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We start by looking at why we believe that black holes have entropy. According to
Boltzmann, the entropy is a measure of the number of microstates of a system. We
suggest here that the entropy arises from a holographic conformal field theory on the
black hole horizon. Finally, we discuss some of the implications for the information
paradox.
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1. Introduction

Black holes were first thought about by John Michell back in 1784.1 He reasoned
that if the escape velocity from an object like a star exceeded the speed of light,
then it would give rise to an object that cannot be seen optically but whose grav-
itational field would betray its existence. These ideas were given substance by
Einstein’s general theory of relativity and the subsequent discovery of solutions of
the field equations that represented stationary black holes.? ¢ One puzzling feature
of stationary black holes is that they are completely characterised by just a few
parameters; their mass M, angular momentum J and electric charge Q.7 ! It is
this observation that is the basis for the information paradox.!?

The thermodynamics of black holes in general relativity has a history starting
in 1972. The first relevant discovery, the area theorem, was made by Hawking. 3
He found that the area of a black hole horizon could never decrease provided the
null convergence condition R,,k®k® > 0 holds for every null vector k. Shortly
after this, Jacob Bekenstein suggested' that the entropy of a black hole must be
proportional to the area of its event horizon. His reasoning was based on three
observations. The first was that if a Kerr-Newman black hole increased its mass by
an amount dM, then

dM:“:—A+<1>dQ+Q-dJ (1)
Y

where £ is the black hole surface gravity, A the area of the event horizon, ® the
electrostatic potential of the black hole and € its angular velocity. x, A, ® and
Q are all determined in terms of M, J and ). The second piece of evidence was
that he reasoned that a black hole must have some kind of internal structure that
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resulted from it method of formation. That would give rise to an entropy
S:prnlnpn (2)
n
arising from the probability of the occupation of the n'’-state being p,. Finally,
he showed that it was necessary for this black hole entropy to be added to the
thermodynamic entropy of the rest of the universe in order to have a consistent
theory of thermodynamics. This came about because otherwise dropping a box of
radiation into a black hole would cause the entropy of the universe to decrease, in
contradiction to the second law of thermodynamics.

His ideas were met with a certain amount of scepticism because black holes
were thought to have vanishing temperature. Despite that, Bardeen, Carter and
Hawking !> pointed out the similarities between the first law of thermodynamics
and (1) and also the second law of thermodynamics and the area theorem.

In 1974, Hawking 1617 showed that black holes had a temperature Ty of fir/(27).
Unlike previous work, his calculation was quantum mechanical in nature. Black
holes would emit particles with a thermal spectrum at a temperature given by 1.
By identifying (1) with the first law of thermodynamics, one can immediately infer
that the entropy must be given by A/(4h). The area theorem is thereby identified
with the second law of thermodynamics. A somewhat different view of entropy was
taken in Ref. 18. The idea here was to use the path integral for gravity to derive
black hole entropy. Although gravity is unrenormalizable, there is no obstacle to
using the path integral to lowest order as the uncontrollable divergences only occur
at one loop or beyond. The action for pure gravity is, including the Gibbons-
Hawking-York boundary terms 819

Mol = g5= | RVTaTdtas - [ KyTHIEaccl @)

where now M is the spacetime manifold with metric g and Ricci scalar R(g). The
boundary of M is M with metric h and second fundamental form K. Cfh] is
any functional of h and is designed to make the action of flat spacetime vanish.
Suppose one wants to find the partition function for a black hole spacetime. Then
one wants to compute Z = tr(e”#M) where 3 is the inverse temperature and # the
Hamiltonian. This can be done by realising that e?** is the time evolution operator
and so if ¢ is identified with ¢ 4+ i3 then Z is given by

Z:/DMEM““, (4)

where now the integral is over all metrics g of positive definite signature and that
approach flat space at infinity and are periodic in imaginary time ¢ with period
B=T5;"

The Schwarzschild metric is

2M 20
ds? = —(1— =—=)dt* + (1= ==)"ldr® + r?dQ?, (5)
r T
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where M is the mass of the static black hole with horizon at r = 2M and dQ? is
the metric on the unit 2-sphere. Taking ¢ = 47 so that the geometry is as described
above gives the Euclidean metric

ds* = (1- %)d# +(1- %)‘%«2 +r2dQ? (6)
Now, r = 2M is a conical singularity that is resolved provided that 7 is identified
with period 87 M .2° This periodicity is precisely the same periodicity expected from
the Hawking calculation of the black hole temperature. Interpreting the exponential
of the action as the partition function, reproduces the black hole entropy. In this
calculation, the region r < 2M has been removed from consideration. Implicitly this
means that the internal degrees of freedom have been traced over. One is thereby
led to believe that the black hole does have some kind of internal structure that
cannot be probed by external observers who just look at the classical geometry.
The same kind of reasoning can be applied to the Kerr-Newman metric too.

