theories. These theories are trustable only in the
large P limit (so we must expand them in 1/P). The T̃N ,P

solution is studied in Ref. [2] with potential given by Eq.
(14). Now we must expand it around η = 0 to get
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V̂ = ηN

24

(
−π

(
η2 − 3σ 2

)

P
+ 24P log(2)

π
− 12σ

)
.

With the above potential we get

1

( f1 f3)2 ∂η f3 = 4η

9a(a + πσ)
− 4η

9a(πσ − a)

where we have used a2 = 24P2 log(2). Therefore η = 0 is
a good truncation. With this we find

C = 3π4σ 2

4(πσ − b)(b + πσ)
− 18π2P2 log(2)

(πσ − b)(b + πσ)
,

D = − π

2(b + πσ)
− π

2(πσ − b)
.

where b2 = 8P2 log(2). Therefore the potential becomes

U = 12π2b2 + π2

4b(πσ − b)
+ −12π2b2 − π2

4b(b + πσ)
+ 5π2

4(πσ − b)2 + 5π2

4(b + πσ)2 − 3π2.

Just like the σ = 0 truncation, we find a polynomial function
and we conclude, by using the Kovacic’s criteria, that it is
not integrable.

Next we consider the +P,N theory. This solution, studied
in Ref. [2], has potential given by Eq. (17). By expanding the
potential around η = 0 we get

V̂ = η3

(
− πN

36P2 − N

6
(
πσ 2

)
)

+ η

(
πNσ 2

12P2 + N

π

(
log(2) − log

(πσ

P

)))

and
1

( f1 f3)2 ∂η f3 = − 8η
(
18P2 + π2σ 2

)

9π2
(
π2η2σ 2 + 18η2P2 − 48P2σ 2 − 6P2σ 2 log(64) + 36P2σ 2 log

(
πσ
P

) + π2σ 4
) .

Therefore, η = 0 is a good truncation. We compute

C = 3π2
(
36P2 log

(
πσ
P

) − 6P2(8 + log(64)) + π2σ 2
)

4
(
12P2 log

(
πσ
P

) − 6P2(2 + log(4)) + π2σ 2
) ,

D = −6P2 − π2σ 2

σ
(
12P2 log

(
πσ
P

) − 12P2 − 6P2 log(4) + π2σ 2
) − 6P2

σ
(
6P2 + π2σ 2

) .

For the U function we find

U = −9
(
12π4P2σ 4 + 36π2P4σ 2 − 4π2P2σ 2 − 12P4 + π6σ 6

)

σ 2
(
6P2 + π2σ 2

)2 + 5
(
6P2 + π2σ 2

)2

σ 2
(
12P2 log

(
πσ
P

) − 12P2 − 6P2 log(4) + π2σ 2
)2

+2
(
18π2P2σ 2 − 27π2P2σ 2 log(4) + 9π2P2σ 2 log(64) + 12P2 + 3π4σ 4 − π2σ 2

)

σ 2
(
12P2 log

(
πσ
P

) − 12P2 − 6P2 log(4) + π2σ 2
)

However, just as the σ = 0 case, we have a logarithm and
therefore we can not obtain a polynomial expansion for the
U function. The conclusion is the same: we can not apply the
Kovacic’s criteria for the +P,N theory.

6 General observations about expansions and
integrability

In this section we study some aspects of Polylogarithmic
expansions in order to understand how to apply (or not) the
Kovacic’s criteria.

6.1 The truncation at η = 0

For all the cases considered here, we have been able to study
integrability with the truncation η = 0. Therefore, we can
try to study the general case. In order to do this we must
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remember that the general potential for the quivers is given
by [2]

V̂ = P2

2π3

P−1∑
s=1

csRe
[
Li3

(
e− π(−is+iη+σ)

P

)

−Li3
(
e− π(is+iη+σ)

P

)]
, (55)

where

cs = (2Ns − Ns−1 − Ns+1).

