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Magnetic branes of Gauss–Bonnet–Maxwell theory in the context of massive gravity is studied in detail. 
Exact solutions are obtained and their interesting geometrical properties are investigated. It is argued that 
although these horizonless solutions are free of curvature singularity, they enjoy a cone-like geometry 
with a conic singularity. In order to investigate the effects of various parameters on the geometry of 
conic singularity, its corresponding deficit angle is studied. It will be shown that despite the effects of 
Gauss–Bonnet gravity on the solutions, deficit angle is free of Gauss–Bonnet parameter. On the other 
hand, the effects of massive gravity, cosmological constant and electrical charge on the deficit angle will 
be explored. Also, a brief discussion related to possible geometrical phase transition of these topological 
objects is given.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

General relativity (GR) is one of the most successful theories in physics. Nonetheless, this theory could not predict precisely the fact 
that our universe has an accelerated expansion [1,2]. In order to interpret this expansion, some various candidates have been proposed, 
such as the cosmological constant idea [3], dark energy models [4,5] and modified gravities including Lovelock gravity [6], F(R) gravity 
models [7–9], scalar–tensor theories [10,11] and brane world cosmology [12,13]. The theory of Lovelock gravity is special between others, 
since this theory is ghost-free and also enjoys the principles of general relativity in higher dimensions.

On the other hand, GR includes the graviton as a massless particle, but the results of LIGO experiment, and also from theoretical point 
of view, it was shown that the graviton might be a massive particle with an upper limit on its mass [14–17]. Therefore, one may regard 
a generalization of Einstein’s theory of gravity in the context of massive gravity. In addition, considering the massive gravitons improves 
our viewpoint about the cosmological constant problem [18]. Furthermore, the observational evidences suggest that about 95% energy 
of our universe is dark energy and dark matter [19] which is based on assumption that GR is equally valid at all length scales. So, the 
modifications of GR by massive gravitons could possibly change this scenario over large distances.

The first attempt regarding introduction of linear massive gravity was done by Fierz and Pauli [20,21]. Later, Boulware and Deser (BD) 
showed that this theory of massive gravity suffers the BD ghost instability at the nonlinear level [22]. The existence of ghost indicates 
that the theory under consideration is unstable. In order to avoid such instability, some other models of massive gravity were introduced. 
One of the ghost-free massive theories was introduced by Bergshoeff, Hohm and Townsend in which such theory was a three dimensional 
massive theory and is known as new massive gravity (see [23], for more details). However, this theory has some problems in four and 
higher dimensions. Recently, de Rham, Gabadadze and Tolley (dRGT) introduced another class of massive gravity [24] which is ghost-free 
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in arbitrary dimensions. It is notable that, in this theory, the mass terms are produced by considering a reference metric. This reference 
metric plays a crucial role for constructing the massive theory of gravity [25]. Study of this theory showed that dRGT theory is stable 
[26,27], and it is free of BD ghost [26,27]. Black hole solutions and their thermodynamical properties, stability of various black holes and 
cosmological solutions of dRGT theory have been investigated in literature [28–34]. From astrophysical point of view, Katsuragawa et al., 
investigated the neutron stars in this gravity and found that the massive gravity leads to small deviation from the GR results [35].

Another massive gravity model with different reference metric was proposed by Vegh which is motivated by the applications of 
gauge/gravity duality [36]. Vegh showed that graviton may behave like a lattice and exhibits a Drude peak in this theory of massive 
gravity [36]. It is notable that, this theory is ghost-free and stable for arbitrary singular metric [37]. Charged black hole solutions and 
the existence of van der Waals like behavior in extended phase space have been studied in the context of this gravity [38,39]. Besides, 
the generalizations of such theory to include Born–Infeld electrodynamics [40], higher derivative gravity [41], and also gravity’s rainbow 
[42] have been investigated. In addition, BTZ black hole solutions in massive gravity with linear and nonlinear electrodynamics have been 
studied in Ref. [43]. The hydrostatic equilibrium equation of neutron stars in the context of this massive gravity was extracted and it was 
found that the maximum mass of neutron stars can be more than 3.2M� [44].