Black holes evaporate. The black hole uniqueness theorems suggest that the
only properties that a stationary black hole has are just the mass, charge and spin.
As a consequence, there is a tension with the ideas of quantum mechanics. If a
black hole completely disappears, then the final state should be unitarily equivalent
to the initial state. Obviously, there are enormous number of ways in which the
black hole could form. The black hole, once it has settled down to a more or
less equilibrium state, is described by just those three parameters. The Hawking
radiation is thermal and characterised by the Hawking temperature. Such a final
state consisting of Hawking radiation will not be unitarily related to the initial
state that gave rise to the black hole. This is the information paradox. It might
be that quantum mechanical information really is lost in gravitational collapse.
But then, the whole edifice of quantum mechanics would need to be rethought. The
incredible success of quantum mechanics would seem to discourage such a viewpoint.
Alternatively, there might be something wrong with the uniqueness theorems. It is
this latter possibility that we will investigate here.

In what follows, we will use covariant phase space methods?' 27 to understand
the nature of charges in general relativity and the consequences for the physics of
black holes. The reason for using the covariant phase space method is to preserve as
much as possible of the covariance of theory. Had we picked the more conventional
canonical methods, we would be forced to pick a particular time coordinate which
would obscure matters. Furthermore, it would it impossible to understand what
happens on null surfaces such as the event horizon. Our aim now is to try to
understand something about the microscopic origin of black hole entropy. The
hope is that this will aid a resolution of the information paradox.

In pure general relativity, one can start with the Einstein-Hilbert action I given
by

=5 [ R@VTaTd g
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This action omits the boundary terms, but these are not germane to the discussion
that follows. One finds the Einstein equation by performing a variation of the action
induced by a variation of the metric gqp — gap + hap. This results in the variation
01 given by

1
ol = / (Rap — ERgab) R /|| g ||d*x —|—/ 0 (8)
M oM

The three-form on the boundary 6(g,h) is known as the presymplectic potential
and has components

(+0), = 16% (Voh', — Vah) (9)

where h = hapg®. In canonical general relativity, the boundary term would be
thought of

/ > pidg’ (10)
oM 5
where ¢ are the generalised coordinates, p; are the generalised momenta and %
represent the tensor indices of these fields.

The presymplectic density w(g;h,h') is defined by a second variation g., —
YJab + h;b

w(g: h, h') = 06(g, ') — &"0(g, ) (11)

Finally, the symplectic form for general relativity is

Qs — / o (12)

where ¥ is any partial Cauchy surface in the spacetime. In the language of the
canonical theory, Qs would be

/E Z 6pi AN Oq'. (13)

One property that w has is that if the background metric g,; obeys the Einstein
equation and both hg, and h, obey the linearised Einstein equations, then w is
closed. Thus Qy is constant under variations of ¥ as long as the boundaries of ¥
are fixed.

In general relativity, the symmetry group is the group of diffeomorphisms. An
infinitesimal coordinate transformation is specified by a vector field (*. This induces
a variation in any tensor field given by the Lie derivative of that field. Thus, for
example, the variation of the metric is given by

(Sgab = ACCgab = Gab t+ vagb + vbga- (14)

The bulk term in the variation of the action d7 is invariant under such a transforma-
tion but the boundary term is not. The infinitesimal co-ordinate transformations
obey an algebra whose composition law is

Lely —LyLe = E[C,n] (15)
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where ¢ and 7 are two (smooth) vector fields and

[Cn = Len = =L,C (16)

Suppose now that in 2 one makes h/, a gauge transformation given by the vector
field (. Then Q can be written as a boundary integral. Explicitly,

1

= F,p, dS® 17
167T ox b ( )

Q¢
with
Fop = =2(a Vi h + 2¢aVhy)e — 2C°V ghp)e — BV (oG] + 2o VG- (18)

Let 0X is a closed 2-surface .S, for example the celestial sphere or a black hole event
horizon. One would like to interpret ()¢ as the variation in the Noether charge
conjugate to ¢ that is enclosed in the interior of S as one moves between the metric
Jap and gaqp + hep. There is a complication with this idea because in such a change,
there might be a flux of charge crossing S. To take account of this possibility,
one needs to examine ()¢ and identify such terms and subtract them out. In more
mathematical language, one we want ()¢ to be a function of state. As such it must
be a 1-form on the infinite-dimensional phase space of the theory. This 1-form needs
to be exact so that if one goes along a path I' between gqp and gap + hap, then Q¢
is independent of the path I', and therefore dependent only the end-points of that
path. The definition on Q¢ thus needs to be modified by the ddition of a suitable
counterterm Q¢ — Q¢ + ta. Finding ta needs to be done on a case by case basis
as has been elegantly explained in detail by Wald and Zoupas. 2%

