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Abstract

We propose a generalization of the double affine Hecke algebra of type-C¥C; at
specific parameters by introducing a “Heegaard dual” of the Hecke operators. Shown
is a relationship with the skein algebra on double torus. We give automorphisms of
the algebra associated with the Dehn twists on the double torus.
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1 Introduction

The double affine Hecke algebra (DAHA) was introduced by Cherednik for studies
on the Knizhnik—Zamolodchikov equation and its applications to orthogonal symmet-
ric polynomials via the Dunkl-Cherednik operators [8]. It is a fundamental modern
tool in mathematics and physics. One of applications of DAHA is the skein algebra,
which receives renewed interests from a viewpoint of the quantization of the character
varieties. Although, the DAHA is so far only applicable for the skein algebra on the
once-punctured torus X 1 and the 4-punctured sphere X 4. The former is the DAHA
of type-A1, and the latter is of type-CV C [5, 16, 22, 24]. The superpolynomials for
links on X1 1 and X¢ 4 were constructed by use of the automorphism of DAHA [9,
10].

A generalization of DAHA for the skein algebra on higher-genus surface was initi-
ated in [2, 3]. Constructed are g -difference operators for generators of the skein algebra
on X o as a Z3 generalization of the DAHA of type-A;. Though the Iwahori-Hecke
algebraic structure seems to be missing, shown was that it is isomorphic to the skein
algebra on X ¢ [12].
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Another representation of the skein algebra on X, was given in our previous
paper [16]. Combining the DAHAs of type-A; and CYC, we constructed the g-
difference operators for generators of the skein algebra [2, 3]. Using the automorphisms
of A1 DAHA, we computed the DAHA polynomial for double twist knots, and
observed a relationship with the colored Jones polynomials. The present paper relies
on [16], but we rather aim to generalize the C¥C; DAHA at specific parameters by
introducing “Heegaard dual” operators of C¥C| DAHA. Thus our generalization is
different from [13] where the generalized DAHA was associated with a 2-dimensional
crystallographic group.

This paper is organized as follows. In Sect. 2, we recall the skein algebra on surface
and DAHA. We review an isomorphism between the skein algebra on the 4-punctured
sphere and DAHA of type-CV C;. In Sect. 3, we pay attention to C¥C; DAHA at t,.
By introducing Heegaard dual operators, we propose a generalized DAHA. Using the
automorphisms we study a relationship with the skein algebra on X o.

Throughout this article we use

ch(x) = x +x7 !, sh(x) =x —x~ L. (1.1)

2 Preliminaries on DAHA of C¥C;-type and skein algebra
2.1 DAHA of €V C;-type
We recall the double affine Hecke algebra H, ¢ of type-C¥C; with 4 parameters

t = (9. 11, 12, 13) [23] (see also [8, 21]). The DAHA H, ¢ is generated by T3, T{!,
(TgHE!, and (TY)*! satisfying

To+to—1," =T, ", Ti+n—6' =171, on
Wen-g'=m)7 Wasog'=m)T.
and |
T/ TiToTg =¢ 2. 2.2)
Here and hereafter we use
X=(TYT)) " = q2T,Ty, 2.3)
Y =TTp. 2.4
The spherical DAHA is defined by
SHq,t =e Hq,t e, 2.5)
where the idempotent e is
1
e = - tH+Ty). (2.6)

n+ny
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The polynomial representation is given as [23]

q! (to*1 - to)x2 +61_% (lzf1 — )

_1 X
To—t) SO — 1_q_1x2 (1-s0),
n-t—r =
Tlr—>t1_ls+(l l)j(3 ) s—1), 2.7)
x=—1
Ty — q_%To_lx,
T — x7 17 L
Here we mean
s )@ =f@xh, @ f) (x) = f(gx). (2.8)

Then the idempotent (2.6) is a map to the symmetric Laurent polynomials, e :
C[x*'] — C[x 4 x~']. The Askey—Wilson operator is given from (2.4) as

