

Generalized double affine Hecke algebra for double torus

Kazuhiro Hikami¹

Received: 23 March 2024 / Revised: 23 March 2024 / Accepted: 13 July 2024
© The Author(s) 2024

Abstract

We propose a generalization of the double affine Hecke algebra of type- $C^\vee C_1$ at specific parameters by introducing a “Heegaard dual” of the Hecke operators. Shown is a relationship with the skein algebra on double torus. We give automorphisms of the algebra associated with the Dehn twists on the double torus.

Keywords Double affine Hecke algebra · Skein algebra · Askey–Wilson polynomial

Mathematics Subject Classification 57M27 · 57M25 · 20C08 · 33D52 · 57M60 · 81R12

1 Introduction

The double affine Hecke algebra (DAHA) was introduced by Cherednik for studies on the Knizhnik–Zamolodchikov equation and its applications to orthogonal symmetric polynomials via the Dunkl–Cherednik operators [8]. It is a fundamental modern tool in mathematics and physics. One of applications of DAHA is the skein algebra, which receives renewed interests from a viewpoint of the quantization of the character varieties. Although, the DAHA is so far only applicable for the skein algebra on the once-punctured torus $\Sigma_{1,1}$ and the 4-punctured sphere $\Sigma_{0,4}$. The former is the DAHA of type- A_1 , and the latter is of type- $C^\vee C_1$ [5, 16, 22, 24]. The superpolynomials for links on $\Sigma_{1,1}$ and $\Sigma_{0,4}$ were constructed by use of the automorphism of DAHA [9, 10].

A generalization of DAHA for the skein algebra on higher-genus surface was initiated in [2, 3]. Constructed are q -difference operators for generators of the skein algebra on $\Sigma_{2,0}$ as a \mathbb{Z}_3 generalization of the DAHA of type- A_1 . Though the Iwahori–Hecke algebraic structure seems to be missing, shown was that it is isomorphic to the skein algebra on $\Sigma_{2,0}$ [12].

To the memory of my father.

✉ Kazuhiro Hikami
khikami@gmail.com

¹ Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

Another representation of the skein algebra on $\Sigma_{2,0}$ was given in our previous paper [16]. Combining the DAHAs of type- A_1 and $C^\vee C_1$, we constructed the q -difference operators for generators of the skein algebra [2, 3]. Using the automorphisms of A_1 DAHA, we computed the DAHA polynomial for double twist knots, and observed a relationship with the colored Jones polynomials. The present paper relies on [16], but we rather aim to generalize the $C^\vee C_1$ DAHA at specific parameters by introducing “Heegaard dual” operators of $C^\vee C_1$ DAHA. Thus our generalization is different from [13] where the generalized DAHA was associated with a 2-dimensional crystallographic group.

This paper is organized as follows. In Sect. 2, we recall the skein algebra on surface and DAHA. We review an isomorphism between the skein algebra on the 4-punctured sphere and DAHA of type- $C^\vee C_1$. In Sect. 3, we pay attention to $C^\vee C_1$ DAHA at \mathbf{t}_\star . By introducing Heegaard dual operators, we propose a generalized DAHA. Using the automorphisms we study a relationship with the skein algebra on $\Sigma_{2,0}$.

Throughout this article we use

$$\text{ch}(x) = x + x^{-1}, \quad \text{sh}(x) = x - x^{-1}. \quad (1.1)$$

2 Preliminaries on DAHA of $C^\vee C_1$ -type and skein algebra

2.1 DAHA of $C^\vee C_1$ -type

We recall the double affine Hecke algebra $H_{q,\mathbf{t}}$ of type- $C^\vee C_1$ with 4 parameters $\mathbf{t} = (t_0, t_1, t_2, t_3)$ [23] (see also [8, 21]). The DAHA $H_{q,\mathbf{t}}$ is generated by $T_0^{\pm 1}$, $T_1^{\pm 1}$, $(T_0^\vee)^{\pm 1}$, and $(T_1^\vee)^{\pm 1}$ satisfying

$$\begin{aligned} T_0 + t_0 - t_0^{-1} &= T_0^{-1}, & T_1 + t_1 - t_1^{-1} &= T_1^{-1}, \\ T_0^\vee + t_2 - t_2^{-1} &= (T_0^\vee)^{-1}, & T_1^\vee + t_3 - t_3^{-1} &= (T_1^\vee)^{-1}, \end{aligned} \quad (2.1)$$

and

$$T_1^\vee T_1 T_0 T_0^\vee = q^{-\frac{1}{2}}. \quad (2.2)$$

Here and hereafter we use

$$X = (T_1^\vee T_1)^{-1} = q^{\frac{1}{2}} T_0 T_0^\vee, \quad (2.3)$$

$$Y = T_1 T_0. \quad (2.4)$$

The spherical DAHA is defined by

$$S H_{q,\mathbf{t}} = e H_{q,\mathbf{t}} e, \quad (2.5)$$

where the idempotent e is

$$e = \frac{1}{t_1 + t_1^{-1}} (t_1 + T_1). \quad (2.6)$$

The polynomial representation is given as [23]

$$\begin{aligned} T_0 &\mapsto t_0^{-1} s \bar{\partial} - \frac{q^{-1} (t_0^{-1} - t_0) x^2 + q^{-\frac{1}{2}} (t_2^{-1} - t_2) x}{1 - q^{-1} x^2} (1 - s \bar{\partial}), \\ T_1 &\mapsto t_1^{-1} s + \frac{(t_1^{-1} - t_1) + (t_3^{-1} - t_3) x}{x^2 - 1} (s - 1), \\ T_0^\vee &\mapsto q^{-\frac{1}{2}} T_0^{-1} x, \\ T_1^\vee &\mapsto x^{-1} T_1^{-1}. \end{aligned} \quad (2.7)$$

Here we mean

$$(s f)(x) = f(x^{-1}), \quad (\bar{\partial} f)(x) = f(q x). \quad (2.8)$$

Then the idempotent (2.6) is a map to the symmetric Laurent polynomials, $e : \mathbb{C}[x^{\pm 1}] \rightarrow \mathbb{C}[x + x^{-1}]$. The Askey–Wilson operator is given from (2.4) as

$$ch(Y)|_{\text{sym}} \mapsto W(x; \mathbf{t}) (\bar{\partial} - 1) + W(x^{-1}; \mathbf{t}) \left(\bar{\partial}^{-1} - 1 \right) + t_0 t_1 + (t_0 t_1)^{-1}, \quad (2.9)$$

where sym denotes an action on the symmetric Laurent polynomials, and

$$W(x; \mathbf{t}) = t_0 t_1 \frac{\left(1 - \frac{1}{t_1 t_3} x\right) \left(1 + \frac{t_3}{t_1} x\right) \left(1 - q^{\frac{1}{2}} \frac{1}{t_0 t_2} x\right) \left(1 + q^{\frac{1}{2}} \frac{t_2}{t_0} x\right)}{(1 - x^2) (1 - q x^2)}. \quad (2.10)$$

