OPEN ACCESS

10P Publishing European Journal of Physics

Eur. J. Phys. 45 (2024) 025302 (20pp) https://doi.org/10.1088,/1361-6404 /ad1399

An educational model of the Deutsch
algorithm for secondary school

Claudio Sutrini' ®, Giacomo Zuccarini' ©,
Massimiliano Malgieri1 , Maria Bondani>>® and
Chiara Macchiavello'

! Department of Physics, University of Pavia, -27100 Pavia, Italy

2 Department of Science and High Technology—University of Insubria, I-20100
Como, Italy

3 Institute for Photonics and Nanotechnology—CNR-IEN, 1-22100 Como, Italy

E-mail: massimiliano.malgieri @unipv.it

Received 27 July 2023, revised 19 October 2023
Accepted for publication 8 December 2023 @
Published 29 December 2023

CrossMark
Abstract
In this paper, we present the outline of an educational path to introduce a
crucial historical turnpoint of quantum information research—namely
the Deutsch algorithm—to secondary school students. We discuss a basic
elementarization strategy allowing students to single out and focus on the
individual features of quantum mechanics involved in the different steps of the
algorithm information processing phase, which can potentially be useful for
the educational reconstruction of other algorithms and protocols. The sequence
includes the experimental realization on the optical bench of an analogue of
the Deutsch algorithm, working with classical coherent light. The educational
path was tested both in curricular and out-of-school settings, and preliminary
results will be discussed.
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1. Introduction

Considerable interest has arisen in the past few years on making the topics related to modern
quantum technologies accessible to teachers and educators at all levels. Far reaching insti-
tutional projects, such as the Quantum Flagship [1] in the EU; the National Quantum
Initiative [2] in the US; the National Quantum Technologies Programme [3] in the UK, while
centered on fundamental research, have also sustained the expansion and improvement of
education and professional training on quantum technologies. In recent works, several authors
have proposed courses, tools and strategies in an effort to advance the scope of education to
quantum mechanics (QM) in secondary school to include topics related to the ‘second
quantum revolution’ [4-6]. In this article, we discuss an educational model of a basic version
of the Deutsch algorithm using only two qubits. The model consists essentially of a modified
Mach—Zehnder interferometer, suitable to be discussed with secondary school students. We
also present preliminary results from the first experimentations.

1.1. The Deutsch algorithm

The Deutsch algorithm is a special case of the Deutsch—Jozsa algorithm, formulated in 1992
[7] and perfectioned in 1998 [8]. The goal of the Deutsch-Jozsa algorithm is to determine
whether an unknown but constrained function f: {0,1}" — {0,1} is constant (its output value
is always O or always 1, for all input values) or balanced (its output is O in exactly half the
possible cases, and 1 otherwise). The function f is a priori constrained to be either constant
or balanced. The Deutsch algorithm is the special case in which n = I, which was treated by
David Deutsch already in 1985.

For a classical algorithm, answering the above problem with certainty requires 2"~ ! + 1
queries to the function f. The quantum Deutsch—Jozsa algorithm, however, can find deter-
ministically the correct answer with a single evaluation of f [8]. The Deutsch—Jozsa algo-
rithm has a high educational value for its simplicity; furthermore, it allows to highlight
elementary features of the process of elaboration of information in quantum computation
which, we believe, can be transposed with some generality to other algorithms and protocols,
and provide a significative scaffolding element for students’ understanding of quantum
computation. In the following, we restrict ourselves to discussion of the Deutsch algorithm.

In order to make the following exposition clearer, it may be useful to first recapitulate
some terminology regarding—qubits. A qubit is a basic unit of quantum information and can
be realized using any two-state quantum system, whose eigenstates are conventionally labeled
as| 0) and | 1). The most general state of a qubitis| ) = a1 0) + F1 1) where « and (3 are
complex coefficients constrained by o> + 131> = 1. It may be useful to express the complex
coefficients v and 3 in terms of modulus and phase, i.e. o« = ae'¢ and 3 = be'® where a and b
are real positive numbers. Then one can rewrite the most general state of a qubit as
| p>=e¥(al0>+be'? | 1>) with ¢ = § — ¢ and a® + b = 1. In this representation, the
angle ¢ may be called the global phase of the state, and it is often ignored since it has no
physical meaning, while ¢ is the relative phase between the two components of the state,
which plays a crucial role in quantum phenomena. As noted in section 3, in our sequence with
students, we restrict to real values of a and (3, so that the relative phase ¢ can only take the
values O or 7.

The circuital representation of Deutsch’s algorithm is reported in figure 1. The algorithm
uses two qubits (also called registersd) initialized in the state l1)g) = 10)11). In the initial step

* In older literature, the two registers were also often called target and ancilla, although this nomenclature now
appears to be much less widely used.
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Figure 1. Quantum circuit of Deutsch’s algorithm. Squares labelled with H represent
Hadamard gates, while Oy is the ‘oracle’ for the unknown function f (see text). The
symbol & represents sum modulo 2. The square with the pointer symbol represents the
measurement of the qubit value.

