instruments

Article

DOME: Discrete Oriented Muon Emission in
GEANT4 Simulations

Ahmet Ilker Topuz **{, Madis Kiisk > and Andrea Giammanco 2

check for
updates

Citation: Topuz, A.L; Kiisk, M.;
Giammanco, A. DOME: Discrete
Oriented Muon Emission in GEANT4
Simulations. Instruments 2022, 6, 42.
https://doi.org/10.3390/instruments
6030042

Academic Editors: Alan D. Bross,
Jacques E. Marteau and Antonio

Ereditato

Received: 23 May 2022
Accepted: 14 September 2022
Published: 15 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia

Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain,
Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

3 GScan OU, Maealuse 2/1, 12618 Tallinn, Estonia

* Correspondence: ahmet.ilker.topuz@ut.ee or ahmet.topuz@uclouvain.be

Abstract: The simulation of muon tomography requires a multi-directional particle source that
traverses a number of horizontal detectors of limited angular acceptance that are used to track
cosmic-ray muons. In this study, we describe a simple strategy that can use GEANT4 simulations
to produce a hemispherical particle source. We initially generate random points on a spherical
surface of practical radius by using a Gaussian distributions for the three components of the Cartesian
coordinates, thereby obtaining a generating surface for the initial position of the particles to be
tracked. Since we do not require the bottom half of the sphere, we take the absolute value of the
vertical coordinate, resulting in a hemisphere. Next, we direct the generated particles into the target
body by selectively favoring the momentum direction along the vector constructed between a random
point on the hemispherical surface and the origin of the target, thereby minimizing particle loss
through source biasing. We also discuss a second scheme where the coordinate transformation is
performed between the spherical and Cartesian coordinates, and the above-source biasing procedure
is applied to orient the generated muons towards the target. Finally, a recipe based on restrictive
planes from our previous study is discussed. We implement our strategies by using G4ParticleGun
in the GEANT4 code. While we apply these techniques to simulations for muon tomography via
scattering, these source schemes can be applied to similar studies for atmospheric sciences, space
engineering, and astrophysics where a 3D particle source is a necessity.

Keywords: muon tomography; GEANT4; Monte Carlo simulations; discreet energy spectra; source
biasing; restrictive planes

1. Introduction

In the past, a variety of source geometries have been utilized for specific applications
in muon imaging simulation studies, including planar surfaces and parabolic beams, as
well as hemispherical surfaces [1]. In this study, we describe the implementation of two
schemes aimed at building a hemispherical muon source where the generated particles are
oriented towards a specific point or plane, using what we call the “selective momentum”
direction. While there are different schemes to generate 2D /3D sources, we prefer to use
the existing algorithms in GEANTA4 [2], i.e., G4RandGauss :: shoot() and G4UniformRand ()
as the distribution function. Whereas the geometrical shape of the 2D /3D sources plays
an important role in a particular application, the momentum direction is another variable
the user must specify. In this study, we first generate a spherical surface by using three
Gaussian distributions for the three components of the Cartesian coordinates and we
direct the generated particles from their initial positions on this spherical surface to the
preferred location(s) by using a vector constructed, as described in our previous study [3].
This methodology is called discrete oriented muon emission (DOME), where the kinetic
energy of the generated particles is intentionally discrete for the computational purposes,
as already implemented in another study [4]. In the latter scheme, we generate the initial

Instruments 2022, 6, 42. https:/ /doi.org/10.3390/instruments6030042

https:/ /www.mdpi.com/journal/instruments

https://doi.org/10.3390/instruments6030042
https://doi.org/10.3390/instruments6030042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/instruments
https://www.mdpi.com
https://orcid.org/0000-0002-1397-8839
https://orcid.org/0000-0001-9640-8294
https://doi.org/10.3390/instruments6030042
https://www.mdpi.com/journal/instruments
https://www.mdpi.com/article/10.3390/instruments6030042?type=check_update&version=1

Instruments 2022, 6, 42

2 0f 8

positions by randomizing the spherical variables, i.e., azimuth and longitude, and we
perform the coordinate transformation from the spherical coordinates to the Cartesian
coordinates [5-7]. We repeat the same operations as performed in the first scheme. This
paper is organized as follows. Section 2.1 describes the first scheme that is based on the
Gaussian distribution functions, while Section 2.2 consists of the second methodology
founded on the coordinate transformation from spherical to Cartesian coordinates. An
alternative focusing scheme is explained in Section 3, and we summarize our conclusions
in Section 4.