In the case that ¢ were a time translation, then @ would be the quasi-local
mass enclosed in S.2® If it were a spatial translation then the momentum. If ¢
were a Killing vector, then Q¢ would be the same as the Komar integral.?? If ¢
were a supertranslation or super-rotation at null infinity, then (¢ would be the
corresponding supertranslation or super-rotation charge. Equally, one can define
charges on the black hole horizon and these are the soft charges or soft black hole
hair. 30

Diffeomorphism invariance of general relativity means that the charges Q¢ lie in
some representation of group of coordinate transformations. Thus

6¢Qy — Q¢ = Q[Cﬂr] (19)

Were this relation not to hold, general coordinate invariance would be violated, in
gross contradiction to our expectations of what should be true in physics. However,
what we find is that this relationship does not hold for charges on black hole event
horizons. Instead, we find

6¢Qn — 0nQc = Q¢ + K(C,m) (20)

where K (,n) is a central extension of this algebra.3! We will now explore a par-
ticular example and move on to its interpretation.
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We start from the Kerr metric in Boyer-Lindquist coordinates.

dr? 2M
ds® = p2(% + db*) + (r? + a?) sin? 0d¢?® — dt* + !

(asin? 0de — dt)*  (21)
where

A =1r%—2Mr+a? (22)
and

p* =1?+a%cos? . (23)

M is the mass of the black hole and J = Ma is its angular momentum. A = 0
at r1 with 74 being the location of the outer horizon, r_ the location of the inner
horizon and

re =M+ M?2—a? (24)

Now we will define “conformal” coordinates®? and assume that the black hole is

w+ — r—= r"r 627I'TR¢ (25)
V rT—r_
wo = /i 627"TL¢*t/2M (26)
rT—r_

not extreme so that m2? > a?.

y = ry —T- o (TL+Tr)$—t/AM (27)
r—r_
where
T, =" and Ty (28)
dra 4dma
The future outer horizon is w~ = 0 and the past outer horizon is w* = 0. The

azimuthal coordinate ¢ is identified with period 27 and this induces an identification
on w,w™ and y as

wh = e TRyt T o Ty oy s 2 (Tt TRy (29)
The line element close to the horizon bifurcation surface wt = w~ = 0 is33
4p? _ 16M?a?sin* 6 _
ds® = y—;duﬁdw + Tdy2 + p2d0* + O(wt,w™) (30)
+

where ,02+ = ri +a? cos? 6. If one looks at the wt, w™, y— plane by setting 6 to be a
constant, then this line element is that of AdSs/T" with I" being some discrete group.
So close to the horizon bifurcation surface, the geometry of spacetime is some kind
of warped product of the line segment 0 € [0, 7] and a deformed portion of three-
dimensional anti-de Sitter space. The classic work of Brown and Henneaux?3' shows
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that in spacetimes that are asymptotic to anti-de Sitter spacetime, the diffeomor-
phism algebra has anomalies. One might therefore suspect that something similar
happens in the case of the Kerr black hole.

Consider the diffeomorphism given by the vector field ¢,

1
Cn = 6n<w+)6+ + §€/(w+)yay (31)
with

i

en(wh) = 27TTR(’LU+)(1+2"Z}R) (32)

and n being any integer. It should be noted that under the identifications of either
wt — wret™ Tr or y — ye2™ (TL+TrR) that ¢, is invariant. This vector field is
well-defined on the future horizon. These vector fields obey the Witt (or centerless
Virasoro) algebra with the commutator

[Crs Gm] = i(m — n)Gngm (33)
Similarly, one can find a second vector field ¢, given by
G = En(w ™) + L&' (w™)yd, (34)
and € being given
n(w™) = 27T (w™) ) (35)

again with n being any integer. This vector field is well-defined on the past horizon.
Again, it is invariant under the identifications w— — w=e?™ Tt or y — ye2™ (T+TR),
It too obeys the Virasoro algebra

[6717 gm] = Z(m - n)&ner- (36)

Both of these vector fields are well-defined on the bifurcation surface and commute
with each other there

[Cna 5m] =0. (37)

These vector fields can be used to generate charges on the bifurcation surface.
To do this we need to introduce an appropriate counterterm. This is given by

1 / dS® V. (Chd)Neg (38)
8

where N, are the components of the volume form on the normal bundle to the
horizon. There is a precisely similar expression for the fields (,,. One then finds
that the charges on the bifurcation surface obey the algebra

[Qna Qm] = Z(n - m)Qn—i—m + in3J6n,—m (39)
for the right-handed algebra and

[Qna Qm] = Z(n - m)@n—i—m + in3J6n,—m (40)
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for the left-handed algebra. Finally, the left and right algebras commute with each
other

[Qna Qm] =0. (41)

In both cases, the central terms shown here correspond to the conventionally nor-
malised Virasoro algebra with central charges given by ¢, = cg = 12J. Thus the
diffeomorphism algebra has an anomaly.

