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Résumé

Nous avons développé une nouvelle approche basée sur les méthodes Monte Carlo
par chaînes de Markov pour déterminer les distributions de partons et quantifier leurs
incertitudes expérimentales. L’intérêt principal d’une telle étude repose sur la possibilité
de remplacer la minimisation standard avec MINUIT de la fonction χ2 par des procé-
dures fondées sur les méthodes statistiques et sur l’inférence Bayésienne en particulier,
offrant ainsi une meilleure compréhension de la détermination des distributions de par-
tons. Après avoir examiné ces techniques Monte Carlo par chaînes de Markov, nous intro-
duisons l’algorithme que nous avons choisi de mettre en œuvre, à savoir le Monte Carlo
hybride (ou Hamiltonien). Cet algorithme, développé initialement pour la chromodyna-
mique quantique sur réseau, s’avère très intéressant lorsqu’il est appliqué à la détermi-
nation des distributions de partons par des analyses globales. Nous avons montré qu’il
permet de contourner les difficultés techniques dues à la grande dimensionnalité du pro-
blème, en particulier celle relative au taux d’acceptance. L’étude de faisabilité réalisée et
présentée dans cette thèse indique que la méthode Monte Carlo par chaînes de Markov
peut être appliquée avec succès à l’extraction des distributions de partons et à leurs in-
certitudes expérimentales.

Mots clés : Chromodynamique Quantique, Distributions de Partons, Méthodes Monte
Carlo par Chaînes de Markov, Monte Carlo Hamiltonien.
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Abstract

We have developed a new approach to determine parton distribution functions and
quantify their experimental uncertainties, based on Markov chain Monte Carlo methods.
The main interest devoted to such a study is that we can replace the standard χ2 MINUIT
minimization by procedures grounded on statistical methods, and on Bayesian inference
in particular, thus offering additional insight into the rich field of parton distribution
functions determination. After reviewing these Markov chain Monte Carlo techniques,
we introduce the algorithm we have chosen to implement—namely hybrid (or Hamilto-
nian) Monte Carlo. This algorithm, initially developed for lattice quantum chromodyna-
mics, turns out to be very interesting when applied to parton distribution functions de-
termination by global analyses ; we have shown that it allows to circumvent the technical
difficulties due to the high dimensionality of the problem, in particular concerning the
acceptance rate. The feasibility study performed and presented in this thesis, indicates
that Markov chain Monte Carlo method can successfully be applied to the extraction of
parton distribution functions and of their experimental uncertainties.

Key words : Quantum Chromodynamics, Parton Distribution Functions, Markov chain
Monte Carlo, Hamiltonian Monte Carlo.
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Introduction

La chromodynamique quantique (“quantum chromodynamics”, QCD) est la théorie
de l’interaction forte, dont l’ambition est d’expliquer la cohésion des noyaux ainsi que la
structure du neutron et du proton, c’est-à-dire la matière la plus visible de l’univers. Son
domaine d’application est encore plus étendu, puisque la QCD contrôle la structure et
les interactions de tous les hadrons : protons, neutrons, hyperons, pions, kaons, etc. C’est
l’une des théories les plus élégantes de la science (avec la relativité générale) ; il a très peu
de paramètres et permet de donner une interprétation physique à une gamme très élevée
de phénomènes en utilisant un formalisme bien défini et très compact.

Parmi les ingrédients fondamentaux de la QCD, les distributions de partons (“par-
ton distribution functions”, PDFs) sont des éléments clés et jouent un rôle essentiel pour
connecter la dynamique de la QCD (quarks et gluons) aux sections efficaces (des proces-
sus de diffusion dure) mesurées. Elles portent une source inestimable d’information sur
la structure partonique des hadrons et un énorme effort théorique et expérimental a été
consacré depuis des années à l’extraction de ces distributions de partons.

Les PDFs sont d’autant plus importantes aujourd’hui que, avec la collecte de données
au grand collisionneur hadronique (Large Hadron Collider, “LHC”), elles sont essentielles
pour le calcul d’une grande classe d’observables. Construit pour la découverte du boson
de Higgs et l’étude de la physique au-delà du modèle standard, le LHC est en effet essen-
tiellement une usine de la QCD, produisant des événements dans une gamme d’énergie
inexplorée. Le potentiel de découverte du LHC dépend crucialement de la qualité des
prévisions pour les “signaux et backgrounds” de la QCD et donc sur la qualité des PDFs.

Les PDFs sont intrinsèquement des objets non perturbatifs et ne peuvent donc être
déterminées en utilisant uniquement des outils de la QCD perturbative. La méthode la
plus efficace pour effectuer des calculs en QCD non perturbative est la QCD sur réseau.
Toutefois, bien que la structure du nucléon ait fait l’objet d’une activité intensive en QCD
sur réseau depuis des années et, même si des techniques prometteuses pour calculer les
PDFs directement sur le réseau ont récemment été proposées JI [2013], les calculs ab ini-
tio des PDFs sont très difficiles et ne constituent toujours pas une alternative concurren-
tielle aux analyses globales. Ces dernières restent donc la méthode choisie pour obtenir
les PDFs, qui sont paramétrisées par des formes fonctionnelles dont les paramètres sont
contraints par les données provenant des expériences.

La détermination des PDFs consiste donc à analyser les ensembles de données collec-
tés dans les collisionneurs afin de contraindre les paramètres, des formes fonctionnelles
des PDFs données à une échelle d’énergie initiale fixée Q2

0. De telles analyses sont souvent
basées sur une méthode de moindres carrés, c’est-à-dire sur la minimisation d’une fonc-
tion χ2, qui compare les données expérimentales et les prédictions théoriques. Pendant
longtemps, les PDFs déterminées de cette façon ne tiennent compte d’aucune estimation
des incertitudes, autre que la simple comparaison des résultats fournis par différentes col-
laborations d’analyses globales. Cependant, avec l’avènement, à l’aube du 21ème siècle,
de la nouvelle génération des collisionneurs et de la recherche active de la nouvelle phy-
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sique, la nécessité d’accéder aux incertitudes des PDFs est devenue claire GIELE et KEL-
LER [1998]; GIELE et collab. [2001]; HUSTON et collab. [1996]; LAI et collab. [1997]; MARTIN

et collab. [1998, 2003, 2004]. De nombreuses études ont depuis été consacrées aux estima-
tions des incertitudes sur les prédictions physiques en raison des incertitudes des PDFs
(voir par exemple GIELE et collab. [2001]; PUMPLIN et collab. [2001a,b]; STUMP et collab.
[2001] et des références à ce sujet) et des progrès considérables ont été réalisés. Néan-
moins, cette tâche est loin d’être triviale et de nombreux problèmes demeurent ouverts
PUMPLIN et collab. [2001a,b].

Notre compréhension actuelle des incertitudes sur les PDFs est basée principalement 1

sur la méthode Hessienne PUMPLIN et collab. [2001a] ou sur la méthode des multiplica-
teurs de Lagrange STUMP et collab. [2001]. La détermination des incertitudes repose alors
sur une hypothèse. Cette hypothèse consiste à explorer la variation de la fonction χ2 dans
le voisinage de sa valeur minimale (χ2 = χ2

min +𝛥χ2), ce qui conduit au choix arbitraire
d’un paramètre de tolérance T. Afin de donner une interprétation statistique objective
aux incertitudes, nous avons proposé d’utiliser les techniques Monte Carlo par chaînes
de Markov (Markov Chain Monte Carlo, “MCMC”) pour définir les incertitudes d’une ma-
nière basée autant que possible sur des méthodes statistiques robustes. Les algorithmes
MCMC ont été un outil extrêmement populaire en statistiques. Bien que ces techniques
soient déjà utilisées dans de nombreux domaines de la physique (voir par exemple GILKS

et collab.; SOKAL [1989]) elles n’ont pas encore été utilisées comme une méthode auto-
nome pour déterminer les PDFs et leurs incertitudes expérimentales, c’est-à-dire sans
recourir à une procédure de minimisation standard de la fonction χ2 2.

La méthode MCMC permet d’estimer des densités de probabilité a posteriori pour
des modèles multidimensionnels et fournit des estimations fiables des incertitudes. La
méthode MCMC consiste donc à simuler séquentiellement une seule chaîne de Markov
dont la distribution limite est celle choisie.

Le principal défi de la présente thèse est de démontrer que les techniques Monte Carlo
par chaînes de Markov peuvent être appliquées à l’extraction des distributions de partons
du proton. Plus la dimension de la chaîne est élevée (c’est-à-dire dans mon cas, plus j’ai de
paramètres libres de PDFs à déterminer), plus il me faut un temps de calcul considérable
pour générer la chaîne. Le grand nombre de paramètres libres à déterminer dans une dé-
termination complète des PDFs m’a conduit à l’utilisation d’un algorithme Monte Carlo
basé sur la dynamique moléculaire, initialement développé pour la théorie des champs
sur réseau. J’ai appliqué cet algorithme à une extraction réaliste (mais pas complète) des
PDFs ; basée sur des formes fonctionnelles ayant 10 paramètres libres et quatre jeux (en-
sembles) de données expérimentales, pour démontrer que le Monte Carlo par chaînes de
Markov peut être appliqué avec succès au calcul des distributions de partons du proton.

Ce manuscrit est composé de trois chapitres. Dans le premier chapitre, la théorie de la
chromodynamique quantique a été présentée. Un accent particulier est mis sur le proces-
sus de la diffusion inélastique profonde utilisé pour sonder l’intérieur du proton. Dans le
chapitre 2, j’ai formulé le problème de la détermination des PDFs en terme de l’inférence
Bayésienne. Les principes de base de la méthode Monte Carlo par chaînes de Markov sont
rappelés en utilisant l’algorithme de Metropolis-Hastings. L’algorithme Monte Carlo Ha-
miltonien a été présenté et j’ai montré comment il permet de faire face à un grand nombre
de paramètres libres de PDFs à déterminer. Enfin, la procédure d’analyse des chaînes de

1. Ceci, à l’exception notable des techniques de réseaux de neurones BALL et AL. [2010].
2. Les estimations des incertitudes utilisant des répliques de “pseudodata” sont également basées sur

des méthodes Monte Carlo GIELE et KELLER [1998]; GIELE et collab. [2001], mais reposent toujours sur des
ajustements.
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Markov a éte exposée. Le chapitre 3 présente les premiers résultats de l’étude de faisabilité
réalisée sur un cas réaliste de détermination des PDFs ayant 10 paramètres libres.
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Chapitre 1

La chromodynamique quantique

1.1 Introduction

La chromodynamique quantique FRITZSCH et collab. [1973]; GROSS et WILCZEK [1973a];
WEINBERG [1973] est la théorie de champ quantique pour l’interaction forte, l’une des
quatre forces fondamentales dans la nature. La suite de ce chapitre est organisé de la ma-
nière suivante : les principes de base de cette élégante théorie, qui a valu le prix Nobel
à ses auteurs en 2004, sont discutés dans la section 1.2, la section 1.3 porte sur la chro-
modynamique quantique perturbative, un bref aperçu des différents schémas de saveurs
de quarks lourds est présenté dans la section 1.4, et enfin le formalisme de l’analyse glo-
bale des PDFs en QCD ainsi que les différentes approches d’estimation des incertitudes
expérimentales des PDFs sont respectivement exposés dans les sections 1.5 et 1.6.

1.2 Les bases de la chromodynamique quantique

1.2.1 La chromodynamique quantique en bref

Toute théorie des champs quantiques relativistes peut être définie en fournissant des
informations sur (a) le contenu en champ incluant les nombres quantiques (spin, charge
électrique, charge de couleur, ...), (b) un Lagrangien décrivant les interactions locales
entre les différentes particules et (c) les valeurs des paramètres libres (masses, couplage,
...) du Lagrangien. Dans le cas de la QCD, la liberté essentielle est de spécifier l’ensemble
des champs de la matière (les quarks et antiquarks : voir le tableau 1.1). Les champs de
jauge (les gluons) et la structure du Lagrangien découlent principalement des principes
de symétrie de l’invariance de Poincaré, de l’invariance de jauge et de la renormalisabi-
lité 1. Les valeurs des paramètres libres nécessitent quant à eux des informations expéri-
mentales. La QCD est une partie intégrante du modèle standard (“standard model”, SM)
qui est une théorie englobant toutes les particules connues ainsi que les trois interac-
tions ayant un effet à l’échelle minuscule des particules : l’interaction électromagnétique,
l’interaction forte et l’interaction faible. C’est un modèle qui permet d’expliquer tous les
phénomènes naturels sauf la gravitation dont la quantification, résiste pour l’instant aux
théoriciens. Les tableaux 1.1 et 1.2 montrent les termes de couplage pour une interaction
entre particules élémentaires. La constante de couplage faible g est remplacée par e

sinθW

1. Ces trois principes n’interdisent pas la présence dans le lagrangien du terme g 2
s

θ
64π2 ε

µν
ρσGa

µνGρσ
a de

violation de la symétrie CP qui est phénoménologiquement susceptible de contribuer par exemple au mo-
ment dipolaire électrique du neutron, sur lequel les recherches expérimentales ont mis une limite supé-
rieure de l’ordre de µN ≤O (10−26) e.cm, soit θ≤O (10−10) rad.
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où e et θW représentent respectivement la charge élémentaire et l’angle de mélange de
Weinberg. v et a représentent les couplages axial et vectoriel des particules considérées.
On a :

v = I3 −2
Q

e
sin2θW (1.1)

a = I3 (1.2)

où I3 est l’isospin de la particule et Q sa charge électrique

Particules élémentaires Charge électrique Q (e) Isospin I3

quarks
u,c, t +2

3 +1
2

d,s,b −1
3 −1

2

leptons
νe ,νµ,ντ 0 +1

2

e−,µ−,τ− −1 −1
2

antiquarks
ū, c̄, t̄ −2

3 −1
2

d̄ , s̄, b̄ +1
3 +1

2

antileptons
ν̄e , ν̄µ, ν̄τ 0 −1

2

e+,µ+,τ+ +1 +1
2

TABLEAU 1.1 – Particules élémentaires.

Force
Bosons

intermédiaires
Termes de Feynman pour

le couplage Particules affectées

électromagnétique γ −iQγµ particules chargées

faible
Z (neutre) −i e

2cosθW sinθW
γµ(v−aγ5)

toutes les particules
W± (chargé) −i e

2
p

2sinθW
γµ(1−γ5)

forte gluons (8) -igs
λa
2 γ

µ (a = 1, ..,8) quarks et antiquarks

TABLEAU 1.2 – Bosons de jauge des 3 interactions microscopiques du modèle standard.

1.2.2 Les champs de quarks et de gluons

Les degrés de liberté fondamentaux de la QCD sont les quarks et les gluons représen-
tés par les champs quantiques dans l’espace-temps à quatre dimensions :

qi f ρ(x), Ga
σ(x). (1.3)

Sur le champ des quarks q , “ f ” représente l’indice de saveur. La masse du quark q f est
désignée par m f . De plus, chaque champ de quark porte un indice de Dirac “ρ”, décri-
vant un objet de spin 1/2, et un indice de couleur “i = r oug e, ver t ,bleu” se transfor-
mant sous la représentation fondamentale 3 du groupe de jauge de couleur SU(3)c . Sur le
champ de gluons G, “σ = 0,1,2,3” est un indice de Lorentz décrivant un champ de spin 1
et “a = 1, ...,8” est un indice de couleur se transformant sous la représentation adjointe 8
de SU(3)c . Les gluons ne sont pas massifs en conséquence de l’invariance de jauge SU(3)c

du Lagrangien.
Certains commentaires sont à faire : (a) sur la base de faits expérimentaux, la sélection de
SU(3) comme groupe de jauge de couleur est unique. Voir par exemple l’introduction de
ALTARELLI [1982]. (b) De nombreuses applications de la QCD (perturbative) mettent en
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jeu l’interaction des quarks avec les photons, les bosons W et Z et toutes sortes de proces-
sus de production de ces bosons de jauge, leptons et le boson de Higgs. Pour une descrip-
tion complète, il serait nécessaire de discuter la QCD dans le contexte du SM. Cela dépasse
le cadre de cette introduction. Ici, il suffit de garder à l’esprit que les (anti)quarks inter-
agissent avec les bosons de jauge électrofaibles (voir le tableau 1.2) et qu’ils possèdent
des charges électriques qui sont données en unité de la charge du positron (e > 0). (c) Les
antiquarks q̄ i

f ρ(x) ont des nombres quantiques de jauge conjugués, c’est-à-dire qu’ils se

transforment sous la représentation fondamentale complexe conjuguée 3∗ ≡ 3̄ de SU(3)c

et ont des charges électriques opposées à celles des quarks.

1.2.3 Le Lagrangien

Le Lagrangien de QCD est donné par

LQCD = LYM (1.4)

L’expression pour le Lagrangien de Yang-Mills (ou Lagrangien classique) peut être décom-
posée en une partie fermionique (LF) et une partie de jauge (LG),

LYM = LF +LG. (1.5)

La partie fermionique s’exprime de la façon suivante :

LF =
3∑

k,l=1

∑
f =u,d ,s,c,b,t

q̄k
f

(
i /D−m f I

)
kl q l

f , (1.6)

où /D := γσDσ est la contraction des matrices gamma de Dirac avec la dérivée covariante
Dσ donnée par

Dσ := 𝜕σI+ i gsGσ où Gσ := Ga
σTa . (1.7)

Ici gs est la constante de couplage fort et Gσ est la contraction des champs de gluons avec
les 32 − 1 générateurs Ta du groupe SU(3)c dans la représentation fondamentale à trois
dimensions, c’est-à-dire, I et Gσ sont des matrices 3×3 dans l’espace de couleur.

La partie de jauge est donnée par 2

LG = −1

2
Tr[GσλGσλ] = −1

2

8∑
a=1

8∑
b=1

Ga
σλGσλ

b Tr[TaTb]︸ ︷︷ ︸
TFδ

b
a

= −1

4

8∑
a=1

Ga
σλGσλ

a , (1.8)

ici le tenseur de force Ga
σλ

est défini comme

Ga
σλ = 𝜕σGa

λ−𝜕λGa
σ− gs fabc Gb

σGc
λ, (1.9)

avec fabc les constantes de structure de l’algèbre de Lie su(3)c et Gσλ la matrice corres-
pondante dans l’espace de couleur :

Gσλ := Ga
σλTa = DσGλ−DλGσ = − i

gs
[Dσ,Dλ]. (1.10)

Le Lagrangien de Yang-Mills LYM est invariant sous la transformation de jauge locale
SU(3)c, renormalisable, et invariant sous la transformation CP.

2. Où TF = 1
2 est la normalisation des générateurs de l’algèbre su(3)c.
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1.2.4 Les paramètres libres

Le Lagrangien de QCD dépend de sept paramètres : le couplage de jauge gs et les
masses des six quarks mu ,md ,ms ,mc ,mb ,mt . Pour faire des prédictions, il est nécessaire
de fournir des valeurs pour le couplage de jauge et les masses des quarks comme “in-
put”. Actuellement nous n’avons aucune théorie (au delà de QCD) pour calculer à partir
des principes fondamentaux seulement, la valeur de ces paramètres si bien qu’ils doivent
être extraits expérimentalement en utilisant un nombre (≥7) d’observables, pour faire des
prédictions pour toutes les autres observables.

La constante de couplage fort

Le paramètre le plus important est le couplage de jauge gs qui spécifie la force de l’inter-
action entre les quarks et les gluons (et l’auto-interaction des gluons). Le comportement
de la théorie dépend essentiellement de sa valeur. Si gs est suffisamment petite, une ap-
proche perturbative est possible où les observables peuvent être systématiquement dé-
veloppées suivant des puissances de gs . En revanche, pour les grandes valeurs de gs , les
traitements perturbatifs ne sont plus possibles : les quarks et les gluons s’hadronisent
pour former les baryons et les mésons que l’on observe expérimentalement. La QCD sur
réseau permet le calcul de fonctions de corrélation de manière non perturbative. Plus
spécifiquement, il s’agit d’une régularisation de la théorie, adaptée au calcul numérique,
dans laquelle l’espace-temps est discrétisé. La taille “L” du réseau joue le rôle de coupure
infrarouge alors que le pas “a” du réseau joue le rôle de coupure ultraviolette rendant l’in-
tégrale de chemin parfaitement définie. Dans la limite où le volume tend vers l’infini et le
pas du réseau tend vers zéro, on retrouve la QCD. Notons que dans ce régime, les états liés
des quarks et gluons (hadrons) émergent comme nouveaux degrés de liberté pertinents.
En effet, expérimentalement, un quark libre ou un gluon n’a pas été observé et c’est une
propriété fondamentale de la QCD que la matière hadronique est composée de quarks (et
de gluons) et n’a pas de couleur 3.
Il s’avère qu’il est difficile et peu significatif de décider une valeur unique pour la constante
de couplage fort gs . Tout d’abord, la force de l’interaction n’est pas une constante (en dé-
pit de son nom) mais dépend de l’échelle de distance entre les quarks et gluons ou, de ma-
nière équivalente, de l’échelle d’énergie du processus. Cependant, une valeur fixe pourrait
être une approximation raisonnable à condition que le couplage ne change pas rapide-
ment avec l’échelle 4. Toutefois, dans le cas de la QCD, la constante de couplage change
radicalement, de valeurs non perturbatives aux valeurs perturbatives dans une région de
transition caractérisée par une échelle d’énergie 𝛬QCD ' 200 MeV. Par conséquent, il est
inévitable de prendre en compte la “variation” de la constante de couplage fort (une illus-
tration est donnée sur la figure 1.1). Ceci est toujours possible dans le régime perturbatif
(échelles d’énergie beaucoup plus grandes que 𝛬QCD) et nécessite le calcul des effets de
boucles. Le premier calcul de ce type GROSS et WILCZEK [1973a,b]; POLITZER [1973, 1974]
a conduit à la découverte de la liberté asymptotique (et des prix Nobel pour D. Gross, F.
Wilczek et D. Politzer en 2004), ce qui signifie que la constante de couplage fort diminue à
des énergies plus élevées/distances plus basses et approche la valeur zéro à des énergies
asymptotiquement grandes où la QCD se transforme en une théorie libre.

3. Plus mathématiquement, cela signifie que les hadrons se transforment comme des scalaires réels sous
les transformations de SU(3)c .

