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Abstract
We propose a generalization of the double affine Hecke algebra of type-C∨C1 at
specific parameters by introducing a “Heegaard dual” of the Hecke operators. Shown
is a relationship with the skein algebra on double torus. We give automorphisms of
the algebra associated with the Dehn twists on the double torus.
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1 Introduction

The double affine Hecke algebra (DAHA) was introduced by Cherednik for studies
on the Knizhnik–Zamolodchikov equation and its applications to orthogonal symmet-
ric polynomials via the Dunkl–Cherednik operators [8]. It is a fundamental modern
tool in mathematics and physics. One of applications of DAHA is the skein algebra,
which receives renewed interests from a viewpoint of the quantization of the character
varieties. Although, the DAHA is so far only applicable for the skein algebra on the
once-punctured torus �1,1 and the 4-punctured sphere �0,4. The former is the DAHA
of type-A1, and the latter is of type-C∨C1 [5, 16, 22, 24]. The superpolynomials for
links on �1,1 and �0,4 were constructed by use of the automorphism of DAHA [9,
10].

A generalization of DAHA for the skein algebra on higher-genus surface was initi-
ated in [2, 3]. Constructed are q-difference operators for generators of the skein algebra
on �2,0 as a Z3 generalization of the DAHA of type-A1. Though the Iwahori–Hecke
algebraic structure seems to be missing, shown was that it is isomorphic to the skein
algebra on �2,0 [12].
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Another representation of the skein algebra on �2,0 was given in our previous
paper [16]. Combining the DAHAs of type-A1 and C∨C1, we constructed the q-
difference operators for generators of the skein algebra [2, 3].Using the automorphisms
of A1 DAHA, we computed the DAHA polynomial for double twist knots, and
observed a relationship with the colored Jones polynomials. The present paper relies
on [16], but we rather aim to generalize the C∨C1 DAHA at specific parameters by
introducing “Heegaard dual” operators of C∨C1 DAHA. Thus our generalization is
different from [13] where the generalized DAHAwas associated with a 2-dimensional
crystallographic group.

This paper is organized as follows. In Sect. 2, we recall the skein algebra on surface
and DAHA.We review an isomorphism between the skein algebra on the 4-punctured
sphere and DAHA of type-C∨C1. In Sect. 3, we pay attention to C∨C1 DAHA at t�.
By introducing Heegaard dual operators, we propose a generalized DAHA. Using the
automorphisms we study a relationship with the skein algebra on �2,0.

Throughout this article we use

ch(x) = x + x−1, sh(x) = x − x−1. (1.1)

2 Preliminaries on DAHA of C∨C1-type and skein algebra

2.1 DAHA of C∨C1-type

We recall the double affine Hecke algebra Hq,t of type-C∨C1 with 4 parameters
t = (t0, t1, t2, t3) [23] (see also [8, 21]). The DAHA Hq,t is generated by T±1

0 , T±1
1 ,

(T∨
0 )±1, and (T∨

1 )±1 satisfying

T0 + t0 − t−1
0 = T−1

0 , T1 + t1 − t−1
1 = T−1

1 ,

T∨
0 + t2 − t−1

2 = (T∨
0

)−1
, T∨

1 + t3 − t−1
3 = (T∨

1

)−1
,

(2.1)

and
T∨
1 T1T0T

∨
0 = q− 1

2 . (2.2)

Here and hereafter we use

X = (T∨
1 T1
)−1 = q

1
2 T0T∨

0 , (2.3)

Y = T1T0. (2.4)

The spherical DAHA is defined by

SHq,t = e Hq,t e, (2.5)

where the idempotent e is

e = 1

t1 + t−1
1

(t1 + T1) . (2.6)
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The polynomial representation is given as [23]

T0 �→ t0
−1 sð − q−1

(
t0−1 − t0

)
x2 + q− 1

2
(
t2−1 − t2

)
x

1 − q−1x2
(1 − sð) ,

T1 �→ t1
−1s +

(
t1−1 − t1

)+ (t3−1 − t3
)
x

x2 − 1
(s − 1) ,

T∨
0 �→ q− 1

2 T0−1x,

T∨
1 �→ x−1T1−1.