In this case we expand in η to get

V̂ = P2

2π3

P−1∑
s=1

csRe
(

Li3
(
e− π(σ−is)

P

)
− Li3

(
e− π(is+σ)

P

))

− P

2π2 η

P−1∑
s=1

csRe
(
iLi2

(
e− π(σ−is)

P

)
− iLi2

(
e− π(is+σ)

P

))

+ 1

4π
η2

P−1∑
s=1

csRe
(

log
(

1 − e− π(σ−is)
P

)
− log

(
1 − e− π(σ+is)

P

))

− 1

12P
η3

P−1∑
s=1

csRe
i
(
e

π(−σ−is)
P − e

π(−σ+is)
P

)
(
−1 + e

π(−σ−is)
P

) (
−1 + e

π(−σ+is)
P

) + O
(
η4) .

(56)

With this result we arrive at∂η f3

= π2

3P2σ
Re

P−1∑
s=1

cs
i
(

log
(

1 − e− iπ(s−iσ)
P

)
− log

(
1 − e

iπ(s+iσ)
P

))2

(
Li2

(
e

iπ(s+iσ)
P

)
− Li2

(
e− iπ(s−iσ)

P

))
2

− π2

3P2σ
Re

P−1∑
s=1

cs
1(

Li2
(
e

iπ(s+iσ)
P

)
− Li2

(
e− iπ(s−iσ)

P

))

×
(

sin πs
P

cos πs
P − e− πσ

P

)
. (57)

If we use the property Lis(z∗) = Li∗s (z) we find that the terms
inside the sum are pure imaginary and, therefore, the right
hand side is null. We conclude that (57) is linear in η and
η = 0 is a good truncation.

Let us now turn our attention to the possibility of integra-
bility. From the last term of (56) we see that we will in general
have a logarithm contribution. In fact, all the terms give a log-
arithm contribution since we have for the Polylogarithm of
positive integer order

Lis(e
μ) = μn−1

(n − 1)!
[
Hn−1 − ln(−μ)

]

+
∞∑

k=0,k �=n−1

ζ(n − k)

k! μk,

where

Hn =
n∑

h=1

1

h
, H0 = 0.

This express the fact that the Polylogarithm Lis(z) is sin-
gular close to z = 1. The emergence of this logarithm is
problematic since they are not polynomial and we can not
apply Kovacic’s criteria. The only particular case in which
this does not happens is when s = P − 1. This is due to

the fact that e− π(−is+iη)
P = −e− π(i+iη)

P . In this case, the Poly-
logarithm is polynomial around z = −1. The only case in
which we have an s = P −1 contribution is the T̃N ,P theory,
where we have cs = N Pδs,P−1. Any other case will contain
s = 1 and we necessarily have logarithm contributions an in
the +P,N case considered before. This explains the fact that,
for the quivers, we have got a polynomial U function only
for the T̃N ,P case. We also point that we did not expand in
1/P . Therefore the above result is valid for any quiver, such
as the +MN .

6.2 The truncation at σ = 0

We consider now general aspects of σ = 0 truncation. We
stress that the Type IIA Abelian and non-Abelian T-duals are
not in the class discussed in the last subsection. However, as
we saw before, the truncation η = 0 is consistent for these
cases and we were able to study integrability. In this case we
must expand the potential (55) in σ to get

V̂ = P2

2π3

P−1∑
s=1

csRe
(

Li3
(
e− π(iη−is)

P

)
− Li3

(
e− π(is+iη)

P

))

− P

2π2 σ

P−1∑
s=1

csRe
(

Li2
(
e− π(iη−is)

P

)
− Li2

(
e− π(is+iη)

P

))

− 1

4π
σ 2

P−1∑
s=1

csRe
(

log
(

1 − e− π(iη−is)
P

)

− log
(

1 − e− π(iη+is)
P

))
+ O

(
σ 3

)
.

We find that

∂η f3 = − 1

2P

P−1∑
s=1

csRe

⎡
⎣

(
−1 + e

2iπs
P

)
(
−1 + e

iπ(s−η)
P

) (
−1 + e

iπ(η+s)
P

)
⎤
⎦

− π

2P2

P−1∑
s=1

csRe

×
⎡
⎢⎣

(
−1 + e

2iπη
P

) (
−1 + e

2iπs
P

)
e
iπ(s−η)

P

(
−1 + e

iπ(s−η)
P

)2 (
−1 + e

iπ(η+s)
P

)2

⎤
⎥⎦ σ + O

(
σ 2) .