Ch(Y) gy > W(x; ) (@ — 1)+ W(x~'5 t) (6‘1 - 1) Fron + (o), (2.9)

where sym denotes an action on the symmetric Laurent polynomials, and

1 L 2] &
(=) (i) 0 -aiaen) (ratiy)

Wx;t) =1t

The eigen-polynomial of (2.9) is the Askey—Wilson polynomial Py, (x; g, t),

] _ (ab,ac,ad; q)n g™, q" abed, ax, ax"
Pn(x;q,t) = @ (abedg™ T q)m4¢3 ab. ac. ad 4.9 |,
(2.1D)
satisfying
(Y + Y*l) Pu(x:q.,t) = ch (tor1g™™") Pu(x: g, 1), (2.12)
where | :
1 t 2 2t
a=—, b=——3, c=q—, d=—q 2
nts n 0l2 fo

See [4, 15] for properties of the Askey—Wilson polynomials.
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Fig.1 Simple closed curves on Y
the 4-punctured sphere X 4 bl bg

2.2 Skein algebraon 2 4

The skein algebra Sk4(X) on surface X is generated by isotopy classes of framed
links in ¥ x [0, 1] satisfying the skein relation

X)) (o e
O =-A7— A2

A multiplication x y of links x and y means that x is vertically above y,

X
Y

Xy =

When two simple closed curves x and y on X intersect exactly once, we have

1
AFL_ 472 (Aﬂxy - A*lyX) =77 (). (2.14)
where 7 denotes the left Dehn twist along x. It is noted that

Dy (x) = 75 (). (2.15)

A finite set of Dehn twists along non-separating simple closed curves generates the
mapping class group Mod(XZ o) of a surface X, . See, e.g., [6, 14].

In the case of the 4-punctured sphere X 4, the skein algebra is generated by x, y,
and b; in Fig. 1. It is known that the type-C¥C; DAHA is isomorphic to the skein
algebra on the 4-punctured sphere [5, 16, 24]. See also [19, 20, 25, 28] from a point of
view of the algebraic structure of the Askey—Wilson polynomials. The Askey—Wilson
operator chY and ch X respectively corresponds to the curves y and x, while the 4
parameters (tg, 1, f2, t3) denote the boundary curves (by, bs, by, bs). See [16] for
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Fig.2 Simple closed curves on
the double torus %5 ¢

1 To g IXTy!
or=0{1):|Ti |~ T , (2.16)
X X
T() TO
or=>19): ||+~ 1 T , (2.17)
X q2Tox 1!

can be interpreted as the half Dehn twists along x and y respectively.

3 DAHA on double torus and skein algebra
3.1 Skein algebra and mapping class group on X

The skein algebra Sk4 (X2 0) is generated by k; = xo, ko = yo, k3 =y, kg4 =
v1, and ks = xj, where we label each simple closed curve on X; ¢ as in Fig. 2
following [16]. The Humphries generators of the mapping class group are 7; = %,
for 1 <i <5, and the mapping class group is (see e.g. [6, 26, 27])

Diiv1i = Divr,ii+1forl <i <4
Y, =Yjiforli —j|>1
Mod(220) ={ %1, ..., D5 (91 234 5)6 —1 s 3.1
o 2

(Z54321125345) =1

wherewemean %, jx = %; ... 9 Zx. We note that the 2- and 3-chain relations [14]
respectively give

(91,2)6 = Dx, (3.2)
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k k
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Fig.3 Several simple closed curves on X3 ¢ generated by the Dehn twists ; from k;

4
(@1,2,3) = 952. (3.3)
See Fig. 3 for several simple closed curves generated by the Dehn twists ;. We mean

of the character variety.