Table 1. Truth table for the sum modulo 2 operation. Since no carry bit is considered,
the table is equivalent to the one for the XOR gate.

a b a®b
0 0 0
0 1 1
1 0 1
1 1 0

of the algorithm, both qubits go through Hadamard gates, defined by their action on basis

states:

10)+I1) 10)—I1)
V2 V2o

In other words, in the usual vector representation in which | 0) = ((1)), 1) = (?), the

HI0) = HIl) = (1)

Hadamard gate corresponds to the matrix L(1 1 ) As a consequence, the composite

2\l —1
system state at the output of the Hadamard gates becomes

L 4y) = %(|0>+|1>)(|0>—|1>) = %(|o>|o> —10)I1) + 11)I0) — I1)I1)).  (2)

This step can be considered as an instance of a first general characteristic of quantum
computation processes: we call it the enablement of parallelism, through the construction of
an equal-weight superposition of basis states.

The second stage of the algorithm consists in applying the oracle function, which is
defined by the following operation on a generic state lx) ly): O¢lx) ly) = Ix)ly @ f(x)), where
the symbol & represents binary sum, which, in the present context, is equivalent to the XOR
gate since there is no carry bit (see table 1)

The action of the oracle transforms the state | ¢/1) in equation (2) to

|¢2>:é[| 0>10@ f(O)>—11 & £FO)>) +11>010DfM>—11 @ F(O].  (QB)

Now, since f(x) can give only the values zero or one, the state of the second register
remains unchanged except for a possible minus sign depending on the value of f(x), which

3
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can also be seen as a relative phase between the two components of the first register.
For example if f(0) = 0, f(1) = 1 then | 1/12>=%[I 0>10>=11>) +11>(11>=10>)]=

% (10>—11>)(1 0>— 1 1>). Considering all cases, equation (3) can be rewritten as

I ¢2>:% (=D O10>+ (=)D 1>)(10>—11>). 4)

In this step we can see a second general characteristic of quantum algorithms which may be
important in their educational presentation: the exploiting of the multiplicative structure of
compound quantum states, which allows phases gained by one qubit to be considered
indifferently as attached to a different qubit in a product state.

After this stage in the algorithm, the second register is no longer used, while the first one
passes through a second Hadamard gate. By inspection of equation (4), one can see that the
gate transforms the register value to | 0) (up to a global phase) if the function f is constant, to
I 1) (up to a global phase) if it is balanced. More formally, the state | ¢/3) after the Hadamard
gate may be written as

Liby) = % (=D/O1F ) & FHNA0)—I 1)), )

And this can be regarded as the third important characteristic appearing in the Deutsch
algorithm: the activation of interference to suppress the state components for the measured
register which correspond to an incorrect answer. The suppression is not complete for all
algorithms, which means not all quantum algorithms provide a deterministically correct result
in the first run (e.g. Shor’s algorithm).

2. Educational reconstruction of the Deutsch algorithm

2.1. Related work

In this section, we offer an overview of some research work which, in different ways, is
related to our own. Concerning the educational reconstructions of quantum algorithms,
Satanassi et al [5] identified a basic design principle of their work in the reconceptualization
of the three main phases of foundational experiments (preparation of a state—transformation
of the state—measurement) in terms of computation (input information—processing—output
information). While such informational interpretation of quantum processes is educationally
productive, we felt that more work was needed in order to clarify the structure of quantum
algorithms. In particular, we studied whether the central phase—information processing—
could be further subdivided into a sequence of elementary operations to help students build a
clear picture of quantum algorithms and their operational advantages.

A possible realization of the Deutsch algorithm with classical light was proposed by
Vianna et al [9] and in a similar fashion by Puentes er al [10] who also implemented the
Grover algorithm. The basic idea is to represent classically the quantum amplitude of a
n-qubit state using the complex amplitude of a laser beam over each one of 2" localized areas
of the optical scene (the portion of space illuminated by the beam). A modulation, in both
amplitude and phase, of the beam allows to ‘prepare’ the initial state, and then transforma-
tions (logic gates) are performed by means of suitable lens systems. While this kind of
realization has educational advantages (for example, it makes crystal clear that an exponential
scaling of resources is necessary to classically simulate a quantum computer) it also requires
the quite abstract capability to reason directly in terms of transformations in the full Hilbert
space of a quantum system. Our approach stems instead from the idea of using primarily the

4
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conceptual resources acquired in the context of a basic introduction to quantum physics using
a two-state polarization approach for moving the first steps into quantum computation.
Furthermore, we believe that representing qubits as separate degrees of freedom, each one
with two clearly identifiable alternatives, can be advantageous for students’ understanding in
their initial stages of learning.