However
(
−1 + e

2iπs
P

)
(
−1 + e

iπ(s−η)
P

) (
−1 + e

iπ(η+s)
P

)
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= 2i
sin 2πs

P − sin π(s+η)
P − sin π(s−η)

P(
2 − cos π(s−η)

P

) (
2 − cos π(s+η)

P

) ,

and therefore ∂η f3 is linear in σ . We conclude that, for any
theory described by the potential (55), σ = 0 is a good trun-
cation. We also point that we did not expand in 1/P . Then
the above result is valid for any quiver, such as the +MN .
When analysing integrability, for the cases above, we arrive
at the same problem as in the η = 0 case. This is the reason
why, also in σ = 0, we were not able to apply the Kovacic’s
criteria. Another important point is that the Type IIA Abelian
and non-Abelian T-duals are not in the above class. As we
saw before, the truncation σ = σ0 is not consistent for these
cases and we must use the truncation η = 0.

6.3 The truncation at large σ0

In the last subsections we saw that, despite of being consis-
tent, the truncations η = 0 and σ = 0 are not good to study
integrability of long quivers. The reason is the appearance of
logarithm dependences in the U function and this spoils the
applicability of the Kovacic’s criteria. However, if we con-
sider σ = σ0 with σ0 large, we can circumvent that difficulty.

In order to analyse the long quiver with some generality
we remember that the general potential is given by [2]

V̂ (σ, η) =
∞∑
k=1

ak sin

(
kπ

P
η

)
e− kπ

P |σ |

with

ak = P2

π3k3

P−1∑
s=1

cs sin

(
kπs

P

)

where cs does depends on P . In the limit of large σ/P limit,
only the k = 1 term survive and we have

V̂ (σ, η) = a1 sin
(π

P
η
)
e− π

P |σ |

= P2

π3 sin
(π

P
η
)
e− π

P |σ |
P−1∑
s=1

cs sin
(πs

P

)
.

Now we consider the long quiver, with large P >> 1

V̂ (σ, η) = P2

π3

((π

P
η
)

− 1

6

(π

P
η
)3

)
e− π

P |σ | f (P),

where we have defined

f (P) = P2

π3 sin
(π

P
η
)
e− π

P |σ |
P−1∑
s=1

cs sin
(πs

P

)
. (58)

From the expression above we find

1

( f1 f3)2 ∂η f3 = 2
(
π2η2 − 6P2

)

9π3Pσ 2 + O

(
1

σ 3

)

which is null in the large σ limit. Therefore, we can apply the
method if we consider σ0, P very large. As explained before,
we use the NVE (36) with

D = π6η6 + 60π2η2P4 + 12π4η4P2 − 144P6

η
(
π2η2 − 6P2

) (
π4η4 + 12P4

) + O
(

1

σ

)

and

C = − 9
(
π3P

)
σ

2
(
π2η2 − 6P2

) −
√

12σπ5/2
(
π2η2 + 6P2

)

π4η4 + 12P4

+9
(
π4η2 − 4π2P2

)

4
(
π2η2 − 6P2

) + O
(

1

σ

)
.

Therefore the U function is given by

U = 18π3Pσ

π2η2 − 6P2 + 24π2
(
π2η2 + 6P2

)

π4η4 + 12P4

√
σπ

3

×
(
π6η6 + 60π2η2P4 + 12π4η4P2 − 144P6

)2

η2
(
π2η2 − 6P2

)2 (
π4η4 + 12P4

)2

− 9
(
π4η2 − 4π2P2

)

π2η2 − 6P2

× 12
π6η5 + 8π4η3P2 + 20π2ηP4

η
(
π2η2 − 6P2

) (
π4η4 + 12P4

)

− 8π4η2
(
π6η6 + 60π2η2P4 + 12π4η4P2 − 144P6

)
(
π2η2 − 6P2

) (
π4η4 + 12P4

)2

× 4π2
(
π6η6 + 60π2η2P4 + 12π4η4P2 − 144P6

)
(
π2η2 − 6P2

)2 (
π4η4 + 12P4

)

− 2π6η6 + 60π2η2P4 + 12π4η4P2 − 144P6

η2
(
π2η2 − 6P2

) (
π4η4 + 12P4

) .