4. C’est le cas en QED où αem = e2/(4π) ' 1/137 à des énergies E ¿𝛬EW ≈ 100 GeV change à αem ' 1/128
à l’échelle électrofaible 𝛬EW si bien que la valeur 1/137 est encore bonne avec une précision de 10−7%.
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FIGURE 1.1 – Courbe montrant le comportement du couplage fort gs en fonction de l’énergie q2.
Figure tirée de AURENCHE et collab. [2016]

Lorsque l’on tente d’effectuer des calculs à boucles, on tombe sur des divergences.
Il est donc nécessaire d’introduire un schéma de régularisation afin de définir mathé-
matiquement la théorie. Dans le cadre perturbatif, la méthode de régularisation dimen-
sionnelle ASHMORE [1972]; BOLLINI et GIAMBIAGI [1972]; CICUTA et MONTALDI [1972];
’T HOOFT et VELTMAN [1972] est particulièrement bien adaptée (voir, par exemple, la ré-
férence COLLINS [1984] pour une discussion de différents schémas de régularisation). Les
divergences apparaissent alors comme des pôles de type 2/(4−D) où D est le nombre de
dimensions de l’espace-temps dans lequel le calcul est effectué. Pour une théorie renor-
malisable comme la QCD, toutes les divergences ultraviolettes (UV) peuvent être suppri-
mées par une redéfinition des paramètres et des champs du Lagrangien. Cette redéfini-
tion est dépendante du schéma et la possibilité la plus simple est le schéma de soustrac-
tion minimale (“minimal subtraction”, MS) où seul le pôle est absorbé dans les champs et
les paramètres. Une variante de ceci est le schéma de soustraction minimal modifié (MS)
fréquemment utilisé BARDEEN et collab. [1978]; ’T HOOFT [1973] où le pôle est absorbé
avec la constante d’Euler γE ' 0.57721 dans la combinaison 2/(4−D)+γE − ln4π. Tech-
niquement, en raison de la procédure de renormalisation, les paramètres du Lagrangien
acquièrent une dépendance d’énergie µR qui est régie par des équations du groupe de
renormalisation (renormalization group equations, RGEs). Pour la constante de couplage
fort, les RGEs sont données par :

µ2
R

d

dµ2
R

as(µR) = β(as(µR)), as :=
αs

4π
:=

g 2
s

16π2
. (1.11)

La liberté asymptotique correspond au fait que la fonction β de la QCD est négative (à des
couplages faibles) et a un point UV fixe à un couplage nul 5. La fonction β de la QCD a la

5. Ceci est tout à fait différent comparé à la fonction β de QED qui est positive de sorte que αem aug-
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série perturbative suivante :

β(as) = −β0a2
s −β1a3

s −β2a4
s −β3a5

s −β4a6
s − ... (1.12)

et est connue jusqu’à une précision de 5 boucles dans le schéma MS VERMASEREN et col-
lab. [2017]. Nous rappelons ici les fonctions β à une boucle (β0) et deux boucles (β1) dans
le schéma MS 6 :

βMS
0 =

11

3
CA − 4

3
TFn f , (1.13)

βMS
1 =

34

3
C2

A −
20

3
CATFn f −4CFTFn f . (1.14)

Ici, CA = 3 et CF = 4
3 sont respectivement les constantes de Casimir dans les représentations

adjointe et fondamentale. Finalement, n f représente le nombre de saveur de quark active
dépendant de l’échelle de renormalisation µR, c’est-à-dire

n f =


3; µR ≤ mc ,
4; mc <µR ≤ mb ,
5; mb <µR ≤ mt ,
6; mt <µR,

où mc ,mb ,mt sont respectivement les masses des quarks charm, bottom et top.

Les masses des quarks

En ce qui concerne les paramètres de la masse des quarks, il serait tentant de les identifier
avec les masses physiques (les masses de pôles) des quarks se propageant de façon libre.
Toutefois, comme déjà mentionné, les quarks libres n’ont pas été observés ; au contraire,
ils sont confinés dans des hadrons. Il est donc nécessaire de dire précisément ce que nous
entendons par une masse de quarks. Pour les quarks légers u, d et s, nous comprenons
toujours par la masse de quarks mq le paramètre de la masse apparaissant dans le La-
grangien de QCD, qui n’est pas une observable mais qui est définie dans un schéma de
renormalisation donné. À nouveau, la variation de la masse avec l’énergie est décrite par
une équation du groupe de renormalisation :

µ2
R

d

dµ2
R

mq (µR) = γm(as(µR)) = −(γm)0as − (γm)1a2
s − (γm)2a3

s − (γm)3a4
s − (γm)4a5

s − ...,

(1.15)
où γm(as) est la dimension anomale de la masse de quark BAIKOV et collab. [2014]. Nous
n’utilisons pas cette formule dans la suite puisque dans les calculs existants basés sur des
théorèmes de factorisation de QCD, l’erreur due aux termes de quarks légers manquants
est plus petite que l’erreur de la formule de factorisation.

La situation est différente pour les quarks c, b et t. Ils sont appelés quarks lourds parce
que leurs masses sont beaucoup plus grandes que𝛬QCD de sorte queαs évaluée à l’échelle
de la masse de quark lourd se trouve dans la région perturbative. Par conséquent, en rai-
son de la liberté asymptotique, il est possible de considérer les quarks lourds comme des

mente avec l’énergie et en fin de compte divergererait à des énergies extrêmement grandes (c’est-à-dire
développe un pôle dit de Landau) à moins qu’il y ait un point UV fixe à des couplages élevés, C’est-à-dire
que la fonction β devient nulle à ces couplages élevés.

6. βn ,n = 0,1,2,3,4 sont les mêmes dans tous les schémas de renormalisation de genre MS
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particules quasi libres et d’interpréter leurs masses comme des masses physiques (masses
de pôles) renormalisées dans le schéma sur couche de masse (on-shell, “OS”). Cependant,
l’utilisation de la dépendance en masses des quarks lourds, renormalisées dans le schéma
MS présente certains avantages tels que décrits, par exemple, dans la référence ALEKHIN

et MOCH [2011] dans le contexte d’une diffusion inélastique profonde. Dans le reste de ce
manuscrit, les masses des quarks lourds sont considérées comme des masses physiques
de valeurs mc = 1.4 et mb = 4.75.

1.3 La chromodynamique quantique perturbative

1.3.1 Les théorèmes de factorisation

Grâce à la liberté asymptotique, les observables qui ne dépendent que de grandes
échelles d’énergies peuvent être calculés en théorie des perturbations. Cependant, de
nombreuses observables comme des sections efficaces dans les collisionneurs électron-
hadron ou hadron-hadron à haute énergie sont régies par des phénomènes de longue
distance/basse énergie liés à la structure des hadrons dans l’état initial qui, jusqu’à pré-
sent, ne peuvent être calculés à partir des premiers principes de la QCD. Dans de nom-
breux cas, la section efficace est également influencée par la dynamique qui se produit
à très courtes distances/hautes énergies ; par exemple quand une particule lourde est
produite ou quand une particule dans l’état final a une grande impulsion transverse. Les
théorèmes de factorisation de la QCD COLLINS [1998]; COLLINS et SOPER [1987]; COLLINS

et collab. [1989] stipulent que, dans de telles situations, il est possible, jusqu’à une erreur
de puissance négligée, de séparer la physique se produisant à des échelles de longueurs
très différentes en facteurs indépendants tels que les facteurs de longue distance seront
toujours les mêmes, sans tenir compte des détails du processus de courte distance. In-
versement, le facteur de courte distance est libre de toute physique de longue distance
et peut être calculé perturbativement. En d’autres termes, toutes les fois qu’une échelle
dure µF (ou échelle de courte distance) est présente (disons µ2

F > 1 GeV2), la section ha-
dronique peut être écrite sous forme de convolutions de distributions de partons fi (x,µ2

F)
universelles 7 avec la section efficace de diffusion dure dσ̂ qui dépend du processus mis en
jeu. Par exemple, la section efficace différentielle pour la diffusion inélastique profonde
de l’électron sur le proton est donnée par :

dσe+P→e+X(µ2
R,µ2

F) ' ∑
i

fi /P(ξ,µ2
F)⊗dσ̂e+i→e+X(ξ,µ2

R,µ2
F),

=:
∑

i

∫ 1

0
dξ fi /P(ξ,µ2

F) dσ̂e+i→e+X(ξ,µ2
R,µ2

F), (1.16)

où une somme sur tous les sous-processus partoniques possibles est sous entendue et les
détails de la formule et des sous-processus qui sont inclus dépendent du traitement des
quarks lourds comme on le discutera plus en détail ci-dessous. Des formules similaires
sont valables pour la production de paires de lepton dans les collisions proton-proton,

dσPP→l+l−X(µ2
R,µ2

F) '∑
i , j

fi /P(ξ1,µ2
F)⊗ f j /P(ξ2,µ2

F)⊗dσ̂i j→l+l−X(ξ1,ξ2,µ2
R,µ2

F), (1.17)

et d’autres processus comme la production de quarks lourds, de vecteurs bosons, de jets
ou des hadrons à grandes impulsions transverses. Dans le dernier cas, les fonctions de

7. C’est-à-dire que les PDFs sont mésurées dans les expériences de diffusion inélastique profonde et
utilisées dans les collisionneurs hadroniques.
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fragmentations universelles (“fragmentation functions”, FFs) qui sont analogues aux PDFs
et décrivant la transition du quark ou gluon à l’état final au hadron observé doivent être
incluses dans le formalisme. Dans chaque cas, l’erreur de l’approximation de la factorisa-

tion est proportionnelle à une puissance de
(𝛬QCD

µF

)2
où 𝛬QCD est une échelle hadronique

typique de quelques centaines de MeV et elle devient négligeable lorsque des échelles
µF suffisamment dures sont impliquées. Les PDFs (FFs) sont intrinsèquement des objets
non perturbatifs comportant la physique de longue distance du hadron de l’état initial
(l’état final). Elles sont universelles en ce sens que les mêmes PDFs (FFs) peuvent être uti-
lisées dans une grande variété de processus. Puisque les sections efficaces de diffusion
dure sont systématiquement calculables ordre par ordre en théorie des perturbations, les
théorèmes de factorisation de la QCD fournissent un cadre rigoureux avec un pouvoir
prédictif. Ce formalisme de la QCD perturbative est la base théorique pour le calcul systé-
matique de grandes classes d’observables aux collisionneurs de particules actuels et par
conséquent d’une importance primordiale.

Les théorèmes de factorisation fournissent des définitions théoriques précises des
PDFs comme éléments de matrice hadronique de certains opérateurs de «twist-2» com-
posés de champs de quarks et de gluons tels qu’ils peuvent en principe être calculés à par-
tir des premiers principes sur le réseau. Cependant, bien que des progrès considérables
aient été faites ces dernières années JI [2013] les calculs sur réseau ne sont pas encore
compétitifs et les PDFs doivent être déterminées pour l’instant à partir de données expéri-
mentales. Les corrections QCD conduisent à la renormalisation de ces opérateurs de telle
sorte que les PDFs acquièrent une dépendance d’échelle de renormalisation qui est régie
par des équations du groupe de renormalisation, les équations d’évolution de Doshkitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) ALTARELLI et PARISI [1977]; DOKSHITZER [1977];
GRIBOV et LIPATOV [1972]. Comme pour les sections efficaces partoniques à courte dis-
tance, les équations d’évolution de DGLAP ont une série perturbative dans la constante
de couplage fort. Il y a quelques années, le calcul des contributions à 3 boucles de cette
série perturbative (les fonctions de «splitting» à 3 boucles) a été complété après plusieurs
années d’effort MOCH et collab. [2004]; VOGT et collab. [2004]. Avec cette connaissance,
il est possible de calculer des observables à la précision «next-to-next-to-leading-order»
permettant des tests de précision en QCD perturbative à condition que les sections ef-
ficaces partoniques à courte distance soient connues à ce même ordre, ce qui n’est pas
encore le cas pour tous les processus durs à savoir le processus de hadro-production in-
clusif de «jet» et le processus de lepto-production de quark lourd. Nous allons dans la
suite nous attarder sur les processus inclusifs de diffusion inélastique profonde.

1.3.2 Les diffusions inélastiques profondes et la structure du proton

La connaissance des sections efficaces des processus impliquant des hadrons dans
l’état initial, nécessite une bonne connaissance des distributions de partons. Celle-ci s’ob-
tient essentiellement par l’étude de la diffusion inélastique profonde.

1.3.2.1 Section efficace d’interaction lepton - hadron et PDFs

Toute interaction entre particules peut être mathématiquement définie suivant les
conditions cinématiques et le type d’interaction en jeu. Nous allons immédiatement dis-
cuter le cas des interactions lepton - proton.
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A. Traitement de la dynamique de l’interaction

De manière générale, la section efficace de toute interaction peut s’écrire sous la
forme suivante :

dσ =
|M |2

F
d𝛷 (1.18)

où :
• F est le facteur de flux initial. Dans une interaction à deux corps a et b, de quadri
- vecteurs impulsions initiaux pa et pb , F = 4

√
(pa ·pb)2 − (pa)2(pb)2. C’est un inva-

riant de Lorentz.
• M est l’amplitude de l’interaction calculée à l’aide des Lagrangiens associés aux
forces mises en jeu.
• d𝛷 = Dl ′X est l’élément différentiel de l’espace de phase, également invariant de
Lorentz.

B. Application au cas e±+P → l ′+X : introduction aux fonctions de structure

1. Cinématique des interactions e±+P → l ′+X
Considérée de manière inclusive, sans se soucier des détails du système X, l’interac-
tion e±+P → l ′+X (où l ′ désigne soit un électron (positron), soit un neutrino (anti-
neutrino)) peut être traitée comme une interaction à deux corps. Deux variables in-
dépendantes suffisent à la décrire. Les variables cinématiques d’emploi usuel sont

FIGURE 1.2 – Schéma typique d’une interaction eP .

les suivantes :

• Q2 = −q2 = −(k −k ′)2 > 0, représente l’opposé de la masse au carré de la particule
virtuelle échangée,
• ν = p·q

M = E−E′, représente l’énergie perdue par l’électron ou le positron dans le
référentiel du proton au repos,

• 0 ≤ x = Q2

2p·q = Q2

2Mν ≤ 1, est la variable d’échelle de Björken non dimensionnée,
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• 0 ≤ y = p·q
p·k = E−E′

E ≤ 1, est le paramètre d’inélasticité dans le référentiel du proton
au repos,
• s = (p +k)2, est l’énergie au carrée du système e±P dans le référentiel de centre de
masse,
• W2 = (p ′)2 = (p +q)2 est la masse au carré du système hadronique X de l’état final.

La diffusion est dite inélastique profonde if Q2 À M2 ≈ 1GeV2 (“profonde”) et
W2 = M2 +Q2(−1+1/x) À M2 (“inélastique”). Les masses me , ml ′ et M sont immé-
diatement négligées devant l’énergie des processus mis en jeu. Cela revient à dire :
me , ml ′ , M ¿ E, E′, E−E′.
Dans ce cas, on a :

s = 2p·k , Q2 = sx y , W2 = Q2(−1+1/x), (1.19)

F = 2s, (1.20)

et l’élément de matrice M peut s’écrire :

M = Jµ(el ′)J µ(PX)Pr , (1.21)

où
• Pr représente l’effet du propagateur du boson de jauge V échangé (γ,Z,W±),

Pr =
1

q2 −M2
V

. (1.22)

• Jµ(el ′) est le courant associé au vertex e → l ′V,

Jµ(el ′) = −i GVl ′γµ(ve −aeγ5)e, (1.23)

GV , ve et ae sont des coefficients dépendant de l’interaction considérée et du lepton
initial.
• J µ(PX) est le courant associé au vertex VP → X, qu’on ne connaît pas a priori.
Enfin, avec k ′(E′, k⃗ ′) le quadri - vecteur impulsion du lepton diffusé (voir figure 1.2),
l’élément différentiel de l’espace de phase d𝛷 ou Dl′X s’écrit sous la forme suivante :

Dl ′X =
d3k⃗ ′

2E′(2π)3

∏
i

d3k⃗i

2Ei (2π)3
((2π)4δ4(k +p −k ′−p ′)) =

d3k⃗ ′

2E′(2π)3
DX (1.24)

Nous allons nous intéresser ici qu’aux processus inclusifs d’interaction eP non po-
larisée. Nous allons pour cela intègrer sur toutes les variables cinématiques internes
du système hadronique X. La moyenne d’hélicité sur les états initiaux vaut 1

4 (par-
ticule de spin 1

2 ). Par contre, il est nécessaire de faire attention à la polarisation
du neutrino (antineutrino) de l’état final lors de l’étude des interactions à courant
chargé.
Au total, on peut ré-écrire l’équation (1.18) comme :

dσ =
1

F
[
1

4

∑
hel .| f >

|M |2DX]
d3k⃗ ′

2E′(2π)3
(1.25)

2. Le calcul de l’élément de matrice de diffusion
Les courants Jµ(el ′) et J µ(PX) sont couplés au même boson V. Ils sont donc pro-
portionnels à la constante de couplage GV . On peut définir deux tenseurs :

Lµν(el ′) =
∑

hel .| f >

1

G2
V

Jµ(el ′)(Jν(el ′))⋆ (1.26)
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Hµν(PX) =
∑

hel .| f >

1

G2
V

J µ(PX)(J ν(PX))⋆ (1.27)

où l’étoile signifie le complexe conjugué. Le tenseur leptonique s’écrit donc :

Lµν(e±l ′) = 4(kαk′β)(v2
e +a2

e){gαµgβν+ gανgβµ− gµνgαβ∓ iA eµναβ} (1.28)

où A = 2aeve

v2
e+a2

e
. Le tenseur hadronique intégré est défini comme suit :

Wµν =
∫

1

2πM

1

2
HµνDX (1.29)

Il est utile de développer explicitement le tenseur hadronique en termes de pos-
sibles tenseurs de Lorentz multipliés par une fonction scalaire Wa qui paramétrise
la structure du proton. Il existe six tenseurs de Lorentz indépendants de rang 2 qui
peuvent être construits à partir du tenseur métrique gµν, du quadri-vecteur impul-
sion pµ du proton P, du quadri-vecteur impulsion qµ du boson échangé V et du
tenseur de Levi-Civita eµνρσ :

gµν , pµpν , qµqν , pµqν+pνqµ ,

eµνρσpρqσ, pµqν−pνqµ , (1.30)

où les quatre premiers tenseurs sont symétriques et les deux derniers sont antisy-
métriques. En conséquence, le tenseur hadronique (non polarisé) peut être déve-
loppé dans la forme la plus générale suivante :

Wµν = W1(−gµν)+W2(
pµpν

M2
)+W3(−i

pρqσ

2M2
eµνρσ)

+ W4(
qµqν

M2
)+W5(

pµqν+pνqµ

2M2
)+W6(

pµqν−pνqµ

2M2
) (1.31)

Puisque (qµLµν = qνLµν = 0), alors la contraction de Lµν avec Wµν ne laisse que trois
fonctions de structure indépendantes.

LµνWµν = 4(v2
e +a2

e)
[

W1(2k·k ′)+W2

(
2(p·k)(p·k ′)−p2(k·k ′)

M2

)
∓ A W3

(
(p·k)(q ·k ′)− (q ·k)(p·k ′)

M2

)]
(1.32)

Dans la notation moderne, les fonctions de structure sont désignées par Fa plutôt
que Wa avec les correspondances suivantes :{

F1, F2, F3
}

=
{
MW1, νW2, νW3

}
. (1.33)

En rassemblant toutes les informations (équations (1.20), (1.25), (1.32) et (1.33)),
on obtient, après quelques calculs, la section efficace différentielle 8 de la diffusion
inélastique profonde de e± sur le proton P en fonction de x et y :

d2σ±

dxdy
= 2πs

(
G2

V

4π

)2

P2
r (v2

e +a2
e)

[
2x y2F1 +2(1− y)F2 ∓A (2y − y2)xF3

]
(1.34)

8. Cette section efficace différentielle est valable uniquement pour des processus mettant en jeu soit
l’échange des photons purs, soit des bosons Z purs ou l’échange des bosons W±.
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Cette section efficace différentielle peut être réécrite de la manière suivante 9 :

d2σ±

dxdy
= 2πs

(
G2

V

4π

)2

P2
r (v2

e +a2
e)

[−y2FL(x,Q2)+Y+F2(x,Q2)∓A Y−xF3(x,Q2)
]

, (1.35)

avec Y± = 1± (1− y)2.

À l’ordre O (α0
s ), la généralisation de l’équation (1.35) qui incorpore tous les pro-

cessus faisant intervenir les courants neutres est donnée en termes des fonctions
de structure généralisées :

d2σ±
NC

dxdQ2
=

2πα2
em

xQ4

[−y2F̃L +Y+F̃2 ∓Y−xF̃3
]

,

=
2πα2

emY+
xQ4

σ±
r,NC, (1.36)

où σ±
r,NC désignant la section efficace réduite pour les courants neutres s’écrit :

σ±
r,NC = − y2

Y+
F̃L + F̃2 ∓ Y−

Y+
xF̃3 (1.37)

Les fonctions de structure F̃2, F̃L et xF̃3 dépendent des paramètres électrofaibles :

F̃2 = Fγ2 −veχZFγZ
2 +χ2

Z(v2
e +a2

e )FZ
2 ,

F̃L = FγL −veχZFγZ
L +χ2

Z(v2
e +a2

e )FZ
L,

xF̃3 = aeχZxFγZ
3 −2ve aeχ

2
ZxFZ

3 , (1.38)

où χZ(Q2) = Q2

4(Q2+M2
Z)sin2θW cos2θW

et MZ la masse du boson Z.

À basse énergie c’est-à-dire Q2 ¿ M2
Z, la fonction de structure xF̃3 qui viole la

parité peut être négligée, puisqu’elle contient la contribution de l’échange du boson
Z. La section efficace réduite se réduit à :

σ±
r,NC = F̃2 − y2

Y+
F̃L (1.39)

La contribution du terme contenant la fonction de structure F̃L est seulement signi-
ficative pour des valeurs de y approximativement plus grandes que 0.5.

Pour démontrer la sensibilité des données expérimentales, il est important de
discuter les équations simplifiées dans le modèle de parton de quark (“quark parton
model”, QPM), où les gluons sont absents et F̃L = 0 CALLAN et GROSS [1969]. Dans
le QPM, les fonctions de structure dans les équations (1.38) deviennent 10[

Fγ2 , FγZ
2 , FZ

2

]
≈

[{
e2

u , 2euvu , v2
u +a2

u

}(
x fU +x fU

)+{
e2

d , 2ed vd , v2
d +a2

d

}(
x fD+x fD

)]
,[

xFγ3 , xFγZ
3 , xFZ

3

]
≈

[{
0, 2euau , 2vuau

}(
x fU −x fU

)+{
0, 2ed ad , 2vd ad

}(
x fD −x fD

)]
,

(1.40)

9. Où la fonction de structure longitudinale est définie par : FL = F2 −2xF1

10. eu = 2
3 et ed = − 1

3
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Ici, x fU, x fD, x fU et x fD représentent respectivement les sommes des distributions
de quarks de type “up”et “down” et de leurs antiquarks. En dessous du seuil de la
masse du quark bottom (b), ces sommes sont reliées aux distributions de quarks
définies dans l’équation (1.16) de la façon suivante :

x fU = x fu +x fc , x fU = x fū +x f c̄ , x fD = x fd +x fs , x fD = x fd̄ +x f s̄ , (1.41)

Lorsqu’on suppose une symétrie entre les distributions de quarks et antiquarks de
la mer (c’est-à-dire x fs = x f s̄ et x fc = x f c̄ ), les distributions de quarks de valence
s’écrivent :

x fuval = x fU −x fU, x fdval = x fD −x fD (1.42)

Il résulte de l’équation (1.37) que la fonction de structure xF̃3 peut être déterminée
à partir de la différence entre les sections efficaces réduites e+P et e−P :

xF̃3 =
Y+

2Y−
(σ−

r,NC −σ+
r,NC). (1.43)

Les équations (1.38), (1.40) et (1.42) démontrent que dans le QPM, xF̃3 est direc-
tement reliée aux distributions de quarks de valence. Dans la gamme cinématique
des données de HERA utilisées dans l’analyse présentée dans le chapitre 3, la contri-
bution dominante de xF̃3 vient de l’interférence entre l’échange du photon γ et le
boson neutre Z ; et une simple relation émerge :

xFγZ
3 ≈ 1

3
(2x fuval +x fdval ). (1.44)

La mesure de xFγZ
3 par conséquent permet d’accéder aux comportements des dis-

tributions de quarks de valence à bas x, sous l’hypothèse que les distributions de
quarks et antiquarks de la mer sont les mêmes.

Par analogie aux processus faisant intervenir les courants neutres, la section ef-
ficace inclusive de la diffusion inélastique profonde de l’électron (positron) sur le
proton faisant intervenir les courants chargés peut être exprimée en terme d’autres
ensembles de fonctions de structure :

d2σ±
CC

dxdQ2
=

G2
F

4πx

( M2
W

Q2 +M2
W

)2 [
−y2FW±

L +Y+FW±
2 ∓Y−xFW±

3

]
=

G2
F

2πx

( M2
W

Q2 +M2
W

)2
σ±

r,CC , (1.45)

où

σ±
r,CC = − y2

2
FW±

L + Y+
2

FW±
2 ∓ Y−

2
xFW±

3 , (1.46)

et GF, MW représentent respectivement la constante de Fermi et la masse du boson
W.