(2.7)

Here we mean

(s f ) (x) = f (x−1), (ð f ) (x) = f (q x). (2.8)

Then the idempotent (2.6) is a map to the symmetric Laurent polynomials, e :
C[x±1] → C[x + x−1]. The Askey–Wilson operator is given from (2.4) as

ch(Y)|sym �→ W (x; t) (ð − 1) + W (x−1; t)
(
ð

−1 − 1
)

+ t0t1 + (t0 t1)
−1 , (2.9)

where sym denotes an action on the symmetric Laurent polynomials, and

W (x; t) = t0 t1

(
1 − 1

t1t3
x
) (

1 + t3
t1
x
) (

1 − q
1
2 1
t0t2

x
) (

1 + q
1
2 t2
t0
x
)

(
1 − x2

) (
1 − q x2

) . (2.10)

The eigen-polynomial of (2.9) is the Askey–Wilson polynomial Pm(x; q, t),

Pm(x; q, t) = (ab, ac, ad; q)m

am(abcdqm−1; q)m
4φ3

[
q−m, qm−1abcd, ax, ax−1

ab, ac, ad
; q, q

]
,

(2.11)
satisfying (

Y + Y−1
)
Pm(x; q, t) = ch

(
t0t1q

−m) Pm(x; q, t), (2.12)

where

a = 1

t1t3
, b = − t3

t1
, c = q

1
2

t0t2
, d = −q

1
2 t2
t0

.

See [4, 15] for properties of the Askey–Wilson polynomials.
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Fig. 1 Simple closed curves on
the 4-punctured sphere �0,4

2.2 Skein algebra on 60,4

The skein algebra SkA(�) on surface � is generated by isotopy classes of framed
links in � × [0, 1] satisfying the skein relation

= A + A−1 , (2.13)

= −A2 − A−2.

A multiplication xy of links x and y means that x is vertically above y,

xy = x
y

When two simple closed curves x and y on � intersect exactly once, we have

1

A±2 − A∓2

(
A±1xy − A∓1yx

)
= D∓1

x (y), (2.14)

where Dx denotes the left Dehn twist along x. It is noted that

Dy(x) = D−1
x (y). (2.15)

A finite set of Dehn twists along non-separating simple closed curves generates the
mapping class group Mod(�g,0) of a surface �g,0. See, e.g., [6, 14].

In the case of the 4-punctured sphere �0,4, the skein algebra is generated by x, y,
and bi in Fig. 1. It is known that the type-C∨C1 DAHA is isomorphic to the skein
algebra on the 4-punctured sphere [5, 16, 24]. See also [19, 20, 25, 28] from a point of
view of the algebraic structure of the Askey–Wilson polynomials. The Askey–Wilson
operator ch Y and ch X respectively corresponds to the curves y and x, while the 4
parameters (t0, t1, t2, t3) denote the boundary curves (b1,b3,b2,b4). See [16] for
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Fig. 2 Simple closed curves on
the double torus �2,0

detail. In addition, the generators of the SL(2;Z) action [8] on Hq,t

σR = ( 1 1
0 1

) :
⎛

⎝
T0
T1
X

⎞

⎠ �→
⎛

⎝
q− 1

2 XT−1
0

T1
X

⎞

⎠ , (2.16)

σL = ( 1 0
1 1

) :
⎛

⎝
T0
T1
X

⎞

⎠ �→
⎛

⎝
T0
T1

q
1
2 T0X−1T−1

1

⎞

⎠ , (2.17)

can be interpreted as the half Dehn twists along x and y respectively.

3 DAHA on double torus and skein algebra

3.1 Skein algebra andmapping class group on 62,0

The skein algebra SkA(�2,0) is generated by k1 = x0, k2 = y0, k3 = y, k4 =
y1, and k5 = x1, where we label each simple closed curve on �2,0 as in Fig. 2
following [16]. The Humphries generators of the mapping class group are Di = Dki

for 1 ≤ i ≤ 5, and the mapping class group is (see e.g. [6, 26, 27])

Mod(�2,0) =
〈

D1, . . . ,D5

∣
∣∣∣∣∣
∣∣

Di,i+1,i = Di+1,i,i+1 for 1 ≤ i ≤ 4
Di, j = D j,i for |i − j | > 1

(
D1,2,3,4,5

)6 = 1
(
D5,4,3,2,1,1,2,3,4,5

)2 = 1

〉

, (3.1)

wherewemeanDi,..., j,k = Di . . .D jDk .We note that the 2- and 3-chain relations [14]
respectively give

(
D1,2

)6 = Dx, (3.2)
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Fig. 3 Several simple closed curves on �2,0 generated by the Dehn twists D j from ki

(
D1,2,3

)4 = D2
5 . (3.3)

See Fig. 3 for several simple closed curves generated by the Dehn twistsDi . We mean

for simplicity ki,± j,...,±k =
(
D±1

k . . .D±1
j

)
(ki ). These were used in [1] in studies

of the character variety.

