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Abstract. The creation and annihilation of real mass tachyons is a possibility
within the framework of parametrized Relativistic Quantum Theory (pRQT). This
theory is used to consider the following question: are real mass tachyons
responsible for cosmic inflation? In this paper we show that pRQT tachyon
kinematics can provide a mechanism for achieving cosmic inflation.

1. Introduction

The Lambda CDM (ACDM) model of cosmology is the leading cosmological model [1-3]. One of
the key features of the ACDM model is cosmic inflation [1, 4]. Cosmic expansion in the aftermath
of the Big Bang is influenced by dark matter, which is believed to hinder expansion following
inflation. In addition, dark energy is believed to accelerate expansion after approximately five
billion years of expansion. The focus of this article is expansion during cosmic inflation.

Mechanisms for achieving cosmic inflation are typically associated with quantum
fluctuations [5], but other mechanisms have been studied, such as MOND, or Modified Newtonian
Dynamics, introduced by Milgrom [6-8]. An alternative inflation mechanism is considered here
within the framework of parametrized Relativistic Quantum Theory (pRQT). The creation and
annihilation of real mass tachyons is a feature of pRQT [9-11]. The associated tachyon kinematics
in pRQT is used to show that tachyons could be responsible for achieving cosmic inflation within
the pRQT framework.

2. What is Cosmic Inflation?

Cosmic inflation was suggested as a means of addressing issues associated with the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric. The FLRW metric was the standard Big Bang
metric. It is sometimes referred to as the Robertson-Walker metric. The FLRW metric is a
solution of Einstein’s general relativistic equations. According to Wheeler, the relationship
between spacetime and matter within the framework of general relativity can be summarized as
follows: “Spacetime tells matter how to move; matter tells spacetime how to curve” [pg. 235 of
12].

The FLRW metric has issues associated with flatness, the horizon, and anisotropy. The
flatness problem is associated with the observation that the present density of matter in the
universe is approximately equal to critical density. This implies that the universe appears to be
nearly flat or Euclidean. The flatness problem raises the question: why is the present density of
matter in the universe approximately equal to critical density?

The Horizon problem is an issue that refers to the transfer of information between regions
that are space-like separated. Regions that are space-like separated can be thought of as isolated
systems because they cannot share information. An issue that is related to the horizon problem
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arises when we recognize that the size of the universe is finite, that light has finite speed, and the
cosmic background radiation (CBR) is in approximate thermal equilibrium. This raises the
question: how was thermal equilibrium established throughout the universe if information can
only be exchanged at a rate that does not exceed the speed of light?

CBR observations also suggest that differences present initially led to an anisotropic
distribution of matter. The differences seem to be a relic of the Big Bang. What physical process
can make space-like regions so similar and introduce differences that seed structure? This is the
anisotropy issue.

One way to resolve these issues is to hypothesize that cosmic inflation occurs in the early
universe as a period of accelerated expansion. Figure 1 shows the inflation era in the Guth
inflationary model [4, 13]. The inflation model starts at a small radius and rapidly expands until
it matches the FLRW metric of the standard model. The inflation model helped resolve the FLRW
metric issues by magnifying local density fluctuations and equalizing the temperature of the
universe that has been observed in the relatively smooth CBR.
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Figure 1. Cosmic inflation is a period of accelerated expansion.

The inflation model is known as the ACDM model. CDM refers to cold, dark matter in addition
to ordinary matter. The term A refers to the cosmological constant. It represents the energy
density of empty space and is associated with dark energy. The duration of expansion in the figure
is between 10-35 second to 10-32 second. The radius of expansion is approximately 10-5° m to 10-10
m. The approximate rate of expansion is given by the ratio of the radius of expansion to the
duration of expansion. If the radius of expansion is 10-5° m in a duration of 10-35 second, the rate
of expansion is 10-15 m/s, which is bradyonic. If the radius of expansion is 10-1° m in a duration of
10-32 second, the rate of expansion is 10+22 m/s, which is tachyonic. The estimated tachyonic rate
of expansion is discussed further in a subsequent section.