Dans le QPM, FW±
L = 0 et FW±

2 , xFW±
3 représentent respectivement la somme et

la différence des distributions de quarks et antiquarks, dépendemment de la charge
du lepton initial :

FW−
2 ≈ x fU + x fD , FW+

2 ≈ x fD + x fU , (1.47)
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xFW−
3 ≈ x fU − x fD , xFW+

3 ≈ x fD − x fU . (1.48)

À partir des équations (1.47) et (1.48), il résulte que :

σ−
r,CC ≈ x fU + (1− y)2x fD, σ+

r,CC ≈ x fU + (1− y)2x fD. (1.49)

La combinaison des données de diffusion inélastique profonde faisant intervenir
les courants neutres (NC) et chargés (CC) rend possible la détermination à la fois
des distributions combinées de quarks de la mer x fU et x fD, et des distributions de
quarks de valence x fuval et x fdval .

Les relations au sein du QPM illustrent de manière simple les données qui four-
nissent des informations. L’une des prédictions les plus frappantes du QPM est que
dans la limite de Björken où Q2 et ν→∞ pour des valeurs fixées de x, Fi (x,Q2) →
Fi (x) BJÖRKEN [1969], c’est-à-dire les fonctions de structure ne dependent plus de
l’échelle d’énergie Q2 : c’est l’invariance d’échelle. Cette propriété est reliée à l’hy-
pothèse que dans ce modèle, l’impulsion transverse des partons dans le référen-
tiel où l’impulsion du proton est infini, est petit. On néglige ainsi le mouvement de
Fermi des quarks dans le proton, ainsi que les corrections QCD.

Par contre, en QCD, le rayonnement de gluons à partir des quarks viole cette
hypothèse, conduisant à des violations d’échelles de façon logarithmique, qui sont
particulièrement grandes pour des petites valeurs de x, (voir figure 1.3). Le rayon-
nement de gluons produit une évolution des fonctions de structure. Le gluon rayonné
produit à son tour une paire de quark - antiquark. Plus grande est l’échelle Q2,
plus de telles fluctuations quantiques peuvent être observées et donc le nombre de
paires quarks - antiquarks et gluons dans la mer partonique s’accroît. Bien que ces
partons de la mer portent seulement une petite fraction du quadri-vecteur impul-
sion du proton, leur nombre croissant conduit à l’affaiblissement de la distribution
des quarks de valence quand Q2 augmente.

Comme nous l’allons mentionné dans les sections précédentes, les PDFs ne sont
pas calculables à partir des premiers principes de la QCD (perturbative), toutefois
leur dépendance en échelle d’énergie Q2 est perturbativement calculable ordre par
ordre en QCD et est décrite par un ensemble de 2n f + 1 équations intégro diffé-
rentielles couplées appélées les équations d’évolution de DGLAP, qui jouent un rôle
d’équations du groupe de renormalisation (RGE) pour les PDFs, et qui s’écrivent
comme suit dans l’espace des x :

𝜕

𝜕 lnQ2

 fi (x,Q2)
f ī (x,Q2)
fg (x,Q2)

 =
αs(Q2)

2π

∫ 1

x

d z

z

Pi k Pi l̄ Pi g

Pī k Pī l̄ Pī g

Pg k Pg l̄ Pg g


∣∣∣∣∣∣∣

z,αs (Q2)

 fk ( x
z ,Q2)

f l̄ ( x
z ,Q2)

fg ( x
z ,Q2)

 , (1.50)

où fi (x,Q2), f ī (x,Q2) et fg (x,Q2) représentent respectivement la distribution d’un
quark de saveur i , la distribution d’un antiquark de saveur i (i = u,d , s,c,b) et la dis-
tribution d’un gluon g à l’intérieur du proton P, et où Pi k , Pi l̄ , Pi g , Pī k , Pī l̄ , Pī g , Pg k ,
Pg l̄ , Pg g correspondent aux fonctions de «splitting» régularisées calculables ordre

par ordre en QCD perturbative, qui sont toutes fonctions de z et de αs(Q2) et qui
peuvent être génériquement développées en série de perturbation :

Pab
(
z,αs(Q2)

)
=

∞∑
n=0

(αs(Q2)

2π

)n
P(n)

ab

(
z
)

(1.51)
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FIGURE 1.3 – La fonction de structure FP
2 en fonction de Q2 pour différentes valeurs de x, dé-

terminées à partir des données combinées de diffusions inélastiques profondes des électrons et
positrons sur les protons par l’échange d’un photon γ pour Q2 ≥ 2GeV2, par les collaborations H1
+ ZEUS de HERA. Les données des expériences sur cible fixe (SLAC, BCDMS, E665 et NMC) sont
montrées à titre de comparison (la figure est tirée de OLIVE et AL [2014]). On observe la dépen-
dance de FP

2 (x,αs(Q2)) avec Q2, comme prédit par la QCD perturbative. En pratique, les données
correspondantes à la section efficace réduite (équation(1.39)) sont ajustées, plutôt que les fonc-
tions de structure F2 et FL séparément.
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À cause de l’invariance de la conjugaison de charge et de la symétrie de saveur
SU(n f ) f , il est aussi intéressant de noter qu’à tous les ordres, nous avons les re-
lations suivantes entre les fonctions de «splitting»

Pi j = Pī j̄ , Pg i = Pg ī ≡ Pg i ,

Pi j̄ = Pī j , Pi g = Pī g ≡ Pi g , (1.52)

ce qui entre autre souligne simplement le fait que Pg i et Pi g sont indépendantes de
la saveur de quark. Par ailleurs, puisque la QCD conserve la saveur, les fonctions de
«splitting» P(0)

i j sont toutes nulles sauf dans le cas i = j = q . Ainsi, nous rappelons les

fonctions de «splitting» régularisées à O (α0
s ) ALTARELLI et PARISI [1977]

P(0)
qq (z) = CF

[
1+ z2

(1− z)+
+ 3

2
δ(1− z)

]
, (1.53)

P(0)
g q (z) = CF

[
1+ (1− z)2

z

]
, (1.54)

P(0)
qg (z) = TF

[
z2 + (1− z)2

]
, (1.55)

P(0)
g g (z) = 2CA

[
z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+δ(1− z)

(11CA −4n f TF)

6
, (1.56)

où la distribution “+” est définie de sorte que son intégrale avec toute fonction “test”
suffisamment régulière f est :∫ 1

0
dz

f (z)

(1− z)+
=

∫ 1

0
dz

f (z)− f (1)

(1− z)
, (1.57)

et
1

(1− z)+
=

1

1− z
, quand 0 ≤ z < 1. (1.58)

Les fonctions de «splitting» dans le secteur des quarks peuvent en fait devenir très
non triviales au-delà de l’ordre dominant. Une manière particulièrement pratique
de résoudre ce problème est d’utiliser la symétrie de saveur SU(3) du Lagrangian
de QCD pour décomposer les fonctions de «splitting» en combinaison de quarks
singulets et de quarks non singulets telle que

Pi j = Pī j̄ = δi j PV
qq +PS

qq ,

Pi j̄ = Pī j = δi j PV
qq̄ +PS

qq̄ . (1.59)

Notons de plus que la quantité de saveur diagonale PV
qq est dejà non nulle à l’ordre

dominant tandis que PV
qq̄ et les diverses contributions aux quarks de la mer PS

qq et

PS
qq̄ commencent seulement à contribuer aux équations de DGLAP à l’ordre NLO.

La même chose est valable pour la combinaison de quarks pure singulet définie ci-
dessous

Pps = n f (PS
qq +PS

qq̄ ) (1.60)

Une méthode efficace pour calculer les distributions de quarks au delà de l’ordre
dominant est d’utiliser la décomposition des saveurs de (1.59) pour réorganiser
(1.50) en introduisant une distribution de quark singulet qs définie par

qs =
n f∑
i =1

( fi + f ī ), (1.61)
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et dont l’évolution est maximalement couplée à la distribution de gluon, et les com-
binaisons non singulet définies ci-dessous

q±
ns,i j = fi ± f ī − ( f j ± f j̄ )

qV
ns =

n f∑
i =1

( fi − f ī ), (1.62)

dont les évolutions découplent complètement de la densité de gluon. Ces trois den-
sités de quarks non singulets évoluent avec les noyaux de «splitting» suivants :

P±
ns = PV

qq ±PV
qq̄ ,

PV
ns = PV

qq −PV
qq̄ +n f (PS

qq −PS
qq̄ ) = P−

ns +n f (PS
qq −PS

qq̄ ). (1.63)

En résumé, les équations d’évolution des densités de quarks non singulets sont :

𝜕q±
ns,i j (x,Q2)

𝜕 lnQ2
=
αs(Q2)

2π

∫ 1

x

dz

z
P±

ns(z,αs(Q2))q±
ns,i j (

x

z
,Q2), (1.64)

𝜕qV
ns(x,Q2)

𝜕 lnQ2
=
αs(Q2)

2π

∫ 1

x

dz

z
PV

ns(z,αs(Q2))qV
ns(

x

z
,Q2). (1.65)

Et les équations d’évolution couplées des distributions de quarks singulets et de
gluon sont :

𝜕

𝜕 lnQ2

(
qs(x,Q2)
fg (x,Q2)

)
=
αs(Q2)

2π

∫ 1

x

dz

z

(
(P+

ns +Pps) 2n f Pqg

Pg q Pg g

)∣∣∣∣
z,αs (Q2)

(
qs( x

z ,Q2)

fg ( x
z ,Q2)

)
, (1.66)

Il existe essentiellement deux types d’approches pour résoudre les équations
d’évolution (1.64), (1.65) et (1.66). Le premier consiste à intégrer numériquement
ces équations intégro-différentielles dans l’espace de la variable de björken x, alors
que la seconde option consiste à utiliser la transformation intégrale de Mellin pour
les PDFs définie par

fa(N,Q2) =
∫ 1

0
dx xN−1 fa(x,Q2) , a = q, q̄ , g (1.67)

pour résoudre ces équations d’évolution dans l’espace des moments N avant d’uti-
liser la transformation inverse de Mellin pour obtenir ces PDFs dans l’espace x

fa(x,Q2) =
1

2πi

∫
C

dN x−N fa(N,Q2), (1.68)

où C est le contour d’intégration dans le plan complexe N.

L’avantage de la méthode de Mellin est qu’elle convertit l’opération de convolution
en une simple multiplication, c’est-à-dire que les équations intégro-différentielles
de DGLAP dans l’espace x sont transformées en simples équations différentielles
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(1.69) dans l’espace N :

𝜕 fa(N,Q2)

𝜕 lnQ2
=

∫ 1

0
dx xN−1𝜕 fa(x,Q2)

𝜕 lnQ2
,

=
∫ 1

0
dx xN−1αs(Q2)

2π

∫ 1

x

dy

y
Pab(

x

y
,αs(Q2)) fb(y,Q2),

=
∫ 1

0
dx xN−1αs(Q2)

2π

∫ 1

0
dy

∫ 1

0
dz Pab(z,αs(Q2)) fb(y,Q2)δ(x − y z),

=
αs(Q2)

2π

∫ 1

0
dz zN−1 Pab(z,αs(Q2))

∫ 1

0
dy yN−1 fb(y,Q2),

𝜕 fa(N,Q2)

𝜕 lnQ2
=

αs(Q2)

2π

∑
b
γab(N,αs(Q2)) fb(N,Q2), (1.69)

où les γab(N,αs(Q2)) sont les dimensions anormales et correspondent à la transfor-
mée de Mellin des fonctions de «splitting» Pab(x,αs(Q2))

γab(N,αs(Q2)) =
∫ 1

0
dx xN−1Pab(x,αs(Q2)). (1.70)

Jusqu’à présent, nous nous sommes surtout concentrés sur la dépendance en
échelle d’énergie Q2 des PDFs, et nous avons vu que cette dépendance en Q2 est
perturbativement calculable ordre par ordre en QCD perturbative et est décrite par
un ensemble d’équation integro-différentielles couplées appelées équations d’évo-
lution de DGLAP. Pourtant, nous n’avons pas beaucoup parlé de la dépendance en x
des PDFs. La dépendance en x des PDFs n’est pas prédite par la QCD perturbative,
mais doit être déterminée par une analyse globale des PDFs (confère section 1.5).

Nous serons amenés à considérer dans ce travail plusieurs schémas de saveurs
lourdes qui permettent de prendre en compte les effets de la masse des quarks
lourds. Les principaux schémas existants sont brièrement présentés dans la section
suivante.

1.4 Les schémas de saveurs lourdes

Pour les analyses de précision des PDFs et, par principe, les effets de la masse des
quarks lourds doivent être correctement pris en compte. Une grande partie de la littéra-
ture a été consacrée à cette question et nous nous référons aux revues récentes ANDERSEN

et AL; OLNESS et SCHIENBEIN [2009]; THORNE et TUNG pour un aperçu des différents sché-
mas de saveurs lourdes utilisés dans les déterminations des PDFs. Chacun de ces schémas
est brièvement discuté ci-dessous.

1.4.1 Le schéma à nombre de saveur variable de masse nulle

Dans le schéma à nombre de saveur variable de masse nulle (“zero-mass variable fla-
vor number scheme”, ZM-VFNS), les quarks lourds apparaissent comme des partons dans
le proton aux valeurs de Q2 au-dessus de ∼ m2

H et ils sont considérés comme sans masses
à la fois dans l’état initial et final du processus de diffusion dure. On s’attend à ce que ce
schéma soit fiable uniquement dans la région où Q2 À m2

H, et c’est pas précis pour des
valeurs de Q2 ¿ m2

H puisqu’il ne contient pas des corrections de l’ordre de m2
H/Q2, alors

que les autres schémas mentionnés ci-dessous sont précis jusqu’à l’ordre 𝛬2
QCD/Q2, bien

qu’avec des ordres de perturbation différents.
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1.4.2 Le schéma à nombre de saveur fixée

Dans le schéma à nombre de saveur fixée (“fixed flavor number scheme”, FFNS), seul le
gluon et les quarks légers sont considérés comme des partons dans le proton et les quarks
massifs sont produits de manière perturbative dans l’état final. Ce schéma est fiable uni-
quement pour les valeurs de Q2 ∼ m2

H puisqu’il ne resomme pas les logarithmes de la
forme ln(Q2/m2

H) qui deviennent importants pour les valeurs de Q2 À m2
H.

1.4.3 Le schéma à nombre de saveur variable de masse générale

Le schéma à nombre de saveur variable de masse générale (“general-mass variable fla-
vor number scheme”, GM-VFNS), permet une transition naturelle au schéma sans masse
(ZM-VFNS) et contient des termes de masse, ce qui donne une bonne description au voi-
sinage des seuils de la masse des quarks lourds. La procédure qui permet cette transition
n’est pas unique et plusieurs réalisations du GM-VFNS ont été proposées dans la littéra-
ture :

Schéma TR

Le schéma Thorne-Roberts ( TR) THORNE et ROBERTS [1998] qui est utilisé dans les ana-
lyses globales de la collaboration MSTW, était désigné à fournir une douce transition entre
le schéma massif FFNS à basses échelles Q2 ∼ m2

H et le schéma sans masse ZM-VFNS
à hautes échelles Q2 À m2

H. Puisque la version originale était techniquement difficile à
implémenter au delà de NLO, il a été mis à jour selon le schéma TR′ THORNE [2006]. Il
existe deux variantes du schéma TR′ : TR′ standard (comme utilisé dans les ensembles de
PDFs du groupe MSTW MARTIN et collab. [2009]; THORNE [2006]) et TR′ optimal THORNE

[2012], avec une transition plus douce à travers la région de seuil de quark lourd.

Schéma ACOT

Le schéma Aivazis-Collins-Olness-Tung (ACOT) fait partie du groupe de schémas de fac-
torisation VFN qui utilise la méthode de renormalisation de Collins-Wilczek-Zee (CWZ)
COLLINS [1998]. Ce schéma implique un mélange du schéma MS pour les partons légers
(et pour les partons lourds quand l’échelle de factorisation est plus grand que la masse
du quark lourd) et un schéma de renormalisation de soustraction d’impulsion nulle pour
les graphes possédant des lines de quark lourd (si l’échelle de factorisation est plus petite
que le seuil de la masse du quark lourd). Le schéma ACOT est alors considéré comme une
extension minimale du schéma MS.

Les différences entre les schémas TR et ACOT sont résumées dans la figure 1.4. Un
problème majeur dans un schéma GM-VFNS complet, est celui de l’ordre dans le déve-
loppement perturbatif. L’équivalence de l’échange des termes O (m2

H/Q2) entre les coeffi-
cients de Wilson (ou les amplitudes de diffusion dure) sans violer la définition du schéma
GM-VFNS ; est ce qui distingue principalement le schéma ACOT du schéma TR. Ici, mH

représente la masse du quark lourd H.
Dans le but d’accélérer le temps de calcul du χ2 (voir 1.5.1.1), nous avons utilisé le

schéma ZM-VFNS pour obtenir les premiers résultats publiés dans GBEDO et MANGIN-
BRINET [2017] et présenté dans le chapitre 3.
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FIGURE 1.4 – Différences entre le schéma ACOT et TR. Figure tirée de XFITTER DEVELOPERS [2017]

.

1.5 L’analyse globale des PDFs en QCD

Comme cela a été discuté dans la section 1.3, les PDFs ne peuvent pas être calculées
en théorie des perturbations, mais plutôt elles doivent être extraites à partir des données
expérimentales comme la diffusion inélastique profonde. Dans cette section, nous pré-
sentons brièvement la procédure standard pour déterminer les PDFs et leurs incertitudes
associées à partir des données expérimentales, et les motivations qui nous ont conduites
à proposer une nouvelle approche, fondée sur des méthodes Monte Carlo.

1.5.1 La procédure standard

La procédure standard pour obtenir l’ensemble des 11 différentes densités de par-
tons 11

x fu , x fū , x fd , x fd̄ , x fs , x f s̄ ,

x fc , x f c̄ , x fb , x fb̄ , x fg , (1.71)

consiste à paramétriser la dépendance x pour un ensemble de données de différents pro-
cessus de diffusion dure à une échelle d’énergie initiale (basse) Q2

0 < m2
c , où mc est la

masse du quark charmé, avant d’évoluer les distributions jusqu’à l’échelle d’énergie phy-
sique Q2 qui nous intéresse au moyen des équations d’évolution de DGLAP.

En pratique, les masses des quarks de type “charm” et “bottom” sont très grandes com-
parativement à𝛬QCD c’est-à-dire, mc ,mb À𝛬QCD de telle sorte que les densités de quarks
lourds sont déterminées perturbativement. Aussi, compte tenu du peu d’informations ex-
périmentales que nous avons actuellement sur le quark de valence de type “strange”, nous
supposons que x fs = x f s̄ . Nous allons immédiatement énumérer de façon concrète les
différentes étapes de la procédure standard :

11. On fait l’hypothèse que l’Isospin est une symétrie, c’est-à-dire, si on décide de sonder le neutron à la
place du proton alors on doit remplacer le quark de type “up” par le quark de type “down” et vice versa.
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• La première étape consiste à paramétriser les PDFs à une échelle initiale Q2
0 :

x fa(x,Q2
0) = Aa xBa (1−x)Ca Pa(x,Da ,Ea), a = u,d , ū, d̄ , s̄, g (1.72)

où Pa(x) est un polynôme simple qui permet l’interpolation entre les régions de bas et
haut x. La forme de ce polynôme diffère d’un groupe de PDFs à l’autre et le choix de la
paramétrisation constitue donc une source d’incertitude sur les PDFs produites par les
groupes d’analyse globales à l’exception de la collaboration NNPDF BALL et AL. [2010];
DEL-DEBBIO et AL [2007]; ROJO [2006] qui propose une technique basée sur les réseaux
de neurones pour éviter les incertitudes dues à la paramétrisation.

Dans ce travail, nous utilisons la forme fonctionnelle proposée par le groupe HE-
RAPDF.

x fa(x,Q2
0) = Aa xBa (1−x)Ca (1+Da x +Ea x2), a = g ,uval,dval,U,D . (1.73)

La contribution de la distribution de quark x fs(x,Q2
0) est considérée comme proportion-

nelle à la distribution de quark x fD(x,Q2
0) en posant x fs(x,Q2

0) = rs x fD(x,Q2
0), avec

rs = 0.31, (1.74)

comme suggéré dans KAYIS-TOPAKSU et collab. [2008]. La contrainte supplémentaire AU =
AD

(
1− rs

)
, ensemble avec la condition requise BU = DD, assure que xū → xd̄ lorsque x →

0. Les paramètres de normalisation Auval et Adval sont contraints par la conservation du
nombre de quarks de valence de type “up” et “down” dans le proton∫ 1

0
fuval (x,Q2

0)d x = 2 =⇒∃ deux quarks de valence uval dans le proton , (1.75)∫ 1

0
fdval (x,Q2

0)d x = 1 =⇒∃ un quark de valence dval dans le proton . (1.76)

tandis que le paramètre de normalisation Ag est contraint par la conservation de la frac-
tion du quadri-vecteur impulsion portée par les partons∫ 1

0

[
x fU(x,Q2

0)+x fU(x,Q2
0)+x fD(x,Q2

0)+x fD(x,Q2
0)+x fg(x,Q2

0)
]

d x = 1 . (1.77)

• Ensuite les PDFs (1.73) seront évoluées jusqu’à l’échelle expérimentale Q2
exp., en utili-

sant les solutions des équations de DGLAP (1.64), (1.65) et (1.66) et utilisées pour évaluer
les observables théoriques telles que les fonctions de structure et les sections efficaces
à l’aide des théorèmes de factorisation (voir sous-section 1.3.1). Beaucoup de différents
types d’expériences sont nécessaires pour une détermination complète des distributions
de partons :

- l’ensemble de donnée de la fonction de structure FP
2 (x,Q2) fournit par les collaborations

H1 ADLOFF et AL [2000, 2001a,b] et ZEUS CHEKANOV et AL [2001] est la donnée générale-
ment utilisée et couvre les petites valeurs de x 12 et une gamme étendue d’échelle d’éner-
gie Q2, les données FP

2 (x,Q2) et Fd
2 (x,Q2) pour les valeurs intermédiaires de x fournies

par la collaboration E665 ADAMS et AL [1996], les données FP
2 (x,Q2) et Fd

2 (x,Q2) pour les
grandes valeurs de x fournies par les collaborations BCDMS BENVENUTI et AL [1989a,b]

12. x est la variable de Björken.
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et SLAC WHITLOW [1990]; WHITLOW et AL [1992], les données FP
2 (x,Q2) et Fd

2 (x,Q2) pour
les grandes valeurs et valeurs intermédiaires de x fournies par la collaboration NMC AR-
NEODO et AL [1997a,b], les données Fν(ν̄)P

2 (x,Q2) et Fν(ν̄)P
3 (x,Q2) pour les grandes valeurs

de x fournies par la collaboration CCFR SELIGMAN et AL [1997]; YANG et AL [2001] qui
sondent indépendemment les quarks singulets et de valence ;

- les données FP
2,char m(x,Q2) et P+N →µ+µ̄+X pour les grandes valeurs de x fournies res-

pectivement par les collaborations H1-ZEUS ADLOFF et AL [2002]; BREITWEG et AL [2000]
et E605 MORENO et AL [1991] pour contraindre les quarks de la mer ;

- les données de l’asymétie du processus de Drell-Yan mesurées par la collaboration E866
TOWELL et AL [2001] pour déterminer fd̄ − fū ;

- les données de l’asymétie du boson W pour les grandes valeurs de x mesurées par la
collaboration CDF ABE et AL [1998] pour contraindre le rapport fu/ fd ;

- les données inclusives de “jet” pour les hautes valeurs de x fournies respectivement par
les collaborations CDF AFFOLDER et AL [2001] et D0 ABBOTT et AL [2001] pour astreindre
fg ;

- Les données de production de dimuon par les collaborations NuTev GONCHAROV et AL

[2001] et CCFR BAZARKO et AL [1995] pour contraindre la distribution du quark de la mer
de type “strange”.