By analysing this last U , we see that it does not satisfy
all the three necessary Kovacic’s conditions. The solution to
the equation should then be non-Liouvillian. The limit above
includes the (p, q)-5-Brane background studied in Ref. [6]
and also any long quiver. It is important to note that f (P),
given in Eq. (58), determines what is the specific long quiver.
However, f (P) does not appear in all the expressions and
particularly in the U function. Therefore, we conclude that
strings propagating in any long quiver, and (p, q)-5-Branes
are not integrable.

7 Numerical analysis

In this section we change the focus and turn to a numer-
ical analysis of the string dynamical system in the AdS6

background. The main goal here is to find signals of chaotic
motion due to the non-linearity of the eom for the quivers
given. In finding chaotic behaviour, we give another piece of
evidence for non-integrability of the models studied in this
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Fig. 4 String trajectories evolving in time in the case of the T̃N ,P
quiver. In red, green and blue we show respectively the σ , η and χ

coordinates. It is clear how complex they become as we increase the
energy from E � 11 to E � 330

paper. Basically, chaos can be understood by the high sensi-
tivity of the dynamical system to the initial conditions: given
two trajectories with different (but close) initial conditions,
they will drastically differ from each other after time evolves.
The way the system behaves shows some characteristics that
can be measured. For example, the distance between trajecto-
ries with time can be computed by the Lyapunov exponents,
as we will see. Another interesting characteristic is related to
the periodicity of the system. In chaotic motions periodicity
is lost, and this can be seem by computing the power spectra
associated to the trajectories. Despite this, by studying the
Poincaré sections we can understand the behaviour of trajec-
tories in the phase space in order to see how periodicity is lost
if we, for example, increase the energy of the string soliton.
All of these can be better understood in the nice reference [5]
(see also [57]). In the discussion below we explain in more
details these aspects. We show, as examples, results related
to the backgrounds associated to the +PN and T̃N ,P quivers
described respectively by the potentials (17) and (14).

First of all, it is important to remember that the string
soliton is placed at the center of the AdS6 part of the back-

Fig. 5 Plots with an example of trajectories for the +PN quiver. In
this case we can see basically the same kind of behaviour present in the
T̃N ,P quiver

ground. In this way, its motion is restricted to the S2×� part.
In other words, we should study the behaviour with time of
the coordinates χ(t), σ(t) and η(t). Furthermore, due to the
need of large P for a trustable quiver field theory, we let the η

coordinate runs to a large interval but still being bounded. In
another words, the range of η and σ are the intervals [0, P]
and −∞ < σ < ∞ respectively. This is closely related to
the discussion in the work done in [5] where the coordinates
evolved are bounded. Given these, we turn now attention to
the study of trajectories and some of its characteristics. With
this in mind we made a numerical evolution of the hamilto-
nian equations of motion coming from Eq. (21).

7.1 String trajectories and power spectra

Related to the trajectories, the first characteristic we call
attention is to their almost periodic oscillations for low ener-
gies. In Fig. 4a we show a plot of trajectories with time (the
horizontal line) for the T̃N ,P quiver with E � 11. We repre-
sent in red, green and blue respectively the σ , η and χ coordi-
nates. Despite some small oscillations, the general behaviour
is almost periodic (the real non-periodicity will be shown in
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Fig. 6 In this plot we show the behavior of the compact coordinates χ and η (with cos χ rescaled by 10) with E � 11 for the T̃N ,P quiver

Fig. 7 In this plot we show the behaviour of the compact coordinates χ and η (with cos χ rescaled by 10) with E � 330 for the T̃N ,P quiver in
order to see more complex trajectories

