PROCEEDINGS

OF SCIENCE

Deep Learning applied to VBF Higgs Boson in the
bb channel: a study of Neural Networks impact on
High Energy Physics analysis

Greta Brianti®?<*
4 University of Trento,
Via Sommarive 14, Trento, Italy
b Fondazione Bruno Kessler,
Via Sommarive 18, Trento, Italy
CINFN-TIFPA,
Via Sommarive 14, Trento, Italy
4CERN,
Espl. des Particules 1/1211, 23 Genéve, Switzerland

E-mail: greta.brianti@cern.ch

In this research, we investigated the influence of a Fully Connected Deep Neural Network (FCN)
for signal-to-background classification on a sample of Vector Boson Fusion (VBF) Higgs bosons
decaying into b-quark pairs. The FCN improves the identification of the signal events overwhelmed
by the QCD background. However, the selection of the signal efficiency Working Point has a
sculpting effect on the background distribution of the invariant mass of the tagged jets. This
condition is generated by the algorithm correlation with the Higgs boson mass. In fact, due to the
input features non-linear dependence on the tagged jets’ invariant mass, the algorithm learns that
the signal event mass of the b-jet pair is close to the Higgs boson mass. Therefore the background
events that have similar b-jets mass are mis-identified as signal. In this paper, the correlation
impact has been studied. Moreover, two different decorrelation approaches have been tested on

Monte Carlo datasets self-produced.
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1. Introduction

The second most frequent Higgs boson production mechanism, the Vector Boson Fusion (VBF)
can be exploited to study the hadronic decay channels of the Higgs Boson. The VBF mechanism
involves proton radiating weak vector bosons that fuse to form the Higgs boson. Its signature
is represented by a jet-dominated final state: two quarks with a large rapidity gap and two b- or
c-tagged jets coming from the Higgs boson decay. A VBF H — bb channel analysis for the Run 2
data with ATLAS has been provided [1]. Detecting the decay of the Higgs boson into a quark pair
(bb or ct) is challenging due to the strong QCD background in proton-proton collision events at
the Large Hadron Collider. Fully Connected Neural Networks (FCN) are used in these analyses to
improve the sensitivity to signal events. Several studies on these channels are being conducted at
the ATLAS and CMS experiments at the Large Hadron Collider of CERN.

2. Dataset

A dataset of VBF H — bb signal and NLO QCD multijet background has been simulated integrating
multiple frameworks: MadGraph, Pythia, and Delphes [2—4] at a centre-of-mass energy of /s = 14
TeV. The response of particle detectors to the final-state particles has been produced with the fast
simulation of the ATLAS detector. From the simulated datasets, 12 features, described in Table 1,
have been extracted to mimic the analysis on the Run 2 data in ATLAS.

Input features (12) H Description
mj Invariant mass of the VBF jet pair
P(T.j)) Transverse momentum of the VBF jet pair
p?“l“”“ Ratio of the vectorial and scalar sums of the transverse momenta of by, by, j;
and jp
( p# - pjT.z)( p# + pJT.Z) Asymmetry in the VBF jet transverse momenta
An(bb, jj) Separation in 17 between the b-tagged jet pair and the VBF jet pair
A¢p(bb, jj) Separation in ¢ between the b-tagged jet pair and the VBF jet pair
tan~! [tan( A¢(2bb) ) /tanh( An (2bb) )] || Measure of the relative angle of n and ¢ between the two b-tagged jets
Njets Number of jets with p7 > 20 GeV and |n| < 4.5
min[AR(j1(2))] Minimum separation in R between the (sub)leading VBF jet and any jet if it is

not a part of the b-tagged or VBF jet pair

thr]f) Number of tracks matched to the (sub)leading VBF jet

Table 1: Input features of the FCN classifier for signal-to-background discrimination

3. Decorrelation methods and results

To enhance the rare signal events, the selection based on the score is applied. The selection consists
of choosing a threshold value on the classifier’s output probability or score, as shown in Figure 1
(a). Adjusting this threshold allows for control of the trade-off between true positives (correctly
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identified signals) and false positives (backgrounds incorrectly identified as signals). However, the
selected background events in the Signal Region show sculpting on the invariant mass distribution
of the b-tagged jets (see Figure 1 (b)). Therefore, the background events that pass the fixed cut
are misidentified as signals due to the similarity of the b-jet invariant mass with that of the Higgs

Al
£80%

1 & 60%

3 & 40%

3 & 10%

boson.

signal events
Background events

10°

0014

0012

104

3
s

Events

103

102

Ratio

0.0 0.2 0.4 0.6

Classifier scores

(a)

0.8

0010

0.008

0.006

0.004

0,002

0,000

[

it

40

0 80 100 120 10 160 180 200
mpp [GeV]

(b)

Figure 1: (a) FCN scores with cut representation for the event selection. (b) Sculpting effect due to the FCN
correlation with the invariant mass of the b-tagged jets at different Signal Efficiency selections.