The eigen-polynomial of (2.9) is the Askey–Wilson polynomial $P_m(x; q, \mathbf{t})$,

$$P_m(x; q, \mathbf{t}) = \frac{(ab, ac, ad; q)_m}{a^m (abcdq^{m-1}; q)_m} {}_4\phi_3 \left[\begin{matrix} q^{-m}, q^{m-1}abcd, ax, ax^{-1} \\ ab, ac, ad \end{matrix} ; q, q \right], \quad (2.11)$$

satisfying

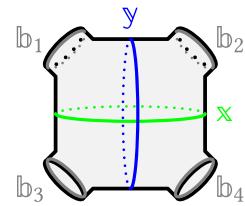
$$\left(Y + Y^{-1} \right) P_m(x; q, \mathbf{t}) = ch(t_0 t_1 q^{-m}) P_m(x; q, \mathbf{t}), \quad (2.12)$$

where

$$a = \frac{1}{t_1 t_3}, \quad b = -\frac{t_3}{t_1}, \quad c = \frac{q^{\frac{1}{2}}}{t_0 t_2}, \quad d = -\frac{q^{\frac{1}{2}} t_2}{t_0}.$$

See [4, 15] for properties of the Askey–Wilson polynomials.

Fig. 1 Simple closed curves on the 4-punctured sphere $\Sigma_{0,4}$



2.2 Skein algebra on $\Sigma_{0,4}$

The skein algebra $\text{Sk}_A(\Sigma)$ on surface Σ is generated by isotopy classes of framed links in $\Sigma \times [0, 1]$ satisfying the skein relation

$$\left(\text{X} \right) = A \left(\text{Y} \right) + A^{-1} \left(\text{Z} \right), \quad (2.13)$$

$$\text{O} = -A^2 - A^{-2}.$$

A multiplication x y of links x and y means that x is vertically above y ,

$$\text{x y} = \boxed{\begin{array}{c} \text{x} \\ \hline \text{y} \end{array}}$$

When two simple closed curves x and y on Σ intersect exactly once, we have

$$\frac{1}{A^{\pm 2} - A^{\mp 2}} \left(A^{\pm 1} \text{x y} - A^{\mp 1} \text{y x} \right) = \mathcal{D}_{\text{x}}^{\mp 1}(\text{y}), \quad (2.14)$$

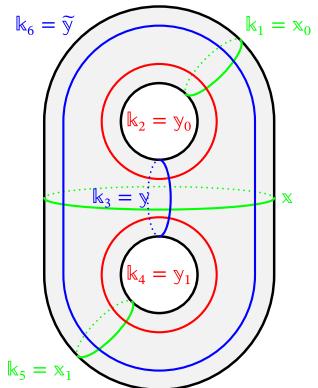
where \mathcal{D}_{x} denotes the left Dehn twist along x . It is noted that

$$\mathcal{D}_{\text{y}}(\text{x}) = \mathcal{D}_{\text{x}}^{-1}(\text{y}). \quad (2.15)$$

A finite set of Dehn twists along non-separating simple closed curves generates the mapping class group $\text{Mod}(\Sigma_{g,0})$ of a surface $\Sigma_{g,0}$. See, e.g., [6, 14].

In the case of the 4-punctured sphere $\Sigma_{0,4}$, the skein algebra is generated by x , y , and b_i in Fig. 1. It is known that the type- $C^\vee C_1$ DAHA is isomorphic to the skein algebra on the 4-punctured sphere [5, 16, 24]. See also [19, 20, 25, 28] from a point of view of the algebraic structure of the Askey–Wilson polynomials. The Askey–Wilson operator ch Y and ch X respectively corresponds to the curves y and x , while the 4 parameters (t_0, t_1, t_2, t_3) denote the boundary curves $(\text{b}_1, \text{b}_3, \text{b}_2, \text{b}_4)$. See [16] for

Fig. 2 Simple closed curves on the double torus $\Sigma_{2,0}$



detail. In addition, the generators of the $SL(2; \mathbb{Z})$ action [8] on $H_{q,t}$

$$\sigma_R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : \begin{pmatrix} T_0 \\ T_1 \\ X \end{pmatrix} \mapsto \begin{pmatrix} q^{-\frac{1}{2}} X T_0^{-1} \\ T_1 \\ X \end{pmatrix}, \quad (2.16)$$

$$\sigma_L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} : \begin{pmatrix} T_0 \\ T_1 \\ X \end{pmatrix} \mapsto \begin{pmatrix} T_0 \\ T_1 \\ q^{\frac{1}{2}} T_0 X^{-1} T_1^{-1} \end{pmatrix}, \quad (2.17)$$

can be interpreted as the half Dehn twists along \mathbf{x} and \mathbf{y} respectively.

3 DAHA on double torus and skein algebra

3.1 Skein algebra and mapping class group on $\Sigma_{2,0}$

The skein algebra $\text{Sk}_A(\Sigma_{2,0})$ is generated by $\mathbf{k}_1 = \mathbf{x}_0$, $\mathbf{k}_2 = \mathbf{y}_0$, $\mathbf{k}_3 = \mathbf{y}$, $\mathbf{k}_4 = \mathbf{y}_1$, and $\mathbf{k}_5 = \mathbf{x}_1$, where we label each simple closed curve on $\Sigma_{2,0}$ as in Fig. 2 following [16]. The Humphries generators of the mapping class group are $\mathcal{D}_i = \mathcal{D}_{\mathbf{k}_i}$ for $1 \leq i \leq 5$, and the mapping class group is (see e.g. [6, 26, 27])

$$\text{Mod}(\Sigma_{2,0}) = \left\langle \mathcal{D}_1, \dots, \mathcal{D}_5 \mid \begin{array}{l} \mathcal{D}_{i,i+1,i} = \mathcal{D}_{i+1,i,i+1} \text{ for } 1 \leq i \leq 4 \\ \mathcal{D}_{i,j} = \mathcal{D}_{j,i} \text{ for } |i - j| > 1 \\ (\mathcal{D}_{1,2,3,4,5})^6 = 1 \\ (\mathcal{D}_{5,4,3,2,1,1,2,3,4,5})^2 = 1 \end{array} \right\rangle, \quad (3.1)$$

where we mean $\mathcal{D}_{i,\dots,j,k} = \mathcal{D}_i \dots \mathcal{D}_j \mathcal{D}_k$. We note that the 2- and 3-chain relations [14] respectively give

$$(\mathcal{D}_{1,2})^6 = \mathcal{D}_{\mathbf{x}}, \quad (3.2)$$

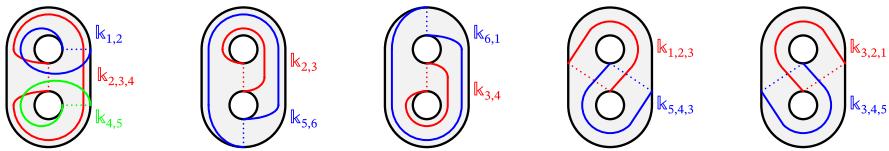


Fig. 3 Several simple closed curves on $\Sigma_{2,0}$ generated by the Dehn twists \mathcal{D}_j from \mathbb{k}_i

$$(\mathcal{D}_{1,2,3})^4 = \mathcal{D}_5^2. \quad (3.3)$$

See Fig. 3 for several simple closed curves generated by the Dehn twists \mathcal{D}_i . We mean for simplicity $\mathbb{k}_{i,\pm j, \dots, \pm k} = (\mathcal{D}_k^{\pm 1} \dots \mathcal{D}_j^{\pm 1})(\mathbb{k}_i)$. These were used in [1] in studies of the character variety.