• Enfin les paramètres des PDFs seront ajustées aux données expérimentales en mini-
misant grâce à MINUIT JAMES et ROOS [1975] la fonction χ2.

1.5.1.1 Construction de la fonction χ2

La définition standard du χ2 utilisée dans les analyses globales des PDFs était

χ2(q̂) =
Ndat∑
I=1

(
DI −TI(q̂)

)2(
σ2

st at ,I +σ2
uncor,I

) , (1.78)

où TI(q̂), DI, σst at ,I et σuncor,I sont la valeur de la prédiction théorique dépendant des pa-
ramètres libres q̂ des PDFs, la valeur de la mesure expérimentale, l’incertitude statistique
et l’incertitude systématique non corrélée pour le point de donnée expérimentale I. La
section efficace inclusive TI dans les collisionneurs hadroniques peut être écrite comme
une convolution des PDFs avec la section efficace partonique, calculée à un ordre donné
en théorie des perturbations.

Toutefois cette définition ne tient pas en compte les incertitudes systématiques cor-
rélées. Dans le cas où ces incertitudes sont petites, une alternative de calcul du χ2 est
d’incorporer ces incertitudes systématiques corrélées dans la prédiction théorique :

T⋆I (q̂, ξ̂) = TI(q̂)+
Nsys∑
k=1

ξk𝛥
sys
kI , (1.79)

où Nsys représente le nombre total de sources d’incertitudes systématiques corrélées,𝛥sys
kI

est l’erreur systématique corrélée à 1σ pour le point de donnée expérimentale I de la
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source k et les paramètres ξk représentent des variables aléatoires indépendantes distri-
buées suivant la loi Gaussienne de moyenne 0 et de variance 1 pour chaque source d’in-
certitude systématique corrélée k. La fonction χ2 prend dans ce cas la forme suivante :

χ2(q̂, ξ̂) =
Ndat∑
I=1

(
DI −T⋆I (q̂, ξ̂)

)2(
σ2

stat,I +σ2
uncor,I

) +Nsys∑
k=1

ξ2
k , (1.80)

où le second terme de (1.80) permet de contraindre les valeurs des paramètres des incer-
titudes systématiques corrélées ξk .

Lorsque le nombre de sources d’incertitude systématique est grand, des instabilités
numériques peuvent apparaître lorsque l’on minimise avec MINUIT la fonction χ2 de
(1.80) par rapport aux paramètres ξ̂ et q̂ , c’est pourquoi il est préférable de faire la minimi-
sation de (1.80) par rapport à ξk de façon analytique. On définit pour se faire les variables
auxiliaires suivantes :

Bk =
Ndat∑
i =1

𝛥kI
(
DI −TI(q̂)

)(
σ2

stat,I +σ2
uncor,I

) et Akl = δkl +
Ndat∑
I=1

𝛥kI𝛥l I(
σ2

stat,I +σ2
uncor,I

) , (1.81)

la dérivée partielle de (1.80) par rapport à ξk donne donc :

ξk (q̂) =
Nsys∑
l=1

(A−1)kl Bl . (1.82)

En rassemblant les équations (1.81) et (1.82), on obtient après quelques calculs, la fonc-
tion χ2 simplifée :

χ2(q̂) =
Ndat∑
I=1

(
DI −TI(q̂)

)2(
σstat,I +σ2

uncor,I

) −Nsys∑
k=1

Nsys∑
l=1

Bk (A−1)kl Bl , (1.83)

Le double avantage de l’équation (1.83) est qu’on voit explicitement le décalage de la me-
sure par rapport à la théorie et qu’elle nécessite l’inversion des matrices de petites dimen-
sions ; ce qui permet d’éviter les éventuelles instabilités numériques comme c’est le cas
pour l’équation (1.80).

Une fois la fonction χ2 spécifiée, nous trouvons l’ensemble des paramètres
{

q (i )
0

}d

i =1
qui la minimise, c’est-à-dire χ2(q̂0) = χ2

min.

1.5.1.2 Application : ajustement du paramètre Bg

En guise d’illustration, on se propose ici d’utiliser la procédure standard pour ajuster
seulement le paramètre libre Bg de x fg (x,Q2

0) aux données combinées de HERA I AARON

et AL. [2010]. Pour cela, on considère les formes fonctionnelles suivantes à l’échelle initiale
Q2

0 = 1.9 GeV2 où nous utilisons à partir de maintenant les notations suivantes pour les
PDFs :

xg (x,Q2
0) = Ag xBg (1−x)Cg , (1.84)

xuval(x,Q2
0) ≡

(
xU−xU

)
(x,Q2

0) = Auval x
Buval (1−x)Cuval

(
1+Euval x

2), (1.85)

xdval(x,Q2
0) ≡

(
xD−xD

)
(x,Q2

0) = Adval x
Bdval (1−x)Cdval , (1.86)

xU(x,Q2
0) ≡ xū(x,Q2

0) = AUxBU
(
1−x

)CU , (1.87)

xD(x,Q2
0) ≡

(
xd̄ +xs̄

)
(x,Q2

0) = ADxBD
(
1−x

)CD , (1.88)
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où les paramètres de normalisation Auval , Adval et Ag sont respectivement fixés par les
équations (1.75), (1.76) et (1.77), et tous les autres paramètres à l’exception de Bg sont
fixés (voir tableau 1.3).

Parameter Values
Cg 5.927

Buval = Bdval 0.610
Cuval 4.712
Euval 14.759
Cdval 3.144
AU 0.210

BU = BD -0.018
CU 4.052
AD 0.305
CD 5.875

TABLEAU 1.3 – Les valeurs des autres paramètres fixes des paramétrisations (1.84)-(1.88).

Le nombre total de points de données non corrélées est Ndat = 537 après la coupure
Q2 ≥ 10 GeV2, désignée pour réduire les sources d’erreurs théoriques. L’ordre de pertur-
bation des observables théoriques correspondantes aux données considérées est “NLO”.
La constante de couplage fort est fixée à αs(M2

Z) = 0.1176, avec MZ = 91.187 GeV. Ce qui
conduit au résultat suivant :

Bg = −0.056±0.002 . (1.89)

Le tableau 1.4 montre à la fois χ2
min par degré de liberté noté d.o.f 13 et la contribution de

chacun des 4 ensembles de données non corrélés au χ2
min total.

Data set χ2
min /Ndat

NC DIS cross sections HERA I H1-ZEUS combined e−p 114/145
NC DIS cross sections HERA I H1-ZEUS combined e+p 301/324
CC DIS cross sections HERA I H1-ZEUS combined e−p 21/34
CC DIS cross sections HERA I H1-ZEUS combined e+p 30/34

Total χ2
min/d.o.f 466/536

TABLEAU 1.4 – Résultats de l’ajustement du paramètre Bg aux données de HERA I. La contribution
de chaque ensemble de données au χ2

min total et le nombre de points correspondant sont montrés.

Une illustration de la distribution xg (x,Q2) obtenue par ajustement du paramètre Bg

aux données mentionnées plus haut est :

13. Le degré de liberté d.o.f est la différence entre le nombre total de points de données Ndat et le nombre
de paramètres libres d à ajuster aux données en considération.
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FIGURE 1.5 – Courbes montrant la valeur centrale de la distribution du gluon (1.84) aux échelles
Q2 = 1.9 GeV2 (gauche) et Q2 = 10 GeV2 (droite) dans le schéma où tous les quarks lourds sont sans
masses (1.4.1).

Sur la figure 1.5, nous constatons que la distribution du gluon augmente très rapidement
à bas x lorsqu’on passe de l’échelle d’énergie Q2

0 à l’échelle d’énergie Q2 = 10 GeV2 : c’est
l’effet de l’évolution de DGLAP.

Il y a quelques années en arrière, la détermination des densités de partons qui ajustent
le mieux les données expérimentales en considération était suffisante pour une étude
phénoménologique pratique. Toutefois, avec l’avènement de nouvelles données issues
des collisionneurs hadroniques, la nécessité d’estimer quantitativement les incertitudes
des PDFs est d’une importance primordiale. Nous allons sans tarder aborder les diffé-
rentes approches pour obtenir les incertitudes expérimentales sur les PDFs.

1.6 Les incertitudes expérimentales des PDFs

Nous allons ici rappeler les différentes approches existantes pour obtenir les incerti-
tudes expérimentales sur les PDFs.

1.6.1 L’approche de Hessien

Dans l’approche Héssienne PUMPLIN et collab. [2001a,b], l’incertitude expérimentale
associée aux PDFs s’obtient en définissant la matrice Héssienne :

χ2 −χ2
min ≡𝛥χ2 =

d∑
i =1

d∑
i =1

Hi j (q (i ) −q (i )
0 )(q ( j ) −q ( j )

0 ) , (1.90)

où Hi j est un élément de la matrice Hessienne défini par :

Hi j =
𝜕2χ2(q̂ , ξ̂)

𝜕q (i )𝜕q ( j )
. (1.91)

Nous pouvons donc utiliser la formule standard de propagation linéaire des incertitudes
expérimentales des PDFs pour calculer l’erreur sur toute quantité F :

(𝛥F )2 =
d∑

i =1

d∑
j =1

𝜕F

𝜕q (i )
Ci j (q̂)

𝜕F

𝜕q ( j )
, (1.92)
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où Ci j est un élément de la matrice de covariance des paramètres libres q̂ des PDFs :

Ci j (q̂) =𝛥χ2(H−1)i j . (1.93)

Il est plus pratique et numériquement plus stable de diagonaliser la matrice de covariance
à cause de la symétrie de la matrice Hessienne. Ceci permet donc de travailler dans la base
des vecteurs propres orthogonaux {vi k } définis par :

d∑
j =1

Ci j v j k = εk vi k , (1.94)

d∑
i =1

vi k vi l = δkl , (1.95)

où {εk } sont les valeurs propres. En pratique, la variation très lente du χ2 dans certaines
directions de l’espace des paramètres libres q̂ est problématique puisqu’elle détériore la
qualité de l’ajustement. Toutefois, l’approche Hessienne conduit à un ensemble de 2d
distribution de partons noté S±

i pour chaque direction du vecteur propre. Par suite l’in-
certitude associée aux PDFs peut se propager dans la quantité F de la façon équivalente
à (1.92) :

(𝛥F )2 =
1

2

d∑
i =1

(
F (S+

i )−F (S−
i )

)2
. (1.96)

Il y a un arbitraire à choisir la valeur correcte de 𝛥χ2 (en principe 𝛥χ2 = 1), ce qui in-
troduit des complications dans la procédure d’analyse globales. Toutefois, à cause du fait
que les données provenant de différentes expériences sont parfois incompatibles, il est
préférable de choisir 𝛥χ2 > 1 afin d’estimer les incertitudes d’une manière exacte. Enfin,
l’introduction de ce critère de tolérance arbitraire ne permet pas de donner une interpré-
tation statistique rigoureuse aux incertitudes qui résultent de cette méthode. La figure 1.6
montre une illustration de l’utilisation de la méthode Hessienne (𝛥χ2 = 1) pour estimer
grâce au code public HERAFitter l’incertitude sur les distributions de gluon (1.84) et de
quark de valence uval (1.85) à l’échelle Q2 = 10 GeV2.
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FIGURE 1.6 – Courbes montrant la distribution du gluon xg (gauche) et la distribution du quark de
valence xuval (droite) dans le même schéma (1.4.1).
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1.6.2 L’approche de “Offset”

C’était la première méthode pour estimer les effets des incertitudes expérimentales
sur les PDFs dans les analyses globales. Dans cette approche, les paramètres ξk de l’incer-
titude systématique dans l’équation (1.80) peuvent être fixés à zéro pour que les prédic-
tions théoriques ajustées soient aussi proches que possible des valeurs centrales des don-
nées expérimentales publiées. Ces paramètres sont ensuite pris en compte dans l’analyse
des erreurs qui s’effectue de la manière suivante : en plus de la matrice Hessienne repré-
sentée par l’élément de matrice (1.91), on définit une seconde matrice Hessienne M dont
l’élément de matrice est défini par :

Mi j =
𝜕2χ2(q̂ , ξ̂)

𝜕q (i )𝜕ξ( j )
, (1.97)

on définit par suite la matrice de covariance des incertitudes systématiques :

Csys = H−1MMᵀH−1 , (1.98)

de sorte que la matrice de covariance totale soit

Ctot = Cqξ+Cq , (1.99)

avec Cq = H−1 étant la matrice de covariance de l’incertitude statistique (et systématique
non corrélée). Enfin l’incertitude sur toute quantité F dépendant des paramètres libres
q̂ peut être estimée de la façon suivante :

(𝛥F )2 =
d∑

i =1

d∑
j =1

𝜕F

𝜕q (i )
Ci j (q̂)

𝜕F

𝜕q ( j )
, (1.100)

en substituant C par les matrices de covariance appropriées Cq, Cqξ et Ctot pour obtenir
respectivement les bandes d’incertitude : statistique (et systématique non corrélée), sys-
tématique corrélée et expérimentale totale. Ce n’est pas une approche qui est statistique-
ment rigoureuse, mais sa vertu est qu’elle ne suppose pas que les incertitudes systéma-
tiques soient nécessairement distribuées suivant une Gaussienne. Cette méthode donne
une très grande incertitude par rapport à l’approche Hessienne pour une même 𝛥χ2 = 1
(voir figure 1.7).
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FIGURE 1.7 – Comparaison des incertitudes des distributions de partons xg , xuval, xdval et xS à
l’échelle Q2 = 10GeV2 ; extraites à partir des données de la collaboration ZEUS en utilisant les
méthodes “Offset” et Hessienne. Figure tirée de COOPER-SARKAR et GWENLAN [2005].

1.6.3 L’approche des multiplicateurs de Lagrange

La méthode des multiplicateurs de Lagrange proposée dans STUMP et collab. [2001]
surmonte certains des inconvéniens des deux méthodes ci-dessus, en particuler celle re-
lative à l’approximation de la linéarité. Cette méthode consiste à effectuer un ajustement
global en contraignant la valeur d’une quantité F , c’est-à-dire minimiser la fonction Φ

définie par :
Φ(q̂ , λ̂) = χ2(q̂)+ λ̂F (q̂) , (1.101)

pour diverses valeurs fixées de {λα}. Cette procédure génère une relation paramétrique
en fonction de λ entre la fonction χ2 et la quantité F , de sorte que lorsque’on connaît
𝛥χ2, il est facile de trouver la gamme autorisée pour la quantité 𝛥F sans demander que
𝛥χ2 soit distribuée suivant une Gaussienne. Cette procédure ne nécessite pas certaines
approximations utilisées dans les approches de Hessien et de “offset”, mais le critère du
choix arbitraire d’un paramètre de tolérance subsiste.

Dans le souci de supprimer l’arbitraire qui entre en ligne de compte lors de l’estima-
tion des incertitudes dans les analyses globales des PDFs, nous proposons une nouvelle
approche basée sur les méthodes Monte Carlo par chaînes de Markov (“Markov Chain
Monte Carlo”, MCMC).
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Chapitre 2

La méthode Monte Carlo par chaînes de
Markov

2.1 Introduction

Dans ce chapitre, on propose un outil qui combine les modèles théoriques et les don-
nées expérimentales : le Monte Carlo par chaînes de Markov. Cette formulation mathéma-
tique permet l’échantillonnage des densités de probabilité a posteriori pour des modèles
multidimensionnels en utilisant des chaînes de Markov. Cette procédure a pour avantage
l’extraction des densités de probabilité a posteriori jointes et individuelles des paramètres
libres des PDFs et des PDFs elles-même. Ainsi, une estimation rigoureuse des incertitudes
expérimentales des PDFs peut se faire à partir des densités de probabilités des PDFs.

2.2 La formulation de la détermination des distributions
de partons en terme d’inférence Bayésienne

Les distributions de partons (PDFs) sont souvent (à l’exception de la procédure du
réseau de neurones BALL et AL. [2010]; DEL-DEBBIO et AL [2007]; ROJO [2006]) paramétri-
sées par des formes fonctionnelles à une échelle d’énergie initiale Q2

0 donnée. Ces distri-
butions de partons peuvent être ensuite obtenues à une échelle d’énergie Q2 > Q2

0 grâce
aux équations d’évolution de DGLAP (ceci aussi aux exceptions près du modèle de dipôle
et des distributions de partons non intégées (uPDFs) par exemple, que nous n’allons pas
considérer ici). Ces PDFs sont convoluées avec des sections efficaces partoniques pour
obtenir des sections efficaces hadroniques (voir les équations (1.16) et (1.17)) pour divers
processus différents et la fonction χ2, construite à partir de ces sections efficaces théo-
riques et données expérimentales correspondantes, est alors minimisée pour contraindre
les paramètres des PDFs. Plutôt que d’utiliser la procédure standard de minimisation et la
méthode Hessienne pour estimer les incertitudes des PDFs, nous proposons l’approche
de l’inférence Bayésienne. Cette technique a été déja testée avec succès dans plusieurs
domaines GILKS et collab. [1995] mais n’a encore jamais été appliquée à la determination
des PDFs. Nous esquissons les principes essentiels dans ce qui suit. Le lecteur intéressé
peut se référer par exemple à NEAL [2011] pour une connaissance plus approfondie du
sujet.
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2.2.1 L’inférence Bayésienne

Il y a deux interprétations essentielles de la probabilité qui sont utilisées en analyse
de données : la fréquence relative utilisée entre autres pour affecter des erreurs statis-
tiques aux mesures et la probabilité subjective utilisée pour quantifier les incertitudes
systématiques COWAN [1997]. Dans l’approche fréquentiste, la probabilité d’un évène-
ment élémentaire désigne la fréquence relative avec laquelle l’événement apparaît après
avoir répété l’expérience une infinité de fois. Dans l’approche Bayésienne, la probabilité
est associée à une hypothèse et est interprétée comme le degré de confiance accordée
à celle-ci. La démarche logique permettant le calcul de la probabilité d’une hypothèse à
l’aide du théorème de Bayes se nomme inférence Bayésienne.

Pour des raisons de compacité, nous notons q̂ le vecteur de paramètres des PDFs à
déterminer : q̂ = (q (1), q (2), ..., q (d))ᵀ où d est typiquement, dans le cas d’une analyse to-
tale, de l’ordre 25-30, et D représente les données observées. À partir de la perspective
Bayésienne, les paramètres du modèle théorique et les observables sont tous deux consi-
dérés comme des quantités aléatoires, et l’objectif de l’inférence Bayésienne est formel-
lement de déterminer la distribution de probabilité jointe P(D, q̂) de toutes les variables
aléatoires. Cette distribution jointe peut être écrite comme

P(D, q̂) = P(q̂)P(D|q̂),

où P(q̂) est la probabilité a priori - quantifiant le degré de confiance que l’on a a priori
avant l’observation des données expérimentales et P(D|q̂) appelée la fonction de vrai-
semblance L (D, q̂)

def
= P(D|q̂) n’est rien d’autre que la probabilité, partant de la théorie,

d’observer les données effectivement mesurées. Le théorème de Bayes est utilisé pour ex-
primer la distribution de q̂ sachant D, P(q̂|D), en terme de la fonction de vraisemblance
P(D|q̂) :

P(q̂|D) =
L (D, q̂)P(q̂)∫

L (D, q̂)P(q̂)d q̂
. (2.1)

Le dénominateur de l’équation (2.1) ne dépend pas des paramètres des PDFs et joue ainsi
le rôle d’une constante de normalisation. Cette densité de probabilité a posteriori P(q̂|D)
quantifie la probabilité d’avoir les paramètres du modèle q̂ sachant que les données D ont
été observées et est l’objet que nous examinons dans toute inférence Bayésienne. Pour
déterminer cette probabilité conditionnelle, nous avons donc besoin de supposer une
probabilité a priori pour les paramètres q̂ , et calculer la fonction de vraisemblance. Cette
densité de probabilité P(q̂|D) est alors échantillonnée par un algorithme Monte Carlo.

Supposons que les fluctuations des Ndat points de données expérimentales à l’étude
autour de leurs valeurs théoriques correspondantes sont non corrélées et distribuées se-
lon la loi normale (l’hypothèse qui peut être vérifiée a posteriori - voir chapitre 3), la mé-
thode des moindres carrés et celle du maximum de vraisemblance sont équivalentes et le
logarithme de la fonction de vraisemblance peut être écrit comme

lnL (D, q̂) = −1

2
χ2(q̂) (2.2)

2.3 Le principe du Monte Carlo par chaînes de Markov

2.3.1 La base de la méthode

La méthode Monte Carlo par chaînes de Markov permet l’estimation des densités de
probabilité a posteriori pour des modèles multidimensionnels - qui, comme brièvement
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expliqué dans la section précédente, est exactement ce que nous voulons et fournit des
estimations fiables des erreurs. Les algorithmes MCMC nous permettent d’échantillon-
ner à partir d’une distribution de probabilité connue à une constante multiplicative près.
Ces algorithmes consistent à simuler séquentiellement une seule chaîne de Markov dont
la distribution limite est celle choisie (dans notre cas, le maximum de la fonction de vrai-
semblance fois une densité de probabilité a priori des paramètres). Plus précisement, une
chaîne de Markov est une séquence de variables aléatoires telle que la valeur suivante ou
état de la séquence dépend uniquement de l’état présent et non des états passés (absence
de « mémoire ») NEAL [1993]. Alors, nous générons une séquence de variables aléatoires,
q̂0, q̂1, ... telle que l’état suivant q̂t+1 avec t ≥ 0 est distribué selon la probabilité de tran-
sition T(q̂t → q̂t+1)

def
= P(q̂t+1|q̂t ). Pour qu’elle converge vers une distribution stationnaire

donnée, la chaîne doit être ergodique i.e. stationnaire, irréductible et non périodique.

Deux ingrédients sont necéssaires pour définir une chaîne de Markov : (i) les valeurs
initiales des distributions marginales des paramètres et (ii) la probabilité de transition
entre deux états de l’espace des paramètres : T(q̂ → q̂ ′), pour aller d’un état q̂ à l’autre état
q̂ ′. Il y a beaucoup d’aspects qui surviennent lors de l’implémentation des algorithmes
MCMC : l’influence du point de départ de la chaîne (ce qui conduit à une phase de « burn-
in »), le choix de la probabilité de transition, le taux de convergence, l’acceptance de l’al-
gorithme, ... . Ces questions seront illustrées dans les sections suivantes.

2.3.2 L’algorithme de Metropolis-Hastings

L’algorithme de Metropolis-Hastings (voir figure 2.1), proposé par METROPOLIS et col-
lab. [1953] et généralisé par HASTINGS [1970] pour engendrer une chaîne de Markov qui
satisfasse le principe du bilan détaillé, est un des plus simples algorithmes Monte Carlo. Il
est le cheval de bataille standard de calcul des méthodes MCMC tant pour sa simplicité et
pour sa polyvalence, et est en principe applicable à tout système. Il est extrêmement facile
à implémenter pour échantillonner une densité cible P(q̂|D). La chaîne de Markov s’itère
en « sautant » de l’état actuel q̂t de l’espace des paramètres à l’état suivant q̂t+1. La proba-
bilité de transition entre deux états est spécifiée par l’algorithme de Metropolis-Hastings
en utilisant une fonction d’échantillonnage (angl. : Proposal distribution) π(.|q̂t ).
À chaque temps Monte Carlo t, correspondant à l’état q̂t , un état q̂ ′

t est généré à partir de
la fonction d’échantillonnage π(.|q̂t ) qui a les mêmes propriétés que la distribution cible.
Cet état proposé est accepté comme nouvel état de la chaîne avec la probabilité

α(q̂t , q̂ ′
t ) = min

(P(q̂ ′
t |D)π(q̂t |q̂ ′

t )

P(q̂t |D)π(q̂ ′
t |q̂t )

, 1
)
, (2.3)

autrement dit

q̂t+1 =

{
q̂ ′

t , avec la probabilité α(q̂t , q̂ ′
t ),

q̂t , avec la probabilité 1−α(q̂t , q̂ ′
t ),

La probabilité de transition T(q̂t → q̂ ′
t ) prend alors la forme explicite suivante

T(q̂t → q̂ ′
t ) = α(q̂t , q̂ ′

t )π(q̂ ′
t |q̂t ). (2.4)
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Generate starting point q̂0

for t = 0 to N do
Generate a candidate q̂ ′

t ∼π(.|q̂t )
Generate u ∼U [0,1]

Compute r(q̂t , q̂ ′
t ) =

P(q̂ ′
t |D)π(q̂t |q̂ ′

t )
P(q̂t |D)π(q̂ ′

t |q̂t )

if u < min(r(q̂t , q̂ ′
t ),1) then

q̂t+1 = q̂ ′
t

else
q̂t+1 = q̂t

end
end

FIGURE 2.1 – L’algorithme de Metropolis-Hastings.

