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We start by looking at why we believe that black holes have entropy. According to
Boltzmann, the entropy is a measure of the number of microstates of a system. We
suggest here that the entropy arises from a holographic conformal field theory on the
black hole horizon. Finally, we discuss some of the implications for the information
paradox.
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1. Introduction

Black holes were first thought about by John Michell back in 1784.1 He reasoned

that if the escape velocity from an object like a star exceeded the speed of light,

then it would give rise to an object that cannot be seen optically but whose grav-

itational field would betray its existence. These ideas were given substance by

Einstein’s general theory of relativity and the subsequent discovery of solutions of

the field equations that represented stationary black holes.2–6 One puzzling feature

of stationary black holes is that they are completely characterised by just a few

parameters; their mass M , angular momentum J and electric charge Q.7–11 It is

this observation that is the basis for the information paradox.12

The thermodynamics of black holes in general relativity has a history starting

in 1972. The first relevant discovery, the area theorem, was made by Hawking.13

He found that the area of a black hole horizon could never decrease provided the

null convergence condition Rabk
akb ≥ 0 holds for every null vector ka. Shortly

after this, Jacob Bekenstein suggested14 that the entropy of a black hole must be

proportional to the area of its event horizon. His reasoning was based on three

observations. The first was that if a Kerr-Newman black hole increased its mass by

an amount dM , then

dM =
κdA

8π
+ ΦdQ+ Ω · dJ (1)

where κ is the black hole surface gravity, A the area of the event horizon, Φ the

electrostatic potential of the black hole and Ω its angular velocity. κ, A, Φ and

Ω are all determined in terms of M , J and Q. The second piece of evidence was

that he reasoned that a black hole must have some kind of internal structure that
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resulted from it method of formation. That would give rise to an entropy

S = −
∑
n

pn ln pn (2)

arising from the probability of the occupation of the nth-state being pn. Finally,

he showed that it was necessary for this black hole entropy to be added to the

thermodynamic entropy of the rest of the universe in order to have a consistent

theory of thermodynamics. This came about because otherwise dropping a box of

radiation into a black hole would cause the entropy of the universe to decrease, in

contradiction to the second law of thermodynamics.

His ideas were met with a certain amount of scepticism because black holes

were thought to have vanishing temperature. Despite that, Bardeen, Carter and

Hawking15 pointed out the similarities between the first law of thermodynamics

and (1) and also the second law of thermodynamics and the area theorem.

In 1974, Hawking16,17 showed that black holes had a temperature TH of �κ/(2π).

Unlike previous work, his calculation was quantum mechanical in nature. Black

holes would emit particles with a thermal spectrum at a temperature given by TH .

By identifying (1) with the first law of thermodynamics, one can immediately infer

that the entropy must be given by A/(4�). The area theorem is thereby identified

with the second law of thermodynamics. A somewhat different view of entropy was

taken in Ref. 18. The idea here was to use the path integral for gravity to derive

black hole entropy. Although gravity is unrenormalizable, there is no obstacle to

using the path integral to lowest order as the uncontrollable divergences only occur

at one loop or beyond. The action for pure gravity is, including the Gibbons-

Hawking-York boundary terms18,19

I[g, h] =
1

16π

∫
M
R(g)

√
‖ g ‖d4x+

1

8π

∫
∂M

K
√
‖ h ‖d3x+ C[h] (3)

where now M is the spacetime manifold with metric g and Ricci scalar R(g). The

boundary of M is ∂M with metric h and second fundamental form K. C[h] is

any functional of h and is designed to make the action of flat spacetime vanish.

Suppose one wants to find the partition function for a black hole spacetime. Then

one wants to compute Z = tr(e−βH) where β is the inverse temperature and H the

Hamiltonian. This can be done by realising that eiHt is the time evolution operator

and so if t is identified with t+ iβ then Z is given by

Z =

∫
D[g]e−I[g,h]/� , (4)

where now the integral is over all metrics g of positive definite signature and that

approach flat space at infinity and are periodic in imaginary time t with period

β = T−1
H .