3.2 q -difference operators

In [16] studied was the map

$$\mathcal{A} : \text{Sk}_{A=q^{-\frac{1}{4}}}(\Sigma_{2,0}) \rightarrow \text{End } \mathbb{C}\left(q^{\frac{1}{4}}, x_0, x_1\right)[x + x^{-1}]. \quad (3.4)$$

Therein given are for the curves in Fig. 2 as

$$\mathcal{A}(\mathbb{x}_b) = \text{ch}(x_b), \quad (3.5)$$

$$\mathcal{A}(\mathbb{y}_b) = i q^{-\frac{1}{4}} G_0(x_b, x), \quad (3.6)$$

$$\mathcal{A}(\mathbb{x}) = \text{ch}(x), \quad (3.7)$$

$$\mathcal{A}(\mathbb{y}) = \sum_{\epsilon=\pm} \omega(x^\epsilon) \left\{ -x^{-\epsilon} \left(x_0 + \frac{q^{\frac{1}{2}} x^\epsilon}{x_0} \right) \left(x_1 + \frac{q^{\frac{1}{2}} x^\epsilon}{x_1} \right) \bar{\partial}^\epsilon + q^{\frac{1}{2}} \text{ch}(x_0) \text{ch}(x_1) \right\}, \quad (3.8)$$

$$\mathcal{A}(\tilde{\mathbb{y}}) = \sum_{\epsilon=\pm} \omega(x^\epsilon) \{ K_0(x_0, x^\epsilon) K_0(x_1, x^\epsilon) \bar{\partial}^\epsilon - G_0(x_0, x) G_0(x_1, x) \}, \quad (3.9)$$

where $b = 0, 1$. Here we have used

$$\omega(x) = \frac{x \left(1 + q^{\frac{1}{2}} x \right)}{q^{\frac{1}{2}} (1 - x^2) \left(1 - q^{\frac{1}{2}} x \right)}, \quad (3.10)$$

and the q -difference operators $K_n(x_b, x)$ and $G_n(x_b, x)$ for $n \in \mathbb{Z}$ are defined by

$$K_n(x_b, x) = \frac{-x_b^{-n}}{1 - x_b^2} \bar{\partial}_b + \frac{x_b^n \left(q^{\frac{1}{2}} x + x_b^2 \right) \left(q^{\frac{3}{2}} x + x_b^2 \right)}{q x (1 - x_b^2)} \bar{\partial}_b^{-1}, \quad (3.11)$$

$$G_n(x_b, x) = \frac{-x_b^{-n}}{1 - x_b^2} \mathfrak{d}_b + \frac{x_b^n \left(q^{\frac{1}{2}} x + x_b^2 \right) \left(q^{\frac{1}{2}} + x x_b^2 \right)}{q^{\frac{1}{2}} x (1 - x_b^2)} \mathfrak{d}_b^{-1}, \quad (3.12)$$

where the q -shift operators \mathfrak{d}_b for $b = 0, 1$ are

$$(\mathfrak{d}_0 f)(x, x_0, x_1) = f(x, q^{\frac{1}{2}} x_0, x_1), \quad (\mathfrak{d}_1 f)(x, x_0, x_1) = f(x, x_0, q^{\frac{1}{2}} x_1). \quad (3.13)$$

Note that the q -difference operators $K_0(x_b, x)$, $K_0(x_b, x^{-1})$, and $G_0(x_b, x)$ are respectively related to the raising operator, lowering operator, and the eigen-operator for the type- A_1 Macdonald polynomials a.k.a. the Rogers ultra-spherical polynomials [16]. We see that they fulfill the following;

$$G_n(x_b, x^{-1}) = G_n(x_b, x), \quad (3.14)$$

$$K_n(x_b, x) G_n(x_b, q x) = G_n(x_b, x) K_n(x_b, x), \quad (3.15)$$

$$K_n(x_b, x^{-1}) K_n(x_b, q^{-1} x) - [G_n(x_b, x)]^2 = -q^{\frac{n}{2}} x^{-1} \left(q^{\frac{1}{2}} - x \right)^2, \quad (3.16)$$

$$\begin{aligned} & q^{\frac{1}{2}} x (1 - x^2) \left(G_n(x_b, x) G_n(x_b, q^{-1} x) - K_n(x_b, x) K_n(x_b, x^{-1}) \right) \\ & + (1 - q) x^2 \left(K_n(x_b, x) - K_n(x_b, x^{-1}) \right) G_n(x_b, q^{-1} x) \\ & = q^{\frac{n}{2}} \left(q^{\frac{1}{2}} - x \right) \left(1 - q^{\frac{1}{2}} x \right) \left(1 - x^2 \right) \frac{q - x_b^2}{1 - x_b^2}, \end{aligned} \quad (3.17)$$

$$\begin{pmatrix} K_{n+1}(x_b, x^{-1}) \\ G_{n+1}(x_b, q^{-1} x) \end{pmatrix} = \frac{1}{x - q^{\frac{1}{2}}} \begin{pmatrix} x \operatorname{ch}(x_b) & -\frac{q^{\frac{1}{2}} + x x_b^2}{x_b} \\ \frac{x + q^{\frac{1}{2}} x_b^2}{x_b} & -q^{\frac{1}{2}} \operatorname{ch}(x_b) \end{pmatrix} \begin{pmatrix} K_n(x_b, x^{-1}) \\ G_n(x_b, q^{-1} x) \end{pmatrix}. \quad (3.18)$$

We note that

$$\mathcal{A}(\mathbb{k}_{2,1^n}) = i q^{-\frac{n+1}{4}} G_n(x_0, x), \quad (3.19)$$

which follows from the skein algebra

$$\mathbb{k}_1 \mathbb{k}_{2,1^n} = A \mathbb{k}_{2,1^{n-1}} + A^{-1} \mathbb{k}_{2,1^{n+1}}, \quad \mathbb{k}_{2,1^n} = \begin{cases} \underbrace{\mathbb{k}_{2,1,\dots,1}}_n, & \text{for } n \geq 0, \\ \underbrace{\mathbb{k}_{2,-1,\dots,-1}}_{|n|}, & \text{for } n \leq 0. \end{cases} \quad (3.20)$$