3.2 q-difference operators

In [16] studied was the map

A : Sk
A=q− 1

4
(�2,0) → EndC

(
q

1
4 , x0, x1

) [
x + x−1

]
. (3.4)

Therein given are for the curves in Fig. 2 as

A(xb) = ch(xb), (3.5)

A(yb) = i q− 1
4G0(xb, x), (3.6)

A(x) = ch(x), (3.7)

A(y) =
∑

ε=±
ω(xε)

{

−x−ε

(

x0 + q
1
2 xε

x0

)(

x1 + q
1
2 xε

x1

)

ð
ε + q

1
2 ch(x0) ch(x1)

}

,

(3.8)

A(ỹ) =
∑

ε=±
ω(xε)

{
K0(x0, x

ε) K0(x1, x
ε)ðε − G0(x0, x)G0(x1, x)

}
, (3.9)

where b = 0, 1. Here we have used

ω(x) =
x
(
1 + q

1
2 x
)

q
1
2
(
1 − x2

) (
1 − q

1
2 x
) , (3.10)

and the q-difference operators Kn(xb, x) and Gn(xb, x) for n ∈ Z are defined by

Kn(xb, x) = −x−n
b

1 − x2b
ðb +

xnb

(
q

1
2 x + x2b

) (
q

3
2 x + x2b

)

q x
(
1 − x2b

) ð
−1
b , (3.11)
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Gn(xb, x) = −x−n
b

1 − x2b
ðb +

xnb

(
q

1
2 x + x2b

) (
q

1
2 + x x2b

)

q
1
2 x
(
1 − x2b

) ð
−1
b , (3.12)

where the q-shift operators ðb for b = 0, 1 are

(ð0 f ) (x, x0, x1) = f (x, q
1
2 x0, x1), (ð1 f ) (x, x0, x1) = f (x, x0, q

1
2 x1).
(3.13)

Note that theq-difference operators K0(xb, x), K0(xb, x−1), andG0(xb, x) are respec-
tively related to the raising operator, lowering operator, and the eigen-operator for the
type-A1 Macdonald polynomials a.k.a. the Rogers ultra-spherical polynomials [16].
We see that they fulfill the following;

Gn(xb, x
−1) = Gn(xb, x), (3.14)

Kn(xb, x)Gn(xb, q x) = Gn(xb, x) Kn(xb, x), (3.15)

Kn(xb, x
−1) Kn(xb, q

−1x) − [Gn(xb, x)]
2 = −q

n
2 x−1

(
q

1
2 − x

)2
, (3.16)

q
1
2 x (1 − x2)

(
Gn(xb, x)Gn(xb, q

−1x) − Kn(xb, x) Kn(xb, x
−1)
)

+ (1 − q) x2
(
Kn(xb, x) − Kn(xb, x

−1)
)
Gn(xb, q

−1x)

= q
n
2

(
q

1
2 − x

) (
1 − q

1
2 x
) (

1 − x2
) q − x2b
1 − x2b

, (3.17)

(
Kn+1(xb, x−1)

Gn+1(xb, q−1x)

)
= 1

x−q
1
2

⎛

⎜
⎝
x ch(xb) − q

1
2 +x x2b
xb

x+q
1
2 x2b

xb
−q

1
2 ch(xb)

⎞

⎟
⎠

(
Kn(xb, x−1)

Gn(xb, q−1x)

)
.

(3.18)

We note that

A(k2,1n ) = i q− n+1
4 Gn(x0, x), (3.19)

which follows from the skein algebra

k1 k2,1n = Ak2,1n−1 + A−1 k2,1n+1 , k2,1n =

⎧
⎪⎪⎨

⎪⎪⎩

k2,1,...,1︸︷︷︸
n

, for n ≥ 0,

k2,−1,...,−1︸ ︷︷ ︸
|n|

, for n ≤ 0.
(3.20)

3.3 Specialization of type-C∨C1 DAHA

Hereafter we fix the parameters of the C∨C1 DAHA as t = t�,

t� =
(
i x0, i q

− 1
2 x1, i x0, i x1

)
, (3.21)
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to identify the curve b1 (resp. b3) with b2 (resp. b4) in Fig. 1. At t� (3.21) the Hecke
operators (2.7) are read as

T0 �→ i
x

q
1
2 − x

(

−q
1
2 + x x20
x x0

sð + x0 + x −1
0

)

,

T1 �→ i

(
1 + q

1
2 x

q
1
2
(
1 − x2

)
q

1
2 x + x21
x1

(s − 1) − q
1
2 x−1

1

)

,

T∨
0 �→ q− 1

2 T0−1x,

T∨
1 �→ x−1T1−1,

(3.22)

which satisfy the Hecke relations

T0 − T−1
0 = −i ch (x0) , T∨

0 − (T∨
0

)−1 = −i ch(x0),

T1 − T−1
1 = −i ch

(
q− 1

2 x1
)