Si le nouvel ensemble de paramètres q̂ ′
t est accepté, alors il devient le nouvel état de

la chaîne : q̂t+1 = q̂ ′
t (la chaîne « évolue »). S’il est rejeté, alors l’ancien état est réécrit dans

la chaîne : q̂t+1 = q̂t (la chaîne « stagne »). Ce critère assure l’ergodicité de la chaîne, i.e.
que la chaîne échantillonne la distribution voulue P(q̂|D) une fois à l’équilibre. Si notre
distribution cible apparaît avec une constante de normalisation que nous ne connaissons
pas, alors le calcul du rapport

r(q̂t , q̂ ′
t ) =

P(q̂ ′
t |D)π(q̂t |q̂ ′

t )

P(q̂t |D)π(q̂ ′
t |q̂t )

,

entraînera la simplification de ce facteur : c’est l’une des caractéristiques attrayantes de
l’algorithme de Metropolis-Hastings, le faisant approprié pour une grande variété d’ap-
plications.

Un cas spécial de l’algorithme de Metropolis-Hastings est l’algorithme de Metropolis
à marche aléatoire, pour lequel la distribution d’échantillonnage est choisie de sorte que
π(q̂ ′

t |q̂t ) =π(|q̂t − q̂ ′
t |). La probabilité d’acceptation se réduit donc à

α(q̂t , q̂ ′
t ) = min

(P(q̂ ′
t |D)

P(q̂t |D)
, 1

)
. (2.5)

Fréquemment, la proposition du saut de la marche aléatoire a une forme qui dépend d’un
paramètre d’échelle. Par exemple, la fonction de proposition pour q̂ ′

t pourrait être une
distribution Gaussienne centrée en q̂t et d’écart-type σ. Une attention méticuleuse doit
être portée au choix de ce paramètre d’échelle. Si ce paramètre d’échelle est très grand,
un pourcentage très élévé des points de la chaîne sera rejeté, conduisant à un algorithme
inefficace. S’il est très petit, la marche aléatoire explorera très lentement l’espace des pa-
ramètres, ce qui conduira encore à l’inefficacité de l’algorithme. Ce problème est d’autant
plus difficile à gérer que le nombre de paramètres (i.e. la dimension du vecteur q̂) à échan-
tillonner augmente.

Idéalement, pour optimiser l’efficacité du MCMC, la fonction de proposition devrait
être aussi proche que possible de la distribution cible. En pratique, la performance de
l’algorithme est évidemment fortement dépendante du choix de la distribution d’échan-
tillonnage π(.|q̂t ) et plusieurs options sont souvent considérées dans la littérature pour
explorer l’espace des paramètres : les distributions Gaussiennes unidimensionnelles ou
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multidimensionnelles, l’échantillonnage par partition binaire de l’espace, .... Toutefois,
même si l’ajustement des distributions d’échantillonnage améliore l’efficacité de l’algo-
rithme de Metropolis-Hastings, ils ne sont pas assez efficaces pour faire face à plusieurs
dizaines de paramètres pour un nombre raisonable de machine en un temps utilisateur
raisonnable. Pour contourner ces problèmes ; puisque dans le cas de l’extraction des PDFs,
le nombre de paramètres libres à déterminer (c’est le nombre de paramètres dans la forme
fonctionnelle des PDFs) est de l’ordre de ∼ 25-30 ; nous avons implémenté un algorithme
plus efficace, basé sur la dynamique moléculaire, initialement devéloppé pour la QCD sur
réseau et est largement utilisé dans ce domaine.

2.4 L’algorithme Monte Carlo Hamiltonien (MCH)

Comme mentionné plus haut, le problème essentiel de l’algorithme de type Metropo-
lis, repose sur le choix du point d’essai à chaque mouvement de la chaîne. Le choix d’un
point d’essai loin du point initial entraînera une stagnation importante dans la distribu-
tion à échantillonner, et donc une probabilité d’acceptation faible, tandis que le choix
d’un point d’essai proche du point initial n’entraînera pas une exploration efficace de
l’espace des paramètres, et conduira donc à une convergence lente de la chaîne.

La dynamique Hamiltonienne DUANE et collab. [1987], développée à l’origine pour la
théorie des champs sur réseau, est utilisée pour produire des candidats à l’algorithme de
Metropolis, d’une manière très élégante et efficace. C’est un algorithme exact qui com-
bine l’évolution de la dynamique moléculaire avec l’étape d’acceptation-rejet de l’algo-
rithme de Metropolis. Ce dernier est utilisé pour corriger les erreurs de discrétisation
dans l’intégration numérique des équations de mouvement correspondantes. Il existe de
très bons articles qui détaillent les propriétés de cet algorithme (voir par exemple NEAL

[2011]), et seules les idées principales seront rappelées ici sans être exhaustif.
L’algorithme MCH (voir figure 2.4) consiste à associer à chaque ensemble de paramètres
q̂ un ensemble d’impulsions conjuguées p̂ et remplacer la densité de probabilité a poste-
riori (2.1) nous voulons échantillonner par la distribution jointe définie par :

P(q̂ , p̂) =
1

Z
e−H(q̂ ,p̂) =

1

Z
e−K (p̂)eU (q̂), (2.6)

où Z est une constante de normalisation et H(q̂ , p̂) est un Hamiltonien écrit comme

H(q̂ , p̂) = K (p̂) + U (q̂). (2.7)

Le premier terme a la forme de l’énergie cinétique

K (p̂) =
1

2
p̂ᵀM−1p̂, (2.8)

où M est une matrice de masse, généralement prise comme diagonale, d’éléments diago-
naux 1 m(i ) = 1/(𝛥q(i ))2 et le second terme est une énergie potentielle arbitraire que nous
définissons comme

U (q̂) = − ln[L (D, q̂)P(q̂)], (2.9)

dans laquelle, en analogie avec la physique, q̂ représente un vecteur-position.
À partir d’un point q̂0 de la chaîne, la procédure de l’algorithme MCH consiste à sélec-

tionner un ensemble de quantité de mouvement initial p̂0 distribuée suivant la loi nor-
male centrée réduite et à laisser le système évoluer de manière déterministe pendant un

1. Ici, 𝛥q̂ représente une échelle appropriée pour q̂
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certain temps selon les équations de mouvement de Hamilton pour H(q̂ , p̂). Il atteint un
point candidat (q̂1, p̂1) qui, selon la procédure de Metropolis décrite ci-dessus, est accepté

avec une probabilité min(1,e−𝛥H). Puisque la dynamique conserve l’énergie, i.e. 𝛥H = 0
le long de la trajectoire, le taux d’acceptance est 100%, indépendemment de la dimension
du vecteur-position q̂ .
En pratique, ce taux d’acceptance est dégradé en raison de la résolution numérique des
équations de Hamilton, mais reste encore à un niveau très élevé (généralement de l’ordre
de 70 à 90%, indépendamment de la dimension de la chaîne). Pour discrétiser les équa-
tions de Hamilton, nous utilisons la méthode leapfrog, une méthode pratique d’intégra-
tion de second ordre qui donne l’invariance par inversion de temps nécessaire à la proba-
bilité de transition de l’algorithme de Metropolis. Cette méthode est composée de L pas
associés à un incrément (longueur de chaque pas) δ (voir l’algorithme de la figure 2.2).
La figure 2.3 montre l’approximation par la méthode leapfrog de la dynamique Hamilto-
nienne à 1D définie par :

H(q,p) = q2/2+p2/2. (2.10)

Initialiser q̂0 et p̂0

Choisir δ et L

for j = 1 to L do

p(i )
j− 1

2

= p(i )
j−1 − δ

2
𝜕U

𝜕q (i ) (q̂ j−1)

q (i )
j = q (i )

j−1 +δ 𝜕K

𝜕p(i ) (p̂ j− 1
2

)

p(i )
j = p(i )

j− 1
2

− δ
2
𝜕U

𝜕q (i ) (q̂ j )

end

FIGURE 2.2 – Discrétisation des équations de Hamilton par la Méthode Leapfrog.
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FIGURE 2.3 – L’approximation de la dynamique Hamiltonienne H(q,p) = q2/2+p2/2 par la mé-
thode Leapfrog. L’état initial utilisé est q = 0,p = 1.
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Initialiser q̂0

Choisir ε(i ) = δ𝛥q (i ) et L

for t = 0 to N do
Générer p̂ ∼N (0,1)
Poser x(i )

0 = q (i )
t et p(i )

0 = p(i )

Discrétisation des équations Hamiltoniennes

for j = 1 to L do

p(i )
j− 1

2

= p(i )
j−1 − (ε(i )/2) 𝜕U

𝜕x(i ) (x̂ j−1)

x(i )
j = x(i )

j−1 +ε(i )p(i )
j− 1

2

p(i )
j = p(i )

j− 1
2

− (ε(i )/2) 𝜕U

𝜕x(i ) (x̂ j )

end
Acceptation-rejet du candidat x̂ ′

t = x̂L

Poser p̂ ′
t = p̂L et générer u ∼ U[0,1]

Taux d’acceptation et mise à jour :
ρ = exp[H

(
x̂0, p̂0

)−H
(
x̂ ′

t , p̂ ′
t

)
]

if u ≤ min(1,ρ) then
q̂t+1 = q̂ ′

t
else

q̂t+1 = q̂t

end
end
return {q̂t }N

t=0

FIGURE 2.4 – Les étapes de l’algorithme Monte Carlo Hamiltonien

2.5 L’analyse des chaînes de Markov

L’estimation des erreurs statistiques sur des observables issues des simulations Monte
Carlo est une tâche subtile et nécessite un traitement minutieux de la chaîne de Markov.
La procédure d’analyse d’une chaîne de Markov se compose de plusieurs étapes. En par-
ticulier, il est nécessaire d’enlever la région de thermalisation, d’examiner correctement
les corrélations entre les états voisins de la chaîne et in-fine de vérifier la convergence de
la chaîne.

2.5.1 La thermalisation

Le temps de thermalisation de la chaîne souvent noté b correspond au nombre d’états
ou de points {q̂t }t=1,...,b à enlever en début afin que la chaîne ne soit plus sensible à son état
de départ. Ce temps peut être estimé par rapport à l’indice b du premier état de la chaîne
atteignant la valeur médiane de la densité de probabilité à posteriori P(q̂t |D) notée P1/2

tel que : P(q̂b |D) > P1/2.

Pour illustrer la thermalisation, nous avons représenté sur la figure 2.5 l’historique
Monte Carlo du paramètre Bg considéré dans la sous-section 1.5.1.2 pour trois chaînes in-
dépendantes, chacune partant d’un point différent. Nous remplaçons la procédure stan-
dard par la procédure Monte Carlo basée sur l’algorithme de la figure 2.4 que nous avons
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implémenté dans le code public HERAFitter 2.
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FIGURE 2.5 – Valeur du paramètre Bg en fonction du temps Monte Carlo t pour trois chaînes de

Markov indépendantes. Les valeurs initiales de χ2

d.o.f pour chacune des trois chaînes de Markov 1,

2 et 3 correspondent respectivement à χ2

d.o.f = 67.44 , χ2

d.o.f = 0.87 et χ2

d.o.f = 81.58 . Nous identifions
clairement sur ce graphe la région de thermalisation, qui est limitée aux ∼ 100− 210 premières
itérations.

Nous pouvons identifier sur la figure 2.5 la région de thermalisation, dont l’étendue
dépend des points de départ. La chaîne représentée en trait plein de couleur verte a pour
valeur de départ celle de l’équation(1.89) et est donc termalisée très rapidement, spécia-
lement après une seule itération, tandis que les autres chaînes, dont les points de départ
sont loin de la valeur du χ2 minimal, présentent une thermalisation d’environ 153 itéra-
tions pour la chaîne représentée par la couleur rouge et 209 itérations pour celle repré-
sentée par la couleur bleue ; comme prévu, plus le point de départ est éloigné de la valeur
minimale du χ2, plus la thermalisation est longue.

2.5.2 Le traitement des corrélations

En construisant une chaîne de Markov, l’état q̂t dépend fortement de l’état q̂t−1 et les
quantités calculées à partir de cette chaîne forment elles-mêmes une chaîne de Markov
avec des corrélations inhérentes d’un membre à l’autre. Ces types de corrélations sont
souvent appelés « autocorrélations » dans le temps de simulation. Considérons que nous
aimerions extraire un observable O d’une simulation de chaîne de Markov avec N points.
Pour cette estimation, nous utilisons les N estimations successives Monte Carlo Ot (nous
supposons dans ce qui suit que la région de burn-in a déjà été écartée, c’est-à-dire que
la chaîne a atteinte l’équilibre avant l’enregistrement des données) et nous calculons la
moyenne usuelle 〈O〉 où 〈.〉 signifie la moyenne sur les N points de données. L’estimation
habituelle de l’écart quadratique moyen de cette moyenne peut être calculée

σ2
naïve =

(
Ot −〈O〉)2. (2.11)

Cette erreur “naïve” repose sur l’hypothèse que les mesures effectuées sur la chaîne de
Markov ne sont pas corrélées, ce qui n’est généralement pas vrai. Afin de tenir compte des

2. Le package peut être téléchargé sur le site web www.herafitter.org
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corrélations, on peut introduire pour l’observable donnée O, le temps d’autocorrélation
intégré τint, qui peut être défini comme suit :

τint =
1

2

+∞∑
s=−∞

ρ(s), (2.12)

où ρ(s) est la fonction d’autocorrélation normalisée définie par :

ρ(s) =

(
Ot −〈O〉)(Ot+s −〈O〉)(

Ot −〈O〉)2 . (2.13)

La dépendance de ρ(s) sur le temps de séparation s seulement est une conséquence de
la chaîne d’être en équilibre. Le temps d’autocorrélation intégré contrôle l’erreur statis-
tique dans la mesure Monte Carlo de O et il y a surtout deux possibilités d’incorporer
ce temps d’autocorrélation dans l’évaluation des erreurs statistiques. Le premier consiste
à écarter 2τint points entre deux points effectifs, ou en d’autres termes, à créer un sous
échantillonnage en rejetant tous les états qui sont plus proches que 2τint l’un de l’autre,
afin d’obtenir des états indépendants. Cette approche présente l’inconvénient d’exiger
la connaissance a priori de τint. La deuxième approche consiste à conserver toutes les
mesures, mais en tenant compte du temps d’autocorrélation pour estimer les erreurs sta-
tistiques. L’erreur statistique des mesures corrélées peut en effet être calculée par SOKAL

[1989]; WOLFF [2004]

σ2
τ =

2τint

N
σ2

naïve . (2.14)

Cela signifie que le nombre de “points effectivement indépendants" pour réduire les er-
reurs statistiques dans une série Monte Carlo de longueur N est à peu près N/(2τint). Si
le temps d’autocorrélation intégré est utilisé pour évaluer les erreurs statistiques, cela si-
gnifie biensûr qu’une estimation fiable de τi nt et de son erreur sont nécessaires. De telles
estimations requièrent une procédure délicate. Une méthode efficace appelée méthode
𝛤 a été développée dans WOLFF [2004], celle-ci repose sur la détermination explicite des
fonctions d’autocorrélation et des temps d’autocorrélation. Cette méthode fournit non
seulement des estimations numériques du temps d’autocorrélation intégré mais aussi
des estimations des valeurs moyennes et erreurs statistiques pour les fonctions arbitraires
d’observables élémentaires dans les simulations Monte Carlo. Nous renvoyons le lecteur
intéressé à cet article et références associées pour plus de détails. Nous avons utilisé la
méthode 𝛤 à la fois pour obtenir le temps d’autocorrélation intégré et pour calculer les
observables.

Un autre procédé pour estimer de façon fiable l’erreur statistique sur des mesures
non corrélées est appelé méthode Jackknife QUENOUILLE [1956]. Il consiste à construire
N blocs de données à partir de la population initiale de taille N, en enlevant une obser-
vation, laissant des échantillons de taille N−1. La pré-moyenne sur les blocs de données
fournit N estimations de la moyenne :

〈O〉B =
1

N−1

(
(B−1)∑

t=1
Ot +

N∑
t=B+1

Ot

)
, B = 1, . . . ,N (2.15)

La moyenne et la variance jackknife pour l’observable O sont alors construites à partir de :

〈O〉Jack. =
1

N

N∑
B=1

〈O〉B, σ2
Jack. =

N−1

N

N∑
B=1

(〈O〉B −〈O〉Jack.)
2 (2.16)
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Pour les contrôles croisés et comparaison, nous appliquerons dans notre analyse à la fois
la méthode 𝛤 et les techniques de jackknife. Pour ce dernier, afin de décorréler les points
d’une chaîne donnée, nous effectuons un sous-échantillonnage de cette chaîne en utili-
sant la valeur du temps d’autocorrélation intégré fournie par la méthode 𝛤.

2.5.3 Convergence

Enfin, pour exclure le risque d’un manque de convergence non identifié, nous avons
simulé plusieurs chaînes, avec différents points de départ (et aléatoires). Ceci est illustré
sur la figure 2.6 pour le cas d’un seul paramètre variable, à savoir le paramètre Bg (tous
les autres paramètres ont des valeurs fixées : voir la sous-section 1.5.1.2), où nous voyons
clairemnt les chaînes convergées vers la même distribution stationnaire.
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FIGURE 2.6 – Valeur du paramètre Bg comme fonction du temps Monte Carlo pour trois chaînes
de Markov indépendantes (courbe de gauche). Nous voyons que les trois chaînes convergent clai-
rement vers une même distribution stationnaire, ce qui est confirmée en traçant la distribution
du paramètre Bg pour chaque chaîne (courbe de droite, en prenant soin d’écarter les points se
trouvant dans la région de thermalisation et tenant en compte le temps d’autocorrélation intégré
estimé à τint = 42).

Les résultats présentés dans le chapitre suivant ont été obtenus après avoir ignoré la
thermalisation et bien pris en compte l’autocorrélation, en utilisant soit la méthode 𝛤 ou
la procédure de Jackknife comme expliquée dans la section (2.5).
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Chapitre 3

Implémentation de l’algorithme MCH
dans le code public HERAFitter,
validation et premiers résultats

3.1 Introduction

Plutôt que d’utiliser le programme standard MINUIT implémenté dans le code pu-
blic HERAFitter pour minimiser la fonction χ2 1 afin d’extraire les paramètres libres q̂ ,
nous appliquons l’inférence Bayésienne à la fonction de vraisemblance (2.2), c’est-à-dire
nous calculons la densité de probabilité des paramètres libres q̂ des PDFs, sur la base de
données expérimentales sélectionnées. À cet effet, nous avons implémenté l’algorithme
Monte Carlo Hamiltonien (voir figure 2.4) dans le code public HERAFitter et son sucesseur
XFITTER DEVELOPERS [2017]. Ce programme fournit un module pour déterminer les PDFs
par ajustement à un grand ensemble de données expérimentales. Une structure schéma-
tique de HERAFitter est illustrée sur la figure 3.1 qui résume toutes les fonctionnalités
actuelles de la plateforme.

1. Nous avons considéré la même fonction χ2 que celle utilisée dans l’analyse de la référence AARON et
AL. [2010].

49



FIGURE 3.1 – Structure schématique du code HERAFitter. Figure tirée de XFITTER DEVELOPERS

[2017]

.

Un des intérêts cruciaux de cette méthode est le fait que la valeur moyenne et l’in-
certitude de ces paramètres sont obtenues à partir des densités de probabilité calculées.
L’algorithme MCH nécessite essentiellement l’ajustement de deux paramètres : le nombre
de pas Leapfrog L et la largeur de pas Leapfrog δ, cette dernière dépendant potentielle-
ment de la direction dans l’espace des paramètres. Ces deux quantités sont choisies de
manière à garder à la fois le taux d’acceptation élevé (ce qui impose une petite valeur de
δ, pour réduire les erreurs numériques lors de la discrétisation des équations de Hamilton
par la méthode de Leapfrog (voir figure 2.3), et la corrélation entre deux itérations Monte
Carlo petite (nécessitant donc une grande longueur Lδ pour la trajectoire de Leapfrog).
La méthode utilisée pour trouver la largeur de pas Leapfrog optimale pour chaque para-
mètre est la suivante :

1- Exécutez une courte chaîne (par exemple 1000 itérations) avec des largeurs de
pas Leapfrog initiales égales à la valeur de l’écart type de chaque paramètre
fourni par la routine MINUIT

2- Calculez le taux d’acceptation

3- Ajustez la largeur de pas Leapfrog de chacun des paramètres en multipliant cha-
cune d’elles par une valeur δ afin qu’elles soient plus petites que celles utilisées
dans la première étape de sorte que le nombre d’états acceptés soit compris entre
70 et 90%.

Une fois les largeurs de pas Leapfrog optimales choisies, une trajectoire de nombre de
pas Leapfrog L=100 pourrait être un point de départ adapté.
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3.2 Les paramètres de la simulation et le “setup”

De part la nature de l’algorithme MCH, nous avons généré en parallèle 36 chaînes
de Markov utilisant les formes fonctionnelles (1.84)-(1.88) pour les PDFs à l’échelle Q2

0
où les 10 paramètres Bg , Cg , Buval , Cuval , Euval , Cdval , CU, AD, BD et CD sont libres, chaque
chaîne démarrant à partir d’un point aléatoire différent. Nous avons utilisé des densités
de probabilité a priori uniformes 2 pour les paramètres libres q̂ et nous considérons les
même ensembles de données que ceux utilisés pour produire les distributions de par-
tons HERAPDF1.0 AARON et AL. [2010]. Pour accélérer le calcul de la fonction χ2, nous
utilisons le schéma ZM-VFNS dans lequel les quarks lourds (mH À𝛬QCD) sont supposés
sans masse, ce qui nous impose de considérer que les données satisfaisant à la condi-
tion (Q2 ≥ 10 GeV2). Nous désignons donc les PDFs obtenues par la minimisation stan-
dard par “HERAPDF1.0 ZM-VFNS”. Nous explorons actuellement la possibilité d’utiliser
la librairie APFEL pour calculer les processus de diffusion inélastique profonde dans une
étude de détermination d’un ensemble complet de PDFs. Afin d’optimiser l’algorithme
MCH, nous avons choisi L = 100 et une largeur de “pas” Leapfrog différent pour chacun
des 10 paramètres. Plus spécifiquement, nous avons choisi ε(i ) = δ𝛥q (i ), où δ = 3.10−2

et 𝛥q (i ) est, pour chaque paramètre la valeur de son écart-type fourni par la minimisa-
tion standard : voir tableau 3.1. Ces paramètres MCH nous permettent d’obtenir pour
chaque chaîne un taux d’acceptation de 80%. Nous avons calculé pour chacune de nos 36
chaînes le temps de thermalisation, et nous écartons le temps de thermalisation maximal
(soit 28) de toutes les chaînes pour obtenir un total de 4400 points par chaîne. La mé-
thode 𝛤 a été utilisée pour déterminer à partir des 4400×36 = 158400 points de la chaîne
combinée, le temps d’autocorrélation intégré τ(i )

int pour chacun des 10 paramètres libres
considérés dans cette étude (voir tableau 3.2). Le tableau 3.2 nous permet de conclure
que chacune des 36 chaînes est presque décorrélée, puisque le temps d’autocorrélation
intégré τint pour tous les paramètres libres des PDFs est inférieur à 2.