3.3 Specialization of type- $C^\vee C_1$ DAHA

Hereafter we fix the parameters of the $C^\vee C_1$ DAHA as $\mathbf{t} = \mathbf{t}_\star$,

$$\mathbf{t}_\star = \left(i x_0, i q^{-\frac{1}{2}} x_1, i x_0, i x_1 \right), \quad (3.21)$$

to identify the curve \mathbb{b}_1 (resp. \mathbb{b}_3) with \mathbb{b}_2 (resp. \mathbb{b}_4) in Fig. 1. At \mathbf{t}_* (3.21) the Hecke operators (2.7) are read as

$$\begin{aligned}\mathsf{T}_0 &\mapsto i \frac{x}{q^{\frac{1}{2}} - x} \left(-\frac{q^{\frac{1}{2}} + x x_0^2}{x x_0} s \bar{\partial} + x_0 + x_0^{-1} \right), \\ \mathsf{T}_1 &\mapsto i \left(\frac{1 + q^{\frac{1}{2}} x}{q^{\frac{1}{2}} (1 - x^2)} \frac{q^{\frac{1}{2}} x + x_1^2}{x_1} (s - 1) - q^{\frac{1}{2}} x_1^{-1} \right), \\ \mathsf{T}_0^\vee &\mapsto q^{-\frac{1}{2}} \mathsf{T}_0^{-1} x, \\ \mathsf{T}_1^\vee &\mapsto x^{-1} \mathsf{T}_1^{-1},\end{aligned}\tag{3.22}$$

which satisfy the Hecke relations

$$\begin{aligned}\mathsf{T}_0 - \mathsf{T}_0^{-1} &= -i \operatorname{ch}(x_0), & \mathsf{T}_0^\vee - (\mathsf{T}_0^\vee)^{-1} &= -i \operatorname{ch}(x_0), \\ \mathsf{T}_1 - \mathsf{T}_1^{-1} &= -i \operatorname{ch}\left(q^{-\frac{1}{2}} x_1\right), & \mathsf{T}_1^\vee - (\mathsf{T}_1^\vee)^{-1} &= -i \operatorname{ch}(x_1).\end{aligned}\tag{3.23}$$

The idempotent (2.6) becomes

$$e \mapsto (1 + s) \frac{\left(q^{\frac{1}{2}} + x\right) \left(q^{\frac{1}{2}} + x x_1^2\right)}{(1 - x^2) (q - x_1^2)}.\tag{3.24}$$

Note that

$$\mathsf{T}_1 e = -i q^{\frac{1}{2}} x_1^{-1} e = e \mathsf{T}_1, \quad \mathsf{T}_1^{-1} e = i q^{-\frac{1}{2}} x_1 = e \mathsf{T}_1^{-1}.\tag{3.25}$$

and

$$x \mathsf{T}_1 \left(1 + q^{\frac{1}{2}} x\right) e = q^{\frac{1}{2}} \left(1 + q^{\frac{1}{2}} x\right) \mathsf{T}_1^{-1} e.\tag{3.26}$$

The DAHA at \mathbf{t}_* (3.21) was employed so that the Askey–Wilson operator gives (3.8) as

$$\mathcal{A}(y) e = \operatorname{ch}(\mathsf{T}_1 \mathsf{T}_0) e.\tag{3.27}$$

Namely the Askey–Wilson polynomial (2.11) is the eigen-polynomial of (3.8),

$$\mathcal{A}(y) P_m(x; q, \mathbf{t}_*) = -\operatorname{ch}\left(\frac{q^{m+\frac{1}{2}}}{x_0 x_1}\right) P_m(x; q, \mathbf{t}_*).$$

It should be remarked that the operator $\mathcal{A}(\tilde{y})$, commuting with the Askey–Wilson operator as $\mathcal{A}(y) \mathcal{A}(\tilde{y}) = \mathcal{A}(\tilde{y}) \mathcal{A}(y)$, satisfies [18]

$$\begin{aligned} \mathcal{A}(\tilde{y}) P_m(x; q, \mathbf{t}_*) &= \frac{(q^{m+2} - x_0^2 x_1^2)^2}{q^{m+\frac{5}{2}} (1 - x_0^2) (1 - x_1^2)} P_{m+1}(x; q, \mathbf{t}_*) \\ &- \frac{(q^{m+1} - x_0^2)^2 + (q^{m+1} - x_1^2)^2}{q^{m+\frac{3}{2}} (1 - x_0^2) (1 - x_1^2)} P_m(x; q, \mathbf{t}_*) + \frac{(1 - q^m)^2}{q^{m+\frac{1}{2}} (1 - x_0^2) (1 - x_1^2)} P_{m-1}(x; q, \mathbf{t}_*). \end{aligned}$$

3.4 Heegaard dual of Hecke operators

Our purpose is to rewrite the map (3.4) in terms of the Iwahori–Hecke operators. The motivation is based on that S^3 has a Heegaard splitting $S^3 = H_1 \cup_{\Sigma_{2,0}} H_2$, where H_i is a 2-handlebody and $\Sigma_{2,0} = \partial H_i$. In gluing, the meridians \mathbf{x}_b on H_1 are mapped to the longitudes \mathbf{y}_b on H_2 , and \mathbf{x} and \mathbf{y} are to \mathbf{x} and $\tilde{\mathbf{y}}$ respectively. The fact that \mathbf{y} corresponds to the Askey–Wilson operator (3.27) suggests that there may exist a “Heegaard dual” \mathbf{U}_0 and \mathbf{U}_1 of the Hecke operators \mathbf{T}_0 and \mathbf{T}_1 (3.22) for $\tilde{\mathbf{y}}$.

Definition 3.1 We define the representation of \mathbf{U}_0 and \mathbf{U}_1 by

$$\mathbf{U}_0 \mapsto \frac{q^{-\frac{1}{4}} x}{q^{\frac{1}{2}} - x} K_0(x_0, x^{-1}) \mathbf{s} \mathfrak{D} - \frac{q^{-\frac{1}{4}} x}{q^{\frac{1}{2}} - x} G_0(x_0, x), \quad (3.28)$$

$$\mathbf{U}_1 \mapsto -\frac{x (1 + q^{\frac{1}{2}} x)}{q^{\frac{1}{4}} (1 - x^2)} K_0(x_1, x) (\mathbf{s} - 1) + \frac{q^{\frac{1}{4}}}{1 - q^{\frac{1}{2}} x} \left(G_0(x_1, x) - q^{\frac{1}{2}} x K_0(x_1, x) \right), \quad (3.29)$$

$$\mathbf{U}_0^\vee \mapsto q^{-\frac{1}{2}} \mathbf{U}_0^{-1} x, \quad (3.30)$$

$$\mathbf{U}_1^\vee \mapsto x^{-1} \mathbf{U}_1^{-1}, \quad (3.31)$$

where $K_n(x_b, x)$ and $G_n(x_b, x)$ are given in (3.11) and (3.12).