3.2 g-difference operators

In [16] studied was the map
1 -1
A:Sk _1(X30) > EndC <q4,xo,x1) [x +x ] . (3.4)
A:q 4

Therein given are for the curves in Fig. 2 as

A(xp) = ch(xp), 3.5)
Alyp) = iq 5 Golxp. x), (3.6)
A(x) = ch(x), 3.7
1. 1 e
Aly) = Za)(xf) {—xe (xo + °x ) <x1 + °x ) o€ +q% ch(xg) ch(x)) },
e=+ X0 X1
3.8)
AF) =Y o) {Kolxo, x) Ko(x1, x9) 3 — Go(xo, ) Go(x1, x)} (3.9)
€=+

where b = 0, 1. Here we have used
1
X (l —i—qix)
g2 (1—x2) (1 —q%x>’

and the g-difference operators K, (xp, x) and G, (xp, x) for n € Z are defined by

w(x) =

(3.10)

nf, L 2 3 2
g (et )
1 —xj, qx(l —xb)

5, 3.11)
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it s (atg) (o band)
Gp(xp, x) = 5 0p + 1 9, (3.12)
- (1)

where the g-shift operators dp for b = 0, 1 are

@0 ) (6, %0, x1) = f(x, g2 x0, 1), ©1) (x. x0. x1) = f(x, %0, ¢ 2x1).
(3.13)
Note that the g-difference operators Ko (xp, x), Ko(xp, X 1y and Gy (xp, x) are respec-
tively related to the raising operator, lowering operator, and the eigen-operator for the
type-A1 Macdonald polynomials a.k.a. the Rogers ultra-spherical polynomials [16].
We see that they fulfill the following;

Gu(xp, x 1) = Gu(xp, x), (3.14)
K (3. %) G (5. 4 2) = G (., ) Ko (xp. ), (3.15)
Kt ™) Kn g™ — [Guon 0P = —g3x7 ( —x)". G16)

g3 x (1 =) (G, 3) G (5, 4 '%) = K ) K (5, 7))

+ (1= ) (Ko (5, %) = K5, x7) G g7 '0)

ot (ot ) (1-ah) (1) T G

I —xj

1
2 2
(K,Hl(xb,x_l)) 1 [xch(y) —LE% (Knm,,x-l))

-1 = 1 ~1
Gnr1(p, g7 X))y g3 x+3b2x§ g} ch(xy) Gn(xp, g~ x)
(3.18)
We note that
. _n+l
Akz,1n) =iq™ % Gu(xo, x), (3.19)
which follows from the skein algebra
ko115 forn > 0,
1
kikoin=Aky n-1 + A7 Ky pnt1, kpn= " 3.20
1ka 2.1+ 2,1+l 2.1 ko1 1, forn=<0. (3.20)
In]
3.3 Specialization of type-C¥C; DAHA
Hereafter we fix the parameters of the CYC; DAHA as t = t,,
t, = (ixo,iq—%xl,ixo,ixl) , 3.21)
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to identify the curve by (resp. bz) with by (resp. by) in Fig. 1. At t, (3.21) the Hecke
operators (2.7) are read as

1
7+xx2
Tor—1 lx _4 055+x0~|—x0_1 ,
q? —x X X0
1 1
A 14+g2x q2x+x} 1
T i et 1 Ls—1)—q2xt), (3.22)
qi(l—xz) X1

1
T g 2To 'x,

T — x7 171,

which satisfy the Hecke relations

To— Ty = —ich (xo), Ty — (T§) " = —ich(x),
B (3.23)
T =T =—ich(q77x). TV — (1Y) 7" = —ich(x)).
The idempotent (2.6) becomes
1 1 2
(47 +) (47 +x47)
ers (1+5) (3.24)
(1=x2) (g —7)
Note that
Tie=—igZx;'e=eT), Tle=ig zx; =eT; !, (3.25)
and 1 1 1
XTi (1+q7X> e:qz(1+qfx) T e, (3.26)

The DAHA att, (3.21) was employed so that the Askey—Wilson operator gives (3.8)
as
A(y) e = ch(TTo)e. (3.27)

Namely the Askey—Wilson polynomial (2.11) is the eigen-polynomial of (3.8),

m+%

X0X1

Ay) Pu(x; g, t,) = —ch( ) Pn(x; q,t).