, T∨
1 − (T∨

1

)−1 = −i ch(x1).
(3.23)

The idempotent (2.6) becomes

e �→ (1 + s)

(
q

1
2 + x

) (
q

1
2 + x x21

)

(
1 − x2

) (
q − x21

) . (3.24)

Note that

T1 e = −i q
1
2 x−1

1 e = e T1, T−1
1 e = i q− 1

2 x1 = e T−1
1 . (3.25)

and
XT1

(
1 + q

1
2 X
)
e = q

1
2

(
1 + q

1
2 X
)
T−1
1 e. (3.26)

TheDAHAat t� (3.21)was employed so that theAskey–Wilson operator gives (3.8)
as

A(y) e = ch(T1T0) e. (3.27)

Namely the Askey–Wilson polynomial (2.11) is the eigen-polynomial of (3.8),

A(y) Pm(x; q, t�) = − ch

(
qm+ 1

2

x0x1

)

Pm(x; q, t�).

It should be remarked that the operator A(ỹ), commuting with the Askey–Wilson
operator as A(y)A(ỹ) = A(ỹ)A(y), satisfies [18]
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A(ỹ) Pm(x; q, t�) =
(
qm+2 − x20 x

2
1

)2

qm+ 5
2
(
1 − x20

) (
1 − x21

) Pm+1(x; q, t�)

−
(
qm+1 − x20

)2 + (qm+1 − x21
)2

qm+ 3
2
(
1 − x20

) (
1 − x21

) Pm(x; q, t�) + (1 − qm)2

qm+ 1
2
(
1 − x20

) (
1 − x21

) Pm−1(x; q, t�).

3.4 Heegaard dual of Hecke operators

Our purpose is to rewrite the map (3.4) in terms of the Iwahori–Hecke operators. The
motivation is based on that S3 has a Heegaard splitting S3 = H1 ∪�2,0 H2, where Hi

is a 2-handlebody and �2,0 = ∂Hi . In gluing, the meridians xb on H1 are mapped
to the longitudes yb on H2, and x and y are to x and ỹ respectively. The fact that
y corresponds to the Askey–Wilson operator (3.27) suggests that there may exist a
“Heegaard dual” U0 and U1 of the Hecke operators T0 and T1 (3.22) for ỹ.

Definition 3.1 We define the representation of U0 and U1 by

U0 �→ q− 1
4 x

q
1
2 − x

K0(x0, x
−1) sð − q− 1

4 x

q
1
2 − x

G0(x0, x), (3.28)

U1 �→ −
x
(
1 + q

1
2 x
)

q
1
4
(
1 − x2

) K0(x1, x) (s − 1) + q
1
4

1 − q
1
2 x

(
G0(x1, x) − q

1
2 x K0(x1, x)

)
,

(3.29)

U∨
0 �→ q− 1

2U−1
0 x, (3.30)

U∨
1 �→ x−1U−1

1 , (3.31)

where Kn(xb, x) and Gn(xb, x) are given in (3.11) and (3.12).

The invertibilities of U0 and U1 can be checked using (3.14)–(3.17) by

U−1
0 �→ q− 1

4 x

q
1
2 − x

K0(x0, x
−1) s ð − q

1
4

q
1
2 − x

G0(x0, x), (3.32)

U−1
1 �→

{

(s + 1)
q

1
2 + x

q
1
4 (1 − x2)

K0(x1, x
−1) + q

1
4

q
1
2 − x

(
x G0(x1, q

−1x) − q
1
2 K0(x1, x

−1)
)
}

× 1 − x21
q − x21

. (3.33)

By construction, we have an analogue of (2.2)

U∨
1 U1U0U∨

0 = q− 1
2 . (3.34)

Moreover we get the followings.
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Lemma 3.2 (1)

U0T0U∨
0 = −q

1
2 T0, (3.35)

(2)

U1T
−1
1 U∨

1 T1 �→ −q −
(1 − q)

(
1 + q

1
2 x
) (

q
1
2 x + x21

)

(
1 − x2

) (
q − x21

) (s − 1) . (3.36)

The representations in Definition 3.1 and the inverses show that the Heegaard dual
operators satisfy the Hecke-type relations. We have for U0 and U∨

0

U0 − U −1
0 = q− 1

4 G0(x0, x),

U∨
0 − (U∨

0

)−1 = q− 1
4 G0(x0, x).