The invertibilities of \mathbf{U}_0 and \mathbf{U}_1 can be checked using (3.14)–(3.17) by

$$\mathbf{U}_0^{-1} \mapsto \frac{q^{-\frac{1}{4}} x}{q^{\frac{1}{2}} - x} K_0(x_0, x^{-1}) \mathbf{s} \mathfrak{D} - \frac{q^{\frac{1}{4}}}{q^{\frac{1}{2}} - x} G_0(x_0, x), \quad (3.32)$$

$$\begin{aligned} \mathbf{U}_1^{-1} &\mapsto \left\{ (\mathbf{s} + 1) \frac{q^{\frac{1}{2}} + x}{q^{\frac{1}{4}} (1 - x^2)} K_0(x_1, x^{-1}) + \frac{q^{\frac{1}{4}}}{q^{\frac{1}{2}} - x} \left(x G_0(x_1, q^{-1} x) - q^{\frac{1}{2}} K_0(x_1, x^{-1}) \right) \right\} \\ &\times \frac{1 - x_1^2}{q - x_1^2}. \end{aligned} \quad (3.33)$$

By construction, we have an analogue of (2.2)

$$\mathbf{U}_1^\vee \mathbf{U}_1 \mathbf{U}_0 \mathbf{U}_0^\vee = q^{-\frac{1}{2}}. \quad (3.34)$$

Moreover we get the followings.

Lemma 3.2 (1)

$$U_0 T_0 U_0^\vee = -q^{\frac{1}{2}} T_0, \quad (3.35)$$

(2)

$$U_1 T_1^{-1} U_1^\vee T_1 \mapsto -q - \frac{(1-q) \left(1 + q^{\frac{1}{2}} x\right) \left(q^{\frac{1}{2}} x + x_1^2\right)}{(1-x^2) (q-x_1^2)} (s-1). \quad (3.36)$$

The representations in Definition 3.1 and the inverses show that the Heegaard dual operators satisfy the Hecke-type relations. We have for U_0 and U_0^\vee

$$\begin{aligned} U_0 - U_0^{-1} &= q^{-\frac{1}{4}} G_0(x_0, x), \\ U_0^\vee - (U_0^\vee)^{-1} &= q^{-\frac{1}{4}} G_0(x_0, x). \end{aligned} \quad (3.37)$$

For U_1 and U_1^\vee , we have preferable expressions with the symmetrizer e (3.24)

$$\begin{aligned} \left(q^{-\frac{1}{2}} U_1 - q^{\frac{1}{2}} U_1^{-1}\right) e &= q^{-\frac{1}{4}} G_0(x_1, x) e, \\ \left(U_1^\vee - (U_1^\vee)^{-1}\right) e &= q^{-\frac{1}{4}} G_0(x_1, x) e, \end{aligned} \quad (3.38)$$

which can be seen by use of an analogous identity to (3.26),

$$X U_1 \left(1 + q^{\frac{1}{2}} X\right) e = q^{\frac{1}{2}} \left(1 + q^{\frac{1}{2}} X\right) U_1^{-1} e. \quad (3.39)$$

Furthermore we can prove

$$\mathcal{A}(\tilde{y}) e = \text{ch}(U_1 U_0) e. \quad (3.40)$$

In summary, all the generators \mathbb{k}_i for the skein algebra $\text{Sk}_{A=q^{-\frac{1}{4}}}(\Sigma_{2,0})$ given in (3.5)–(3.9) can be written as follows.

Proposition 3.3

$$\begin{aligned} \mathcal{A}(\mathbb{k}_1) &= \mathcal{A}(x_0) = \text{ch}(i T_0) = \text{ch}(i T_0^\vee), \\ \mathcal{A}(\mathbb{k}_2) &= \mathcal{A}(y_0) = \text{ch}(i U_0) = \text{ch}(i U_0^\vee), \\ \mathcal{A}(\mathbb{k}_3) e &= \mathcal{A}(y) e = \text{ch}(T_1 T_0) e = \text{ch}(T_0 T_1) e, \\ \mathcal{A}(\mathbb{k}_4) e &= \mathcal{A}(y_1) e = \text{ch}\left(i q^{-\frac{1}{2}} U_1\right) e = \text{ch}(i U_1^\vee) e, \\ \mathcal{A}(\mathbb{k}_5) e &= \mathcal{A}(x_1) e = \text{ch}\left(i q^{-\frac{1}{2}} T_1\right) e = \text{ch}(i T_1^\vee) e, \\ \mathcal{A}(\mathbb{k}_6) e &= \mathcal{A}(\tilde{y}) e = \text{ch}(U_1 U_0) e. \end{aligned} \quad (3.41)$$

We can thus regard the map (3.4) as

$$\mathcal{A} : \text{Sk}_{A=q^{-\frac{1}{4}}}(\Sigma_{2,0}) \rightarrow SH_{q,\mathbf{t}_\star}^{\text{gen}} \quad (3.42)$$

where $SH_{q,\mathbf{t}_\star}^{\text{gen}}$ is a spherical subalgebra of our generalized DAHA,

$$H_{q,\mathbf{t}_\star}^{\text{gen}} = \left\langle \begin{matrix} \mathbf{T}_0^{\pm 1}, \mathbf{T}_1^{\pm 1}, \mathbf{X}^{\pm 1}, \mathbf{U}_0^{\pm 1}, \mathbf{U}_1^{\pm 1} \\ \mathbf{T}_0 \mathbf{U}_0^{-1} \mathbf{X} \mathbf{T}_0^{-1} \mathbf{U}_0 = -q \\ \mathbf{U}_1 \mathbf{T}_1^{-1} \mathbf{X}^{-1} \mathbf{U}_1^{-1} \mathbf{T}_1 \mathbf{e} = -q \mathbf{e} \end{matrix} \right\rangle. \quad (3.43)$$

The conditions are from Lemma 3.2.

3.5 Automorphisms

By definition of $H_{q,\mathbf{t}_\star}^{\text{gen}}$ (3.43), we find the automorphisms $\mathcal{T}_i = \mathcal{T}_{\mathbb{K}_i}$ as follows.

Proposition 3.4 *We have the automorphisms of $H_{q,\mathbf{t}_\star}^{\text{gen}}$ (3.43);*

$$\mathcal{T}_1 = \mathcal{T}_{\mathbb{X}_0} : \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ \mathbf{U}_1 \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ -i q^{\frac{1}{4}} \mathbf{U}_0 \mathbf{T}_0^{-1} \\ \mathbf{U}_1 \end{pmatrix}, \quad (3.44)$$

$$\mathcal{T}_2 = \mathcal{T}_{\mathbb{Y}_0} : \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ \mathbf{U}_1 \end{pmatrix} \mapsto \begin{pmatrix} i q^{-\frac{1}{4}} \mathbf{U}_0 \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ \mathbf{U}_1 \end{pmatrix}, \quad (3.45)$$

$$\mathcal{T}_3 = \mathcal{T}_{\mathbb{Y}} : \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ \mathbf{U}_1 \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ (\mathbf{T}_0 \mathbf{T}_1)^{-1} \mathbf{X} \mathbf{T}_1 \mathbf{T}_0 \\ q^{-\frac{1}{4}} (\mathbf{T}_0 \mathbf{T}_1)^{-1} \mathbf{U}_0 \\ q^{\frac{1}{4}} \mathbf{U}_1 \mathbf{T}_0 \mathbf{T}_1 \end{pmatrix}, \quad (3.46)$$

$$\mathcal{T}_4 = \mathcal{T}_{\mathbb{Y}_1} : \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ \mathbf{U}_1 \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{T}_0 \\ i q^{-\frac{1}{4}} (\mathbf{U}_1 \mathbf{X})^{-1} \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ \mathbf{U}_1 \end{pmatrix}, \quad (3.47)$$

$$\mathcal{T}_5 = \mathcal{T}_{\mathbb{X}_1} : \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ \mathbf{U}_1 \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{T}_0 \\ \mathbf{T}_1 \\ \mathbf{X} \\ \mathbf{U}_0 \\ -i q^{\frac{1}{4}} \mathbf{U}_1 \mathbf{X} \mathbf{T}_1 \end{pmatrix}. \quad (3.48)$$

We note that the map \mathcal{T}_3 (3.46) originates from the Dehn twist σ_L^{-2} on $\Sigma_{0,4}$ (2.17). Our claim is as follows.