To decorrelate the FCN from m, 7, two main strategies can be employed. These strategies involve
different approaches that can be used depending on the system’s specific requirements. The FCN
can undergo decorrelation either during the training process or post-training, directly influencing
the classifier scores. This paper explores two distinct approaches for achieving this: the Adversarial
Neural Network (ANN) [1] and the Conditional Normalizing Flow (CNFlow) [5]. The subsequent
sections will delineate the application procedure and present the results.

3.1 Adversarial Neural Network

— ANNA=0
= ANNA=10
= ANN A =100

@~ ANNA=0
~@- ANNA=10
~@- ANN A=100

2

Background rejection

5

°~

0.6

0.7 0.8
Signal efficiency

(a)

0.9

1)sD

10?

01 02 03 04 05 06 07 08
signal efficiency

(b)

Figure 2: Adversarial Neural Network performances at 4 = 0, 10, 100. (a) ROC curve for the classification
performance. (b) 1/JSD measurement for the decorrelation performance. As JSD quantifies the entropy
between two distributions, 1/JSD serves to indicate the similarity between them. Consequently, a higher
1/JISD value signifies a more effective decorrelation process.

The ANN acts on the FCN during training. Its goal is to predict the di-b-jet invariant mass bin
for each event using the classifier’s output. The classifier is trained with a modified loss function,
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Leomb = Lei — AL gnn, where L is the loss function of the FCN, L, is the loss function of the
ANN and A is an additional hyperparameter that weights the action of the ANN on the classifier.
The correlation of the FCN+ANN with m 7 can be measured with the Jenson-Shannon divergence
(JSD) [6] at different signal efficiencies. As expected, the correlation and the FCN performance
depend on the A value. Figures 2 (a) and (b) show, respectively, the classifier performance and the
decorrelation metrics trend at different Signal Efficiency selections on the FCN scores distribution
for 4 =0, 10, 100.

3.2 Conditional Normalizing Flow

A normalizing flow is an invertible map between two distributions. A CNFlow p¢ can approximate
a data distribution pp (h(x)|m) by defining a neural network fy(/h(x),m) that is invertible given
m and a base distribution p that is independent of m. In this study, h(x) is the FCN scores
depending on the set of input features x and m is the invariant mass of the b-tagged jets. The
model is fit to data by maximizing the log-likelihood under the change of variables formula:
log po(h(x)Im) = log p[fo(h(x),m)] +log|det{J[fo(h(x),m)]}| where J[fo(h(x),m)] is the
Jacobian of fy(h(x),m). The CNFlow is a fast and simple method that can be applied directly
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Figure 3: Action of the CNFlow algorithm on the FCN scores. (a) FCN scores in different invariant masses
of the b-tagged jets. (b) FCN scores in different invariant masses of the b-tagged jets after the CNFlow
application. (c) Comparison of 1/JSD between ANN A = 100 and CNFlow. (d) Final distribution of the
invariant mass of the b-tagged jets after the CNFlow application on FCN scores at 60% Signal Efficiency.

to classifier scores. The target distribution in this study is uniform as shown by Figure 3 (a), (b).
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The performance of CNFlow in decorrelation is superior to that of ANN with 4 = 100 for Signal

Efficiency under 60% (see Figures 3 (c)). Thanks to the decorrelation we can avoid the background

sculpting and enhance the sensitivity to rare signals as the VBF H — bb, as shown in Figure 3 (d).

4. Conclusion

In this paper, the application of different decorrelation methods on a VBF H — bb dataset has been

presented. The decorrelation method to be chosen is strictly related to the physical problem to deal

with. Itis possible to consider different approaches that involve diverse advanced machine-learning

techniques.
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