(3.37)

For U1 and U∨
1 , we have preferable expressions with the symmetrizer e (3.24)

(
q− 1

2U1 − q
1
2U−1

1

)
e = q− 1

4G0(x1, x) e,
(
U∨
1 − (U∨

1

)−1
)
e = q− 1

4G0(x1, x) e,
(3.38)

which can be seen by use of an analogous identity to (3.26),

XU1

(
1 + q

1
2 X
)
e = q

1
2

(
1 + q

1
2 X
)
U−1
1 e. (3.39)

Furthermore we can prove

A(ỹ) e = ch (U1U0) e. (3.40)

In summary, all the generators ki for the skein algebra Sk
A=q− 1

4
(�2,0) given in (3.5)–

(3.9) can be written as follows.

Proposition 3.3

A(k1) = A(x0) = ch (i T0) = ch
(
i T∨

0

)
,

A(k2) = A(y0) = ch (iU0) = ch
(
iU∨

0

)
,

A(k3) e = A(y) e = ch(T1T0) e = ch(T0T1) e,

A(k4) e = A(y1) e = ch
(
i q− 1

2U1

)
e = ch

(
iU∨

1

)
e,

A(k5) e = A(x1) e = ch
(
i q− 1

2 T1
)
e = ch

(
i T∨

1

)
e,

A(k6) e = A(ỹ) e = ch (U1U0) e.

(3.41)
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We can thus regard the map (3.4) as

A : Sk
A=q− 1

4
(�2,0) → SHgen

q,t� (3.42)

where SHgen
q,t� is a spherical subalgebra of our generalized DAHA,

Hgen
q,t� =

〈

T±1
0 , T±1

1 ,X±1,U±1
0 ,U±1

1

∣∣∣∣
∣∣

the Hecke relations (3.23), (3.37), (3.38)
T0U

−1
0 XT−1

0 U0 = −q
U1T

−1
1 X−1U−1

1 T1 e = −q e

〉

.

(3.43)
The conditions are from Lemma 3.2.

3.5 Automorphisms

By definition of Hgen
q,t� (3.43), we find the automorphisms Ti = Tki as follows.

Proposition 3.4 We have the automorphisms of Hgen
q,t� (3.43);

T1 = Tx0 :

⎛

⎜⎜⎜
⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟⎟
⎟
⎠

�→

⎛

⎜⎜⎜
⎜
⎝

T0
T1
X

−i q
1
4U0T

−1
0

U1

⎞

⎟⎟⎟
⎟
⎠

, (3.44)

T2 = Ty0 :

⎛

⎜⎜
⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟
⎟⎟
⎠

�→

⎛

⎜⎜
⎜⎜
⎝

i q− 1
4U0T0
T1
X
U0
U1

⎞

⎟⎟
⎟⎟
⎠

, (3.45)

T3 = Ty :

⎛

⎜⎜⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟⎟⎟
⎠

�→

⎛

⎜⎜⎜⎜⎜
⎝

T0
T1

(T0T1)−1 XT1T0
q− 1

4 (T0T1)−1 U0

q
1
4U1T0T1

⎞

⎟⎟⎟⎟⎟
⎠

, (3.46)

T4 = Ty1 :

⎛

⎜⎜
⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟
⎟⎟
⎠

�→

⎛

⎜⎜
⎜⎜
⎝

T0
i q− 1

4 (U1X)−1 T1
X
U0
U1

⎞

⎟⎟
⎟⎟
⎠

, (3.47)

T5 = Tx1 :

⎛

⎜
⎜⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟
⎟⎟⎟
⎠

�→

⎛

⎜
⎜⎜⎜
⎝

T0
T1
X
U0

−i q
1
4U1XT1

⎞

⎟
⎟⎟⎟
⎠

. (3.48)
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We note that the mapT3 (3.46) originates from the Dehn twist σ−2
L on �0,4 (2.17).

Our claim is as follows.

Proposition 3.5 We have a commutative diagram;

Sk
A=q− 1

4
(�2,0) Sk

A=q− 1
4
(�2,0)

SHgen
q,t� SHgen

q,t�

Di

A A

Ti

Weshall check the relations in (3.1). From the definitions (3.44)–(3.48) it is straight-
forward to see case-by-case that both the braid relations and the commutativities hold;

Ti,i+1,i = Ti+1,i,i+1, for 1 ≤ i ≤ 4, (3.49)

Ti, j = T j,i , for |i − j | > 1, (3.50)

where we mean Ti,..., j,k = Ti . . .T jTk . We can also find that

T1,2,3,4,5 :

⎛

⎜⎜
⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟
⎟⎟
⎠

�→

⎛

⎜⎜
⎜⎜
⎝

U0

i q− 1
2U−1

0 T−1
1 X−1U−1

1 T1
T−1
1 U−1

0 XT1U0

−i T−1
1 T−1

0
T1

⎞

⎟⎟
⎟⎟
⎠

,

T5,4,3,2,1 :