In summary, massive gravity have some interesting properties, such as (i) From cosmological point of view, massive gravity can be used 
to explain the cosmological constant problem [45], and also provides an interesting basis for self-acceleration of our universe without 
introducing the cosmological constant [46]. In other words, some of the massive terms of cosmological solutions can be regarded as an 
effective cosmological constant [47,48]. (ii) Graviton is one of the best candidates for dark matter [49]. (iii) The existence of massive 
gravitons provides extra polarization for the gravitational waves and also affects their propagation’s speed [50]. Massive gravitons had 
considerable effect on the production of gravitational waves during inflation [51,52]. (iv) From astrophysical point of view, the existence of 
maximum mass of neutron stars more than 3.2M� is possible in the massive gravity context [44]. (v) Considering the massive gravitons 
results into the existence of remnant for the temperature of black holes after evaporation which could explain the information paradox 
[43]. (vi) The existence of van der Waals behavior and critical phenomena for topological black holes is another interesting property of 
massive gravity [53].

On the other hand, one of the interesting higher derivative gravity models is the Lovelock theory which is the most generalization 
of Einstein gravity that includes properties of Einstein’s tensor in the higher dimensions. This gravity enjoys only first and second-order 
derivatives of the metric function in the field equations, and also it is a ghost-free theory of gravity. It is notable that, in 4-dimensions, the 
Lovelock gravity reduces to the Einstein theory without any additional term. In other words, by considering the Lovelock gravity in higher 
dimensions, the additional terms will appear. The first three terms of Lovelock gravity is including the Einstein and Gauss–Bonnet (GB) 
gravities in the presence of cosmological constant. The GB gravity has interesting properties such as: (i) It is free of ghost particles [54,55]. 
(ii) The natural next-to-leading order term of the heterotic superstring effective action which plays a fundamental role in Chern–Simons 
gravitational theories is GB term [56]. (iii) The presence of GB gravity in addition to Einstein gravity may lead to the modified Renyi 
entropy [57]. This entropy violates specific inequality which must be hold for Renyi entropy. (iv) Regarding AdS/CFT correspondence, it 
was shown that considering GB gravity will modify shear viscosity, entropy, thermal conductivity and electrical conductivity [58]. The 
black holes, wormholes, cosmological solutions, stability and structure of stars in the context of GB gravity have been investigated in some 
literature [59–65].

From cosmological point of view, it was proposed that the early universe was plugged with number of phase transitions. During these 
phase transitions, different regions were collectively regarded different minima in the set of possible states to fall in. This resulted into 
formation of different regions with specific boundaries. Alongside of these phase transitions, specific symmetries were broken which 
resulted into formation of different topological defects. These topological defects were located on the boundary of different regions and 
in the essence, they are due to disagreement between two different regions regarding their choices for the minima. The final structure of 
the topological defects and their geometrical and physical properties depend on the broken symmetry during the phase transition. Among 
different topological defects, one can name: (i) Domain walls which are originated from broken discrete symmetry and divide universe 
into blocks. (ii) Cosmic strings which are arisen from the breaking of the axial or cylindrical symmetry with applications in grand unified 
particle physics in the electroweak scale. (iii) Monopoles which carry magnetic charge and are formed due to a broken spherical symmetry. 
(iv) Textures which are due to breaking of several symmetries. The topological defects contain information regarding the early universe 
and its phase transitions [66,67]. Furthermore, it was argued that they have important role in the large-scale structure of universe [66,67]. 
The effects of these astrophysical objects on the Cosmic Microwave Background (CMB) have been explored in Refs. [68,69]. In addition, 
it was proposed that dark matter may be originated from these topological defects [70,71]. Also, it was shown that these topological 
defects have gravitational lensing property [72] which is due to the modification in trajectory of the photon on these topological defects 
depending on deficit angle. So far, wide range of studies regarding the topological defects were done which among them one can point out: 
(i) The cosmic strings in the presence of Maxwell field [73,74]. (ii) The superconducting property of these topological defects in Einstein 
[75], dilaton [76] and Brans–Dicke [77] theories. (iii) The QCD applications of the magnetic strings [78,79] and their roles in quantum 
theories [80,81]. (iv) The stability of the cosmic strings through quantum fluctuations [82]. (v) The existence of the limits on the cosmic 
string tension by extracting signals of cosmic strings from CMB temperature anisotropy maps [83]. (vi) The spectrum of gravitational 
wave background produced by cosmic strings [84]. (vii) The evolution of domain walls in de Sitter universe [85]. (viii) The production 
of gravitational waves from decaying domain walls [86]. For further studies regarding the cosmological topological defects, we refer the 
reader to Refs. [87–92]. Considering the wide applications of topological defects, GB theory and massive gravity, it is interesting to study 
the effects of GB massive gravity on the properties of conic geometry.