the subsequent discussion). If we increase the energy, then we
see the trajectories in Fig. 4b with more oscillations: despite
the fact that the time axes don’t show the same regions, we
clearly see an increasing in frequencies, for example, if we
compare the plots between t = 0 and t = 200. Another
interesting point is the change of the form of oscillations
with different energies. In a periodic system we would wait
change of frequencies and amplitudes, but no change of, for
example, sinusoidal description of them. In order to make
the numerics we chose P = 100 in this work. The ini-
tial conditions taken for the energies are, for E = 11.04,
χ(0) = 0.1, pχ (0) = 0.006, σ(0) = 0.1, pσ (0) = 0.0001,
η(0) = 0.03, pη(0) = 0.006. For E = 330.41, χ(0) = 1,
pχ (0) = 2, σ(0) = 7, pσ (0) = 2, η(0) = 4, pη(0) = 5.
For the +PN (Fig. 5) quiver we ran the initial conditions
χ(0) = 3, pχ (0) = 5, σ(0) = 3, pσ (0) = 5, η(0) = 2,
pη(0) = 5 to get E = 267.18. In this last case, we again
can see basically the same trajectory behaviour for a high
energetic string already present in the T̃N ,P case. A better
way to see a chaotic signal is to plot the behaviour of the
two compact coordinates χ and η (χ is a bounded coordi-

nate in S2 and η is bounded too, even for higher values, due
to the quiver potential definition). We can see in Figs. 6 and 7
that characteristics for different energies for the T̃N ,P quiver.
We clearly see the string bouncing back again and again at
η = 100. For a high value of the energy, the trajectories in
fact become more and more complex.

In order to catch non-periodicity characteristics for the
string trajectories presented above, we can compute their
power spectra. By taking Fourier transforms of the coordi-
nates, the periodic, quasi-periodic or chaotic behaviour will
appear. When a signal is perfectly periodic with a frequency
ω its Fourier spectrum will show a vertical line at the char-
acteristic frequency of the system. If the signal is chaotic,
what we expect for high energies, the power spectra presents
a noisy band of frequencies. In the Fig. 8a and b we see
exactly that behaviour for the quivers +PN and T̃N ,P . For
the +PN case we set the string energy to E � 534 in which
the initial conditions are given by χ(0) = 3, pχ (0) = 10,
σ(0) = 3, pσ (0) = 10, η(0) = 2 and pη(0) = 10. In this
way we see clearly its noisy power spectra due to chaotic
behaviour.

123



  189 Page 18 of 22 Eur. Phys. J. C           (2023) 83:189 

Fig. 8 Plots of power spectra for high energetic strings in the quivers +PN and T̃N ,P . In blue we show the spectra for the χ coordinate and, in
orange, for η. There is no principal frequency appearing in any case. The spectra are dominated by noise

7.2 Lyapunov exponents

With the trajectories at hand, we can now search for more
concrete chaos signals. We can estimate the Lyapunov expo-
nent related to the dynamical system of the string soliton.
For dynamical systems with a non-zero Lyapunov, the time
evolution associated to two close trajectories in the phase
space sensitively depends on the initial conditions, as we
already cited. If we make a small change in initial con-
ditions, this change will grow exponentially at sufficiently
large times. In other words, the Lyapunov exponent λ, for
a point X = (q, p) in phase space with initial condition
X0 = (q(t) = 0, p(t) = 0) is given by

λ = lim
τ→∞ lim

�X0→0

1

τ
log

�X (X0, τ )

�X (X0, 0)
. (59)

For non-zero exponent, chaotic systems typically evolves to

�X (X0, τ ) ∼ �X (X0, 0) exp λτ . (60)

This means that, if the Lyapunov coefficient is non-zero,
the exponential will decay to a non-zero value. We present
estimations for the Lyapunov exponents obtained in Figs. 9
and 10. In these plots we see the existence of non-zero expo-
nents for the quivers +PN and T̃N ,P .

7.3 Poincaré sections

Finally we present Poincaré sections for quivers +PN and
T̃N ,P . The analysis of the sections reveals (non)integrability
of dynamical systems in the following way. An N-dimensional
integrable system has N independent integrals of motion
for which the Poisson bracket of any of two of them (the
conserved quantities) vanishes. Because of this, the related
phase space trajectories are confined to the surface of a N-
dimensional KAM torus. By taking sections of these trajec-