L’algorithme MCH nécessite aussi le calcul de la dérivée de l’énergie potentielle (c’est
dans notre cas la dérivée du χ2 par rapport aux paramètres libres q̂ des PDFs). Ces dérivées
sont calculées numériquement, en utilisant une dérivée symétrique. Nous avons donc be-
soin, pour 10 paramètres libres, 2040 évalutions du χ2 pour chaque itération Monte Carlo.
Chaque calcul de χ2 prend environ 0.03 secondes, donc chaque itération Monte Carlo
prend environ une (01) minute. Pour les 158400 points Monte Carlo, nous avons besoin
de 110 jours, divisés par le nombre de CPUs nous avons utilisé (36), le nombre de jours
se réduit à environ 3 jours. Il est important de noter qu’on a pas besoin pour des études
réalistes de ∼ 40000 points Monte Carlo thermalisés et décorrélés, mais que ∼ 4000 points
Monte Carlo suffisent à obtenir des résultats statistiquement précis (ceci nécessitera envi-
ron 2 heures lorsqu’on utilise les 36 CPUs) étant données les autres sources d’incertitudes
(échelles de renormalisation/factorisation, schéma de quarks lourds, ...).

Enfin, nous avons vérifié que l’algorithme MCH satisfait la condition de réversibilité
avec une très bonne précision (précision relative supérieure à 10−6) et que l’acceptation
moyenne calculée à l’aide de la méthode Jackknife sur la chaîne finale thermalisée et dé-

corrélée est de 〈 e−𝛥H 〉 = 1.002±0.016, assurant ainsi que notre chaîne converge bien vers
une distribution stationnaire.

2. Nous étudions actuellement l’effet d’une probabilité a priori Gaussienne de moyenne 0 et d’écart-
type 1 sur le paramètre Bg .
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Paramètre q (i ) Écart-type 𝛥q (i )

q (1) = Bg 0.029

q (2) = Cg 0.51

q (3) = Buval 0.039
q (4) = Cuval 0.13
q (5) = Euval 2.6
q (6) = Cdval 0.28

q (7) = CU 0.98

q (8) = AD 0.049

q (9) = BD 0.031

q (10) = CD 1.3

TABLEAU 3.1 – Les valeurs des écarts-types obtenues par la minimisation standard de la fonction
χ2.

Paramètre q (i ) Temps d’autocorrélation intégré τ(i )
int

q (1) = Bg 1.564±0.025

q (2) = Cg 0.6788±0.0067

q (3) = Buval 0.4924±0.0025
q (4) = Cuval 0.4164±0.0022
q (5) = Euval 0.7706±0.0084
q (6) = Cdval 1.500±0.023

q (7) = CU 1.2235±0.0038

q (8) = AD 1.439±0.022

q (9) = BD 1.481±0.022

q (10) = CD 0.992±0.013

TABLEAU 3.2 – Les valeurs des temps d’autocorrélation intégrés pour les 10 paramètres libres des
PDFs (1.84)-(1.88).

3.3 Les valeurs et les densités de probabilité marginales des
paramètres libres des PDFs

Le tableau 3.3 compare la valeur moyenne et son erreur statistique pour chacun des 10
paramètres libres des PDFs en considération, en utilisant les deux procédures d’analyse
que nous avons présentées dans la sous-section 2.5.2 du chapitre 2, à savoir la méthode
𝛤 et la méthode de Jackknife. Le calcul par la méthode 𝛤 du temps d’autocorrélation in-
tégré de chaque paramètre libre τ(i )

int (voir tableau 3.2) donne des valeurs inférieures à 2,
ce qui réduit le nombre de points Monte Carlo à 39600 pour l’analyse Jackknife. Comme
on peut le voir dans le tableau 3.3, les deux méthodes donnent des résultats très proches,
montrant que nous avons analysé notre chaîne de Markov de manière cohérente.

Le tableau 3.4 montre les résulats de l’estimation de la moyenne, du “best fit” et de
l’écart-type des 10 paramètres libres considérés par la méthode MCMC et la procédure
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Paramètre Méthode 𝛤 Méthode Jackknife

q (1) = Bg −0.0537±0.0001 −0.0537±0.0002

q (2) = Cg 5.9449±0.0015 5.9483±0.0025

q (3) = Buval 0.6124±0.0001 0.6125±0.0002
q (4) = Cuval 4.7458±0.0003 4.7455±0.0006
q (5) = Euval 14.965±0.008 14.961±0.012
q (6) = Cdval 3.2054±0.0014 3.2077±0.0016

q (7) = CU 4.0917±0.0038 4.0961±0.0048

q (8) = AD 0.3096±0.0002 0.3098±0.0002

q (9) = BD −0.0174±0.0001 −0.0173±0.0002

q (10) = CD 6.2203±0.0054 6.2096±0.0076

Nombre de points Monte Carlo 158400 39600

TABLEAU 3.3 – Comparaison des valeurs moyennes et de leurs erreurs statistiques pour les 10 pa-
ramètres libres des PDFs obtenues en utilisant deux méthodes d’analyse différentes.

standard de minimisation avec MINUIT. Nous constatons, comme nous l’avons déjà men-
tionné plus haut, que la détermination des paramètres par les méthodes Monte Carlo
donne beaucoup plus d’information que la méthode de minimisation standard. Nous
pouvons en particulier extraire les erreurs statistiques sur les quantités qui nous inté-
ressent ; cette erreur décroît avec la longueur de la chaîne de Markov. Comme le montre
le tableau 3.4, les valeurs des “best fit” 3 extraites à partir des densités de probabilité indi-
viduelles des 10 paramètres libres considérés ; sont compatibles avec les valeurs des para-
mètres fournies par la procédure de minimisation. Pour ce qui concerne les écarts-types,
bien que la méthode MCMC et la minimisation donnent des résultats similaires, aucune
comparaison précise ne peut être faite car la minimisation ne fournit pas une estimation
des erreurs statistiques sur les écarts-types des paramètres. De plus, les deux quantités
(l’écart-type calculé à partir de la méthode MCMC et l’écart-type calculé à partir de la
procédure standard de minimisation) ne devrait coïncider que si la densité de probabi-
lité du paramètre considéré est Gaussienne, ce qui n’est pas nécessairement vrai (voir ci-
dessous). Ce fait est déjà visible dans le tableau 3.4, où nous pouvons voir que les valeurs
moyennes et les valeurs du “best fit” ne coïncident pas dans les erreurs pour certains pa-
ramètres ( par exemple Bg , CD,...). La figure 3.2 détaille les densités de probabilité a poste-
riori marginales à 1D et 2D des paramètres libres des PDFs considérées dans cette analyse.
La diagonale de la figure 3.2 montre la densité de probabilité a posteriori marginalisée à
une dimension de chacun des paramètres Bg ,Cg ,Buval ,Cuval ,Euval ,Cdval ,CU, AD,BD et CD.
Le nombre de points de l’histogramme correspond au nombre d’échantillons indépen-
dants Nind = 39600 de la chaîne finale. Les courbes ne se trouvant pas sur la diagonale de
cette même figure montrent les corrélations à deux dimensions entre ces paramètres. Les
contours intérieur et extérieur de ces corrélations délimitent les régions contenant res-
pectivement 68% et 95% de la densité de probabilité.

3. C’est la valeur de la chaîne pour laquelle la fonction χ2 est minimale.
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Paramètre Valeur Méthode MCMC MINUIT

Bg

Moyenne −0.0537±0.0002
“Best fit” −0.0632±0.0168 −0.0559

Écart-type 0.0299±0.0001 0.0288

Cg

Moyenne 5.9483±0.0025
“Best fit” 5.8952±0.0615 5.9274

Écart-type 0.5037±0.0019 0.5078

Buval

Moyenne 0.6125±0.0002
“Best fit” 0.6092±0.0121 0.6098

Écart-type 0.0371±0.0001 0.0389

Cuval

Moyenne 4.7455±0.0006
“Best fit” 4.7467±0.0525 4.7122

Écart-type 0.1280±0.0005 0.1332

Euval

Moyenne 14.961±0.012
“Best fit” 15.42±0.94 14.76

Écart-type 2.494±0.010 2.571

Cdval

Moyenne 3.2077±0.0016
“Best fit” 3.084±0.076 3.143

Écart-type 0.3183±0.0016 0.2830

CU

Moyenne 4.0961±0.0048
“Best fit” 4.323±0.814 4.052

Écart-type 0.9617±0.0035 0.9782

AD

Moyenne 0.3098±0.0002
“Best fit” 0.320±0.039 0.305

Écart-type 0.0485±0.0002 0.0488

BD

Moyenne −0.0173±0.0002
“Best fit” −0.0097±0.0237 −0.0178

Écart-type 0.0304±0.0001 0.0306

CD

Moyenne 6.2096±0.0076
“Best fit” 5.888±0.142 5.875

Écart-type 1.505±0.009 1.290

TABLEAU 3.4 – Comparaison des résultats obtenus pour les valeurs des paramètres libres des PDFs
extraites à partir d’une chaîne de Markov indépendante de longueur 39 600, et les résultats fournis
par MINUIT. Nous calculons à partir du MCMC la valeur du “best fit”, la valeur moyenne et la
valeur de l’écart-type pour chacun des des 10 paramètres libres considérés, ainsi que leurs erreurs
statistiques estimées par la méthode Jackknife. L’écart-type donné par MINUIT est l’écart-type à
1σ.
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FIGURE 3.2 – Les densités de probabilité a posteriori marginales des 10 paramètres libres des PDFs
(diagonal) et les courbes de corrélations à deux dimensions entre ces paramètres (off-diagonal).

55



Nous notons de plus que la densité de probabilité marginale de certains paramètres ne
peut pas être décrite par une loi Gaussienne, comme illustré sur la figure 3.3, et est parfois
asymétrique.
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FIGURE 3.3 – La densité de probabilité marginalisée des paramètres Bg et CD. Ces paramètres
ne suivent pas la loi Gaussienne, comme nous pouvons le voir à partir de l’ajustement Gaussien
(courbe rouge).

La figure 3.4 montre la distribution de χ2/d.o.f pour notre chaîne de Markov à 10 dimen-
sions. La courbe rouge est un ajustement avec une distribution de χ2 possédant 10 degrés
de liberté, qui décrit parfaitement nos résultats. Le fait que la fonction χ2 échantillonnée
suit la loi d’une distribution de χ2 avec le nombre de degré de liberté attendu est une forte
indication (bien que ce ne soit pas une preuve formelle) que nos hypothèses concernant
les fluctuations des données expérimentales autour de leurs valeurs théoriques corres-
pondantes, sont justifiées. Les pointillés de couleur bleue et verte correspondent respec-
tivement aux intervalles de confiance à 68% et 95%. Bien que ceci n’est pas le cas dans
l’étude nous présentons, nous aimerions également noter que les potentielles directions
plates dans l’espace des paramètres sont moins problématiques pour la méthode MCMC
que pour les techniques de minimisation standard.

Nous allons maintenant calculer à partir des chaînes de Markov des paramètres libres
des PDFs, les distributions de partons qui nous intéressent. La procédure nous avons uti-
lisée est expliquée dans la section suivante et est plus généralement valable pour toute
observable nous voulons calculer à partir du MCMC.
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FIGURE 3.4 – La distribution de χ2 pour une chaîne Monte Carlo à 10 dimensions. La courbe rouge
est un ajustement de ces échantillons Monte Carlo avec la loi d’une distribution de χ2 possédant
10 degrés de liberté. Une description plus détaillée est donnée dans le texte.

3.4 Les densités de probabilité marginales des PDFs : intro-
duction aux limites de confiance des PDFs

Pour extraire les distributions de partons à partir des chaînes de Markov, nous calcu-
lons à partir des valeurs des 10 paramètres libres

{
q (i )

}10
i =1 obtenues à chaque itération

Monte Carlo, les PDFs correspondantes pour une gamme de valeurs de x et Q2. Ceci four-
nit les densités de probabilité marginales des PDFs à des valeurs fixées de x et Q2. Une
illustration pour les distributions de gluon xg et de quark de la mer xS = xU+xD est don-
née respectivement sur la figure 3.5 et la figure 3.6 pour les valeurs x ≈ 10−4 et x ≈ 0.83 à
l’échelle d’énergie Q2 = 10 GeV2.

Les limites de confiance à 68% correspondantes aux distributions de partons xg (x,Q2)
et xS(x,Q2) à l’échelle Q2 = 10 GeV2 pour les valeurs de x ≈ 10−4 et x ≈ 0.83 sont obtenues
à partir des densités de probabilité des figures (3.5) et (3.6), en considérant les régions de
chacune de ces densités de probabilité contenant 68% des points Monte Carlo se trouvant
de chaque côté de la valeur du “best fit” de chacune de ces distributions de partons.

Valeur de Q2 Valeur de x xg (x,Q2) xS(x,Q2)

10 GeV2
10−4 18.3+0.7

−1.0 2.69+0.02
−0.02

0.83 0.000038+0.000015
−0.000008 0.000051+0.000249

−0.000036

TABLEAU 3.5 – Les valeurs du “best fit” et leurs limites de confiance à 68% correspondantes aux
distributions de partons xg (x,Q2) et xS(x,Q2) à l’échelle Q2 = 10 GeV2 pour les valeurs de x ≈ 10−4

et x ≈ 0.83.
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FIGURE 3.5 – La densité de probabilité de la distribution du gluon xg (x,Q2) pour x ≈ 10−4 (courbe
de gauche) et pour x ≈ 0.83 (courbe de droite) à ’échelle Q2 = 10 GeV2.
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FIGURE 3.6 – La densité de probabilité de la distribution du quark de la mer xS(x,Q2) pour x ≈ 10−4

(courbe de gauche) et pour x ≈ 0.83 (courbe de droite) à ’échelle Q2 = 10 GeV2.

Les figures 3.5 et 3.6 nous permettent aussi de conclure que les densités de probabilité
des distributions de partons sont presque symétriques à bas x

(
x ≈ 10−4

)
et très piquées

(antisymétriques) à haut x
(
x ≈ 0.83

)
: ceci fournit des limites de confiance non nécessai-

rement symétriques nous avons montrés dans le tableau 3.5.

3.5 Les distributions de partons et leurs incertitudes expé-
rimentales

Pour chaque couple de valeurs (x,Q2), nous déterminons l’intervalle de confiance à
68% autour de la valeur du “best fit” de la distribution de partons en considérant la région
de la densité de probabilité se trouvant de chaque côté de la valeur du “best fit” et en
prenant 68% des données Monte Carlo de chacune de ces régions.

Les figures 3.7 et 3.8 montrent les distributions de partons xuval, xdval, xS et xg ob-
tenues de cette manière comme une fonction de la variable de Björken x à l’échelle Q2 =
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10 GeV2, où xS = xU+xD est la distribution du quark de la mer. Notons que pour Q2 > m2
c ,

xU = xū+xc̄ et pour Q2 > m2
b , xD = xd̄+xs̄+xb̄ ; de sorte que les quarks lourds sont inclus

dans la distribution du quark de la mer. Les enveloppes de couleur (bleu et verte) cor-
respondent respectivement aux incertitudes expérimentales obtenues par les méthodes
MCMC (niveau de confiance à 68%) et Hésienne (𝛥χ2 = 1). Les distributions de partons
centrales de couleur rouge correspondent aux distributions de partons qui ajustent la
mieux les données de HERA 1 considérées. Ces PDFs MCMC sont comparées aux PDFs
HERAPDF1.0 pour le schéma ZM-VFNS, avec une comparaison directe dans les figures
3.7 et 3.8, et une comparaison du rapport de leurs valeurs centrales dans la figure 3.9. Elles
sont comme prévu très proches à la fois en valeur centrale et en intervalle de confiance.
L’estimateur du maximum de vraisemblance et la méthode des moindres carrés sont en
effet équivalents sous l’hypothèse Gaussienne, ce qui dans notre cas peut être appliquée,
comme nous l’avons mentionné dans le chapitre 2.
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FIGURE 3.7 – Les distributions de partons xuval et xdval à l’échelle Q2 = 10 GeV2 obtenues à partir
de la chaîne Monte Carlo en utilisant le code d’évolution QCDNUM BOTJE [2011] (courbes de
gauche) sont comparées à celles de HERAPDF1.0 (ZM-VFNS) obtenues à partir du code public
HERAFitter (courbes de droite). Les enveloppes montrent l’intervalle de confiance à 68% autour
de la valeur centrale (courbe rouge) pour les PDFs MCMC et la déviation 𝛥χ2 = 1 standard pour
les PDFs HERAPDF1.0.
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FIGURE 3.8 – Les distributions de partons xg et xS = xU+ xD à l’échelle Q2 = 10 GeV2 obtenues à
partir de la chaîne Monte Carlo en utilisant le code d’évolution QCDNUM BOTJE [2011] (courbes
de gauche) sont comparées à celles de HERAPDF1.0 (ZM-VFNS) obtenues à partir du code public
HERAFitter (courbes de droite). Les enveloppes montrent l’intervalle de confiance à 68% autour
de la valeur centrale (courbe rouge) pour les PDFs MCMC et la déviation 𝛥χ2 = 1 standard pour
les PDFs HERAPDF1.0.

Les incertitudes expérimentales obtenues par la méthode MCMC et la méthode Hes-
sienne sont aussi conformes dans la gamme cinématique de HERA. Ceci est démontré
dans les figures 3.10 et 3.11 où l’ incertitude expérimentale (méthode MCMC) normali-
sée par la valeur centrale pour les PDFs MCMC est comparée à l’incertitude expérimen-
tale (méthode Hessienne) normalisée par la valeur centrale pour les PDFs HERAPDF1.0
NLO. Les estimations des incertitudes expérimentales pour les distributions de partons
de quarks de valence (xuval, xdval) par la méthode MCMC ont tendance à être légèrement
supérieures à celles obtenues par la méthode Hessienne (voir figure 3.10). Ceci n’est pas
le cas pour les distributions de partons du quark de la mer xS et du gluon xg (confère
figure 3.11), où les estimations des incertitudes expérimentales par la méthode MCMC
sont très grandes à cause du fait que ces distributions de partons sont quasi nulles à haut
x (x ≈ 0.83) (confère courbes de droite des figures 3.5 et 3.6) ; ce qui conduit à des limites
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FIGURE 3.9 – Rapport des valeurs centrales des PDFs MCMC et HERAPDF1.0 (ZMVFN scheme)
pour xg , xuval, xd val et xS à l’échelle Q2 = 10 GeV2.

de confiance asymétriques (voir tableau 3.5).
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FIGURE 3.10 – Comparaison des incertitudes expérimentales des PDFs normalisées par la valeur
centrale, comme déterminées par les méthodes Hessienne et MCMC à l’ordre NLO en QCD pour
les distributions des quarks de valence xuval et xdval à l’échelle Q2 = 10 GeV2.
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FIGURE 3.11 – Comparaison des incertitudes expérimentales des PDFs normalisées par la valeur
centrale, comme déterminées par les méthodes Hessienne et MCMC à l’ordre NLO en QCD pour
les distributions de partons du gluon xg et du quark de la mer xS à l’échelle Q2 = 10 GeV2.

La séparation des distributions de partons en différentes saveurs est illustrée plus en
détail dans les figures 3.12 et 3.13, où les distributions de partons de quarks xU, xD, xU,
xD et xu, xd , xs, xc sont montrées à l’échelle Q2 = 10 GeV2. Les distributions de partons
xU, xD, xU et xD sont étroitement liées aux mesures, voir les équations 1.40 et 1.49, et
sont très bien contraintes à bas x. La saveur U est mieux contrainte que la saveur D à
cause de la dominance de cette saveur dans toutes les interactions à l’exception du pro-
cessus de la diffusion du positron sur le proton et faisant intervenir le courant chargé
(échange du boson W+). Les distributions de partons des quarks xd et xs sont dérivées
de xD à travers l’hypothèse sur la valeur de la fraction rs (confère (1.74)). L’incertitude ex-
périmentale sur xd suit étroitement celle sur xD et l’incertitude expérimentale sur xu suit
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étroitement celle sur xU. La distribution du quark charmé xc est montré à l’échelle Q2 =
10 GeV2 pour que la condition Q2 À m2

c soit remplie, et il peut être considérée comme un
parton pleinement actif. Toutefois, elle est fortement liée à la distribution du gluon qui
est indirectement déterminée à partir de la violation d’échelle.
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FIGURE 3.12 – Les distributions des quarks xU, xD, xU et xD obtenues par la méthode MCMC à
l’échelle Q2 = 10 GeV2. Les enveloppes montrent l’intervalle de confiance à 68% autour de la valeur
du “best fit” (courbe rouge).

La figure 3.14 montre un récapitulatif des courbes des distributions de partons xuval,
xdval, xS et xg à l’échelle initiale Q2 = 1.9 GeV2 et à l’échelle Q2 = 10 GeV2 obtenues par la
méthode MCMC.
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FIGURE 3.13 – Les distributions des quarks xu, xd , xs et xc obtenues par la méthode MCMC à
l’échelle Q2 = 10 GeV2. Les enveloppes montrent l’intervalle de confiance à 68% autour de la valeur
du “best fit” (courbe rouge).
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FIGURE 3.14 – Les distributions des quarks de valence (xuval, xdval), du quark de la mer (xS =
xu+xd+xs+xc, avec xc = 0 pour Q2 < m2

c ) et du gluon (xg ) obtenues avec le schéma ZM-VFNS en
utilisant la méthode MCMC à l’échelle Q2 = 1.9 GeV2 (courbe de haut) et à l’échelle Q2 = 10 GeV2

(courbe de bas). Les distributions du quark de la mer et du gluon sont réduites d’un facteur de
20. Les incertitudes experimentales ( les limites de confidence à 68% comme définies à partir des
densités de probabilité des distributions de partons xuval, xdval, xS et xg ) sont représentées par
des régions de couleur bleu.

La figure 3.15 montre de telles courbes sur une échelle logarithmique de sorte que le com-
portement et les incertitudes expérimentales des PDFs à haut x sont mis en exergue.
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FIGURE 3.15 – Les distributions des quarks de valence (xuval, xdval), du quark de la mer (xS =
xu + xd + xs + xc, avec xc = 0 pour Q2 < m2

c ) et du gluon (xg ) obtenues avec le schéma ZM-VFNS
en utilisant la méthode MCMC à l’échelle Q2 = 1.9 GeV2 (courbe de haut) et à l’échelle Q2 = 10 GeV2

(courbe de bas). Les incertitudes experimentales ( les limites de confidence à 68% comme définies
à partir des densités de probabilité des distributions de partons xuval, xdval, xS et xg ) sont repré-
sentées par des régions de couleur bleu.
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Conclusion et perspectives

Cette thèse porte sur l’application des techniques Monte Carlo par chaînes de Markov
à la détermination des distributions de partons. Le code public développé par la collabo-
ration HERAFitter et son successeur xFitter pour déterminer les distributions de partons
et leurs incertitudes expérimentales, a été modifié afin d’implémenter l’algorithme Monte
Carlo Hamiltonien et d’obtenir un code pour l’extraction des incertitudes expérimen-
tales d’une manière statistiquement contrôlée. Ces incertitudes expérimentales, gran-
deurs centrales de l’analyse présentée, ont été estimées de manière rigoureuse.