⎛

⎜⎜⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟⎟⎟
⎠

�→

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

i qT−1
1 U1XT1U0

−q− 1
2 X−1

(
T−1
1 U1XT1

)−1

(
T−1
1 U1XT1

)
XT−1

0

(
T−1
1 U1XT1

)−1
T0

q− 1
2

(
T−1
1 U1XT1

)
XT−1

0

(
T−1
1 U1XT1

)−1

iU1XT1T0X−1
(
T−1
1 U1XT1

)−1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

,

which result in

(
T1,2,3,4,5

)6 = (T5,4,3,2,1,1,2,3,4,5
)2 :

⎛

⎜⎜
⎜⎜
⎝

T0
T1
X
U0

U1

⎞

⎟⎟
⎟⎟
⎠

�→
(
T−1
1 U1XT1U

−1
1

)

⎛

⎜⎜
⎜⎜
⎝

T0
T1
X
U0

U1

⎞

⎟⎟
⎟⎟
⎠

(
T−1
1 U1XT1U

−1
1

)−1
.

(3.51)
As seen from (3.36), the operator U1T

−1
1 X−1U−1

1 T1 acts as a scalar on the symmetric

Laurent polynomials, and the maps (3.51) are identities on C(q
1
4 , x0, x1)[x + x−1].
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It should be noted that, for the 3-chain relation (3.3), we have

(
T1,2,3

)4 :

⎛

⎜⎜⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟⎟⎟
⎠

�→

⎛

⎜⎜⎜⎜
⎝

T−1
1 T0T1
T1

T−1
1 XT1

T−1
1 U0T1
U1XT21

⎞

⎟⎟⎟⎟
⎠

, (T5)
2 :

⎛

⎜⎜⎜⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟⎟⎟
⎠

�→

⎛

⎜⎜⎜⎜
⎝

T0
T1
X
U0

−q
1
2U1XT1XT1

⎞

⎟⎟⎟⎟
⎠

.

Both actions on the generators (3.41) are same.
We explicitly give themap for the curves in Fig. 3.We have checked the consistency

with the skein algebra, e.g. (2.14), of the curves.

A(k1,2) = T2(A(k1)) = ch
(
−q− 1

4 U0T0
)

= ch
(
q

1
4 X−1U0T0

)

= iG−1(x0, x),

A(k2,3) e = T3(A(k2)) e = ch
(
i q− 1

4 (T0T1)−1U0

)
e = ch

(
−i q

1
4 (T1T0)−1X−1U0

)
e

= i
∑

ε=±
ω(xε)

(

−K1(x0, x
ε)

x21 + q
1
2 xε

x1
ð

ε + G1(x0, x) ch(x1)

)

e,

A(k3,4) e = T −1
3 (A(k4)) e = ch

(
i q− 3

4 U1(T0T1)−1
)
e = ch

(
−i q− 1

4 U1X(T1T0)−1
)
e

= i
∑

ε=±
ω(xε)

(

− x−εx20 + q
1
2

x0
K−1(x1, x

ε) ðε + q
1
2 ch(x0)G−1(x1, x)

)

e,

A(k4,5) e = T5(A(k4)) e = ch
(
q− 1

4 U1XT1
)
e = ch

(
−q

1
4 U1XT1X

)
e

= i q− 1
2 G1(x1, x) e,

A(k5,6) e = T −1
5 (A(k6)) e = ch

(
i q− 1

4 U1(XT1)−1U0

)
e

= q
1
4
∑

ε=±
ω(xε)

(
K0(x0, x

ε) K−1(x1, x
ε) ðε − G0(x0, x)G−1(x1, x)

)
e,

A(k6,1) e = T1 (A(k6)) e = ch
(
−i q

1
4 U1U0T

−1
0

)
e

= q− 1
4
∑

ε=±
ω(xε)

(
K1(x0, x

ε) K0(x1, x
ε) ðε − G1(x0, x)G0(x1, x)

)
e,

A(k1,2,3) e = T3
(A(k1,2)

)
e = ch

(
q

1
2 T−1

1 X−1U0

)
e = ch

(
(XT1T0)−1U0T0

)
e

= i q
1
4
∑

ε=±
ω(xε)

(

−K0(x0, x
ε)

x21 + q
1
2 xε

x1
ð

ε + G0(x0, x) ch(x1)

)

e,

A(k5,4,3) e =
(
T −1
5 T3

)
(A(k4)) e = ch(U1T0) e = ch

(
−q

1
2 U1T

−1
1 X−1T0T1

)
e

= i q
1
4
∑

ε=±
ω(xε)

(

− x20 + q
1
2 xε

x0
K0(x1, x

ε) ðε + ch(x0)G0(x1, x)