tories we can see, after perturbing this torus, the change in
structure of points. In a chaotic systems, the perturbation
will destroy the periodic pattern in phase space. In order to
generate Poincaré sections we should first generate a set of
initial conditions with same energy E of the string. For exam-
ple, for the case of the +PN quiver, for E � 267, we made
σ(0) = 3 and computed random values for pσ (0) ∈ [0, 10],
pχ (0) ∈ [0, 10], η(0) ∈ [0, 20] and pη(0) ∈ [0, 10]. In this
way we obtain several values for χ(0) such that the Vira-
soro constraint is obeyed for a given value of energy. For the
quiver T̃N ,P , for E � 330, we chose σ(0) = 7 and com-
puted random values for pσ (0) ∈ [0, 5], pχ (0) ∈ [0, 10],
η(0) ∈ [0, 20] and pη(0) ∈ [0, 10]. We plot the points
(η, pη) every time χ(t) = 0 in Figs. 11 and 12, including
sections for lower energies.

In these pictures we can see how the organization of points
changes if we change the string energy. For lower energies,
E � 11 for T̃N ,P and E � 5 for +PN we can see a more
or less organized pattern of quasi periodic trajectories. The
absence of KAM circular curves shows up for the higher
energies pointed above for both quivers. In another words,
the distribution of points does not show any organization
and, in fact is lost. And these just add to the conclusion of
existence of non-periodic trajectories or, in other words, to
the existence of chaos.

8 Conclusions

In this manuscript we studied non-integrability of strings in
AdS6 × S2 × �. By using the electrostatic method [2], we
considered a very large class of theories: the long quiver,
the abelian and non-abelian T-duals, the (p, q)-five-brane
system, the TN and +MN theories. In the electrostatic method
it is claimed that general dual backgrounds can be written in
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Fig. 9 Plots of Lyapunov coefficients for the +PN quiver with different energies. We can see that for higher values of t the exponential decays to
a constant non-zero number. In a we have E � 15 and for b E � 267

Fig. 10 Plots of Lyapunov coefficients for the T̃N ,P case with different energies.In c we have E � 11 and for d E � 330. We can see again that
for higher values of t the exponential decays to a constant non-zero number

terms of a only function given by Eq. (6)

V̂ (σ, η) =
∞∑
k=1

ak sin

(
kπ

P
η

)
e− kπ

P |σ |,

ak = 1

πk

∫ P

0
R(η) sin

(
kπ

P
η

)
dη. (61)

This method gives a clear way to link the string theory to
its dual gauge theory. Of course, if the AdS/CFT conjecture
is proved correct, results related to both sides of the dual-
ity will follow as consequence. With this consideration, the
idea of this paper, following previous studies, is to point that
the holographic duals should be (non) integrable if the string
equations are (non) integrable. For this, we first carefully
studied the general dynamics of strings in the background
(61) by regarding a consistent truncation of the string equa-
tions in the supergravity background. The usual procedure
of the literature is to find simple solutions for (l − 1) of the
equations, which can be replaced in the last one to obtain the

NVE. However we shown that one of these equations can be
replaced by the Virasoro constraint and this provides a sim-
plification of the procedure. In this case we have three equa-
tions for σ, η and χ . Previous results of the literature argue
that we must solve the equations for η and σ and replace this
in the variation of χ in order to find an homogeneous second
order linear equations [4,5,38]. However, depending on the
background, this can be a difficult task. By using the Vira-
soro constraint we shown that we just have to find a simple
solution for η or σ . The fact is that the Virasoro constraint
fixes the value of the Hamiltonian of the 1d system (21) to
zero, and the constraint H = 0 will always imply one of
the equations of motion. We also found a general condition
to discover how simple this solution can be. We found that
η = η0 or σ = σ0, respectively, are consistent truncations if

1

f 2
1 f 2

3

∂η f3|η=η0 = 0 or
1

f 2
1 f 2

3

∂σ f3|σ=σ0 = 0. (62)
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Fig. 11 Poincaré sections for T̃N ,P quiver

We first applied the conditions above to look for the simple
solution σ = σ0. We applied it to the abelian and non-abelian
T-duals, the T̃N ,P and +P,N cases. We found that for the
abelian and non-abelian T-duals cases σ = σ0 is not a consis-
tent truncation. For T̃N ,P we found σ = 0 a good consistent
truncation, providing the applicability of Kovacic’s criteria:
in this case the equations of motion are non-integrable. For
the +P,N we found again σ = 0 as a good truncation, but
we found logarithmic dependences on the coefficients which
turn into non-applicability of the Kovacic’s criteria. In sum-
mary, σ = 0 is not always a good truncation, as suggested in
previous studies [4,5,38].