While the ideal experimental design discussed in this article is fully quantum, including
single photon sources and counters, in the lab it has been presented to students by using
coherent light from a laser, the intensity of which is interpreted in terms of large numbers of
photons (superpositions of Fock states are not discussed). In an undergraduate experiment the
laser and CCD cameras could be replaced by single photon devices, leaving the optical bench
unaltered. In this sense, the experimental part of our work falls within a vast research tradition
of using interferometry experiments in education to highlight some aspects of QM, both in
high school [11] and university instruction. In the latter setting, research is especially
abundant, as can be seen from the comprehensive review by Galvez [12]: for example, the
basic setup of the Mach—Zehnder interferometer alone has been used to demonstrate single
photon [13] and two photon [14] interference, the quantum eraser [15, 16] also with nonlocal
control of the erasure efficiency by manipulation of the polarization state of an entangled
secondary photon [17], the Hanbury—Brown—Twiss test [16].

The basic idea of using a modified Mach—Zehnder interferometer to represent the Deutsch
algorithm is also not new, as it was adopted in [8]. However, in [8], which is not an
educational paper but a research paper, the correspondence between the quantum circuit
represented in figure 1 and the optical device is not trivial, as only one qubit is explicitly
coded in the analysis of Mach—Zehnder. Our work was aimed at maximizing the educational
effectiveness of the model, by obtaining a one-to-one correspondence between elements of
the quantum circuit and elements of the optical device. For representing two different qubits,
we used a mixed coding, in which one register corresponds to a polarization state, and the
second to which-path information, in a similar way to what is done in [18], although with a
different coding for spatial states which will be discussed in section 2.5. In the educational
literature a similar approach, limited to the analysis of the Mach—Zehnder system, is adopted
in [19].

2.2. Prerequisites and preliminaries

Complex numbers are not used in the sequence, since the relevant phase shifts introduced are
all of +7 and correspond to the application of a minus sign to either one or both the
components of a superposition state. Thus, mathematical prerequisites are limited to basic
algebra, with some linear algebra (e.g. matrices and vectors) being desirable but not strictly
required, and classical Boolean logic, including the truth tables of the most important logic
gates. Concerning this last point, formal instruction in Italian schools has a wide range of
variability, thus a 1-2h introduction/refresh on the topic (not discussed in this paper) was
necessary.

As it will be seen in section 4, the course was tested with at least acceptable educational
results with students with no background in electromagnetism or light polarization, and only
assuming knowledge of basic wave phenomena. However, the learning path here described is
preceded by an introduction lasting about 5-6 h on basic quantum theory based on a two-state
approach, with a structure similar to the one of [20]. Such introduction will not be discussed
in this article.
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2.3. Teaching methods

Excepting the laboratory session, which will be discussed in section 4, instruction proceeds
through a variety of activities, including lectures based on slides, but also inquiry-based and
modelling tasks described in two-three page worksheets. Worksheets are to be completed by
students step by step in suitable short pauses of the lesson flow, and are designed to
emphasize written explanations of student reasoning [20].

The main teaching blocks leading to the introduction of the Deutsch algorithm are: the
introduction of polarization encoding (3 h); the introduction to spatial mode encoding (2 h);
composite two-qubit gates (1 h), and the Deutsch algorithm itself (2 h). These blocks will be
discussed in the following.

2.4. Polarization encoding of qubits

The fundamental tools needed to build polarization-based logic gates by means of materials
already familiar from the introductory part of the course (i.e. birefringent crystals) are phase
shifting materials. With students we initially introduce the electromagnetic description of light
in an elementary form. Since the direction of the linear polarization of light is identified by the
electric field vector, we focus only on the mathematical expression for such quantity. We
recall the concepts of global phase, of phase difference and its role in wave interference.
Finally we present students with linear isotropic dielectrics, i.e. for our purpose, phase shifting
materials that do not change the direction of polarization. Since in the course we only work
with real numbers, the basic phase shifting device will be a sheet of refractive material, whose
refractive index and thickness are designed to obtain, for waves of the chosen wavelength, a
phase shift of 7.

In order to make precise the correspondence between the representations of polarization
states in terms of the inclination of the plane of oscillation of the E field (as commonly given
in secondary school textbooks) and in terms of abstract state vectors, we first express the
electric field vector as a polarization vector. Since we are interested only in the direction of
linear polarization and the relative phase of the orthogonal components of the wave, we use a
representation in terms of Jones vectors [21], i.e. we omit the spatiotemporal elements from
the cosine, normalize the amplitude of the vector and set the global phase to zero. For a field
oscillating in an arbitrary direction, the result is a normalized Jones vector:

(ai + by), with a? + b2 = 1.

Since we restrict us to linear polarization, the coefficients of the Jones vector are real; if the
value of only one coefficient is negative, this corresponds to a phase difference of 7 between
the two components. The mathematical expression is identical to that of a generic quantum
state of linear polarization of a photon.

At this point, all the conceptual instruments required to build logic gates acting on one
polarization-encoded qubit are available. The ideal physical implementation of the gates
introduced in the next step is almost immediate. By encoding the horizontal state of polar-
ization of a photon as | 0) and the vertical one as| 1), we need only a system composed of two
calcite analyzers (this system, without the phase shifter, was already considered in the
introductory sequence on basic quantum theory) with a phase shifter in the extraordinary ray
to design a Z logic gate, i.e. a symmetry around the horizontal axis (figure 2).