It should be remarked that the operator A(Y), commuting with the Askey—Wilson
operator as A(y) A(Y) = A(Y) A(y), satisfies [18]
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(g7 =)

AF) Pulx;q,t) = P, 1q,
(y) m (X q ) qur% (l_x(%) (l_x%) m+l(x q )
m+1 2)2 m+1 2)2 my2
+ - 1
- (q XO) (q le) Plﬂ(-x.sttt)_'_ + ( a ) > Pm—l(X;q,t*)-
q"" (l_xo)(l_xl) "2 (1= x5) (1 - x7)

3.4 Heegaard dual of Hecke operators

Our purpose is to rewrite the map (3.4) in terms of the Iwahori-Hecke operators. The
motivation is based on that §% has a Heegaard splitting S = H Us, o Ha, where H;
is a 2-handlebody and ¥, o = 9 H;. In gluing, the meridians x; on H; are mapped
to the longitudes yj on Hj, and x and y are to x and ¥ respectively. The fact that
y corresponds to the Askey—Wilson operator (3.27) suggests that there may exist a
“Heegaard dual” Uy and U; of the Hecke operators Tg and T; (3.22) for y.

Definition 3.1 We define the representation of Uy and U; by

1 _1

7 7
Uo > 25 ~ Kot x50 - T % Goxo. ), (3.28)
qi — q§ — X
X (1 + q2x) qﬁ .
Ut =2 Ko(e1,0) (s = 1) + ——— (Go(w1, %) = g7x Ko(x1,.2) ).,
K 1 —x ) 1 —qg2x
(3.29)
v B —
Uy = g 2U; x, (3.30)
Uy > xup, (33D
where K, (xp, x) and G, (xp, x) are given in (3.11) and (3.12).
The invertibilities of Ug and U; can be checked using (3.14)—(3.17) by
-4 :
Uyl L1 Koo x ) so— Go(xo, X), (3.32)
q2 —x q2 —x
1 1
Ut e 6 D~ Kol x4+ (x Go(xl,qlm—quo(xl,xl))}
g+ —x%) g7 —x
2
L= (3.33)
q — Xi
By construction, we have an analogue of (2.2)
UYU UgUY = ¢ 2. (3.34)

Moreover we get the followings.
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Lemma3.2 (1)
UpToUY = —¢2 T, (3.35)
(2) 1 ]
(=) (1+qx) (g7x +x})
(1=x2) (g —x7)

The representations in Definition 3.1 and the inverses show that the Heegaard dual
operators satisfy the Hecke-type relations. We have for Uy and U

s—1). (3.36)

Ui Uy T e —g —

_ _1
U() - UO ! =dq 4 GO(XOax)r

. ol o (3.37)
Us — (Uy) =g 7 Golxo, x).
For U; and UY, we have preferable expressions with the symmetrizer e (3.24)
(q*%Ul - q%UII) e= q*%Go(xl, x)e,
y et . (3.38)
(Ul — (uy) ) e =g 1Go(xi,x)e,
which can be seen by use of an analogous identity to (3.26),
XU (1+q%x) e=g? <1+q%x) Ur'e. (3.39)
Furthermore we can prove
A7) e =ch (UiUp) e. (3.40)

In summary, all the generators k; for the skein algebra SkA ! (X2,0) givenin (3.5)—
=q

(3.9) can be written as follows.
Proposition 3.3
Alky) = A(xg) =ch (iTy) =ch (iTg) ,

Aky) = A(yo) = ch (iUp) = ch (iUy),
ﬂ(ﬂq) e = ﬂ(y) e = Ch(T]T()) e = Ch(T()T]) e,

A(ks) e = A(y)) e = ch (iq*%ul)ezch (iUY)e. (3.41)

Alks)e = AGx)e =ch (ig73Tj) e =ch (iT))e,
A(kg) e = A(y) e = ch (U;Up) e.
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We can thus regard the map (3.4) as

A SkAzqf% (Z2.0) — SHjj’j (3.42)

where SH ;’iﬁ' is a spherical subalgebra of our generalized DAHA,

the Hecke relations (3.23), (3.37), (3.38)
HEY = <Tgﬂ, T =L ugt U TOLIJO_IXTO_:UO =—q >
UiTy ' XU ' Tie = —qe
(3.43)
The conditions are from Lemma 3.2.