2. Central Focus Scheme
2.1. Generation through Gaussian Distributions

Our objective is to build a hemispherical muon source that surrounds our detector
setup [8] similar to the other configurations existing in the literature [9-11], as illustrated in
Figure 1. First, the particle locations in Cartesian coordinates are generated by using the
Gaussian distributions formally defined as G4RandGauss::shoot() in GEANT4 as:

xp = G(%, 0y, x) = G4RandGauss :: shoot(), 1)
and

vo = G(¥,0y,y) = G4RandGauss :: shoot(), 2)
and

zo = G(Z,03,z) = G4RandGauss :: shoot(). 3)

where ¥ = 7 = Z = 0 and 0y = 0y = 0; = 1 by definition. The generated spatial points are
renormalized in order to form a unit sphere, as indicated in
X0 Yo 20

D e (- P
\/ X5+ 5+ 2 VG5t VX6 Y5+ 2

Given a sphere of radius denoted by R, the initial positions on the spherical surface of
radius R in cm in the Cartesian coordinates are obtained as follows

Xp =)

z5 =

xi =Rx*xj5, y;=Rx|y;| = R+« ABS(yp), zi = Rx*z. 5)

where the y-component of the Cartesian coordinates constituting the vertical axis is posi-
tively defined in order to yield the hemispherical surface. Then, the generated particles on
the spherical surface are directed to the origin

XfZO, nyO, ZfZO. (6)
By constructing a vector from the hemispherical surface to the origin, one obtains
px =Xf—Xi, pYy=Yf—VYi, PzZ=2f— % (7)

Thus, the selective momentum direction denoted by P= (Px, Py, P;) is

p, — px Py pz

- 4 P 7 P - .
Vit p2+p2 Tt pR e T pa ot p? + p22
The developed code via the Gaussian distributions is given in Appendix A.

2.2. Generation via Coordinate Transformation

The second scheme is composed of the coordinate transformation, as depicted in
Figure 2. To begin, two numbers, q; and g», are uniformly generated and inserted into the
associated expression of the spherical variables as follows

g1 = G4UniformRand(),)

Instruments 2022, 6, 42

30f8

and
g2 = G4UniformRand(). (10)

The surface generation is initiated by randomizing 0 as well as ¢, as shown in
6 = arccos (2 x q1 — 1), (11)

and
@ =2 X7 X (g (12)

The coordinate transformation yields the generated points on the hemispherical surface of
radius R in Cartesian coordinates, as described in

x; = R x cosf x cos ¢, (13)

and
yi = R x |sinf| = R x ABS(sin®), (14)

and
z; = R X cos @ x sin ¢. (15)

The y-component of the Cartesian coordinates constituting the vertical axis is positively
defined in order to yield the hemispherical surface as usual. Then, the generated particles
on the spherical surface are again directed to the origin

Xf:O, yfIO, ZfZO. (16)

By constructing a vector from the hemispherical surface to the origin, one obtains
px =Xf—=Xi, pYy=Yf—VYi, PZ=2f—Z. (17)

Thus, the selective momentum direction denoted by P= (Px, Py, P;) is

4 P - 7 P .
Vet pRrp2 U e pE e T pa 1 pR +p2

The obtained code by means the coordinate transformation is shown in Appendix B. A
simulation preview through either scheme is displayed in Figure 3.

P, — px _ Py _ pz a8)

125

100
75
50
25 ,
B Air
0 Origin

B Plastic scintillators
MW 40 x 10 x 40 cm?® slab

-25

Vertical distance [cm]

-50
-75
-100
-125

-125-100 -75 -50 -25 0 25 50 75 100 125
Horizontal distance [cm]

Figure 1. Delineation of the generated particles from the hemispherical source with a momentum
direction towards the origin.

Instruments 2022, 6, 42 40f8

B Latitude
z W Longitude
Generation point

Figure 2. Spherical variables consisting of latitude denoted by 6 and longitude indicated by ¢ with
respect to the Cartesian coordinates (x,y,z).