)

e,

A(k2,3,4) e = T −1
2

(A(k3,4)
)
e = ch

(
−q−1U1(T0T1)−1U0

)
e = ch

(
−q

1
2 U1U0(T1T0)−1

)
e

=
∑

ε=±
ω(xε)

(
K1(x0, x

ε) K−1(x1, x
ε) ðε − G1(x0, x)G−1(x1, x)

)
e,
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Fig. 4 A rational tangle for
2 + 1

2 which corresponds to the
figure-eight knot 41

A(k3,4,5) e = T5
(A(k3,4)

)
e = ch

(
q− 1

2 U1XT
−1
0

)
e = ch

(
−U1XT1X(T1T0)−1

)
e

= i q
1
4
∑

ε=±
ω(xε)

(

−q− 1
2 x−εx20 + 1

x0
K0(x1, x

ε) ðε + ch(x0)G0(x1, x)

)

e,

A(k3,2,1) e = (T1T2) (A(k3)) e = ch(T1U0) e = ch(U0T1) e

= i q
1
4
∑

ε=±
ω(xε)

(

−K0(x0, x
ε)

q− 1
2 x−εx21 + 1

x1
ð

ε + G0(x0, x) ch(x1)

)

e.

Herewe avoid to useT4 due to that T1, used for the idempotent e, is no longer invariant.

3.6 Rational tangles

In [11], Conway introduced tangle operations, and showed that continued fraction
can be assigned to a certain family of knots and links. In view from links on the
double torus �2,0, the tangle operations correspond to the Dehn twists along x and y
acting on the curve ỹ. We can thus construct the rational tangle ỹr associated with
the continued fraction r with even integers. The automorphism Ty for the Dehn twist
along y is (3.46), and Tx is given from the 2-chain relation (3.2) as

Tx :

⎛

⎜⎜⎜
⎜
⎝

T0
T1
X
U0
U1

⎞

⎟⎟⎟
⎟
⎠

�→

⎛

⎜⎜⎜
⎜
⎝

XT0X−1

T1
X

XU0X−1

U1

⎞

⎟⎟⎟
⎟
⎠

, (3.52)

which is consistent with the Dehn twist σ 2
R on �0,4 (2.16).

We showa fewexamples. Thefigure-eight knot 41 is a rational tanglewith 5
2 = 2+ 1

2
as in Fig. 4. We have

ỹ5/2 =
(
DyD

−1
x

)
(ỹ), (3.53)

which gives

A(ỹ5/2) = ch
(
U1T0T1

(
T∨
0 T1T0

)−1 T−1
0 U0T1

(
T∨
0 T1T0

))
. (3.54)

The knot 52 is 7
2 = 4 + 1

−2 , and

ỹ7/2 =
(
D−1
y D−2

x

)
(ỹ), (3.55)

which gives
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A(ỹ7/2) = ch

(
U1T

−1
1 T−1

0

(
T1T0T∨

1 T
−1
0

)
T1T0T∨

1 T1U0

(
T1T0T∨

1 T
−1
0

)−2
)

. (3.56)

In both cases, theDAHApolynomialsA(kr )(1) are too involved to give here.Nonethe-
less Mathematica shows that the constant terms ð0 ofA(ỹr ) reduce to

Const(A(ỹ5/2))(1)
∣∣
x0=x1=−x=q

1
2

= q−2 − q−1 + 1 − q + q2

(1 − q)(1 − q2)
,

Const(A(ỹ7/2))(1)
∣∣
x0=x1=−x=q

1
2

= q(1 − q + 2q2 − q3 + q4 − q5)

(1 − q)(1 − q2)
.

(3.57)

These computations support a relationship with the Jones polynomial as observed
in [16].

4 Concluding remarks

We have proposed a generalization of the type-C∨C1 DAHA at t� by introducing the
Heegaard dual operators. We hope to report on their roles on the (non-symmetric)
Askey–Wilson polynomials at t�, and also on the generalization to the higher-rank
skein algebras. It would be promising to incorporate results from the cluster algebra [7,
17].

Acknowledgements The author would like to thank Hitoshi Murakami for communications on rational
tangles.

Funding The work of KH is supported in part by JSPS KAKENHI Grant Numbers JP22H01117,
JP20K03601, JP20K03931.

Data availibility The Mathematica code for (3.57) is attached as supplementary material.