Proposition 3.5 *We have a commutative diagram;*

$$\begin{array}{ccc} \text{Sk}_{A=q^{-\frac{1}{4}}}(\Sigma_{2,0}) & \xrightarrow{\mathcal{D}_i} & \text{Sk}_{A=q^{-\frac{1}{4}}}(\Sigma_{2,0}) \\ \mathcal{A} \downarrow & & \downarrow \mathcal{A} \\ SH_{q,t_*}^{gen} & \xrightarrow{\mathcal{T}_i} & SH_{q,t_*}^{gen} \end{array}$$

We shall check the relations in (3.1). From the definitions (3.44)–(3.48) it is straightforward to see case-by-case that both the braid relations and the commutativities hold;

$$\mathcal{T}_{i,i+1,i} = \mathcal{T}_{i+1,i,i+1}, \quad \text{for } 1 \leq i \leq 4, \quad (3.49)$$

$$\mathcal{T}_{i,j} = \mathcal{T}_{j,i}, \quad \text{for } |i - j| > 1, \quad (3.50)$$

where we mean $\mathcal{T}_{i,\dots,j,k} = \mathcal{T}_i \dots \mathcal{T}_j \mathcal{T}_k$. We can also find that

$$\begin{aligned} \mathcal{T}_{1,2,3,4,5} : \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ U_1 \end{pmatrix} &\mapsto \begin{pmatrix} U_0 \\ iq^{-\frac{1}{2}}U_0^{-1}T_1^{-1}X^{-1}U_1^{-1}T_1 \\ T_1^{-1}U_0^{-1}XT_1U_0 \\ -iT_1^{-1}T_0^{-1} \\ T_1 \end{pmatrix}, \\ \mathcal{T}_{5,4,3,2,1} : \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ U_1 \end{pmatrix} &\mapsto \begin{pmatrix} iqT_1^{-1}U_1XT_1U_0 \\ -q^{-\frac{1}{2}}X^{-1}(T_1^{-1}U_1XT_1)^{-1} \\ (T_1^{-1}U_1XT_1)XT_0^{-1}(T_1^{-1}U_1XT_1)^{-1}T_0 \\ q^{-\frac{1}{2}}(T_1^{-1}U_1XT_1)XT_0^{-1}(T_1^{-1}U_1XT_1)^{-1} \\ iU_1XT_1T_0X^{-1}(T_1^{-1}U_1XT_1)^{-1} \end{pmatrix}, \end{aligned}$$

which result in

$$(\mathcal{T}_{1,2,3,4,5})^6 = (\mathcal{T}_{5,4,3,2,1,1,2,3,4,5})^2 : \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ U_1 \end{pmatrix} \mapsto (T_1^{-1}U_1XT_1U_1^{-1}) \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ U_1 \end{pmatrix} (T_1^{-1}U_1XT_1U_1^{-1})^{-1}. \quad (3.51)$$

As seen from (3.36), the operator $U_1T_1^{-1}X^{-1}U_1^{-1}T_1$ acts as a scalar on the symmetric Laurent polynomials, and the maps (3.51) are identities on $\mathbb{C}(q^{\frac{1}{4}}, x_0, x_1)[x + x^{-1}]$.

It should be noted that, for the 3-chain relation (3.3), we have

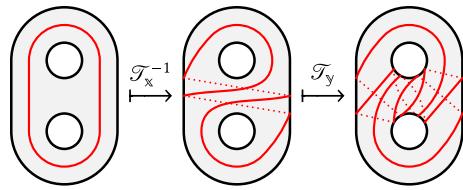
$$(\mathcal{T}_{1,2,3})^4 : \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ U_1 \end{pmatrix} \mapsto \begin{pmatrix} T_1^{-1} T_0 T_1 \\ T_1 \\ T_1^{-1} X T_1 \\ T_1^{-1} U_0 T_1 \\ U_1 X T_1^2 \end{pmatrix}, \quad (\mathcal{T}_5)^2 : \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ U_1 \end{pmatrix} \mapsto \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ -q^{\frac{1}{2}} U_1 X T_1 X T_1 \end{pmatrix}.$$

Both actions on the generators (3.41) are same.

We explicitly give the map for the curves in Fig. 3. We have checked the consistency with the skein algebra, e.g. (2.14), of the curves.