3. Prelude to Real Mass Tachyons

Most theories of tachyonic physics use tachyons with imaginary mass because the square of
particle mass is negative (many references are presented in [11]). In this section, we introduce
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pPRQT, the theoretical framework for real mass tachyons. Real mass tachyons and a model of
tachyon kinematics are discussed in the next section.

3.1 Parametrizing Spacetime Observations

We can interpolate between two events by introducing a parameter s that lets us parametrize
spacetime observations. Figure 2 displays a parametrized particle world-line [14]. The system is
deterministic if we only allow a single world-line. It is probabilistic if we allow many possible
world-lines. The variables x, t, and s are independent variables, while the means <x> and <t> may
be correlated using the parameter s. To retain the manifestly covariant character of the theory, the
parameter s needs to be an invariant parameter.
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Figure 2. Parametrizing a particle world-line.

Feynman [15, 16] used path integrals to derive a relativistic quantum mechanical equation
with invariant evolution parameter. He suggested a path integral formulation where probability
amplitudes were defined in terms of an action S. The action S is expressed in terms of the
Lagrangian L by

S(Xi, ti) = J.L(xl, ti)dS (31)
where x = Z—:, t= %. The evolution of the probability amplitude was found by integrating over all
possible paths from spacetime point A to spacetime point B:

1 .
P(xi41, tipr, s +E) = NJ. eSCUtd/ M (x;, t;, s)dx;d(ct;) (3.2)
As an example, assume the Lagrangian for a free particle with mass m is
m(; dt\? dx\?
b = 2L - (&) ;3
& 0) 2 [ ¢ ds ds (3-3)
The action for the free particle is
- 2 - 2
N M, (ti+1 ti) (X1 T X

S(x;, t;) =€ > [c — (—s ) (3.4)

The path integral approach yields a Stueckelberg-like equation for a free particle
0P ih [ 1 9% ach]

Bs _ 2m|c? 0tz ox2

If we write the parametrized wave function @ as the stationary state solution

(3.5)
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M2c%s
P(xt5) = Pre(xexp [—l T ] (3.6)
we obtain the Klein-Gordon equation
M?c2® g = —h20%0, P (3.7)

3.2 Dynamical Evolution of a Relativistic System
Figure 3 illustrates two different spacetime diagrams evolving with respect to an invariant
parameter s. A single spacetime diagram is a static system relative to the invariant parameter. A

dynamic system consists of multiple spacetime diagrams that are linked by an invariant
parameter.
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Figure 3. The evolution of spacetime diagrams with respect to an invariant evolution parameter.

The dynamical evolution of a relativistic system can be expressed using a unitary operator,
that is, a function of a scalar evolution parameter. Several possible generators of invariant
parameter translations are possible for a parametrized field equation. Examples of distinct
generators were presented by Fock [17], Stueckelberg [18-20], Nambu [21], and Johnson [22].
The Stueckelberg approach led to the parametrized field equation

u
ih alp(g;; 5) _ ["2::‘ + V,] P(,s) (3.8)
where V} is the interaction potential. The operator m# is
a_hd e, 9
10y, ¢ '

with four-vector potential A*.

3.3 Probability-Based Relativistic Dynamics - pRQT
Equation (3.8), referred to here as the Stueckelberg equation, can be derived within the
framework of pRQT, a probability-based approach. We begin by outlining the probability concepts
that are needed to develop the kinematics of real mass tachyons.