Declarations

Conflict of interest The author has no Conflict of interest to declare that are relevant to the content of this
article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arthamonov, S.: Classical limit of genus two DAHA, preprint (2023), arXiv:2309.01011 [math.QA]
2. Arthamonov, S., Shakirov, S.: Genus two generalization of A1 spherical DAHA. Select. Math. 25(17),

29 (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2309.01011


  102 Page 16 of 16 K. Hikami

3. Arthamonov, S., Shakirov, S.: Refined Chern–Simons theory in genus two. J. Knot Theory Ramif. 29,
2050044 (2020)

4. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi
polynomials. Mem. Amer. Math. Soc. 54, 1–55 (1985)

5. Berest, Yu., Samuelson, P.: Affine cubic surfaces and character varieties of knots. J. Algebr. 500,
644–690 (2018)

6. Birman, J.S.: Mapping class groups of surfaces. In: Birman, J.S., Libgober, A. (eds.) Braids. Proceed-
ings of the AMS-IMS-SIAM Joint Summer Research Conference on Artin’s Braid Group, pp. 13–43.
AMS, Providence (1988)

7. Chekhov, L.O., Shapiro, M.: Symplectic groupoid and cluster algebras, preprint (2023).
arXiv:2304.05580 [math.QA]

8. Cherednik, I.: Double Affine Hecke Algebras, vol. 319 of London Math. Soc. Lecture Note Series,
Cambridge Univ. Press, Cambridge (2005)

9. Cherednik, I.: Jones polynomials of torus knots via DAHA. Int. Math. Res. Not. 2013, 5366–5425
(2013)

10. Cherednik, I.: DAHA-Jones polynomials of torus knots. Select. Math. (N.S.) 22, 1013–1053 (2016)
11. Conway, J.: An enumeration of knots and links, and some of their algebraic properties. In: Leech, J.

(ed.) Computational Problems in Abstract Algebra, pp. 329–358. Oxford, Pergamon (1970)
12. Cooke, J., Samuelson, P.: On the genus two skein algebra. J. Lond. Math. Soc. 104, 2260–2298 (2021)
13. Etingof, P., Oblomkov, A., Rains, E.: Generalized double affine Hecke algebras of rank 1 and quantized

Del Pezzo surfaces. Adv. Math. 212, 749–796 (2007)
14. Farb, B.,Margalit, D.: A Primer onMapping Class Groups, vol. 49 of PrincetonMath. Series, Princeton

Univ. Press, Princeton (2011)
15. Gasper, G., Rahman, M.: Basic hypergeometric series, vol. 96 of Encyclopedia of Mathematics and

Its Applications, 2nd edition, Cambridge Univ. Press, Cambridge (2004)
16. Hikami, K.: DAHA and skein algebra of surfaces: double-torus knots. Lett. Math. Phys. 109, 2305–

2358 (2019)
17. Hikami, K.: Note on character varieties and cluster algebras. SIGMA 15(003), 32 (2019)
18. Hikami, K.: Work in progress
19. Koornwinder, T.H.: The relationship between Zhedanov’s algebra AW(3) and the double affine Hecke

algebra in the rank one case. SIGMA 3(063), 15 (2007)
20. Koornwinder, T.H.: Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one

case II. The spherical subalgebra. SIGMA 4(052), 17 (2008)
21. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Univ. Press, Cam-

bridge (2003)
22. Morton, H., Samuelson, P.: DAHAs and skein theory. Commun. Math. Phys. 385, 1655–1693 (2021)
23. Noumi, M., Stokman, J.V.: Askey-Wilson polynomials: an affine Hecke algebraic approach. In:

Álvarez-Nodarse, R., Marcellán, F., van Assche, W. (eds.) Laredo Lectures on Orthogonal Polyno-
mials and Special Functions, pp. 111–144. Nova Science Pub, New York (2004). arXiv:math/0001033
[math.QA]

24. Oblomkov, A.: Double affine Hecke algebras of rank 1 and affine cubic surfaces. IMRN 2004, 877–912
(2004)

25. Terwilliger, P.: The universal Askey–Wilson algebra and DAHA of type (C∨
1 ,C1). SIGMA 9, 04740

(2013)
26. Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. Israel J. Math.

45, 157–174 (1983)
27. Birman, J.S., Wajnryb, B.: Errata: presentations of the mapping class group. Isr. J. Math. 88, 425–427

(1994)
28. Zhedanov, A.S.: “Hidden symmetry” of Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146–

1157 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2304.05580
http://arxiv.org/abs/math.QA/0001033

	Generalized double affine Hecke algebra for double torus
	Abstract
	1 Introduction
	2 Preliminaries on DAHA of C C1-type and skein algebra
	2.1 DAHA of C C1-type
	2.2 Skein algebra on Sigma0,4

	3 DAHA on double torus and skein algebra
	3.1 Skein algebra and mapping class group on Sigma 2,0
	3.2 q-difference operators
	3.3 Specialization of type-CC1 DAHA
	3.4 Heegaard dual of Hecke operators
	3.5 Automorphisms
	3.6 Rational tangles

	4 Concluding remarks
	Acknowledgements
	References