We postulate that this anomaly is cancelled by holographic degrees of freedom on
the horizon expressed in terms of a two-dimensional conformal field theory. Consider
for a moment the expressions for the absorption probabilities for particles incident
on a Kerr black hole. Suppose we look at a particle with energy 0F and angular
momentum parallel to the black hole spin §.J. Then we observe that the absorption
probability obtains a suggestive factor of

iwL 2 in 2
I(1 I'l+—— 42
PO+ )P [P0+ o) (42)
where
2M3 2M3
Wy, = 7 oF WR = 7 OF —0J. (43)

This is precisely what is to be expected for a conformal field theory where the
left-handed degrees of freedom are at a temperature of 77, and the right-handed
degrees of freedom are at a temperature of Tr and one is asking for the absorption
probability for particles of energy wy in the left-handed sector and energy wg in
the right-handed sector. We take it that there are no coincidences in nature and
therefore we really can attribute our observations to the existence of holographic
degrees of freedom on the horizon described by a two-dimensional conformal field
theory.

A general property of conformal field theories, provided the central charge is
sufficiently large, was first described by Cardy.?* The entropy for a system with
central charges ¢y, and cp for the two sectors at temperatures T, and Tg is given
by

2

S = %(CLTL + CRTR). (44)

Plugging in our expressions for ¢y, cr,T; and T gives
1
S=-A. 45
. (45)

It is hard to believe that this is a coincidence. It appears therefore we have identified
the degrees of freedom responsible for black hole entropy. 33

Subsequent to the conference, it has been shown that the same methods repro-
duce the entropy for the Kerr-Newman family of black holes?® and for uncharged

black holes in anti-de Sitter spacetime.3%
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A key question is to ask how this affects our view of the information paradox.
We have shown how to account for black hole entropy in terms of a holographic two-
dimensional conformal field theory living on the black hole horizon. It is however far
from clear that the states of such a theory can record all of the quantum mechanical
information that is pertinent to black hole formation from ordinary matter. We are
therefore left with a collection of problems that need exploration and solution before
there can be any claim of solving the information paradox. We conclude this essay
with a summary of outstanding issues. Does the horizon conformal field theory
contain a complete description of the black hole formation process? How does the
Hawking radiation encode this information so as to preserve unitary time evolution?
Why is it that the black hole entropy is independent of the spectrum of elementary
particles when the number of ways a black hole can be formed is highly dependent
on that spectrum. For example, if there were a million different species of electron,
the number of ways a black hole could form would be vastly higher than if there a
single type of electron. Nevertheless, the Hawking entropy would be same.

Suppose a particle falls into a black hole. Classically, a co-moviong observer sees
it pass through the horizon without anything obvious happening. In the case of a
Schwarzschild black hole, it will reach the singularity in a finite amount of proper
time. The singularity is a boundary of spacetime and so we believe the particle
to have disappeared. In the case of rotating black holes, it seems plausible that it
will also inevitably reach a singularity as the inner horizon of a Kerr black hole is
unstable and is presumed to become singular once any energy-momentum arrives
there. However, if the particle is to leave an imprint on the state of the horizon
conformal field theory, it appears to have violated the quantum no-cloning theorem.
Roughly speaking, the no-cloning theorem says that you cannot duplicate the state
of a particle by unitary time evolution. A number of technical assumptions go into
this amongst which is a notion of locality, a dubious assumption in the case of
gravitation.

Then there are some more challenging issues. What happens to the singularity?
It is a classical concept and shows that classical general relativity is an incomplete
theory. What happens quantum mechanically? There is no satisfactory answer
at present. What are the final stages of black hole evaporation? The picture
presented seems to suggest that all symmetries in nature are gauge symmetries and
not global symmetries. For example in the standard model, baryon number is a
global symmetry, but it is hard to see how this could be encoded in the picture
presented here. There is one ambitious theory that predicts that all symmetries are
gauge symmetries and that is string theory. Although string theory is successful in
resolving the divergence problems of quantum gravity, and potentially geometrizing
the spectrum of elementary particles, it is far from being a theory of spacetime.
Hopefully, the picture here will provide a guide to the true nature of quantum
gravity, but there are immense and exciting challenges to the construction of such
a theory. Eventually, we hope that the construction of such a theory will lead to
deep insights into the nature of our Universe.
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