Actually, this setup can be used for implementing an infinite number of gates. As a matter
of fact, by rotating a birefringent crystal around its ordinary axis, we obtain a beam separation
on different couples of perpendicular directions of polarization. It follows that every gate
which can be described as an axial symmetry of the state plane is realizable in this way

6
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Z GATE
|0) = [0°) Calcite Sample Reversed
[1) = |90°) analyzer (Ap = m) calcite
analyzer
¥:) = al0) + b|1) M ) = al0) - b|1)
0 7 0° ~a

Figure 2. Idealized design of a Z gate on a polarization-encoded qubit.

Calcite Sample Reversed
analyzer (Ap = m) calcite
analyzer
g + 90°

Figure 3. Generic gate describable as an axial symmetry on the state plane.

(figure 3). In particular, if the ordinary axis is associated with a polarization angle 6 = 45°, we
obtain a X (i.e. NOT) gate, if § = 22,5°, a Hadamard gate.

Next, we present students with half-wave plates, a more realistic device producing the
same transformation which can also be interpreted as an axial symmetry around the slow axis.
In figure 4 we summarize the quantum logic gates used in the sequence, with the corresp-
onding representation provided to students in terms of axial symmetries in polarization space.

Polarization measurements are performed by using an additional tool, that is already
available to students since the beginning of the introductory unit on QM: the calcite crystal,
followed by two photodetectors.

After this sequence, students have all they need to implement logic circuits with one
polarization-encoded qubit. For maximizing educational effectiveness, we introduce a color
code (figure 5) to identify visual elements pertaining to the polarization encoding, which are
represented in red. For instance, half-wave plates are red rectangles with the caption ‘A/2’
and the angle of the slow axis (i.e. the symmetry axis which identifies the logic gate). The
result is the possibility to translate a logical scheme to an optical-bench scheme as exem-
plified in figure 5. Students are asked to analyze and represent other circuits by using the same
visual code both in the classroom and for homework.

2.5. Spatial mode encoding of qubits

The basic device we need to prepare a qubit and act as logic gate in a spatial mode encoding is
a non-polarizing beam splitter, which we present in an idealized simple form. We limit
ourselves to describe the construction of a cubic beam splitter made from two triangular glass

7
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GEOMETRICAL INTERPRETATION: CIRCUIT
LOGIE GATE AXIAL SYMMETRY TRUTHTABLE e oRESENTATION
Yoo gt el 10) |0y

] IDENTITY % % = =
N s L
iy A1y

X wor s a=a4 [ [ X]
i f 1) 10) L
' "h‘ e X |
\\--’, \_." 10) ;_Ewm_un)w I_I
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. f . P . 1) -1

AR SETTNT ol IR
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Figure 4. Quantum logic gates used in the sequence. For each gate, we give the
graphical representation of the transformation realized in polarization space, with the
angle of the symmetry axis «; the corresponding truth table and circuit representation.

0} H X Z H A

|0) |0) + |1) [0} + 1) [0} —[1) 1) 1
V2 VZ VZ
Icon code
line of propagation = Optical circuit
H = 1
X - —-11)
o : )
Z = EZF [ j0)+ 11 Bl 1oy 1y B joy - jny Bl oy
v V2 V2 V2
polarizing .

beam-splitter

photon counter

» D10

Figure 5. Above: an example of simple logic circuit proposed to students. Below: ideal
realization of the circuit on an optical bench.

prisms (index of refraction n) with an interposed layer of semitransparent dielectric material
and glued together with a special cement also semitransparent. The refraction index of the
cement is n;<n, and the refraction index of the dielectric is n, > n. The laws of classical
optics prescribe a phase shift of 7 for the reflection of beams that travel from glass onto the

8
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Classical Description

1 1
V2 V2
0 Py 0
V2 V2
\ 0 1
0 (@)
Quantum Description
[0)prl1)pn + 1 Dprl0pn [0%pnlL}pn _ [1prlOlpn
vz vz somn| V2 vz
10} (e [1)pn
Il)ph |0)pk (h)
0, 1) 0 _ 1)
vZ V2 - 2 V2
Ag =0 1)
10)
) (c)
Vertical

Figure 6. Analogy between classical and quantum descriptions of a beam splitter. (a)
Classical description as presented to students. The versors 0 and I can be seen as
labeling different field directions, orthogonal to the direction of wave propagation. (b)
Quantum description in terms of photon numbers at the two inputs and outputs (not
presented to students). (c) Simplified quantum description in which state labels refer to
different possible paths available to one photon. For identifying visual elements
pertaining to the spatial mode coding, we represent them in blue. In the representation
of the beam splitter, the dielectric layer is represented by a solid line, while the cement
layer is represented by a blurred line.

dielectric layer. Instead, the reflection of beams traveling from glass onto the cement layer
does not produce a phase shift.’ The encoding of the paths may be performed so that those
two corresponding to a reflection without phase shift are labeled as 0 and the other two as 1.
The beam splitter can be rotated to invert the position of the two prisms and, as a result, the
encoding of the paths (figure 6). This flexibility will allow us to implement various logic
circuits with generalized Mach—Zehnder setups without resorting to waveguides, only by
choosing the orientation of the beam splitters.