Figure 3. Hemispherical muon source in GEANTA4.

3. Restrictive Planar Focus Scheme

As described in another study [3], the generated particles from any initial point on
the hemispherical surface can be directed to a location randomly selected on a pseudo
plane that restricts the momentum direction and which also leads to the minimization of
the particle loss. Thus, the particle locations in cm on a restrictive plane of 2L x 2D cm?
situated at y = 0 will have the spatial coordinates, such that

xf = —L+2x L x G4UniformRand(), ys =0, zy= —D +2x D x G4UniformRand(). (19)

Then, by constructing a vector from the generated hemispherical surface to the restrictive
plane, one obtains

px =xf—Xi, pYy=Yr—Vi, PzZ=2zf—Z. (20)

Instruments 2022, 6, 42

50f8

Thus, the selective momentum direction, i.e., B = (Py, Py, P,),is

P, — px _ Py _ p o1)

, P , P, :
px2+py2+p2 px? + py? + pz? px? + py? + pz?

4. Conclusions

In this study, we explored the use of random number generators that are defined in
the GEANT4 code. This can provide a number of source schemes where the first strategy is
based on the Gaussian distributions, whereas the latter procedure requires a coordinate
transformation to spherical variables. Finally, we obtain a hemispherical muon source
where the kinetic energies of the generated muons are binned, and the momentum direc-
tions of these generated muons are selected by means of vector constructions. We call this
source discrete oriented muon emission (DOME). DOME has been developed for simula-
tions of muon tomography scenarios where the volume of interest is contained in a gap
between detection layers, and the hemispheric source surrounds the entire setup. However,
it can find applications in a broader array of use cases. For example, as demonstrated in [1],
hemispheric sources are computationally efficient and at the same time unbiased for mea-
surements of the cosmic muon flux where the detector has a complex geometry. Moreover,
nothing prevents applications of the same method in simulations of muon radiography
setups for volcanoes or pyramids or other very large objects of interest that are distant
from the detector [12] where solid angle restrictions can optionally be imposed to increase
computational efficiency.

Author Contributions: Methodology, A.LT.; Software, A.LT.; Supervision, M.K. and A.G.; Validation,
ALT,; Visualization, A.LT.; Writing—original draft, A.LT.; Writing—review & editing, M.K. and A.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the EU Horizon 2020 Research and Innovation
Programme under grant agreement No. 101021812 (”SilentBorder”).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Generation via Gaussian Distributions

#include "BlPrimaryGeneratorAction.hh"
#include "G4LogicalVolumeStore.hh"
#include "G4LogicalVolume.hh"
#include "G4Box.hh"

#include "G4RunManager.hh"
#include "G4ParticleGun.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleDefinition.hh"
#include "G4SystemOfUnits.hh"
#include "Randomize.hh"

#include <iostream>

using namespace std;

B1PrimaryGeneratorAction :: B1PrimaryGeneratorAction ()
: G4VUserPrimaryGeneratorAction (),

fParticleGun (0)

// fEnvelopeBox (0)

{

G4int n_particle = 1;

fParticleGun = new G4ParticleGun(n_particle);

// default particle kinematic

G4ParticleTable+ particleTable = G4ParticleTable:: GetParticleTable ();
G4String particleName ;

G4ParticleDefinition* particle

= particleTable ->FindParticle (particleName="mu-");
fParticleGun->SetParticleDefinition (particle);

}
Bl1PrimaryGeneratorAction::~B1PrimaryGeneratorAction ()

{
delete fParticleGun;
}

//80-bin Discrete CRY Energy Spectrum

void BlPrimaryGeneratorAction:: GeneratePrimaries (G4Events anEvent)

{

//Discrete probabilities

double A[]= {0.0, 0.01253639, 0.02574546, 0.02802035, 0.02706636, 0.03528534, 0.02826496,
0.03157946, 0.03078447, 0.02777574, 0.02546415, 0.03150608, 0.02815489,