The Schwarzschild metric is

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2 , (5)
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where M is the mass of the static black hole with horizon at r = 2M and dΩ2 is

the metric on the unit 2-sphere. Taking t = iτ so that the geometry is as described

above gives the Euclidean metric

ds2 = (1− 2M

r
)dτ2 + (1− 2M

r
)−1dr2 + r2dΩ2 (6)

Now, r = 2M is a conical singularity that is resolved provided that τ is identified

with period 8πM .20 This periodicity is precisely the same periodicity expected from

the Hawking calculation of the black hole temperature. Interpreting the exponential

of the action as the partition function, reproduces the black hole entropy. In this

calculation, the region r < 2M has been removed from consideration. Implicitly this

means that the internal degrees of freedom have been traced over. One is thereby

led to believe that the black hole does have some kind of internal structure that

cannot be probed by external observers who just look at the classical geometry.

The same kind of reasoning can be applied to the Kerr-Newman metric too.

Black holes evaporate. The black hole uniqueness theorems suggest that the

only properties that a stationary black hole has are just the mass, charge and spin.

As a consequence, there is a tension with the ideas of quantum mechanics. If a

black hole completely disappears, then the final state should be unitarily equivalent

to the initial state. Obviously, there are enormous number of ways in which the

black hole could form. The black hole, once it has settled down to a more or

less equilibrium state, is described by just those three parameters. The Hawking

radiation is thermal and characterised by the Hawking temperature. Such a final

state consisting of Hawking radiation will not be unitarily related to the initial

state that gave rise to the black hole. This is the information paradox. It might

be that quantum mechanical information really is lost in gravitational collapse.

But then, the whole edifice of quantum mechanics would need to be rethought. The

incredible success of quantum mechanics would seem to discourage such a viewpoint.

Alternatively, there might be something wrong with the uniqueness theorems. It is

this latter possibility that we will investigate here.

In what follows, we will use covariant phase space methods21–27 to understand

the nature of charges in general relativity and the consequences for the physics of

black holes. The reason for using the covariant phase space method is to preserve as

much as possible of the covariance of theory. Had we picked the more conventional

canonical methods, we would be forced to pick a particular time coordinate which

would obscure matters. Furthermore, it would it impossible to understand what

happens on null surfaces such as the event horizon. Our aim now is to try to

understand something about the microscopic origin of black hole entropy. The

hope is that this will aid a resolution of the information paradox.

In pure general relativity, one can start with the Einstein-Hilbert action I given

by

I =
1

16π

∫
M

R(g)
√
‖ g ‖d4x. (7)
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This action omits the boundary terms, but these are not germane to the discussion

that follows. One finds the Einstein equation by performing a variation of the action

induced by a variation of the metric gab → gab + hab. This results in the variation

δI given by

δI =

∫
M

(Rab − 1

2
Rgab) h

ab
√
‖ g ‖d4x+

∫
∂M

θ (8)

The three-form on the boundary θ(g, h) is known as the presymplectic potential

and has components

(∗θ)a =
1

16π
(∇bhba −∇ah) (9)

where h = habg
ab. In canonical general relativity, the boundary term would be

thought of ∫
∂M

∑
i

piδq
i (10)

where qi are the generalised coordinates, pi are the generalised momenta and i

represent the tensor indices of these fields.

The presymplectic density ω(g;h, h′) is defined by a second variation gab →
gab + h′ab

ω(g;h, h′) = δθ(g, h′)− δ′θ(g, h) (11)

Finally, the symplectic form for general relativity is

ΩΣ =

∫
Σ

ω (12)

where Σ is any partial Cauchy surface in the spacetime. In the language of the

canonical theory, ΩΣ would be ∫
Σ

∑
i

δpi ∧ δqi. (13)

One property that ω has is that if the background metric gab obeys the Einstein

equation and both hab and h′ab obey the linearised Einstein equations, then ω is

closed. Thus ΩΣ is constant under variations of Σ as long as the boundaries of Σ

are fixed.