Turning to the η = η0 possibility of truncation we found
that all cases can be studied. More specifically, η = η0

is a good truncation for the abelian T-dual case, η = 0 is
good for the non-abelian T dual, TN , +MN , T̃N ,P and +P,N

cases. For the non-abelian T-dual case we directly applied the
Kovacic’s criteria finding it a non-integrable model. For the
TN and +MN cases we found coefficients in non-fractional
polynomial form, which do not makes possible the applica-
tion of the criteria. However, we turn to the large σ limit in
which we can apply them: in this region, the criteria tell us
that these models are non-integrable. For the T̃N ,P case, as
in σ = 0 truncation, we found it again non-integrable, as

Fig. 12 Poincaré sections for the +PN quiver

expected. Nevertheless, in the +P,N we found again loga-
rithmic dependence inside the coefficients which turn into
non-applicability of the Kovacic’s criteria.

Next, we considered the general case, with arbitrary poten-
tial given by (61). We found, for σ = σ0 and for η = η0,
a potential which is, in general, not a fractional polynomial
and therefore the Kovacic’s criteria cannot be applied. Nev-
ertheless, we found the origin of logarithm contributions to
the coefficients entering in the NVE equations by studying
expansions of Polylogarithmic functions appearing in the
general potential. In order to circumvent these contributions
we shown that we can go to the large σ and P limits, find-
ing well behaved coefficients which, consequently, gives us
a nice U− function to apply the criteria. In this case, by
analysing the pole structure, we were able to show that it
does not satisfy the Kovacic’s conditions and, therefore, it is
not integrable. It is interesting that in these limits we found an
universal potential for long quivers. With universal we mean
that f (P), given in Eq. (58), determines what is the specific
long quiver and it does not enter in the final expressions for
the U function. This limit describes the long quivers and we
conclude that all long quivers are not integrable. This includes
not just the ones studied here, but all its versions, as described
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in in Ref. [15]. This includes the +N ,M , TN , YN ,�+N ,T2K ,K ,2,
TN ,K , j and +N ,M, j theories [13,16–19,21].

Finally, we made a numerical treatment of the evolution
of the string dynamical system. The main goal was to give
more evidence of non-integrability by searching for chaotic
behaviour hidden in the string eom. We plotted the trajecto-
ries for quivers +PN and T̃N ,P cases, observing the increase
of path’s complexity for coordinates evolving in time. We
pointed the sign of chaotic trajectories by the plots of the
bounded coordinates η and χ , showing its behaviour for
higher energetic strings. We added to this the power spec-
tra of trajectories by showing in fact the non-existence of
periodic motion for the quivers treated. After this we made
computations of Lyapunov exponents for the +PN and T̃N ,P

cases. We concluded that the large time behaviour of trajec-
tories contributes to non-zero values of Lyapunov exponents
which signals for chaos underlined in the system. For last, we
obtained its Poincaré sections. These sections points to the
non-periodicity of trajectories in phase space as we increase
the string energy: the more it grows, the more non-periodic is
the behaviour of trajectories. This is another signal of chaos.
Therefore, we add these to the non-integrability box of the
AdS6 background.

After all discussion, the main conclusion of this paper is
that, for a very large class of models, we show analytically
and numerically that the string equations of motion in the
AdS6 × S2 × � background are not integrable. An interest-
ing point to be studied is the near Penrose limit behaviour
of these models. In this limit the string model is solvable
and quantizable. However, it is interesting to see what hap-
pens when the metric is perturbed and look for, as an exam-
ple, chaotic motion and non-integrability appearing again.
Another interesting point is to look for integrable sectors in
this background. The question is to follow the ideas of [4]
where, for the AdS7 case with distributed D8-charge, inte-
grability is found. These questions are left for future investi-
gations.

Note added.

At the time this paper appeared as a preprint, we became
aware of Mr. D. Roychowdhury’s work on arXiv studying
the same subject we address here [56].
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