The analysis of the action of a beam splitter on a classical light beam starts with a 50:50
device (half of the light is transmitted, half reflected). Since we are interested only in the
fraction of amplitude of the two outgoing beams and in their relative phases, we simplify the
expression of the field vector in a similar way as in the previous unit and label the versor of

5 This is one possible realization of a lossless beam splitter, the general constraints between the phases of the
transmission and reflection coefficients for such device are described in [22]

9
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|0) H

H
1
N

! // 10) '0
1

0, 11
V2 V2

|0)

Figure 7. Above. An example of logic circuit. Below: its ideal implementation using
spatial mode encoding.

the field as 0 or 1 according to the label of the path taken by the beam. Since its energy is
equally divided between the two paths and corresponds to the square of the amplitude, we
obtain the results shown in figure 6(a). For the quantum description (figure 6(b)), in a rigorous
treatment one should pass through a representation in terms of photon numbers in which the
outputs of the beam splitter with a photon in either input (and the vacuum state on the other) is
expressed as different linear combinations of states with one photon at one output, and no
photon at the other (figure 6(b)). Since these two states, labelled in figure 7 as | 0>yl 1>,
and | 1>, 0>, are orthogonal, they can be relabeled as | 0) and | 1), where the labels may
now be thought as referring to the two different possible paths available to the photon
(figure 6(c)). The more rigorous presentation in figure 6(b) is provided here for clarity, but is
omitted with students, who are directly introduced to the identification of states with different
possible paths (figure 6(c)).

Note that our coding of spatial mode qubits is different from the one adopted for example
in [18], in which the values 0 and 1 are attached to the direction of motion (vertical or
horizontal, in our representation) of the photon or beam, and therefore the joint action of a
pair of mirrors on the two sides of the interferometer, as in the Mach—Zehnder setup, is
equivalent, apart from a phase factor, to the one of a NOT gate. In our case, we preferred to
maintain the identification of quantum states as different possible classical paths, and the
compatibility with the analysis of the Mach—Zehnder performed in [19]. Therefore, in our
coding of the spatial mode in the Mach—Zehnder case, the values O and 1 are attached
respectively to the photon or beam lying in the ‘lower’ or ‘upper’ arm of the interferometer

10
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2-QUBIT H GATE CX GATE

1 [ Vi 1 [

EAPS 2
0

Figure 8. Ideal scheme for the implementation of a two-qubit H gate (left) and a CX
gate (right) with one spatial mode and one polarization-encoded qubit.

(see, as identified for example by drawing a diagonal line passing through the two beam
splitters). Therefore, in our case the joint action of a pair of mirrors in the two branches is
instead trivial, being it represented by an overall phase factor, which in any case we ignore,
although its presence in principle is explained to students (we consider e.g. mirrors followed
by a 7 phase shifter).

In the context of spatial mode encoding, the construction of the qubit is not as immediate
as in the case of polarization. As a matter of fact, identifying physical properties that can
correspond to the states | 0) and | 1) is a necessary but not sufficient condition to encode
information in a qubit. We must be capable of preparing arbitrary superpositions of the basis
states on which devices implementing logic gates can act. The key to the solution is preparing
quantum states by means of a custom-designed beam splitter, with transmission and reflection
coefficients chosen in accordance with the goals of the designer. In this case, the sign of the
superposition can be established in two ways: either by choosing the ingoing path (0 or 1), or
by placing a phase shifter in one outgoing path.

The implementation of the Hadamard gate on a single photon, on the other hand, is
straightforward: it is in fact represented by a 50:50 beam splitter. Other gates may be con-
ceptually more sophisticated, but will not be used for the Deutsch algorithm.

A circuit formed by two H gates and a measurement device corresponds to the basic setup
of a Mach—Zehnder interferometer (figure 7): a source of single photons (omitted in the
figure), two 50:50 beam splitters, two mirrors with no phase shift and photon counters. As for
polarization, students are asked to represent the implementation of single qubit circuits in a
spatial mode encoding. One of these is the basic Mach—Zehnder interferometer setup.

2.6. Two-qubit gates

For the introduction of two-qubit gates, we rely on the conceptual description of spatial and
polarization modes of a photon and of their entanglement, and on their mathematical
representation in terms of product states, which has been discussed in the unit on QM. The
implementation of non-entangling gates on spatial modes and polarization-encoded qubits is
quite straightforward (see figure 8, on the left, for a two-qubit H gate). Entangling gates, such
as CX (controlled NOT), may be more or less easy to implement, depending on which
encoding is used for the control and which for the target. Note that the representation of the
CX gate (figure 8, right) should not be confused with a superficially similar circuital

11
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ICON CODE COLOR CODE DEUTSCH’S ALGORITHM A
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= | H | matusymeols : bl : \.
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8 Lesan 10y[1) implementedfor f(0) =0 ;f(1) =1

Figure 9. Ideal scheme for the implementation of Deutsch’s algorithm using spatial
mode and polarization encoding. In our visual code, elements pertaining to both
encodings are represented in violet.

representation of the same gate in which the two parallel rails represent different qubits. Here
the two rails correspond to different values of the spatial encoded qubit, and both carry
polarization information. Thus the NOT logical operation is only applied to the polarization
attached to the | 1) spatial state, realizing a CNOT gate.