In general relativity, the symmetry group is the group of diffeomorphisms. An

infinitesimal coordinate transformation is specified by a vector field ζa. This induces

a variation in any tensor field given by the Lie derivative of that field. Thus, for

example, the variation of the metric is given by

δgab = Lζgab = gab +∇aζb +∇bζa. (14)

The bulk term in the variation of the action δI is invariant under such a transforma-

tion but the boundary term is not. The infinitesimal co-ordinate transformations

obey an algebra whose composition law is

LζLη − LηLζ = L[ζ,η] (15)
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where ζ and η are two (smooth) vector fields and

[ζ, η] = Lζη = −Lηζ (16)

Suppose now that in Ω one makes h′ab a gauge transformation given by the vector

field ζ. Then Ω can be written as a boundary integral. Explicitly,

Qζ =
1

16π

∫
∂Σ

Fab dS
ab (17)

with

Fab = −2ζ[a∇b]h+ 2ζ[a∇chb]c − 2ζc∇[ahb]c − h∇[aζb] + 2hc[a∇cζb]. (18)

Let ∂Σ is a closed 2-surface S, for example the celestial sphere or a black hole event

horizon. One would like to interpret Qζ as the variation in the Noether charge

conjugate to ζ that is enclosed in the interior of S as one moves between the metric

gab and gab + hab. There is a complication with this idea because in such a change,

there might be a flux of charge crossing S. To take account of this possibility,

one needs to examine Qζ and identify such terms and subtract them out. In more

mathematical language, one we want Qζ to be a function of state. As such it must

be a 1-form on the infinite-dimensional phase space of the theory. This 1-form needs

to be exact so that if one goes along a path Γ between gab and gab + hab, then Qζ
is independent of the path Γ, and therefore dependent only the end-points of that

path. The definition on Qζ thus needs to be modified by the ddition of a suitable

counterterm Qζ → Qζ +Qctζ . Finding Qctζ needs to be done on a case by case basis

as has been elegantly explained in detail by Wald and Zoupas.26

In the case that ζ were a time translation, then Qζ would be the quasi-local

mass enclosed in S.28 If it were a spatial translation then the momentum. If ζ

were a Killing vector, then Qζ would be the same as the Komar integral.29 If ζ

were a supertranslation or super-rotation at null infinity, then Qζ would be the

corresponding supertranslation or super-rotation charge. Equally, one can define

charges on the black hole horizon and these are the soft charges or soft black hole

hair.30

Diffeomorphism invariance of general relativity means that the charges Qζ lie in

some representation of group of coordinate transformations. Thus

δζQη − δηQζ = Q[ζ,η] (19)

Were this relation not to hold, general coordinate invariance would be violated, in

gross contradiction to our expectations of what should be true in physics. However,

what we find is that this relationship does not hold for charges on black hole event

horizons. Instead, we find

δζQη − δηQζ = Q[ζ,η] +K(ζ, η) (20)

where K(ζ, η) is a central extension of this algebra.31 We will now explore a par-

ticular example and move on to its interpretation.
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We start from the Kerr metric in Boyer-Lindquist coordinates.

ds2 = ρ2(
dr2

Δ
+ dθ2) + (r2 + a2) sin2 θdφ2 − dt2 +

2Mr

ρ2
(a sin2 θdφ− dt)2 (21)

where

Δ = r2 − 2Mr + a2 (22)

and

ρ2 = r2 + a2 cos2 θ. (23)

M is the mass of the black hole and J = Ma is its angular momentum. Δ = 0

at r± with r+ being the location of the outer horizon, r− the location of the inner

horizon and

r± = M ±
√
M2 − a2 (24)

Now we will define “conformal” coordinates32 and assume that the black hole is

not extreme so that m2 > a2.