In this paper, we are interested in topological defects which are known as horizonless magnetic solutions (see refs. [90,93,94], for 
more details). These solutions are not black hole but they contain conic singularity. The main motivation is to understand the effects of 
the massive gravity alongside of GB gravity on geometrical and physical properties of the magnetic solutions. We will emphasize on the 
role and effects of different parameters on deficit angle of the solutions and show that depending on choices of different parameters, 
there might be discontinuity and change of signature for deficit angle which mark the existence of geometrical phase transition for these 
objects.
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2. Basic field equations and exact solutions

In order to study horizonless magnetic branes, we consider the following metric for d-dimensions

ds2 = −ρ2

l2
dt2 + dρ2

g(ρ)
+ l2 g(ρ)dϕ2 + ρ2

l2
hijdxidx j, i, j = 1,2,3, ...,d − 3 (1)

where g(ρ) is an arbitrary function of radial coordinate ρ which should be determined. In addition, the scale length factor l is related 
to the cosmological constant �, and hijdxidx j is the Euclidean metric on the (d − 3)-dimensional submanifold. Moreover, the angular 
coordinate ϕ is dimensionless and range in 0 ≤ ϕ ≤ 2π while the range of xi ’s is (−∞, +∞).

Due to the fact that we are interested in studying the Maxwell–GB-massive gravity, we consider the d-dimensional action of GB-massive 
gravity coupled to Maxwell electrodynamics

IG = − 1

16π

∫
M

ddx
√−g

[
LE + αLG B − 2� −F + m2

4∑
i=1

ciUi(g, f )

]
, (2)

where the Lagrangian of Einstein gravity is the Ricci scalar, LE = R, α is the GB coefficient with dimension (length)2, and LG B is the 
Lagrangian of GB gravity

LG B = Rμντσ Rμντσ − Rμν Rμν +R2. (3)

Also, � = −(d − 1)(d − 2)/2l2 is the negative cosmological constant, F = Fμν F μν is the Maxwell invariant where Fμν = ∂μ Aν − ∂ν Aμ

is the Faraday tensor and Aμ is the gauge potential. In addition, f is a fixed symmetric tensor, ci ’s are some constants, and Ui ’s are 
symmetric polynomials of the eigenvalues of matrix Kμ

ν =√gμα fαν

U1 = [K] , U2 = [K]2 −
[
K2
]
, U3 = [K]3 − 3 [K]

[
K2
]
+ 2

[
K3
]
,

U4 = [K]4 − 6
[
K2
]

[K]2 + 8
[
K3
]

[K] + 3
[
K2
]2 − 6

[
K4
]
.

Varying the action (2) with respect to gμν and Aμ , one can obtain the field equations as

Rμν − 1

2
gμν (R− 2�) + αGG B

μνLG B + m2χμν = Tμν, (4)

∂μ

(√−g F μν
)= 0, (5)

where GG B
μν , χμν and the energy–momentum tensor (Tμν ) are, respectively

GG B
μν = 2(RμτσλRτσλ

ν − 2Rμτνσ Rτσ − 2RμλRλ
ν +RRμν) − 1

2
LG B gμν, (6)

χμν = − c1

2

(
U1 gμν −Kμν

)− c2

2

(
U2 gμν − 2U1Kμν + 2K2

μν

)
− c3

2
(U3 gμν − 3U2Kμν +

6U1K2
μν − 6K3

μν) − c4

2
(U4 gμν − 4U3Kμν + 12U2K2

μν − 24U1K3
μν + 24K4

μν), (7)