2.7. The Deutsch algorithm

The Deutsch algorithm is presented starting from the definition of a procedure to determine
whether a coin is genuine or defective (or counterfeit). More precisely, a coin is defined as
genuine if it has two different impressions (Heads and Tails) on the two sides, and as
defective otherwise. The teacher supports the discussion by explaining that the procedure
should be thought as follows: I observe the first side and note the image; I turn the coin over
and note the image; if they are different, the coin is genuine; otherwise, it is defective.

After doing so, the teacher introduces a similar problem, shifting the focus from the coin
object to a database containing information about coins. The statement of the problem is as
follows: ‘A mint has a machine that produces coins, with one silver (A-side) and one gold
(B-side )6 face and engraves on each face an impression that can be a head (H) or tails (T).
For each coin, the control software of the machine stores a binary number identifying the
coin, and a pair of letters whose first element expresses the image printed on side A, the
second on side B. If a coin is correctly made, the machine stores a pair of the type (H,T) or
(T,H) at the output; if, on the other hand, there has been some manufacturing defect, a pair of
the type (H,H) or (T,T) is stored. The mint needs to eliminate defective coins and asks a
programmer to create an algorithm that interrogates the available database to recognize the
defective coins that can then be eliminated.’

When translated into the language of Boolean function, the solution to this problem in
classical computation is simply a XOR gate. But clearly, the problem can also be seen as the
issue to determine whether the function f associating each side of a coin to its impression-

6 The purpose of introducing a silver and a gold side was to help students identify and keep separated the different
roles of the domain and image of the function f. However, the fact that coins are considered genuine if the two faces
are engraved with different symbols, but irrespective of which symbol is on which face, might confuse students. We
might revise this presentation in the future, for example by stating that the first side engraved by the machine is
recorded as A, and the second one as B.
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LY

mirror

Figure 10. Experimental apparatus for the optical implementation of the Deutsch
algorithm with classical light. In the labels of the figure, HWP stands for ‘half-wave
plate’, BS for ‘beam splitter’. The correspondence with the ideal scheme depicted in
figure 9 is evident, except for the gray filter which has only the role of attenuating the
light intensity. In order to reproduce the different outcomes of the Deutsch algorithm,
the half-wave plate HWPO is always rotated at 22.5° with respect to horizontal, while
HWP1 and HWP2 are either rotated —45° with respect to horizontal, to produce a null
effect on the | 1) polarization state at the input, or at +45° to produce an X gate. The
presence of both half-wave plates HWP1 and HWP2 in all cases in the optical device,
instead of them being present or absent depending on the oracle setting, of is the only
difference with the diagram of figure 9, and is due to the necessity of maximizing the
coherence of light in the two branches of the interferometer.

value is constant or balanced, i.e. the problem solved by the Deutsch algorithm. Students are
gradually guided to its construction by means of worksheets (see supplemental material) . In
these worksheets, the main elements for a progressive building of understanding of quantum
algorithms are represented by the three processes included in their information processing
phase (the enablement of parallelism, the exploiting of the multiplicative structure, and the
activation of interference). Finally, the worksheet also guides students in the transition from
the logic diagram of the Deutsch algorithm (figure 1) to its optical implementation (figure 9).
More specifically, figure 9 shows the scheme for the implementation of the Deutsch algorithm
with one spatial mode and one polarization-encoded qubit.

3. Experimental realization with classical light

The latest version of the course tested includes a three-hour session in the laboratory. Students
perform experiments addressed in the lectures (including for example an experimental test of
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Figure 11. Outcomes at the two detectors (cameras). Camera 1, on the left, should
display the analogue of a logical 1, while camera 2, on the right, should display the
analogue of a logical 0.

Malus’s law and of the behavior of a beam splitter with laser light) and are then introduced to
the ‘analogue’ of the Deutsch algorithm by working with classical coherent light from a laser
(figure 10). This is possible thanks to the mathematical correspondence between the classical
description of polarization and which path information and the quantum description of the
same aspects for a single photon [23]. Since the educational path is an introduction to
quantum computing, students are guided to interpret different intensities measured by the
detectors in terms of probability of a photon to be collected by one or the other detector.
However, they are also warned that the idea of building analogues of quantum algorithms and
protocols with classical light becomes increasingly unpractical for higher numbers of qubits,
due to the necessity of exponential scaling of resources [23].