$$\begin{aligned} \mathcal{A}(\mathbb{k}_{1,2}) &= \mathcal{T}_2(\mathcal{A}(\mathbb{k}_1)) = \text{ch} \left(-q^{-\frac{1}{4}} U_0 T_0 \right) = \text{ch} \left(q^{\frac{1}{4}} X^{-1} U_0 T_0 \right) \\ &= i G_{-1}(x_0, x), \\ \mathcal{A}(\mathbb{k}_{2,3}) e &= \mathcal{T}_3(\mathcal{A}(\mathbb{k}_2)) e = \text{ch} \left(i q^{-\frac{1}{4}} (T_0 T_1)^{-1} U_0 \right) e = \text{ch} \left(-i q^{\frac{1}{4}} (T_1 T_0)^{-1} X^{-1} U_0 \right) e \\ &= i \sum_{\epsilon=\pm} \omega(x^\epsilon) \left(-K_1(x_0, x^\epsilon) \frac{x_1^2 + q^{\frac{1}{2}} x^\epsilon}{x_1} \partial^\epsilon + G_1(x_0, x) \text{ch}(x_1) \right) e, \\ \mathcal{A}(\mathbb{k}_{3,4}) e &= \mathcal{T}_3^{-1}(\mathcal{A}(\mathbb{k}_4)) e = \text{ch} \left(i q^{-\frac{3}{4}} U_1 (T_0 T_1)^{-1} \right) e = \text{ch} \left(-i q^{-\frac{1}{4}} U_1 X (T_1 T_0)^{-1} \right) e \\ &= i \sum_{\epsilon=\pm} \omega(x^\epsilon) \left(-\frac{x^{-\epsilon} x_0^2 + q^{\frac{1}{2}}}{x_0} K_{-1}(x_1, x^\epsilon) \partial^\epsilon + q^{\frac{1}{2}} \text{ch}(x_0) G_{-1}(x_1, x) \right) e, \\ \mathcal{A}(\mathbb{k}_{4,5}) e &= \mathcal{T}_5(\mathcal{A}(\mathbb{k}_4)) e = \text{ch} \left(q^{-\frac{1}{4}} U_1 X T_1 \right) e = \text{ch} \left(-q^{\frac{1}{4}} U_1 X T_1 X \right) e \\ &= i q^{-\frac{1}{2}} G_1(x_1, x) e, \\ \mathcal{A}(\mathbb{k}_{5,6}) e &= \mathcal{T}_5^{-1}(\mathcal{A}(\mathbb{k}_6)) e = \text{ch} \left(i q^{-\frac{1}{4}} U_1 (X T_1)^{-1} U_0 \right) e \\ &= q^{\frac{1}{4}} \sum_{\epsilon=\pm} \omega(x^\epsilon) (K_0(x_0, x^\epsilon) K_{-1}(x_1, x^\epsilon) \partial^\epsilon - G_0(x_0, x) G_{-1}(x_1, x)) e, \\ \mathcal{A}(\mathbb{k}_{6,1}) e &= \mathcal{T}_1(\mathcal{A}(\mathbb{k}_6)) e = \text{ch} \left(-i q^{\frac{1}{4}} U_1 U_0 T_0^{-1} \right) e \\ &= q^{-\frac{1}{4}} \sum_{\epsilon=\pm} \omega(x^\epsilon) (K_1(x_0, x^\epsilon) K_0(x_1, x^\epsilon) \partial^\epsilon - G_1(x_0, x) G_0(x_1, x)) e, \\ \mathcal{A}(\mathbb{k}_{1,2,3}) e &= \mathcal{T}_3(\mathcal{A}(\mathbb{k}_{1,2})) e = \text{ch} \left(q^{\frac{1}{2}} T_1^{-1} X^{-1} U_0 \right) e = \text{ch} \left((X T_1 T_0)^{-1} U_0 T_0 \right) e \\ &= i q^{\frac{1}{4}} \sum_{\epsilon=\pm} \omega(x^\epsilon) \left(-K_0(x_0, x^\epsilon) \frac{x_1^2 + q^{\frac{1}{2}} x^\epsilon}{x_1} \partial^\epsilon + G_0(x_0, x) \text{ch}(x_1) \right) e, \\ \mathcal{A}(\mathbb{k}_{5,4,3}) e &= (\mathcal{T}_5^{-1} \mathcal{T}_3)(\mathcal{A}(\mathbb{k}_4)) e = \text{ch}(U_1 T_0) e = \text{ch} \left(-q^{\frac{1}{2}} U_1 T_1^{-1} X^{-1} T_0 T_1 \right) e \\ &= i q^{\frac{1}{4}} \sum_{\epsilon=\pm} \omega(x^\epsilon) \left(-\frac{x_0^2 + q^{\frac{1}{2}} x^\epsilon}{x_0} K_0(x_1, x^\epsilon) \partial^\epsilon + \text{ch}(x_0) G_0(x_1, x) \right) e, \\ \mathcal{A}(\mathbb{k}_{2,3,4}) e &= \mathcal{T}_2^{-1}(\mathcal{A}(\mathbb{k}_{3,4})) e = \text{ch} \left(-q^{-1} U_1 (T_0 T_1)^{-1} U_0 \right) e = \text{ch} \left(-q^{\frac{1}{2}} U_1 U_0 (T_1 T_0)^{-1} \right) e \\ &= \sum_{\epsilon=\pm} \omega(x^\epsilon) (K_1(x_0, x^\epsilon) K_{-1}(x_1, x^\epsilon) \partial^\epsilon - G_1(x_0, x) G_{-1}(x_1, x)) e, \end{aligned}$$

Fig. 4 A rational tangle for $2 + \frac{1}{2}$ which corresponds to the figure-eight knot 4_1



$$\begin{aligned}\mathcal{A}(\mathbb{K}_{3,4,5}) \mathbf{e} &= \mathcal{T}_5 (\mathcal{A}(\mathbb{K}_{3,4})) \mathbf{e} = \text{ch} \left(q^{-\frac{1}{2}} U_1 X T_0^{-1} \right) \mathbf{e} = \text{ch} \left(-U_1 X T_1 X (T_1 T_0)^{-1} \right) \mathbf{e} \\ &= i q^{\frac{1}{4}} \sum_{\epsilon=\pm} \omega(x^\epsilon) \left(-\frac{q^{-\frac{1}{2}} x^{-\epsilon} x_0^2 + 1}{x_0} K_0(x_1, x^\epsilon) \partial^\epsilon + \text{ch}(x_0) G_0(x_1, x) \right) \mathbf{e}, \\ \mathcal{A}(\mathbb{K}_{3,2,1}) \mathbf{e} &= (\mathcal{T}_1 \mathcal{T}_2) (\mathcal{A}(\mathbb{K}_3)) \mathbf{e} = \text{ch}(T_1 U_0) \mathbf{e} = \text{ch}(U_0 T_1) \mathbf{e} \\ &= i q^{\frac{1}{4}} \sum_{\epsilon=\pm} \omega(x^\epsilon) \left(-K_0(x_0, x^\epsilon) \frac{q^{-\frac{1}{2}} x^{-\epsilon} x_1^2 + 1}{x_1} \partial^\epsilon + G_0(x_0, x) \text{ch}(x_1) \right) \mathbf{e}.\end{aligned}$$

Here we avoid to use \mathcal{T}_4 due to that T_1 , used for the idempotent \mathbf{e} , is no longer invariant.

3.6 Rational tangles

In [11], Conway introduced tangle operations, and showed that continued fraction can be assigned to a certain family of knots and links. In view from links on the double torus $\Sigma_{2,0}$, the tangle operations correspond to the Dehn twists along \mathbf{x} and \mathbf{y} acting on the curve \tilde{y} . We can thus construct the rational tangle \tilde{y}_r associated with the continued fraction r with even integers. The automorphism \mathcal{T}_y for the Dehn twist along \mathbf{y} is (3.46), and \mathcal{T}_x is given from the 2-chain relation (3.2) as

$$\mathcal{T}_x : \begin{pmatrix} T_0 \\ T_1 \\ X \\ U_0 \\ U_1 \end{pmatrix} \mapsto \begin{pmatrix} X T_0 X^{-1} \\ T_1 \\ X \\ X U_0 X^{-1} \\ U_1 \end{pmatrix}, \quad (3.52)$$

which is consistent with the Dehn twist σ_R^2 on $\Sigma_{0,4}$ (2.16).