Tμν = 2Fμλ F λ
ν − 1

2
F gμν. (8)

Now, we are going to obtain the d-dimensional magnetic solutions in GB gravity coupled to Maxwell electromagnetic field. In order to 
obtain exact solutions, we should make a choice for the reference metric. We consider the following ansatz metric [95]

fμν = diag(− c2

l2
,0,0,

c2

l2
hij), (9)

where c is a constant and its values must be positive.
Using the metric ansatz (9), we can obtain the following explicit forms for Ui ’s [95]

U1 = d2c

ρ
, U2 = d2d3c2

ρ2
, U3 = d2d3d4c3

ρ3
, U4 = d2d3d4d5c4

ρ4
, (10)

which di = d − i. Due to our interest to investigate the magnetic solutions, we assume the vector potential as

Aμ = h(ρ)δ
ϕ
μ. (11)

Using the Maxwell equation (5) and the metric (1), one finds the following differential equation for the only nonzero component of 
Faraday tensor
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d2 Fϕρ + ρ F ′
ϕρ = 0, (12)

where the “prime” denotes differentiation with respect to ρ . Equation (12) has the following solution

Fϕρ = q

ρd3
, (13)

where q is an integration constant which is related to electrical charge. Regarding Fϕρ as the nonzero component of Fμν and inserting 
Eq. (1) in Eq. (4), one can obtain

d2l2ρ
[
ρ2 − 2αd3d4 g(ρ)

]
g′(ρ) + 2ρ4 F 2

ϕρ − d2d3d4l2
{

m2
[

cc1ρ
3

d3d4
+ c2c2ρ

2

d4
+ c3c3ρ + d5c4c4

]

− ρ2

d4

(
g(ρ) + 2�ρ2

d2d3

)
+ αd5 g2(ρ)

}
= 0, (14)

l2ρd3
[
ρ2 − 2αd3d4 g(ρ)

]
g′′(ρ) + 2d3l2ρd3 [ρ − αd4 g(ρ)] g′(ρ) − 2ρd1 F 2

ϕρ − 4αd3d4d5l2ρd4 g(ρ)g′(ρ)

− d3l2
{

m2
[

cc1ρ
3 + d4c2c2ρ

2 + d4d5c3c3ρ + d4d5d6c4c4

]
+ αd4d5d6 g2(ρ) − d4ρ

2
(

g(ρ) + 2�ρ2

d3d4

)}
= 0 (15)

Using Eqs. (14) and (15), and after some calculations, we can obtain the metric function g(ρ) as

g(ρ) = ρ2

2d3d4α

⎛
⎝1 ±

√
1 + 8d3d4α

d1d2

[
� − d1m0

2ρd1
− d1d3q2

ρ2d2
−M(m)

]⎞⎠ , (16)

in which m0 is an integration constant which is related to the mass parameter and M(m) is the massive term

M(m) = d1m2

2ρ4

(
cc1ρ

3 + d2c2c2ρ2 + d2d3c3c3ρ + d2d3d4c4c4
)

.

As one can see from Eq. (16), the solution has two branches with “−” and “+” signs. The suitable sign should be chosen such that the 
obtained solutions reduce to the Einstein-massive-Maxwell solutions introduced in [95] as α goes to zero. In order to have desired metric 
function, we should choose the minus sign branch. Considering Eq. (16), one finds that �-term is the dominant term for large values of 
ρ , and therefore, the asymptotical behavior of the solution (16) is anti de Sitter (AdS) or de Sitter (dS) provided � < 0 or � > 0. It is 
worthwhile to mention that in the absence of massive parameter (m = 0), the metric function (16) reduces to the GB–Maxwell solution 
[93].