The outcome of the experiment for the same configuration of the oracle depicted in
figure 10 is shown in figure 11. As can be seen, the result is convincing enough but not
perfect: the light intensity in Camera 2, which corresponds to the leftmost detector in
figure 10, is much lower than in Camera 1 but not zero. This is due mostly to beam splitter
non-ideality, especially to the fact that reflection and transmission coefficients are not inde-
pendent of the input polarization state as in the ideal case. However, the output can be easily
transformed into the expected dichotomous result by setting a threshold on the detectors’
outputs. The simplest way is to set the threshold to the mean value between the low
and high intensity values, assigning zero and one to the lowest and highest values,
respectively.

4. Results

Our research on teaching—learning quantum computation and information topics in secondary
school proceeded gradually by running, in parallel, courses for teacher professional devel-
opment (see for example [24]) and experimentations with students. The latter included both
trials held in students’ classroom, and in out-of-school settings such as a vocational summer
school for students bound to start the final year of secondary school, which was held at our
department in Summer 2022. Some of the experimentations, especially those run by teachers
formed in our courses, were partial and only touched some selected topics. Here we discuss
some of the data from two experimentations, both involving an active role of the researchers.

14
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The first one was conducted with 16 students of a final year of secondary school (18-19 years
old) in spring 2022; the classroom teacher was the main instructor while one researcher was
present and acted as supporting tutor and aid. The second one, held in summer 2022, involved
14 self-selected students bound to start the final year of secondary school (17-18 years old)
and was directly guided by the researchers. Both groups come from science-intensive schools,
whose curriculum includes 2-3 h of physics and 4-5 h of mathematics per week, starting from
grade 9. Among the vast amount of data available for these two trials, we choose to examine
the worksheet on the Deutsch algorithm, which was filled in by students during the course,
and is available as supplemental material. The raw data set for this study is available online
[24]. When comparing the two samples, it should be taken into account that, while the
summer school sample is self-selected for interest in physics, it is also on average one year
younger than the curricular one, and had a steeper learning curve in the first part of the
sequence, due to starting with no background on electromagnetism or light polarization,
which was instead available to the curricular sample. Another difference between the two
samples is the three hours of experimental work described in section 4 were performed only
by the summer school sample.

4.1. Questions related to quantum parallelism

The first group of questions (A1-A3) serves to introduce the concept of quantum parallelism,
starting with the single qubit case. Students need to understand that the Hadamard gate allows
us to encode both basis states in a single qubit by means of superposition, and then that a gate
can act in parallel over both such basis states thanks to its linearity property.

Question A1: In relation to the coin problem: which side(s) of the coin is/are encoded in the
output state of the first Hadamard? (Remember that according to the database encoding
silver face = 0; gold face = 1).

In the curricular sample, 15 students answered correctly that information on both sides is
encoded in the output states, and 7 made explicit reference to quantum superposition.
However, a possible confusion/identification between the coefficients of a superposition and
probability outcomes appears, since 7 students only refer to the fact that a measurement
would give the two outcomes with equal probability. In the summer school sample, 13 out of
14 students answered correctly, and again 7 referred explicitly to the state being one of
superposition, the others mentioned probability of outcomes.

Question A2: Discuss whether there is an advantage with respect to the classical case
related to the use of the H gate. If so, in what does it consist? If not, why?

In the curricular sample, 10 out of 26 students answered as expected that there is an advantage
in the quantum coding and some of them related it to the enabling of parallelism. However,
the problem highlighted for the previous question re-emerged as three students answered that
there is no advantage since there is 50% of probability of obtaining either outcome. In the
summer school sample, 11 out of 14 students answered correctly, and the incorrect answers
displayed different patterns: two were blank, one mentioned probabilities of outcomes, and
one probably misunderstood the question.
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Question A3:  What property of the operators ensures that the quantum advantage of being
able to act simultaneously on both elements of the computational basis can actually be
exploited? Justify your answer.

For the curricular sample, we have not analysed the answers to this item since the teacher
mistakenly anticipated the answer it during the explanation. In the summer school sample, 11
out of 14 students correctly answered appealing to linearity of operators.

4.2. Questions related to the oracle and the role of product states

The second group of questions (B1-B4) is related to what is, and what is not, the role of the
oracle in the Deutsch algorithm. Students must recognize the action of the operator U as
CNOT in the particular case examined (B1) and understand the role of the (tensor) product
structure of compound quantum systems, which allows the transfer of information on the
image of the binary function from the ancilla to the target in terms of a plus or minus sign
(B2). They again are led to recognize quantum parallelism, this time at the output of the oracle
(B3) but also to reflect on the fact that parallelism, alone, is not sufficient to produce the
quantum advantage (B4). One crucial element is still missing to retrieve information encoded
in the sign: interference.

Question B1: The operator U is a logic gate with two inputs and two outputs. Write down
the truth table (the behaviour of the operator on [00), [01), /10), /11)) of the logic gate in the
case fl0) = 0 N fll) = 1. Are there any logic gates of your knowledge that operate in this
way? If so, please specify which ones. If not, explain why.

In the curricular sample, 13/16 students completed the table correctly and 11/16 recognized
the CNOT gate which had previously been discussed during the course. In the summer school
sample, 13/14 students correctly filled the truth table, and 7/14 identified the CNOT gate.