w+ =

√
r − r+
r − r− e2πTRφ (25)

w− =

√
r − r+
r − r− e2πTLφ−t/2M (26)

y =

√
r+ − r−
r − r− eπ(TL+TR)φ−t/4M (27)

where

TL =
r+ + r−

4πa
and TR =

r+ − r−
4πa

(28)

The future outer horizon is w− = 0 and the past outer horizon is w+ = 0. The

azimuthal coordinate φ is identified with period 2π and this induces an identification

on w+, w− and y as

w+ → e4π
2TRw+, w− → e4π

2ILw−, y → e2π
2(TL+TR)y. (29)

The line element close to the horizon bifurcation surface w+ = w− = 0 is33

ds2 =
4ρ2+
y2

dw+dw− +
16M2a2 sin2 θ

ρ2+y
2

dy2 + ρ2+dθ
2 +O(w+, w−) (30)

where ρ2+ = r2+ +a2 cos2 θ. If one looks at the w+, w−, y− plane by setting θ to be a

constant, then this line element is that of AdS3/Γ with Γ being some discrete group.

So close to the horizon bifurcation surface, the geometry of spacetime is some kind

of warped product of the line segment θ ∈ [0, π] and a deformed portion of three-

dimensional anti-de Sitter space. The classic work of Brown and Henneaux31 shows
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that in spacetimes that are asymptotic to anti-de Sitter spacetime, the diffeomor-

phism algebra has anomalies. One might therefore suspect that something similar

happens in the case of the Kerr black hole.

Consider the diffeomorphism given by the vector field ζn

ζn = εn(w+)∂+ +
1

2
ε′(w+)y∂y (31)

with

εn(w+) = 2πTR(w+)
(1+ in

2πTR
)

(32)

and n being any integer. It should be noted that under the identifications of either

w+ → w+e4π
2TR or y → ye2π

2(TL+TR) that ζn is invariant. This vector field is

well-defined on the future horizon. These vector fields obey the Witt (or centerless

Virasoro) algebra with the commutator

[ζn, ζm] = i(m− n)ζn+m (33)

Similarly, one can find a second vector field ζ̃n given by

ζ̃n = ε̃n(w−)∂− + 1
2 ε̃

′(w−)y∂y (34)

and ε̃ being given

ε̃n(w−) = 2πTL(w−)
(1+ in

2πTL
)

(35)

again with n being any integer. This vector field is well-defined on the past horizon.

Again, it is invariant under the identifications w− → w−e4π
2TL or y → ye2π

2(TL+TR).

It too obeys the Virasoro algebra

[ζ̃n, ζ̃m] = i(m− n)ζ̃n+m. (36)

Both of these vector fields are well-defined on the bifurcation surface and commute

with each other there

[ζn, ζ̃m] = 0. (37)

These vector fields can be used to generate charges on the bifurcation surface.

To do this we need to introduce an appropriate counterterm. This is given by

− 1

8π

∫
dSab ∇a(ζchdb)Ncd (38)

where Nab are the components of the volume form on the normal bundle to the

horizon. There is a precisely similar expression for the fields ζ̃n. One then finds

that the charges on the bifurcation surface obey the algebra

[Qn, Qm] = i(n−m)Qn+m + in3Jδn,−m (39)

for the right-handed algebra and

[Q̃n, Q̃m] = i(n−m)Q̃n+m + in3Jδn,−m (40)
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for the left-handed algebra. Finally, the left and right algebras commute with each

other

[Qn, Q̃m] = 0. (41)

In both cases, the central terms shown here correspond to the conventionally nor-

malised Virasoro algebra with central charges given by cL = cR = 12J . Thus the

diffeomorphism algebra has an anomaly.