3.5 Automorphisms

gen

By definition of Hy ¢ *(3.43), we find the automorphisms J; = I, as follows.

Proposition 3.4 We have the automorphisms of Hqg;f (3.43);

To TO
T1 Tl
D= :| X|~ lX , (3.44)
Uo —igiUoT,
U] U1
TO 1q %U()T()
Tl T]
F=T | X | X , (3.45)
Uo Uo
U] U1
To To
T Tll
F=T: | X | (TolTl)* XTiTo |, (3.46)
Uo g~ (ToT)) ™" Uo
1
Ui q*UiToT,
To . TO
Ti g7 U
Ti=F, | x|~ X , (3.47)
Uo Uo
Ul U1
To TO
T] Tl
Ts=T | X | > X . (3.48)
Uo Up
1
U; —1g#UXT
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We note that the map 73 (3.46) originates from the Dehn twist oy Zon 0.4 (2.17).
Our claim is as follows.

Proposition 3.5 We have a commutative diagram;

P
SkA:q,% (X2,0) — SkA:q,;[ (22,0)
A|, K

gen gen
%
SHEY 7 SHEY"

We shall check the relations in (3.1). From the definitions (3.44)—(3.48) it is straight-
forward to see case-by-case that both the braid relations and the commutativities hold,;

Frivi = Tit1,iiv1, forl <i <4, (3.49)
Tij=Tji, forli—jI>1, (3.50)

where we mean .7 jx = J; ... J; . We can also find that

T() ! UO
T ig 20y T IXx U
Tp2345: | X | — T, Uy 'XT1Up ,
Uo —iTTy!
Ug T
igT'UIXT g
-1
To —g~ i (T7'uixTy)
T —1 1 (=1 -1
T | x [ =] (70 UIXT1>XTO (T1 UIXTI) To |,
Uo (o) xTe! (T
U q 2( 1 1 1) 0 ( 1 1 1)
-1
LU XT ToX! (T;lulxn)
which result in
To To
6 2 T -1 —1 T —1 7!
(Z12345) =(Fas2112345) | X |~ <T1 Ui XT U] ) X (T1 U XT1U; )
Ug Ug
U U;

(3.51)
As seen from (3.36), the operator U1T1_1X’1U1_1T1 acts as a scalar on the symmetric

Laurent polynomials, and the maps (3.51) are identities on (C(q% , X0, X)) [x + x~11.
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It should be noted that, for the 3-chain relation (3.3), we have

To T ' ToT To To
4 T T T Ty
(Z1,2,3) X || 17'x10 |, (72 x|~ X
Uo T, 'UoTy Uo Uo

U U XT2 Uy — g2 U XTiXT,

Both actions on the generators (3.41) are same.
We explicitly give the map for the curves in Fig. 3. We have checked the consistency
with the skein algebra, e.g. (2.14), of the curves.
Alki 2) = F3(AK)) = ch (=g FUgTo) = ch (47X ~'UoTo)
=1G_1(xg, x),
Alkz3) e = Z(Ak2) e =ch (ig ™5 TT) ™ Ug) e = ch (=ig M To) X "Up) e

=iy k) (—Kl(xo,xf)
e=+

Alkss)e = 7 (Aky)) e = ch (iq—%ul(ToTl)—l) e=ch (—iq—%UIX(TlTO)—‘) e

2 % €
MY 5o 4 6o, x) ch<x1>> e
x|

1
x7x2 +q2
=iy ok (—MK_l(xl,xf) 9 + g7 ch(xo) G_l(xl,x>) e,
X0
e=+

A(kss)e = F5(A(ky)) e = ch (q*%UIXT1> e=ch (—q%UIXT1x> e
= iq’%Gl(xl, x)e,
Alkse)e = 75 (Alke) e = ch (ig U1 XT) Uy ) e