Question B2: The minus sign can be transferred from the ancilla to the target. What feature
of quantum physical systems is exploited?

In the curricular sample, only four students recognized the role of the (tensor) product
structure of compound quantum systems, while nine of them erroneously referred to prop-
erties of a superposition. On the other hand, in the summer school sample 10/14 students
correctly identified the crucial property in the product structure of quantum compound state.

The following two questions, which are clearly connected, were given together to students
and the sequence did not proceed until they answered both of them:

Question B3:  Which impression(s) on the side of the coin does the output state of the target
qubit from the oracle carry information on?

In the curricular sample, 11/16 students correctly answered that the output state carries
information on both impressions (heads and tails), and some of them mentioned superposition
as a reason, although an explanation was not required for this item. In the summer school
sample, 12/14 students answered correctly.
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Question B4: [f we implemented the circuit a large number of times in the same initial
condition and measured the target on the computational basis, could we know whether the
coin was genuine or counterfeit?

In the curricular sample, 7/16 students answered correctly and explained by stating that the
presence and position of any minus sign in the state cannot be discerned in the measurement
described. In the summer school sample 10/14 students provided a correct answer with
similar explanations.

4.3. Questions related to the enabling of interference and final conclusions

The third group of questions (C1-C3) concerns the role of the last Hadamard gate in pro-
ducing interference between the components of the state at the output of the oracle, thus
completing the computation. Students are required to understand the action of the Hadamard
on the state of the first register resulting from all possible oracle settings, retrieving infor-
mation encoded in the sign of the superposition (C1), to connect the goal of the algorithm to
the measurement outcome (C2) and finally, to precisely quantify the quantum advantage in
this very simple example.

Question C1: Knowing that the final state of the first register before the last Hadamard is
%[(—1)f O 0) + (—1)/ D] 1)], complete the following table

State after the State after last Classical bit after measurement
Boolean function oracle Hadamard and probability
fO=0AfM)=0 ¥= Y =
fO=0AfH=1 = Y =
fO=1AfM=0 ¢= Y =
fO=1AfM=1 ¢= P =

Most students correctly completed the table both in the curricular sample (13/16) and in the
summer school sample (9/14). Some of the incorrect answers contained one or two sign
mistakes.

Question C2: By observing the table above, establish whether there is a relationship
between the authenticity of the coin and the outcome of the measurement. Explain

Again most students correctly identified the link between measurement outcomes and the
result of the problem, both in the curricular sample (12/16) and the summer school sample
(9/14). However in some cases we still observe difficulties in distinguishing between the state
and the measurement outcome, like in the following statement by a student of the curricular
sample: ‘Every time we measure 1) out, we find a genuine coin’

Question C3: How many times does the quantum operator Uy have to be implemented in
order to determine whether a coin among those in the database is genuine or defective? What
is the advantage over classical computation?

In the curricular experimentation, 12 students answered correctly to this item, while 11 correct
answers were given in the summer school sample.
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4.4. Questions related to the optical realization

The last part of the sheet, concerning the connection between the logic diagram of the
Deutsch algorithm and its optical realization, was only performed in the summer school for
time reasons. The questions require students to connect the representation of the Deutsch
algorithm in terms of logic gates to its realization with optical devices, and to identify the
functional role of each device (D1) and to describe in formal terms the evolution of the state
within the optical circuit (D2) using the Dirac notation. The exact statements of the two
questions D1 and D2 can be found in the supplemental material, and since they include two
figures already present in this paper (figures 1 and 9) they are not replicated here. Half the
students of the summer school sample (7 out of 14) were able to describe the state evolution
along the optical circuit in a completely correct way, and some only got a sign wrong after the
half-wave plate realizing the action of the oracle. The analysis of the correspondence between
logic gates and optical elements were in most cases correct.

5. Conclusions

We have presented the main lines for a short (about 8 h, provided that basic elements of QM
using a two-state approach have been preliminarily treated) introduction to the Deutsch
algorithm suitable for advanced secondary school students. The subdivision of the operation
of the quantum algorithm in three sequential processes, each connected to a property of
quantum systems, seems productive in scaffolding students’ learning and can potentially be
transferred to the treatment of other cases, such as the Grover algorithm. Preliminary results
show that the educational outcomes can be satisfying, and in general the teachers involved did
not find significant differences with the outcomes of other physics topics. From the analysis of
students’ answers, problems remain mostly in clarifying the distinction between a super-
position state and a mixture, or between the state and measurement outcomes. This is a well-
known and persistent issue in QM education [25], and while it was addressed in the initial
introduction to the quantum theory, a need emerges to reinforce the understanding of quantum
superposition also during the path on quantum information. Our proposal includes the design
of an analogue realization of the Deutsch algorithm on the optical bench with coherent
classical light which, while perhaps not within the reach of the typical high school laboratory,
can be easily realized in any university-level optics lab, and as such can be useful for
vocational stages and schools or outreach actions aimed at secondary students.
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