We postulate that this anomaly is cancelled by holographic degrees of freedom on

the horizon expressed in terms of a two-dimensional conformal field theory. Consider

for a moment the expressions for the absorption probabilities for particles incident

on a Kerr black hole. Suppose we look at a particle with energy δE and angular

momentum parallel to the black hole spin δJ . Then we observe that the absorption

probability obtains a suggestive factor of

|Γ(1 +
iωL

2πTL
)|2 |Γ(1 +

iωR
2πTR

)|2 (42)

where

ωL =
2M3

J
δE ωR =

2M3

J
δE − δJ. (43)

This is precisely what is to be expected for a conformal field theory where the

left-handed degrees of freedom are at a temperature of TL and the right-handed

degrees of freedom are at a temperature of TR and one is asking for the absorption

probability for particles of energy ωL in the left-handed sector and energy ωR in

the right-handed sector. We take it that there are no coincidences in nature and

therefore we really can attribute our observations to the existence of holographic

degrees of freedom on the horizon described by a two-dimensional conformal field

theory.

A general property of conformal field theories, provided the central charge is

sufficiently large, was first described by Cardy.34 The entropy for a system with

central charges cL and cR for the two sectors at temperatures TL and TR is given

by

S =
π2

3
(cLTL + cRTR). (44)

Plugging in our expressions for cL, cR, Tl and TR gives

S =
1

4
A. (45)

It is hard to believe that this is a coincidence. It appears therefore we have identified

the degrees of freedom responsible for black hole entropy.33

Subsequent to the conference, it has been shown that the same methods repro-

duce the entropy for the Kerr-Newman family of black holes35 and for uncharged

black holes in anti-de Sitter spacetime.36
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A key question is to ask how this affects our view of the information paradox.

We have shown how to account for black hole entropy in terms of a holographic two-

dimensional conformal field theory living on the black hole horizon. It is however far

from clear that the states of such a theory can record all of the quantum mechanical

information that is pertinent to black hole formation from ordinary matter. We are

therefore left with a collection of problems that need exploration and solution before

there can be any claim of solving the information paradox. We conclude this essay

with a summary of outstanding issues. Does the horizon conformal field theory

contain a complete description of the black hole formation process? How does the

Hawking radiation encode this information so as to preserve unitary time evolution?

Why is it that the black hole entropy is independent of the spectrum of elementary

particles when the number of ways a black hole can be formed is highly dependent

on that spectrum. For example, if there were a million different species of electron,

the number of ways a black hole could form would be vastly higher than if there a

single type of electron. Nevertheless, the Hawking entropy would be same.

Suppose a particle falls into a black hole. Classically, a co-moviong observer sees

it pass through the horizon without anything obvious happening. In the case of a

Schwarzschild black hole, it will reach the singularity in a finite amount of proper

time. The singularity is a boundary of spacetime and so we believe the particle

to have disappeared. In the case of rotating black holes, it seems plausible that it

will also inevitably reach a singularity as the inner horizon of a Kerr black hole is

unstable and is presumed to become singular once any energy-momentum arrives

there. However, if the particle is to leave an imprint on the state of the horizon

conformal field theory, it appears to have violated the quantum no-cloning theorem.

Roughly speaking, the no-cloning theorem says that you cannot duplicate the state

of a particle by unitary time evolution. A number of technical assumptions go into

this amongst which is a notion of locality, a dubious assumption in the case of

gravitation.

Then there are some more challenging issues. What happens to the singularity?

It is a classical concept and shows that classical general relativity is an incomplete

theory. What happens quantum mechanically? There is no satisfactory answer

at present. What are the final stages of black hole evaporation? The picture

presented seems to suggest that all symmetries in nature are gauge symmetries and

not global symmetries. For example in the standard model, baryon number is a

global symmetry, but it is hard to see how this could be encoded in the picture

presented here. There is one ambitious theory that predicts that all symmetries are

gauge symmetries and that is string theory. Although string theory is successful in

resolving the divergence problems of quantum gravity, and potentially geometrizing

the spectrum of elementary particles, it is far from being a theory of spacetime.

Hopefully, the picture here will provide a guide to the true nature of quantum

gravity, but there are immense and exciting challenges to the construction of such

a theory. Eventually, we hope that the construction of such a theory will lead to

deep insights into the nature of our Universe.
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