Instruments 2022, 6, 42

6 0f 8

0.02580661, 0.02364179, 0.02170935, 0.02152589, 0.02348279,
0.0196913, 0.02036398, 0.01841931, 0.01718402, 0.01700056,
0.01539835, 0.01536166, 0.01471344, 0.01422421, 0.01412637,
0.01260977, 0.01213278, 0.0129033, 0.01248746, 0.01196155,
0.01057949, 0.0096255, 0.0103838, 0.00928304, 0.00879382,
0.00793767, 0.00786429, 0.00769306, 0.00709376, 0.00736283,
0.00721607, 0.00692253, 0.00643331, 0.00678799, 0.00673907,
0.00634769, 0.00665346, 0.00650669, 0.00561385, 0.00589516,
0.00578508, 0.00557716, 0.00550378, 0.00434187, 0.0043541,

0.00364472, 0.00399941, 0.00388934, 0.00396272, 0.00431741,
0.00363249, 0.00362026, 0.00410949, 0.00336342, 0.00358357,

0.00348573, 0.0035958};
//Discrete energies

0.02134243,
0.01624226,
0.01284215,
0.01064064,
0.00884274,
0.0071916,

0.00618869,
0.00589516,
0.00408503,
0.00368142,
0.00362026,

double B[]= {0.0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,

1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000,
2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000,
3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000,
4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000,
5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000,
6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900, 7000,
7100, 7200, 7300, 7400, 7500, 7600, 7700, 7800, 7900, 8000};
G4int SizeEnergy=sizeof (B)/sizeof (B[0]);

G4int SizeProbability=sizeof (A)/sizeof (A[0]);

G4double Grid[sizeof(B)/sizeof(B[0])];

double sum=0;

for(int x=0; x < 81; x++){

sum=sum+A[x] ;

Grid[x]=sum;

std :: ofstream GridFile;
GridFile.open (" Probability_grid.txt", std::ios::app);
GridFile << Grid[x] << Gd4endl;

GridFile. close ();

}

G4double radius=100+cm; //radius of sphere

for (int n_particle = 1; n_particle < 100000; n_particle++){
G4double x0=G4RandGa shoot ();

std :: ofstream GaussFile;

GaussFile.open ("Gauss_x. txt", std::ios::app); //in mm
GaussFile << x0 << Gdendl;

GaussFile. close ();

//Centerally focused semi-spherical source via Gauss distributions

G4double y0=G4RandGauss:: shoot ();

G4double z0=G4RandGauss:: shoot ();

G4double n0O=sqrt (pow(x0,2)+pow(y0,2)+pow(z0,2));
//Coordinates on sphere

x0 = radius=*(x0/n0);

radius=abs(y0/n0);

= radius*(z0/n0);

std :: ofstream SphereFile;
SphereFile.open (" coordinates_on_sphere.txt", std::ios::app);
SphereFile << x0 << " "<< y0 << " " << z0 << " << Géendl;
SphereFile. close ();
fParticleGun->SetParticlePosition (G4ThreeVector (x0,y0,z0));
//Aimed at origin

G4double x1=0;

G4double y1=0;
Gé4double z1
G4double mx = x1-x0;

G4double my = yl-y0;

G4double mz = z1-z0;

G4double mn = sqrt (pow(mx,2)+pow (my,2)+pow(mz,2));
mx = mx/mn;

my = my/mn;

mz = mz/mn;

N
I=R=}
([

//in mm

fParticleGun —>SetParticleMomentumDirection (G4ThreeVector (mx,my,mz));

G4double Energy=0; //Just for initialization
G4double pseudo=G4UniformRand ();

for (int i=0; i < 81; i++){

if (pseudo > Grid[i] && pseudo <= Grid[i+1]){
Energy=B[i+1];

std :: ofstream EnergyFile;
EnergyFile.open("Energy.txt", std::ios::app);
EnergyFile << Energy << G4endl;
EnergyFile.close ();

}

}

fParticleGun ->SetParticleEnergy (Energy);
fParticleGun —>GeneratePrimaryVertex (anEvent);
}

}

Appendix B. Generation by Means of Coordinate Transformation

#include "Bl1PrimaryGeneratorAction.hh"
#include "G4LogicalVolumeStore.hh"
#include "G4LogicalVolume.hh"
#include "G4Box.hh"