A positive definite conditional probability density p(y|s) that depends on spacetime y and
invariant parameter s can be described in terms of a wave function ¥ (y, s) as

pyls) =¥ ", )Y, s) (3.10)
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The probability density is normalized over spacetime

fp(yls)dy =1 (3.11)
D
The continuity equation that includes an invariant parameter is
dp JdpVH
— =0 3.12
ds * dyH ( )

where Einstein’s summation convention for Greek indices is assumed and the term pV#
represents the pth component of probability flux of a particle.
If we write the wavefunction as

W(»,5) = [pWI)]? explig (y, s)] (3.13)
and a velocity four-vector
1. 9&(y,
VEG,s) =— [h Ea(;’ MS) _ ; ALy, s)] (3.14)

we obtain the probability flux

pVH = — |y — —p —| — — ™Y (3.15)

Substituting these equations into the continuity equation and rearranging lets us derive a single
particle Stueckelberg equation

u
if azp(g;; .S) _ [”2:1“ + V,] by, s) (3.16)
with interaction potential V; and four-momentum operator with minimal coupling
on =0 € (3.17)
[0y, ¢ '

The expectation value of operator (2 is

) = flp*mpdy (3.18)
D

The above procedure can be used to construct an N-body Stueckelberg equation [23]. The N-
body formulation has been used to design an evolution parameter clock [24, 25]. A model of
tachyon kinematics constructed from the N-body formulation is reviewed in the next section.

4. Real Mass Tachyons

A distinction is made here between real mass tachyons and imaginary mass tachyons commonly
associated with more traditional, non-parametrized theories. The pRQT framework can be used
to show that particles can exist as tachyons with real mass. In addition, the pRQT framework can
be used to explain how a particle can transition between bradyon and tachyon regions of
spacetime. These results are then used to determine if cosmic inflation can be explained as a
tachyon phenomenon. Real mass tachyons and a model of tachyon kinematics [9-11] are
discussed in this section.

4.1 Free Particle Mass in pRQT
The free particle Stueckelberg equation is
0y h% 0%y

th ds  2m ayHay,

(4.1)
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with the solution

ih
Ur05) =12 exp =5 (ki )s + | (4.2)

The constant 7 is calculated by imposing probability normalization, and the four-vector k* is the
wavenumber. The observable world-line of the free particle is expressed in terms of expectation values
as

W)k
6(y“)6(yﬂ> = Té‘sz (4.3)
Equation (4.3) can be written in the classical limit of negligible dispersion as
h2(kFk,)
50,#)5(),#) = 7“552 4.4)
The observable on-shell mass of the free particle is
(p*pu) = R*(k*k,) = m?c? (4.5)

Timelike and spacelike motion can be displayed by rewriting Equation (4.3) as

m? B hz(k”)<ku)

5s?  5(y*)8(y.)
If we recognize that the change Js of the invariant evolution parameter is positive, then m? > 0
hen Rk k)
W S 0m5(y,)

Com? ARk,
plotting 55 = S0 ma(y,)

(4.6)

> 0 for timelike and spacelike motion. This can be illustrated by rearranging and

as z = 5 for independent variables x, y. Figure 4 shows regions of real

m2

mass exist for both timelike and spacelike motion when z = g = Gs7 > 0.

Figure 4. Regions of free particle real mass.

4.2 Particle Transitions Across the Light Cone
Section 4.1 shows that real mass tachyons can exist within the pRQT framework. The question
becomes: how do massive particles cross the light cone? A mechanism for achieving the transition
has been discussed previously [9-11] and is outlined here.

The mechanism of interest has a non-relativistic analog: the transition between energy states.
In the non-relativistic quantum case, time-dependent interaction potentials enable transitions
between energy states such as those observed in lasers. The pRQT mechanism is based on a mass
state transition at a scattering vertex. In this case, an invariant evolution parameter-dependent
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interaction can be represented as the interaction of a projectile with a target to yield a product
particle, i.e. Projectile (V) + Target (®r) — Product. A physical model is a particle beam scattering
off a thin foil.