= q4l Z w(x) (K()(xo, x€) K_1(x1,x9)0° — Go(xo, x) G (x1, x)) €,
e==+
Allcs.1)e = Fi (Alke)) e = ch (~ig UiUgTy ) e
= q*% Z w(x€) (K1(x0, x€) Ko(x1, x9) 0 — G (x0, x) Go(x1, x)) e,
e=%

Ak 23) e = F (A(k 2)) e = ch (ﬁT;lx—luo) e=ch ((XTITO)_1U0T0> e

2 % €
igt Y 0 [ —Kotro, ¥ T 56 4 Go(xg, x) chixn) ) e,
e=% X1

_ 1 -
Akssz)e = (ys 193) (A(ks)) e = ch(U;Tp) e = ch (—q2 uiT; X 1T0T1> e
1 x2 —l—q%xf
=igi Y o) [ —=——— Ko(x1.x9) 3 + ch(x0) Go(x1. x) | e,
e=% Xo
—1 -1 -1 1 -1
Ak za)e =75 (Aks) e =ch (=g~ ViTeT)™'Ug ) e =ch (=g UiUsTiTo) ") e

=Y o) (Ki(xo. x) K_1(x1,x) 0 — G1(x0. ) G_1(x1, %)) e,
e=+
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Fig.4 A rational tangle for
f2‘1+ % Wh}ilchkcorrzsponds to the .
- t t -
gure-eight knot 41 g, 7,
Q) 0

A(ks45) e = T5 (A(ks 4)) € = ch (q—%UIXT(;l) e=ch <—U1XT1X(T|T0)‘1) e

1

—7 x €42 1

=ig? Y 09 <—qxx°+ Ko(x1.x%) 3 + ch(xo) Go(xl,x)) e.
e=+ X0

Aksz,1) e = (71.72) (Aks)) e = ch(TiUp) e = ch(UpTy) e

-1 —e.2

2 1

—ig* Y 0 [~ Koo, x) LT 156 4 Goro, 1) chixn) | e.
e=+ X1

Here we avoid to use .7 due to that Ty, used for the idempotent e, is no longer invariant.

3.6 Rational tangles

In [11], Conway introduced tangle operations, and showed that continued fraction
can be assigned to a certain family of knots and links. In view from links on the
double torus X , the tangle operations correspond to the Dehn twists along x and y
acting on the curve 7. We can thus construct the rational tangle ¥, associated with
the continued fraction » with even integers. The automorphism .7, for the Dehn twist
along y is (3.46), and % is given from the 2-chain relation (3.2) as

To XToX !
T T
T | X | > X , (3.52)
Uo XUpX~!
U U

which is consistent with the Dehn twist 01% on Xp 4 (2.16).
We show a few examples. The figure-eight knot 4, is arational tangle with 3 = 2—{—%

as in Fig. 4. We have N N o~
Y52 = (-@y% ) &), (3.53)

which gives

AFs/2) = ch (UlTOT] (TyTiTo) ™" Ty 'UoT) (TngTO)) . (3.54)

The knot 53 is = 4 + -, and
1= (2 2:%) @), (3:55)

which gives
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~ —17-1 v—1 v vr—1 -2
AF72) = ch (U T, (T1T0T1T0 )T1T0T1T1U0 (TITOTITO) . (3.56)

Inboth cases, the DAHA polynomials A(k, ) (1) are too involved to give here. Nonethe-
less Mathematica shows that the constant terms 9° of A(Y,) reduce to

¢ >—q ' +1—g+4q*

Const(.?l(§;5/2))(1)|m= 1

1 =
xi=—x=q} T-pl-)
(3.57)
~ l-g+2¢° -’ +¢* - ¢°
COHSt(ﬂ(yWZ))(l)|X0=X1=7x=q% = Q( q(l —qq)(lq— qZ)q 4 )

These computations support a relationship with the Jones polynomial as observed
in [16].

4 Concluding remarks

We have proposed a generalization of the type-CY C; DAHA at t, by introducing the
Heegaard dual operators. We hope to report on their roles on the (non-symmetric)
Askey—Wilson polynomials at t,, and also on the generalization to the higher-rank
skein algebras. It would be promising to incorporate results from the cluster algebra [7,
17].
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