#include "G4RunManager.hh"
#include "G4ParticleGun.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleDefinition.hh"
#include "G4SystemOfUnits.hh"
#include "Randomize.hh"

#include <iostream>

using namespace std;

BlPrimaryGeneratorAction :: BIPrimaryGeneratorAction ()
: G4VUserPrimaryGeneratorAction (),

fParticleGun (0)

// fEnvelopeBox (0)

{

G4int n_particle = 1;

fParticleGun = new G4ParticleGun(n_particle);

// default particle kinematic

Instruments 2022, 6, 42

7 of 8

G4ParticleTablex particleTable = G4ParticleTable :: GetParticleTable ();
G4String particleName;

G4ParticleDefinition+ particle

= particleTable ->FindParticle (particleName="mu-");

fParticleGun ->SetParticleDefinition (particle);

}

B1PrimaryGeneratorAction::~Bl1PrimaryGeneratorAction ()
{
delete fParticleGun;

}

//80-bin Discrete CRY Energy Spectrum

void BlPrimaryGeneratorAction:: GeneratePrimaries (G4Event+ anEvent)

{

//Discrete probabilities

double A[]= {0.0, 0.01253639, 0.02574546, 0.02802035, 0.02706636, 0.03528534,
0.03157946, 0.03078447, 0.02777574, 0.02546415, 0.03150608, 0.02815489,

0.02580661, 0.02364179, 0.02170935, 0.02152589, 0.02348279, 0.02134243,
0.0196913, 0.02036398, 0.01841931, 0.01718402, 0.01700056, 0.01624226,
0.01539835, 0.01536166, 0.01471344, 0.01422421, 0.01412637, 0.01284215,
0.01260977, 0.01213278, 0.0129033, 0.01248746, 0.01196155, 0.01064064,
0.01057949, 0.0096255, 0.0103838, 0.00928304, 0.00879382, 0.00884274,
0.00793767, 0.00786429, 0.00769306, 0.00709376, 0.00736283, 0.0071916,

0.00721607, 0.00692253, 0.00643331, 0.00678799, 0.00673907, 0.00618869,
0.00634769, 0.00665346, 0.00650669, 0.00561385, 0.00589516, 0.00589516,
0.00578508, 0.00557716, 0.00550378, 0.00434187, 0.0043541, 0.00408503,
0.00364472, 0.00399941, 0.00388934, 0.00396272, 0.00431741, 0.00368142,
0.00363249, 0.00362026, 0.00410949, 0.00336342, 0.00358357, 0.00362026,

0.00348573,
//Discrete

0.0035958};

energies

double B[]= {0.0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000,

2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000,

3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000,

4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000,

5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000,

6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900, 7000,

7100, 7200, 7300, 7400, 7500, 7600, 7700, 7800, 7900, 8000};

G4int SizeEnergy=sizeof (B)/sizeof (B[0]);

G4int SizeProbability=sizeof (A)/sizeof (A[0]);

G4double Grid[sizeof(B)/sizeof(B[0])];

double sum=0;

for(int x=0; x < 81; x++){

sum=sum+A[x | ;

Grid[x]=sum;

std :: ofstream GridFile;

GridFile .open (" Probability_grid.txt", std::ios::app);

GridFile << Grid[x] << G4endl;

GridFile.close ();

}

G4double radius=100+cm; //radius of sphere

for (int n_particle = 1; n_particle < 100000; n_particle++){
//Centerally focused semi-spherical source via coordinate transformation
G4double rand1=G4UniformRand ();

G4double rand2=G4UniformRand ();

G4double latitude=acos(2*randl-1);

G4double longitude=2+3.14159265359+rand2;

//Coordinates on sphere

G4double x0=radius=*cos(latitude)+cos(longitude);

G4double y0=radiusx+abs(sin(latitude));

G4double z0=radius+cos(latitude)+sin(longitude);

std:: ofstream SphereFile;

SphereFile.open (" coordinates_on_sphere.dat", std::ios::app); //in mm
SphereFile << x0 << " "<< y0 << " " << z0 << Gdendl;

SphereFile. close ();
fParticleGun—>SetParticlePosition (G4ThreeVector (x0,y0,z0));

//Aimed at origin

G4double
Gé4double
Gé4double
G4double
G4double yl-y0;