A field equation for the interaction of a projectile with a target to yield a product particle is

2~ oW +g(@r + )V 4.7
o5 = 2my 0xH0x, 9(®r ) (@.7)
It can be written in the s-dependent perturbation form
oV
ih——=Ko¥ + K, (4.8)

where K|, refers to the unperturbed operator and K; refers to the s-dependent interaction term
g(@; + @1)¥. The perturbation is Hermitian if it satisfies the constraint

[ [K;¥W —¥*K,]d*x =0 (4.9)
The eigenfunction expansion of the wave function ¥ (x, s) is
W(x,s) = [ ag(s)pe(x, 5)dE (4.10)

where a; (s) are expansion coefficients and ;¢ are solutions for the unperturbed system K,. The
transition probability amplitude to state i« is

; S
ag = ag — %fo [ weKd*x]ds' 4.11)

and the transition probability density is
Ps = azag (4.12)
for a mass state transition.

The formalism of s-dependent perturbation theory applied to the interaction g(®r + @7)¥
in Equation (4.7) yields two four-momentum constraints

Four — Momentum
ko =k, + K, (4.13)
ke =kq — Ky
where subscripts a, b, @ denote the projectile, target, and product particles. We also have the
associated set of mass constraints

Mass
da =qa + Qb (4.14)
da = 4qa — Cp
The masses in this model refer to free particle masses given by

_ hz (kn)a(kn)g
I = 2m,h
where the Einstein summation convention applies to index ¢ and subscript n denotes the type of
particle.
Possible mass state transitions are outlined in Table 1. Letter B denotes a bradyon and letter
T denotes a tachyon. If different targets and projectiles are considered, different products are
possible. As an example, the top line shows that a projectile bradyon interacting with a target
bradyon can produce a bradyon for either mass constraint. A tachyon can be produced when the
mass constraint is q, = q, — Qp. The product that results from the interaction depends on all
kinematic constraints. More discussion and numerical examples are provided by Fanchi [9-11].

(4.15)
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Table 1. Possible Mass State Transitions

Target Projectile Product-1 Product-2
Qp 9a 9a =94+ Qp Qe =94 —Qp
B B B B
T
B T B T
T
T B B B
T
T T T B
T

5. Real Mass Tachyons and Cosmic Inflation

The ideas discussed above for producing and detecting real mass tachyons are used here to see if
real mass tachyons can provide a mechanism for cosmic inflation. Consider a simple hypothetical
model that is based on the assumption that real mass tachyons were produced during the Big
Bang and its aftermath. The tachyons were subject to the kinematics derived within the pRQT
framework. Cosmic inflation occurs as the fastest tachyons move away from the center of mass-
energy of the system. Cosmic inflation stops when the fastest tachyon reaches the aphelion of its
orbit. The hypothesis that the inflationary period matches the FLRW metric implies that tachyons
do not achieve escape velocity but are bound by the curvature of spacetime. If we use Figure 1,
the Guth figure, depicting cosmic inflation, the tachyon rate of expansion is estimated by dividing
the radius of expansion 10-1° m by the duration of expansion 10-32 sec to find the approximate rate
of expansion to be 1022 m/s = 3.34x1013 c. We assume the tachyon speed is equal to the rate of
expansion:

vy ~ 10%?m/s ~ 3.34 x 1083 c. (5.1)

In a previous publication [26], a formulation of pRQT was developed for a particle moving in
curved spacetime assuming the metric did not depend on the invariant evolution parameter. Given
this assumption, the pRQT framework in curved spacetime was applied to a free particle in flat
spacetime and a particle in the Schwarzschild metric. The wavefunction of the particle had the
expected 1/r dependence on the radius of curvature. The equivalent mass of the system can be
estimated from the tachyon speed v, associated with the aphelion of the orbit. Since the shape of
the orbit is unknown, the simplest orbit to assume is a circular orbit with radius 7. In this case
and at this level of approximation, the equivalent mass of the system M is given by

onN

To?,
M~ OT ~ 1.5 x 10%5kg (5.2)

where G is the gravitational constant.
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6. Conclusions

The real mass tachyon model presented here appears to be a possible mechanism for cosmic inflation.
Questions remain. For example, what were the tachyon particles, how were the tachyon particles
produced, and what was the metric associated with the trajectory of the bound tachyon. Answers to
questions like these can improve the model and increase its suitability for testing.
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