La fonction χ2 utilisée dans cette analyse dépend du schéma de saveurs lourdes. Ceci
rend la méthode MCMC très coûteux en temps de calcul. Nous avons pour cette raison
utilisés le schéma ZM-VFNS qui néglige les masses des quarks c et b. Aussi, une coupure
significative a été mise sur les données combinées de HERA mesurées durant la période
1994-2000 pour réduire le nombre de points de données expérimentales à 537. La mé-
thode de minimisation standard basée sur la routine MINUIT est beaucoup plus rapide
mais reste beaucoup plus sensible aux conditions initiales, puisqu’elle converge vers la
première valeur minimale de la fonction de χ2 qu’elle trouve dans l’espace des paramètres
qui pourrait ne pas être le minimum global. Les incertitudes obtenues grâce à la méthode
MCMC et celle utilisant le critère de tolérance conventionnel, c’est-à-dire 𝛥χ2 = 1 sont
cohérentes dans la gamme cinématique de HERA, même si les incertitudes MCMC ont
tendance à être supérieures à celles relatives à l’approche Hessienne. Cette différence est
peut être liée au fait que la collection des points obtenus à divers x ne forme pas ensemble
une bonne distribution de partons, c’est-à-dire ne satisfait pas les règles de somme.

La suite de ce travail consistera à étendre la présente étude à l’ensemble complet des
paramètres libres des PDFs, y compris comme paramètres libres, la constante de couplage
fort αs et les masses des quarks c et b ; en étudiant, en particulier grâce aux contraintes
expérimentales sur ces derniers paramètres, l’impact des densités de probabilité a priori.
Nous envisageons aussi de considérer une fonction χ2 plus complète incluant les corréla-
tions systématiques et en utilisant les techniques des grilles pour calculer les schémas de
saveurs lourdes GM-VFNS (voir sous-section 1.4.3) très coûteux en temps de calcul dans
les processus de diffusion inélastique profonde. Enfin il serait intéressant d’analyser l’im-
pact de nouveaux ensembles de données expérimentales ajoutés à l’analyse, de vérifier
quel jeu de données expérimentales a des valeurs aberrantes et si ces dernières peuvent
être tolérées.
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Markov chain Monte Carlo techniques applied to parton distribution
functions determination: Proof of concept
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We present a new procedure to determine parton distribution functions (PDFs), based on Markov chain
Monte Carlo (MCMC) methods. The aim of this paper is to show that we can replace the standard χ2

minimization by procedures grounded on statistical methods, and on Bayesian inference in particular, thus
offering additional insight into the rich field of PDFs determination. After a basic introduction to these
techniques, we introduce the algorithm we have chosen to implement—namely Hybrid (or Hamiltonian)
Monte Carlo. This algorithm, initially developed for Lattice QCD, turns out to be very interesting when
applied to PDFs determination by global analyses; we show that it allows us to circumvent the difficulties
due to the high dimensionality of the problem, in particular concerning the acceptance. A first feasibility
study is performed and presented, which indicates that Markov chain Monte Carlo can successfully be
applied to the extraction of PDFs and of their uncertainties.

DOI: 10.1103/PhysRevD.96.014015

I. INTRODUCTION AND MOTIVATION

Quantum chromodynamics (QCD) is the theory of
strong interaction, whose ambition is to explain nuclei
cohesion as well as neutron and proton structure, i.e. most
of the visible matter in the Universe. Its application domain
is even wider, since QCD controls the structure and
interactions of all hadrons: proton, neutron, hyperons,
pions, kaons, etc. It is one of the most elegant theories
of science (with general relativity); it has only very few
parameters and allows us to give a physical interpretation to
a very broad range of phenomena using a well-defined and
very compact formalism.
Among the fundamental ingredients of QCD, parton

distribution functions (PDFs) are key elements and play an
essential role to connect the QCD dynamics of quarks and
gluons to the measured hard scattering cross sections of
colliding hadron(s). They carry an invaluable source of
information on the hadrons’ partonic structure, and enor-
mous theoretical and experimental effort has been devoted
for years to the extraction of these distribution functions.
PDFs are all the more important nowadays; with the start

of data taking at the LHC, they are essential for the
computation of a large class of observables. Built for the
discovery of the Higgs boson and the study of physics
beyond the standard model, the LHC is indeed essentially a
QCD factory, producing events in an unexplored energy
range. The LHC potential of discovery crucially depends
on the quality of predictions for QCD signals and back-
grounds and, thus, on the PDFs quality.

PDFs are intrinsically nonperturbative objects and, thus,
cannot be determined using only perturbative QCD tools.
One of the most efficient methods to perform non-
perturbative QCD calculations is Lattice QCD. However,
although nucleon structure has been the subject of intense
activity in Lattice QCD for years, and even if promising
techniques to compute PDFs directly on the lattice have
recently been proposed [1], ab initio calculations of PDFs
are very challenging and still not a competitive alternative
to global analyses. These latter, thus, remain the chosen
method to obtain PDFs, which are parametrized by func-
tional forms whose parameters are constrained by fits to
the data.
Parton distribution function determination thus consists

in extensive exploitation of data sets collected at colliders to
constrain the parameters of the PDF functional forms given
at a fixed scale in energy. Such analyses are usually based
on a least square fit method, i.e. on the minimization of a
χ2, which compares the input data and theory predictions.
PDFs determined this way did not, for a long time, include
any estimate of uncertainties, other than the mere com-
parison of results provided by different global analyses
collaborations. However, with the advent, at the dawn of
the 21st century, of the new generation of colliders and
the active search for new physics, the need to assess the
uncertainties of the PDFs became clear [2–5]. Many studies
have since been devoted to the estimates of uncertainties on
physical predictions due to the uncertainties of PDFs (see
for instance [6–8] and references therein) and considerable
progress has been made. Nevertheless, this task is far from
being trivial, and many issues remain open [6].
Our current understanding of PDF uncertainties is

mainly based—with the notable exception of neural
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network techniques—on the Hessian or the Lagrange
multiplier method [6,7]. The determination of the uncer-
tainties then relies on an assumption on the permissible
range of “acceptable” Δχ2 for the fit and the choice of a
tolerance parameter. In order to improve on this point and
get a deeper insight, we propose to use Markov chain
Monte Carlo (MCMC) techniques to define the uncertain-
ties in a way based as much as possible on robust statistical
methods. Markov chain Monte Carlo algorithms have been
an extremely popular tool in statistics. While these tech-
niques are already widely used in many areas of physics
(see for instance [9–11]) they have not yet been employed
as a stand-alone method to compute PDF parameters and
their errors—i.e. without resorting to a χ2 minimization
procedure.1

The Markov chain Monte Carlo method allows us to
estimate a posteriori probability densities for multidimen-
sional models and provides reliable estimates of errors.
MCMC consists in sequentially simulating a single Markov
chain whose limit distribution is the chosen one.
The main challenge of the present paper is to demonstrate

that Markov chain Monte Carlo techniques can be applied to
PDF extraction. The higher the dimension of the chain (i.e.
in our case, the more PDF free parameters to be determined),
the more computing time is needed to generate the chain.
The large number of parameters to be computed in a full
PDF determination has led us to make use of a Monte Carlo
algorithm based on molecular dynamics, initially developed
for lattice field theory. We apply this algorithm to a realistic
(though not full) extraction of PDFs, based on ten-parameter
functional forms and four data sets, to demonstrate that
Markov chain Monte Carlo can successfully be applied to
PDF computation.
This paper is organized as follows: in Sec. II, we

formulate the PDF determination problem in terms of
Bayesian inference. In the next section, the basic principles
of Markov chain Monte Carlo methods are recalled and
illustrated utilizing the widely used Metropolis algorithm.
The fourth section briefly presents the hybrid Monte Carlo
algorithm and shows how it allows us to deal with the large
number of PDF parameters to be determined. Section V
details the MCMC analysis procedure and Sec. VI displays
first results with a realistic run using ten parameters and
four sets of data. Conclusions and outlook are discussed in
the last section.

II. FORMULATION OF THE PROBLEM IN TERMS
OF BAYESIAN INFERENCE

Parton distribution functions are usually (with the
exception of neural network procedure [12]) parametrized
at a given energy scale by functional forms, which are then
evolved at any other scale thanks the DGLAP equations

(this also excepts dipole models [13] and transverse-
momentum dependent [14] and unintegrated PDFs [15],
for instance, that we will not consider here). These PDFs
are convoluted with partonic cross sections to obtain
hadronic cross sections for various processes and a χ2

function, constructed from these theoretical cross sections
and corresponding experimental data, is then minimized
to constrain the PDF parameters. Rather than using a
minimization procedure and a Hessian method to estimate
PDF uncertainties, we propose a Bayesian parameter
inference approach. These techniques have already been
successfully applied in many areas [9] and we only sketch
the main principles in what follows. The interested reader
can referred for instance to [16] for a more extensive review
of the subject.
For compactness, we note q̂ the vector of PDF param-

eters to be determined: q̂ ¼ ðqð1Þ; qð2Þ;…; qðmÞÞT where m
is typically, in the case of a full analysis, of the order of
25–30, and D the data. From a Bayesian perspective,
both model parameters and observables are considered
random quantities, and Bayesian inference aims formally
to determine a joint probability distribution PðD; q̂Þ over
all random quantities. This joint distribution can be
written as PðD; q̂Þ ¼ PðDjq̂ÞPðq̂Þ, where Pðq̂Þ is a prior
distribution—quantifying the degree of belief one has
a priori before observing the data—and PðDjq̂Þ is the

likelihood of the data: Lðq̂Þ¼defPðDjq̂Þ. Bayes theorem is
used to express the distribution of q̂ conditional on D,
Pðq̂jDÞ, in terms of the likelihood PðDjq̂Þ:

Pðq̂jDÞ ¼ PðDjq̂ÞPðq̂ÞR
dq̂PðDjq̂ÞPðq̂Þ ð1Þ

The denominator in (1) does not depend on the parameters
and can be considered only as a normalization. This so-
called “posterior” probability density Pðq̂jDÞ quantifies
the probability to have the model parameters q̂ given the
observed data D and is the object we deal with in all
Bayesian inference. To determine this conditional proba-
bility, we thus need to set a prior distribution for the
parameters, and to compute the likelihood of the data. The
probability density Pðq̂jDÞ is then sampled using a
Monte Carlo algorithm.
Assuming that the fluctuations of the n experimental data

points under consideration around their corresponding
theoretical values are uncorrelated and distributed accord-
ing to a Gaussian law (assumption whose validity can be
assessed a posteriori—see Sec. VI), the least square
method and the maximum likelihood are equivalent and
the logarithmic likelihood function can be written as

logLðq̂Þ ¼ −
1

2

Xn
i¼1

ðDi − TiÞ2
σ2i

¼ −
1

2
χ2 ð2Þ

where Di and Ti denote respectively the ith experimental
point and the corresponding theoretical calculation, and

1Uncertainties estimations using pseudodata replicas are also
based on Monte Carlo methods [8], but still rely on fits.
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σ2i is the uncertainty associated with the measured data i.
The inclusive cross section Ti in hadron collision can be
written as a convolution of PDFs with a partonic cross
section, computed at a given order in perturbation theory.
The likelihood function (2) thus contains the PDFs.
Correlated experimental uncertainties can also be taken
into account by introducing for instance a covariant matrix
and properly modifying the χ2 [17].
For this work, we have used the χ2 function given by the

default settings provided by the HeraFitter package [17]
with 10 parameters (default HeraFitter steering file and
minuit.in.txt.10pHERAPDF input file) and four data sets
with an initial PDF parametrization set at Q2

0 ¼ 1.9 GeV2

and a lower cut on the data at Q2
min ¼ 10 GeV2. These

settings provide already a computation of PDFs realistic
enough for this feasibility study.
We thus apply Bayesian inference to the likelihood

function defined in (2), that is, we compute the probability
density function of the model parameters, based on selected
experimental data. To this purpose, we use Monte Carlo
Markov chain procedure, whose principles are briefly
sketched in the next section. One of the crucial interest
of these methods is the fact that the mean value and
uncertainty in these parameters are by-products of the
probability density functions computed.

III. PRINCIPLE OF MARKOV CHAIN
MONTE CARLO

A. Basics of the method

The Markov chain Monte Carlo method allows us
to estimate a posteriori probability densities for multi-
dimensional models—which, as explained briefly in the
previous section, is exactly what we want—and provides
reliable estimates of errors. MCMC algorithms enable us to
draw samples from a probability distribution known up to a
multiplicative constant. They consist in sequentially sim-
ulating a single Markov chain whose limiting distribution is
the chosen one (in our case, the maximum likelihood times
a prior density). More precisely, a Markov chain is a
stochastic process characterized by the fact that the condi-
tional distribution of the random variable at iteration t,
denoted q̂t, given the ensemble of random variables at all
previous steps q̂0;…; q̂t−1, depends only on q̂t−1, and not
on the previous history. Such a chain can be used to sample
a probability density. To converge to a given stationary
distribution, the chain needs to satisfy important properties:
it has to be irreducible, aperiodic and positive recurrent. We
will not expand further on Markov chain theory and we
refer the reader interested by formal details to [9] and
references therein.
Two ingredients are necessary to define a Markov chain:

(i) the initial values (that is the marginal distribution) of
parameters and (ii) the transition kernel between two sets
of parameters: Tðq̂ → q̂0Þ, for going from a set q̂ to another

set q̂0. There are several issues arising when implementing
MCMC: the influence of the starting point of the chain
(leading to the “burn-in” time), the choice of the transition
kernel, the rate of convergence, the acceptance of the
algorithm,…. These questions will be illustrated in detail in
the following sections.

B. Metropolis algorithm

The so-called “Metropolis-Hastings algorithm,” pro-
posed in 1953 by Metropolis et al. [18] and generalized
by Hastings in 1970 [19], is one of the simplest
Monte Carlo algorithms. It is the standard computational
workhorse of MCMC methods both for its simplicity and
its versatility, and is in principle applicable to any system.
It is extremely straightforward to implement and to sample
a target density Pðq̂jDÞ (see Sec. II), it proceeds as follows:
at each Monte Carlo time t − 1, the next state q̂t is chosen
by sampling a candidate point q̂0 from a proposal distri-
bution πð:jq̂t−1Þ. The candidate point is then accepted with
the probability

αðq̂t−1; q̂0Þ ¼ min

�
1;

Pðq̂0jDÞπðq̂t−1jq̂0Þ
Pðq̂t−1jDÞπðq̂0jq̂t−1Þ

�
;

and the Metropolis-Hastings transition kernel is thus

Tðq̂t−1 → q̂0Þ ¼ πðq̂0jq̂t−1Þαðq̂t−1; q̂0Þ:

If the new set of parameters q̂0 is accepted, the next state of
the chain becomes q̂t ¼ q̂0. If it is rejected, the chain does
not move and the point at t is identical to the point at
t − 1: q̂t ¼ q̂t−1.
A special case of the Metropolis-Hastings algorithm is

the random walk Metropolis, for which the proposal
distribution is chosen to be such that πðq̂0jq̂t−1Þ ¼
πðjq̂t−1 − q̂0jÞ. The acceptance probability then reduces

to αðq̂t−1; q̂0Þ ¼ minð1; Pðq̂0jDÞ
Pðq̂t−1jDÞÞ. Frequently, the proposal

for the random walk jump has a form which depends on a
scale parameter, giving the typical “size” of the leap from
one site to the other. For instance the proposal distribution
for q̂0 could be a normal distribution centered in q̂t−1 with a
standard deviation σ. A meticulous attention has to be taken
when choosing this scale parameter. If it is too large, a very
high percentage of the iterations will be rejected, leading to
an inefficient algorithm. If it is too small, the random walk
will explore the parameter space very slowly, leading again
to inefficiency. This problem is all the more difficult to
handle that the number of parameters (i.e. the dimension of
the vector q̂) to be sampled increases.
Ideally, to optimize the efficiency of the MCMC, the

proposal distribution should be as close as possible to
the target distribution. In practice, the performance of the
algorithm is obviously highly dependent on the choice of
proposal distribution πð:jq̂t−1Þ and several options are
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usually considered in the literature to explore the parameter
space: one-dimensional Gaussian distributions, multivari-
ate Gaussian distributions, a distribution obtained by binary
space partitioning [20]…. However, even if adjustments of
the proposal distributions improve the Metropolis effi-
ciency, they are not effective enough to efficiently deal
with several dozen parameters within a reasonable CPU
and user time. To circumvent these problems—since in the
case of PDF extraction, the number of free parameters to
determine (that is the number of parameters in the PDF
functional form) is of the order of ∼25–30—we have
implemented a much more efficient algorithm, based on
molecular dynamics, which has initially been developed for
Lattice QCD and is widely used in this field.

IV. HYBRID (OR HAMILTONIAN)
MONTE CARLO

As mentioned before, the main problem of Metropolis-
type algorithms, relies on the choice of the candidate point
at each move of the chain. Choosing a trial point far from
the initial one will lead to a large change in the distribution
to sample, and thus to a small acceptance probability, while
choosing a point close to the initial one will not lead to an
efficient exploration of the parameter space, and thus to a
slow convergence of the chain.
Hamiltonian (or “hybrid”) dynamics [21], developed

originally for lattice field theory, is used to produce
candidate proposals for Metropolis algorithm, in a very
elegant and efficient way. It is an exact algorithm which
combines molecular dynamics evolution with a Metropolis
accept/reject step. This latter is used to correct for dis-
cretization errors in the numerical integration of the
corresponding equations of motion. Very good reviews
and papers exist which detail the properties of this
algorithm (see for instance [16]), and only the main ideas
will be recalled here for completeness.
To implement hybrid Monte Carlo algorithm, one

introduces for each set of parameters q̂ (see previous
section) a set of conjugate momenta p̂ and associates to
this joint state of “position” q̂ and “momentum” p̂ an
Hamiltonian Hðq̂; p̂Þ ¼ p̂TM−1p̂=2þ Uðq̂Þ, where M is a
mass matrix, generally taken to be diagonal, and Uðq̂Þ an
arbitrary potential energy. This allows us to define a joint
distribution as

Pðq̂; p̂Þ ¼ 1

Z
e−Hðq̂;p̂Þ ¼ 1

Z
e−Kðp̂Þe−Uðq̂Þ

where Z is the normalizing constant. We use for the
potential energy Uðq̂Þ ¼ − log½PðDjq̂ÞPðq̂Þ�. Starting from
a point q̂0 of the chain, the HMC procedure consists in
selecting some initial momenta p̂0 normally distributed
around zero and let the system evolve deterministically
for some time according to Hamilton’s equations of
motion for Hðq̂; p̂Þ. It reaches a candidate point ðq̂1; p̂1Þ

which, according to Metropolis procedure described
above, is accepted with probability minð1; e−ΔHÞ. Since
the dynamics conserves energy, i.e. ΔH ¼ 0 along a
trajectory, the acceptance rate is 100%, independently of
the dimension of the vector q̂.
In practice, this acceptance is degraded because of the

numerical resolution of Hamilton equations, but remains
still at a very high level (typically of the order of 70%–90%,
independently of the dimension of the chain). HMC
algorithm is thus very well suited to multiparameter
determination. To discretize Hamilton’s equation, we use
the LeapFrog method, a convenient second order integra-
tion method that gives the time reversal invariance needed
for the Metropolis transition kernel.
We have implemented both Metropolis and hybrid

Hamiltonian Monte Carlo algorithms in the open-source
package HeraFitter and its successor xFitter [17]. This
software provides a modular framework to determine
PDFs by fitting a large ensemble of experimental data.
In what follows, we focus on the proton PDFs, and we use
for the PDF parametrization, the HERAPDF functional
form, that we just recall here for the sake of clarity: the
parametrized HERA PDFs are the valence distribution xuv
and xdv, the gluon distribution xg, and the Ū and D̄
distribution defined as xŪ ¼ xū, xD̄ ¼ xd̄þ xs̄. Their
functional form reads

xfaðxÞ ¼ AaxBað1 − xÞCað1þDaxþ Eax2Þ; ð3Þ

where a labels a parton (g; uval; dval;…. See [17] for more
details). The analysis procedure we apply to the Markov
chain we have produced is explained in the next section.

V. MARKOV CHAIN ANALYSIS

Assessing statistical errors for observables in
Monte Carlo simulations is a subtle task and requires a
careful treatment of the Markov chain. This section
presents the different stages of analysis and the checks
we have performed.
The procedure to analyze a Markov chain consists of

several steps. In particular, it is necessary to remove the
thermalization (or burn-in) region, to verify the conver-
gence of the chain and to properly examine correlations
between neighboring points in the chain. We have also
checked the chain reversibility and the fact that the
distribution was correctly sampled.

A. Thermalization

The thermalization time (or burn-in length) b of a
Markov chain corresponds to a number of states
fq̂tgt¼1;…;b to be discarded from the beginning so that
the chain forgets its starting point. It can be estimated as
being the first state of the random walk—that is the first
set of parameters q̂, denoted q̂b—reaching the median value
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of its target distribution P1=2 computed using the entire
chain, i.e.

Pðq̂bjDÞ > P1=2: ð4Þ

To illustrate thermalization features, we have represented
in Fig. 1 the Monte Carlo history of parameter Bg for three
independent chains, each starting from a different point.
For illustration purposes, we have fixed all parameters to
their value given by the standard minimization procedure of
xFitter, except this parameter Bg, which is obtained by a
Monte Carlo procedure.
We can identify in Fig. 1 the thermalization region,

whose extent depends on the starting point. The chain
represented in solid green line has been started from the
output value of a MINUIT minimization of the χ2 with
respect to parameter Bg and is thus thermalized very
quickly, specifically after one iteration, whereas the other
chains, started far from the minimum χ2, exhibits a
thermalization of about 150 iterations for the chain repre-
sented in dashed red line and 210 iterations for the one
represented by the dotted blue line; as expected, the farther
from the minimum the starting point is, the longer the
thermalization. Starting from a point far from its value
given by the minimization procedure is useful to check that
this latter did not get stuck in a local minimum and that
simulations starting from different points converge to the
same region (see also Sec. V C). In practice, we have
generated several chains (36 chains, to be more precise),

starting from random points. We determined the thermal-
ization time using Eq. (4) for each chain, and we removed
from each chain its burn-in length.

B. Treatment of autocorrelations

By construction of a Markov chain, the state q̂t depends
strongly on the state q̂t−1 and quantities computed from this
chain form themselves a Markov chain with inherent
correlations from one member to the next. These type of
correlations are often referred to as “autocorrelations” in
simulation time.
Let us consider that we would like to extract an

observable O from a Markov chain simulation with N
points. For this estimation, we use the N successive
Monte Carlo estimates Ot (we assume in what follows,
that the thermalization region has already been discarded,
i.e. that the chain has been equilibrated before recording
data) and we compute the usual mean hOi where h:i means
averaging over the N data points. The usual estimate
of root-mean-square deviation of this average can be
computed as

σ2naive ¼
N

N − 1
ðhO2i − hOi2Þ

This “naïve” error relies on the assumption that the
measurements performed on the Markov chain are not
correlated, which is in general not true. In order to account
for the correlations, one can introduce for the given
observable O, the integrated autocorrelation time τint,
which can be defined as follows,

τint ¼
1

2

Xþ∞

−∞
ρðsÞ;

where ρðsÞ is the normalized autocorrelation function,

ρðsÞ ¼ ðOt − hOiÞðOtþs − hOiÞ
ðOt − hOiÞ2 :

The dependence of ρðsÞ on the time separation s only is a
consequence of the chain being in equilibrium. The
integrated autocorrelation time controls the statistical error
in Monte Carlo measurement of hOi and there are mostly
two possibilities to incorporate this autocorrelation time in
the assessment of the statistical errors. The first one consists
in leaving out 2τint points between two effective points, or
in other terms, to do a subsampling by rejecting all states
which are closer than 2τint to each other, in order to get
independent states. This approach has the disadvantage of
requiring the a priori knowledge of τint. The second
approach consists in keeping all measurements, but taking
into account the autocorrelation time to estimate the
statistical errors. The statistical error of correlated mea-
surements can indeed by computed by [10,22]

FIG. 1. Values of the parameter Bg as a function of the
Monte Carlo time for three independent Markov chains. The
green solid line represents a chain starting from the value given by
MINUIT minimization, whereas the two other chains start from
values much higher (blue dotted) or much lower (red dashed).
The initial corresponding χ2=d:o:f: values are, from chain 1 to
chain 3, respectively, χ2=d:o:f: ¼ 67.44, χ2=d:o:f: ¼ 0.87 and
χ2=d:o:f: ¼ 81.58. We identify clearly on this plot the thermal-
ization region, which is limited to the first ∼100–210 iterations.
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σ2τ ¼ 2τintσ
2
naive

This means that the number of “effectively independent
data points” in a run of length N is roughly N=ð2τintÞ.
If the integrated autocorrelation time is used to assess
statistical errors, this means of course that a reliable
estimate of τint and its error itself are needed. Such
estimates require a delicate procedure. An efficient
method—called Γ-method—has been developed in [22],
which relies on the explicit determination of autocorrela-
tion functions and autocorrelation times. This method
provides not only numerical estimators of the integrated
autocorrelation time, but also estimates for mean values
and statistical errors for arbitrary functions of elementary
observables in Monte Carlo simulations. We refer the
interested reader to [22] and references therein for details.
We have used the Γ-method both to obtain the autocor-
relation time and to compute observables.
A further method to reliably estimate the error on

uncorrelated measurements is the so-called “jackknife
binning” [23]. It consists in building N subsets of data
from the initial ensemble of size N, by removing one
observation, leaving samples of size N − 1. Preaveraging
over the blocks of data provides N estimates of the
average:

hOiB ¼ 1

N − 1

�XðB−1Þ
t¼1

Ot þ
XN
t¼Bþ1

Ot

�
; B ¼ 1;…; N:

The jackknife mean and variance for the observable O
are then constructed from

hOiJack ¼
1

N

XN
B¼1

hOiB;

σ2Jack ¼
N − 1

N

XN
B¼1

ðhOiB − hOiJackÞ2:

The jackknife method—and its extensions—is a widely
used procedure, in particular in Lattice QCD. For cross-
checks and comparison, we applied in our analysis both
Γ-method and jackknife binning techniques. For this latter,
to un-correlate the points of a given chain, we performed a
subsampling of this chain using the value of the autocor-
relation time provided by the Γ-method.