G4double z1-20;

G4double mn = sqrt (pow(mx,2)+pow (my,2)+pow(mz,2));

mx = mx/mn;

my = my/mn;

mz = mz/mn;

fParticleGun ->SetParticleMomentumDirection (G4ThreeVector (mx,my,mz)) ;
G4double Energy=0; //Just for initialization

G4double pseudo=G4UniformRand ();

for (int i=0; i < 81; i++){

if (pseudo > Grid[i] && pseudo <= Grid[i+1]){

Energy=B[i+1];

std :: ofstream EnergyFile;

EnergyFile.open("Energy.txt", std::ios::app);

EnergyFile << Energy << G4endl;

EnergyFile.close ();

}

}

fParticleGun->SetParticleEnergy (Energy);

fParticleGun ->GeneratePrimaryVertex (anEvent);

}

}

x1-x0;

0.02826496,

Instruments 2022, 6, 42 8of8

References

1.

10.

11.

12.

Pagano, D.; Bonomi, G.; Donzella, A.; Zenoni, A.; Zumerle, G.; Zurlo, N. EcoMug: An Efficient COsmic MUon Generator for
cosmic-ray muon applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 1014, 165732.
[CrossRef]

Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al.
GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250-303.
[CrossRef]

Topuz, A.L; Kiisk, M.; Giammanco, A. Particle generation trough restrictive planes in GEANT4 simulations for potential
applications of cosmic ray muon tomography. arXiv 2022, arXiv:2201.07068.

Topuz, A.L; Kiisk, M. Towards energy discretization for muon scattering tomography in GEANT4 simulations: A discrete
probabilistic approach. arXiv 2022, arXiv:2201.08804.

Marsaglia, G. Choosing a point from the surface of a sphere. Ann. Math. Stat. 1972, 43, 645-646. [CrossRef]

Tashiro, Y. On methods for generating uniform random points on the surface of a sphere. Ann. Inst. Stat. Math. 1977, 29, 295-300.
[CrossRef]

Weisstein, E.W. “Disk Point Picking”. From MathWorld-A Wolfram Web Resource. 2011. Available online: http://mathworld.
wolfram.com/ (accessed on 22 May 2022).

Georgadze, A.; Kiisk, M.; Mart, M.; Avots, E.; Anbarjafari, G. Method and Apparatus for Detection and/or Identification of
Materials and of Articles Using Charged Particles. US Patent 16/977,293, 7 January 2021.

Borozdin, K.N.; Hogan, G.E.; Morris, C.; Priedhorsky, W.C.; Saunders, A.; Schultz, L.J.; Teasdale, M.E. Radiographic imaging with
cosmic-ray muons. Nature 2003, 422, 277. [CrossRef] [PubMed]

Frazdo, L.; Velthuis, J.; Maddrell-Mander, S.; Thomay, C. High-resolution imaging of nuclear waste containers with muon
scattering tomography. J. Instrum. 2019, 14, P08005. [CrossRef]

Frazdo, L.; Velthuis,].; Thomay, C.; Steer, C. Discrimination of high-Z materials in concrete-filled containers using muon scattering
tomography. J. Instrum. 2016, 11, P07020. [CrossRef]

Bonechi, L.; D’Alessandro, R.; Giammanco, A. Atmospheric muons as an imaging tool. Rev. Phys. 2020, 5, 100038. [CrossRef]

http://doi.org/10.1016/j.nima.2021.165732
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1214/aoms/1177692644
http://dx.doi.org/10.1007/BF02532791
http://mathworld. wolfram.com/
http://mathworld. wolfram.com/
http://dx.doi.org/10.1038/422277a
http://www.ncbi.nlm.nih.gov/pubmed/12646911
http://dx.doi.org/10.1088/1748-0221/14/08/P08005
http://dx.doi.org/10.1088/1748-0221/11/07/P07020
http://dx.doi.org/10.1016/j.revip.2020.100038

	Introduction
	Central Focus Scheme
	Generation through Gaussian Distributions
	Generation via Coordinate Transformation

	Restrictive Planar Focus Scheme
	Conclusions
	Appendix A. Generation via Gaussian Distributions
	Appendix B. Generation by Means of Coordinate Transformation
	References