We show a few examples. The figure-eight knot 4_1 is a rational tangle with $\frac{5}{2} = 2 + \frac{1}{2}$ as in Fig. 4. We have

$$\tilde{y}_{5/2} = (\mathcal{D}_y \mathcal{D}_x^{-1})(\tilde{y}), \quad (3.53)$$

which gives

$$\mathcal{A}(\tilde{y}_{5/2}) = \text{ch} \left(U_1 T_0 T_1 (T_0^\vee T_1 T_0)^{-1} T_0^{-1} U_0 T_1 (T_0^\vee T_1 T_0) \right). \quad (3.54)$$

The knot 5_2 is $\frac{7}{2} = 4 + \frac{1}{2}$, and

$$\tilde{y}_{7/2} = (\mathcal{D}_y^{-1} \mathcal{D}_x^{-2})(\tilde{y}), \quad (3.55)$$

which gives

$$\mathcal{A}(\tilde{\mathbb{Y}}_{7/2}) = \text{ch} \left(U_1 T_1^{-1} T_0^{-1} \left(T_1 T_0 T_1^\vee T_0^{-1} \right) T_1 T_0 T_1^\vee T_1 U_0 \left(T_1 T_0 T_1^\vee T_0^{-1} \right)^{-2} \right). \quad (3.56)$$

In both cases, the DAHA polynomials $\mathcal{A}(\mathbb{Y}_r)(1)$ are too involved to give here. Nonetheless Mathematica shows that the constant terms ∂^0 of $\mathcal{A}(\tilde{\mathbb{Y}}_r)$ reduce to

$$\begin{aligned} \text{Const}(\mathcal{A}(\tilde{\mathbb{Y}}_{5/2}))(1) \Big|_{x_0=x_1=-x=q^{\frac{1}{2}}} &= \frac{q^{-2} - q^{-1} + 1 - q + q^2}{(1-q)(1-q^2)}, \\ \text{Const}(\mathcal{A}(\tilde{\mathbb{Y}}_{7/2}))(1) \Big|_{x_0=x_1=-x=q^{\frac{1}{2}}} &= \frac{q(1-q+2q^2-q^3+q^4-q^5)}{(1-q)(1-q^2)}. \end{aligned} \quad (3.57)$$

These computations support a relationship with the Jones polynomial as observed in [16].

4 Concluding remarks

We have proposed a generalization of the type- $C^\vee C_1$ DAHA at \mathbf{t}_\star by introducing the Heegaard dual operators. We hope to report on their roles on the (non-symmetric) Askey–Wilson polynomials at \mathbf{t}_\star , and also on the generalization to the higher-rank skein algebras. It would be promising to incorporate results from the cluster algebra [7, 17].

Acknowledgements The author would like to thank Hitoshi Murakami for communications on rational tangles.

Funding The work of KH is supported in part by JSPS KAKENHI Grant Numbers JP22H01117, JP20K03601, JP20K03931.

Data availability The Mathematica code for (3.57) is attached as supplementary material.

Declarations

Conflict of interest The author has no Conflict of interest to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. Arthamonov, S.: Classical limit of genus two DAHA, preprint (2023), [arXiv:2309.01011](https://arxiv.org/abs/2309.01011) [math.QA]
2. Arthamonov, S., Shakirov, S.: Genus two generalization of A_1 spherical DAHA. Select. Math. **25**(17), 29 (2019)

3. Arthatamov, S., Shakirov, S.: Refined Chern–Simons theory in genus two. *J. Knot Theory Ramif.* **29**, 2050044 (2020)
4. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. *Mem. Amer. Math. Soc.* **54**, 1–55 (1985)
5. Berest, Yu., Samuelson, P.: Affine cubic surfaces and character varieties of knots. *J. Algebr.* **500**, 644–690 (2018)
6. Birman, J.S.: Mapping class groups of surfaces. In: Birman, J.S., Libgober, A. (eds.) *Braids. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Artin’s Braid Group*, pp. 13–43. AMS, Providence (1988)
7. Chekhov, L.O., Shapiro, M.: Symplectic groupoid and cluster algebras, preprint (2023). [arXiv:2304.05580](https://arxiv.org/abs/2304.05580) [math.QA]
8. Cherednik, I.: Double Affine Hecke Algebras, vol. 319 of London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge (2005)
9. Cherednik, I.: Jones polynomials of torus knots via DAHA. *Int. Math. Res. Not.* **2013**, 5366–5425 (2013)
10. Cherednik, I.: DAHA-Jones polynomials of torus knots. *Select. Math. (N.S.)* **22**, 1013–1053 (2016)
11. Conway, J.: An enumeration of knots and links, and some of their algebraic properties. In: Leech, J. (ed.) *Computational Problems in Abstract Algebra*, pp. 329–358. Oxford, Pergamon (1970)
12. Cooke, J., Samuelson, P.: On the genus two skein algebra. *J. Lond. Math. Soc.* **104**, 2260–2298 (2021)
13. Etingof, P., Oblomkov, A., Rains, E.: Generalized double affine Hecke algebras of rank 1 and quantized Del Pezzo surfaces. *Adv. Math.* **212**, 749–796 (2007)
14. Farb, B., Margalit, D.: *A Primer on Mapping Class Groups*, vol. 49 of Princeton Math. Series, Princeton Univ. Press, Princeton (2011)
15. Gasper, G., Rahman, M.: *Basic hypergeometric series*, vol. 96 of Encyclopedia of Mathematics and Its Applications, 2nd edition, Cambridge Univ. Press, Cambridge (2004)
16. Hikami, K.: DAHA and skein algebra of surfaces: double-torus knots. *Lett. Math. Phys.* **109**, 2305–2358 (2019)
17. Hikami, K.: Note on character varieties and cluster algebras. *SIGMA* **15**(003), 32 (2019)
18. Hikami, K.: Work in progress
19. Koornwinder, T.H.: The relationship between Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. *SIGMA* **3**(063), 15 (2007)
20. Koornwinder, T.H.: Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case II. The spherical subalgebra. *SIGMA* **4**(052), 17 (2008)
21. Macdonald, I.G.: *Affine Hecke Algebras and Orthogonal Polynomials*. Cambridge Univ. Press, Cambridge (2003)
22. Morton, H., Samuelson, P.: DAHAs and skein theory. *Commun. Math. Phys.* **385**, 1655–1693 (2021)
23. Noumi, M., Stokman, J.V.: Askey–Wilson polynomials: an affine Hecke algebraic approach. In: Álvarez-Nodarse, R., Marcellán, F., van Assche, W. (eds.) *Laredo Lectures on Orthogonal Polynomials and Special Functions*, pp. 111–144. Nova Science Pub, New York (2004). [arXiv:math/0001033](https://arxiv.org/abs/math/0001033) [math.QA]
24. Oblomkov, A.: Double affine Hecke algebras of rank 1 and affine cubic surfaces. *IMRN* **2004**, 877–912 (2004)
25. Terwilliger, P.: The universal Askey–Wilson algebra and DAHA of type (C_1^\vee, C_1) . *SIGMA* **9**, 04740 (2013)
26. Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. *Israel J. Math.* **45**, 157–174 (1983)
27. Birman, J.S., Wajnryb, B.: Errata: presentations of the mapping class group. *Isr. J. Math.* **88**, 425–427 (1994)
28. Zhedanov, A.S.: “Hidden symmetry” of Askey–Wilson polynomials. *Theor. Math. Phys.* **89**, 1146–1157 (1991)