C. Reversibility and convergence

We have verified that our implementation of HMC
algorithm satisfies reversibility with a very good precision
(relative accuracy better than 10−6) and that the average
acceptance—computed using the jackknife method, after
removing thermalization region and decorrelating the
chain—is he−ΔHi¼ 1.002�0.016, thus insuring that our
chains indeed converge towards a stationary distribution. In
addition, to exclude the risk of a nonidentified lack of
convergence, we have simulated several chains, with
different (and random) starting points. This is illustrated
in Fig. 2 in the case of one varying parameter, namely
Bg (all others being fixed to their value obtained by
standard χ2 minimization procedure), where the chains
are clearly seen to converge towards the same stationary
distribution.
The results displayed in the next section have been

obtained after skipping thermalization and properly taking

FIG. 2. Values of the parameterBg as a function of the Monte Carlo time for three independent Markov chains (lhs). The starting points
of the chains and the color code are the same as in Fig. 1. The chains are clearly converging towards the same stationary distribution,
what is confirmed by plotting the parameter distribution for each chain (rhs), after removing thermalization points and taking into
account autocorrelation.
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into account the autocorrelation, using either the Γ-method
or the jackknife binning procedure as explained above.

VI. PRELIMINARY RESULTS

A. Setup and simulation parameters

The results shown in this section are obtained from a
Markov chain using the HERAPDF functional forms for
initial PDFs at a scale Q0 ¼ 1.9 GeV2 with ten free
parameters: Bg, Cg, Buval , Cuval , Euval , Cdval , CŪ, AD̄, BD̄

and CD̄ (see expression (3) for the definition of these
parameters, and [17] for more details). We have used
uniform priors for the parameters, and we consider the
same data ensembles than the ones used to produce
HERAPDF1.0 distributions.
These data are a combination of inclusive deep inelastic

scattering cross sections measured by the H1 and ZEUS
Collaborations in neutral and charged current unpolarized
e�p scattering at HERA, during the period 1994–2000
[17]. Other settings and cuts–with the exception of the
heavy flavor scheme, see below–were also identical to the
ones of HERAPDF1.0 distributions. In particular, we do
not rely of K factors, nor on grids techniques. The latter
could, however, interestingly be used to speed up the
computation.2

Since the aim of this work is to demonstrate the
applicability of MCMC methods to PDF determination—
rather than producing competitive PDF sets—we apply the
ZMVFN scheme in order to speed up the computation of
the χ2, and a lower cut on the data at Q2

min ¼ 10 GeV2.
These settings give a total number of data points of 537.
We will denote by “HERAPDF1.0 ZMVFNS” the PDFs
thus obtained by minimization.
As already mentioned in the previous section, we have

generated 36 Monte Carlo chains, each chain starting from
a different random point, using the HMC algorithm.
The HMC algorithm requires the tuning of essentially

two parameters: the number of leapfrog steps L and the step
size ε, this latter potentially depending on the direction in
the parameter space. These two quantities are chosen such
as to keep both the acceptance high (requiring small ε, to
minimize the numerical errors in solving Hamilton equa-
tions), and the correlation between two successive
Monte Carlo iterations small (thus requiring large trajectory
length Lε). We have chosen L ¼ 100 and one leapfrog step
size for each parameter, depending on the parameter typical
standard deviation. Namely we took εi ¼ 3.10−2Δqtypi ,
where Δqtypi is, for each parameter, the value of its standard
deviation provided by the minimization. With these HMC
parameters, we obtain an acceptance of 80% and chains
which have almost no correlation, since the integrated

autocorrelation time τint computed by the Γ-method is less
than 2 for all parameters.
The HMC algorithm also requires the computation of the

potential energy (that is in our case the χ2) with respect to
the parameters. These derivatives are computed numeri-
cally, using a symmetric derivative. We thus need, for 10
parameters, 20 evaluations of the χ2 for each step of the
Leapfrog algorithm. We have run 36 jobs in parallel,
and collected the results after three days of running. We
computed for each of our 36 chains the burn-in length, and
we removed the maximum burn-in (namely 28) to all of
them, to obtain a total of 4 400 points per chain. To analyze
these chains with the Γ-method, we kept all 158 400 points,
while the jackknife analysis was done considering one
point every four (i.e. 2τint), that is 39 600 points.3

B. PDF parameter values, marginal
distributions and correlations

Table I compares the mean value and its statistical error
for each of the ten PDF parameters under consideration,
using the two analysis procedures we have presented
above, namely Γ-method and jackknife binning. The
computation of the integrated autocorrelation time by the
Γ-method gives values of τint less than 2 and we have used
for the jackknife one point of the chain every four. As can
be seen from Table I, both methods give very close results,
showing that we have analyze our Markov chain in a

TABLE I. Comparison of mean values and their statistical
errors obtained for PDF parameters using two different analysis
methods. The jackknife binning has been applied after subsam-
pling the chain, selecting points not closer than 2τint ¼ 4 from
each other. Since the number of points considered for the
jackknife analysis is thus four times less than for the Γ-method,
the errors are expected to be smaller by roughly a factor 2 for this
latter procedure, which is indeed the case.

Parameter Γ-method Jackknife binning

Bg −0.0537� 0.0001 −0.0537� 0.0002
Cg 5.9449� 0.0015 5.9483� 0.0025
Buval

0.6124� 0.0001 0.6125� 0.0002
Cuval

4.7458� 0.0003 4.7455� 0.0006
Euval

14.965� 0.008 14.961� 0.012
Cdval 3.2054� 0.0014 3.2077� 0.0016
CŪ 4.0917� 0.0038 4.0961� 0.0048
AD̄ 0.3096� 0.0002 0.3098� 0.0002
BD̄ −0.0174� 0.0001 −0.0173� 0.0002
CD̄ 6.2203� 0.0054 6.2096� 0.0076

2and we are exploring this possibility for more complete
computations.

3For a fully realistic PDF determination, systematic uncer-
tainties (factorization and renormalization scales, heavy quark
treatment, …) are much bigger than the sub-percent accuracy we
obtain with such a long Markov chain. In realistic cases, a
Markov chain with about a thousand decorrelated points will lead
to results statistically accurate enough.
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consistent way. For the rest of this paper, we will thus
display only the results obtained using jackknife binning
techniques. We also notice that for the chain length
considered (∼40 000 thermalized and decorrelated points),
the statistical errors on the mean values are tiny.
In Table II are displayed the results provided by MCMC

method—using jackknife binning for error estimate—for
the parameters mean, best fit4 and standard deviation,5

compared with the output of the standard MINUIT min-
imization. We notice, as already stated above, that the
determination of parameters by Monte Carlo methods,
gives much more information than a standard minimiza-
tion. We can in particular extract the statistical errors on
the quantities we are interested in and this error decreases
with the length of the Markov chain. As seen from the

table, the best fit value extracted from the para-
meter probability distributions are compatible with the
parameter values provided by the minimization procedure.
For what concerns standard deviations however, although
MCMC and minimization gives similar results, no precise
comparison can be made since the minimization does not
provide estimates of errors for the usual one-standard
deviation of the parameters. In addition, both quantities
(MCMC standard deviation and minimization deviation)
should coincide only if the probability density of the
parameter considered is Gaussian, which is not necessarily
true (see below). This fact is already visible in Table II,
where we can see that the mean and best fit values do not
coincide within errors for some of the parameters (Cdval , CD̄
for instance).
The probability distribution functions of the parameters,

together with the two-dimensional correlation plots
between parameters are displayed in Fig. 3. The marginal
posterior parameter distributions are shown on the diagonal
graphs, and 2D-correlations on the off-diagonal plots.

TABLE II. Comparison of results obtained for PDF parameter values extracted from an independent Markov chain of length 39 600,
and the results provided from a MINUIT minimization. We compute from the MCMC the best fit value, the mean value and the standard
deviation value for each of the 10 parameters considered, together with their statistical errors estimated by jackknife binning method.
The standard deviation given by the minimization is the usual one-sigma deviation.

Parameter Values MCMC MINUIT minimization

Bg Mean −0.0537� 0.0002
Best fit −0.0632� 0.0168 −0.0559
Standard deviation 0.0299� 0.0001 0.0288

Cg Mean 5.9483� 0.0025
Best fit 5.8952� 0.0615 5.9274
Standard deviation 0.5037� 0.0019 0.5078

Buval
Mean 0.6125� 0.0002
Best fit 0.6092� 0.0121 0.6098
Standard deviation 0.0371� 0.0001 0.0389

Cuval
Mean 4.7455� 0.0006
Best fit 4.7467� 0.0525 4.7122
Standard deviation 0.1280� 0.0005 0.1332

Euval
Mean 14.961� 0.012
Best fit 15.42� 0.94 14.76
Standard deviation 2.494� 0.010 2.571

Cdval Mean 3.2077� 0.0016
Best fit 3.084� 0.076 3.143
Standard deviation 0.3183� 0.0016 0.2830

CŪ Mean 4.0961� 0.0048
Best fit 4.323� 0.814 4.052
Standard deviation 0.9617� 0.0035 0.9782

AD̄ Mean 0.3098� 0.0002
Best fit 0.320� 0.039 0.305
Standard deviation 0.0485� 0.0002 0.0488

BD̄ Mean −0.0173� 0.0002
Best fit −0.0097� 0.0237 −0.0178
Standard deviation 0.0304� 0.0001 0.0306

CD̄ Mean 6.2096� 0.0076
Best fit 5.888� 0.142 5.875
Standard deviation 1.505� 0.009 1.290

4The parameter best fit values are the parameters values that
minimized the χ2 function.

5we have computed here the corrected sample standard
deviation
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The inner and outer contours of these latter are taken to be
regions containing respectively 68% and 95% of the
probability density. We note that the probability distribu-
tion of some parameters cannot properly be described by a
Gaussian law, as illustrated in Fig. 4, and are even non-
symmetric. We have also checked that our correlation plots
are compatible with the values provided by the covariant
matrix.
In Fig. 5 is shown the χ2=d:o:f: distribution for our ten-

dimensional Monte Carlo chain. The solid red line is an

adjustment with a χ2 distribution law with 10 degrees of
freedom, which perfectly describes our results. The fact
that the χ2 function built in Eq. (2) follows a χ2 distribution
law with the expected number of degrees of freedom is a
strong indication (though not a formal proof) that our
assumptions concerning the fluctuations of the experimen-
tal data points around their corresponding theoretical
values, are justified.
Though this is not the case in the example we present, we

would also like to note that potential flat directions in the

FIG. 3. Probability distribution functions of the PDF parameters (diagonal) and 2D correlation plots between parameters (off-diagonal).
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parameter space are less problematic for MCMC method
than for minimization techniques.
We need now to calculate, from the Markov chain of

parameters, the parton distribution functions we are inter-
ested in. The procedure we use is explained in the next
section and is more generally valid for any observable we
want to compute from the MCMC.

C. PDF marginal distributions and
confidence interval

To extract parton distribution functions from the Markov
chain, we compute, from the set of 10 parameters obtained
at each Monte Carlo iteration, the corresponding PDFs for
a range of x and Q2 values. This provides the marginal
probability density functions of PDFs at fixed ðx;Q2Þ,
as illustrated on Fig. 6 for the gluon, for two different
x values.

FIG. 5. χ2 distribution for a 10D Monte Carlo chain. The solid
red line is an adjustment of these data with a χ2 distribution law
with 10 degrees of freedom. The dashed (dashdot) vertical line
indicates the 68% (95%) confidence limit.

FIG. 4. Marginal probability distribution of parameters Bg (lhs) and CD̄ (rhs). They do not follow a Gaussian law, as can be seen from
the gaussian fit (solid red line).

FIG. 6. Gluon PDF probability distribution function for x ≈ 10−4 (lhs) and x ≈ 0.83 (rhs) at fixedQ2 ¼ 10 GeV2. The 68% confidence
interval is obtained from this distribution, considering the region of the distribution containing 68% of the data remaining on each side of
the best fit value.
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For each ðx;Q2Þ, we determine the α%-confidence
interval around the best fit value of the PDF (with typically
α ¼ 68 or α ¼ 95) by considering the region of the
distribution on each side of the best fit, and taking α%
of the data on each of these regions. This provides the (not
necessarily symmetric) α%-confidence limit intervals we
show in Figs. 7 and 9 to 11.
The gluon and uval parton distributions obtained this

way are plotted as functions of x and for Q2 ¼ 10 GeV2

in Fig. 7. The central PDF is the best fit value. These
MCMC PDFs are compared with the HERAPDF1.0 PDFs
(ZMVFN scheme), with a direct comparison in Fig. 7, and
a ratio plot in Fig. 8. They are, as expected, very close,
both in central value and in confidence interval. Maximum
likelihood estimator and least square method are indeed
equivalent under Gaussian assumption, which in our case
can be reasonably applied, as mentioned in the previous
section.
The uncertainties obtained by the MCMC method and

the Hessian method are also consistent within the kinematic
range of HERA. This is demonstrated in Fig. 9 where
experimental uncertainties—normalized by the best-fit

value—obtained for HERAPDF1.0 NLO and MCMC
NLO, respectively, by the Hessian and MCMC methods
are compared for the uval and the gluon distributions.

FIG. 8. Ratio of MCMC PDFs and HERAPDF1.0 (ZMVFN
scheme) central values for xuval and xg at Q2 ¼ 10 GeV2.

FIG. 7. The parton distribution functions obtained using MCMC (right) compared to HERAPDF1.0 (ZMVFN scheme) from xFitter
output (left) for xuval and xg, at Q2 ¼ 10 GeV2. The bands show the 68% confidence interval around the central value (in solid red line)
for the MCMC PDFs, and the standard Δχ2 ¼ 1 deviation for HERAPDF.
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The MCMC uncertainties tend to be slightly larger than
the standard deviations obtained in the Hessian approach.
For completeness, we also display in Fig. 10 the
antiquark PDFs atQ2 ¼ 10 GeV2, and in Fig. 11 the central

value and 68% confidence limit interval for xuval, xdval, xg
and xΣ (xΣ ¼ xūþ xd̄þ xs̄þ xc̄, with xc̄ ¼ 0 for
Q2 < m2

c) on the same plot, at Q2 ¼ 1.9 GeV2 and
Q2 ¼ 10 GeV2.

FIG. 10. The MCMC parton distribution functions xū, xd̄, xs̄ and xc̄ at Q2 ¼ 10 GeV2. The bands show the 68% confidence interval
around the best fit value (in solid red line).

FIG. 9. Comparison of the PDF uncertainties, normalized by the best fit value, as determined by the Hessian and MCMC methods at
NLO for the valence distribution xuval and the gluon distribution xg, at a scale Q2 ¼ 10 GeV2.
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VII. CONCLUSION AND OUTLOOK

We have shown that MCMC, known to be well suited
to multiparameter determination, is applicable to PDF
determination and that Bayesian parameter inference
approach applied to global PDF analysis can lead to a
deeper insight into PDF uncertainties. The innovative
procedure we implemented, which combines Monte Carlo
techniques, lattice-developed algorithms and global PDF
analysis is complementary to the existing methods. We
have for the first time applied the hybrid Monte Carlo
algorithm to PDF determination and computed marginal
probability densities of PDF parameters, and the PDFs
themselves. This allows us to study the probability
distribution of these functions, to determine mean, best
fit and median values, and to extract confidence intervals
in a statistically controlled way.
This work will lead to an innovative PDF uncertainties

determination, and thus to a reliable determination of
uncertainties for many collider observables, in a way that
is complementary to the existing methods. This will also
open new ways to analyze the impact of new data sets being
added to the analysis, to check which data set has outliers
and if these latter can be tolerated.

This feasibility study paves the way for a more
complete PDF determination by MCMC techniques,
and our goal is to extend the present work to the full
ensemble of PDF free parameters, including also as
parameters, the strong coupling constant and c and b
quark masses. We will consider more complex χ2 func-
tions including correlation and complete our analysis on a
fully realistic case, studying, in particular, the impact of
priors. No doubt that Markov chain Monte Carlo methods
will give interesting and valuable information on PDFs
and will contribute to our deeper understanding of these
key elements of QCD.
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c), and gluon (xg) using

MCMC at the scale Q2 ¼ 1.9 GeV2 (lhs) and Q2 ¼ 10 GeV2 (rhs) obtained with the ZMVFN scheme. The gluon and the sea
distributions are scaled down by a factor of 20. The experimental uncertainties (68% confidence limit as defined in the text from the
probability density of PDFs) are represented by the green-shaded region.

MARKOV CHAIN MONTE CARLO TECHNIQUES APPLIED TO … PHYSICAL REVIEW D 96, 014015 (2017)

014015-13

82



[6] J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J.
Kalk, H. L. Lai, and W. K. Tung, Phys. Rev. D 65, 014013
(2001); J. Pumplin, D. R. Stump, and W. K. Tung, Phys.
Rev. D 65, 014011 (2001); D. Stump, J. Pumplin, R. Brock,
D. Casey, J. Huston, J. Kalk, H. L. Lai, and W. K. Tung,
Phys. Rev. D 65, 014012 (2001).

[7] D. Stump, J. Pumplin, R. Brock, D. Casey, J. Huston, J. Kalk,
H. L. Lai, and W. K. Tung, Phys. Rev. D 65, 014012 (2001).

[8] W. T. Giele and S. Keller, Phys. Rev. D 58, 094023 (1998);
Report No. FERMILAB-PUB-01-498-T.

[9] W. R. Gilks, S. Richardson, and D. J. Speigelhalter, Markov
Chain Monte Carlo In Practice (Chapman and Hall/CRC,
London, 1995).

[10] A. D. Sokal,Monte Carlo Methods in Statistical Mechanics:
Foundations and new algorithms (Cours de Troisième
Cycle de la Physique en Suisse Romande, Lausanne,
Switzerland, 1989).

[11] A. Putze and L. Derome, Phys. Dark Universe 5–6, 29
(2014); A. Putze, L. Derome, D. Maurin, L. Perotto, and R.
Taillet, Astron. Astrophys. 497, 991 (2009).

[12] L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione, and J.
Rojo (NNPDF Collaboration), J. High Energy Phys. 03
(2007) 039; J. C. Rojo, PhD thesis, arXiv:hep-ph/0607122.

[13] N. N. Nikolaev and B. Zakharov, Z. Phys. C 49, 607 (1991);
A. H. Mueller, Nucl. Phys. B415, 373 (1994).

[14] J. Collins, Foundations of Perturbative QCD, vol. 32,
Cambridge monographs on particle physics, nuclear physics
and cosmology (Cambridge University Press, Cambridge,
England, 2011).

[15] S. M. Aybat and T. C. Rogers, Phys. Rev. D 83, 114042
(2011); M. G. A. Buffing, A. Mukherjee, and P. J. Mulders,

Phys. Rev. D 86, 074030 (2012); P. J. Mulders, Pramana 72,
83 (2009); S. Jadach and M. Skrzypek, Acta Phys. Pol. B
40, 2071 (2009); F. Hautmann, Acta Phys. Pol. B 40, 2139
(2009).

[16] R. M. Neal, in Handbook of Markov Chain Monte Carlo,
edited by S. Brooks, A. Gelman, G. L. Jones, and X. Meng
(Chapman and Hall/CRC, London, 2011).

[17] S. Alekhin et al., Eur. Phys. J. C 75, 304 (2015); F. D. Aaron
et al. (H1 and ZEUS Collaboration), J. High Energy Phys.
01 (2010) 109; F. D. Aaron et al. (H1 Collaboration),
Eur. Phys. J. C64, 561 (2009); M. Botje, Comput. Phys.
Commun. 182, 490 (2011); F. James, M. Roos (CERN),
Comput. Phys. Commun. 10, 343 (1975); C. Adloff et al.
(H1 Collaboration), Eur. Phys. J. C 30, 1 (2003); S.
Chekanov et al. (ZEUS Collaboration), Phys. Rev. D 67,
012007 (2003); F. D. Aaron et al., Eur. Phys. J. C 63, 625
(2009); S. Chekanov et al. (ZEUS Collaboration), Eur.
Phys. J. C 42, 1 (2005); J. Pumplin, D. R. Stump, J. Huston,
H. L. Lai, P. M. Nadolsky, and W. K. Tung, J. High Energy
Phys. 07 (2002) 012.

[18] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

[19] W. K. Hastings, Biometrika 57, 97 (1970).
[20] M. de Berg, O. Cheong. M. van Kreveld, and M. Overmars,

Computational Geometry—Algorithms and Applications
(Springer-Verlag, Berlin, 2008), 2nd revised edition.

[21] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,
Phys. Lett. B 195, 216 (1987).

[22] U. Wolff, Comput. Phys. Commun. 156, 143 (2004).
[23] M. H. Quenouille, Biometrika 43, 353 (1956).

GBEDO and MANGIN-BRINET PHYSICAL REVIEW D 96, 014015 (2017)

014015-14

83


	Remerciements
	Résumé
	Abstract
	Table des matières
	Liste des figures
	Liste des tableaux
	Introduction
	La chromodynamique quantique
	Introduction
	Les bases de la chromodynamique quantique
	La chromodynamique quantique perturbative 
	Les schémas de saveurs lourdes
	L'analyse globale des PDFs en QCD
	Les incertitudes expérimentales des PDFs

	La méthode Monte Carlo par chaînes de Markov 
	Introduction
	La formulation de la détermination des distributions de partons en terme d'inférence Bayésienne
	Le principe du Monte Carlo par chaînes de Markov
	L'algorithme Monte Carlo Hamiltonien (MCH) 
	L'analyse des chaînes de Markov 

	Implémentation de l'algorithme MCH dans le code public HERAFitter, validation et premiers résultats 
	Introduction
	Les paramètres de la simulation et le ``setup''
	Les valeurs et les densités de probabilité marginales des paramètres libres des PDFs
	Les densités de probabilité marginales des PDFs : introduction aux limites de confiance des PDFs
	Les distributions de partons et leurs incertitudes expérimentales