3. Geometric properties

In order to study the properties of spacetime (1), one can calculate the Kretschmann scalar as

Rμνλκ Rμνλκ =
(

d2 g(ρ)

dρ2

)2

+ 2d2

(
1

ρ

dg(ρ)

dρ

)2

+ 2d2d3

(
g(ρ)

ρ2

)2

. (17)

Obviously, considering the metric function (16), the Kretschmann scalar (17) diverges at ρ = 0 and one may think that there is a 
curvature singularity located at ρ = 0, but this conclusion is not valid since the spacetime will never achieve ρ = 0. Assuming that r+ is 
the largest root of the metric function g(ρ), and therefore, the metric function g(ρ) is negative for ρ < r+ and positive for ρ > r+ . The 
function gρρ = g(ρ) cannot be negative (which occurs for ρ < r+) because of the changing in the metric signature. Therefore, we cannot 
extend the spacetime to ρ < r+ , and the valid region is r+ � ρ < ∞. To get rid of this incorrect extension, we introduce a new radial 
coordinate r as

r2 = ρ2 − r2+ =⇒ dρ2 = r2

r2 + r2+
dr2, (18)

in which ρ ≥ r+ leads to 0 ≤ r < ∞. Now, by applying this coordinate transformation, it is possible to obtain the metric (1) in the 
following form

ds2 = − r2 + r2+
l2

dt2 + r2(
r2 + r2+

)
g(r)

dr2 + l2 g(r)dϕ2 + r2 + r2+
l2

dX2, (19)

where the coordinates ϕ and r are in the range 0 ≤ ϕ < 2π and 0 ≤ r < ∞, as usual. The metric function g(r) (Eq. (16)) is now given as

g(r) = r2 + r2+
2d3d4α

⎛
⎜⎜⎜⎜⎝1 −

√√√√√√√√1 + 8d3d4α

d1d2

⎡
⎢⎢⎢⎣� − d1m0

2

(√
r2 + r2+

)d1
− d1d3q2(

r2 + r2+
)d2

−M+(m)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ , (20)
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Fig. 1. δ (φ) versus r+ for l = c = c1 = c2 = c3 = c4 = α = 1, q = 0.1 and d = 5; m = 0 (continuous line), m = 0.3 (dotted line), m = 0.55 (dashed line), m = 0.7 (dashed–dotted 
line) and m = 0.9 (bold continuous line). Left panel: AdS solutions and right panel: dS solutions.

where

M+(m) = d1m2

2
(
r2 + r2+

)2

(
cc3

1

(√
r2 + r2+

)3

+ d2c2c2
(

r2 + r2+
)

+ d2d3c3c3
√

r2 + r2+ + d2d3d4c4c4

)
.

Now, considering the new metric function, it is a matter of calculation to show that all curvature invariants are finite (divergence free) 
at the origin and also other values of 0 ≤ r < ∞ (contrary to black hole solutions). Therefore, this spacetime has no curvature singularity 
and no horizon. Using the Taylor expansion, in the vicinity of r = 0, we have

g(r) = g(r) |r=0 +
(

dg(r)

dr
|r=0

)
r + 1

2

(
d2 g(r)

dr2
|r=0

)
r2 +O

(
r3
)

+ ... , (21)

in which

g(r) |r=0 = dg(r)

dr
|r=0 = 0. (22)

On the other hand, the spacetime (19) has a conic geometry with a conical singularity at r = 0, because the limit of the ratio “circum-

ference/radius” is not 2π (limr−→0
1
r

√
gϕϕ

grr
�= 1). It is notable that, this singularity can be removed if one exchanges the coordinate ϕ with 

the following period

Periodϕ = 2π

(
lim

r−→0

1

r

√
gϕϕ

grr

)−1

= 2π (1 − 4μ) , (23)

in which μ is

μ = 1

4

[
1 − 2

lr+

(
d2 g(r)

dr2
|r=0

)−1]
= 1

4
− d2r

2d1/2
+

4l�
, (24)

and � is given as

� =
[

2�r4+ − cd2ϒm2
]

r2d2+ + 2d2
3q2r4+, (25)

where

ϒ = d3d4d5c4c3 + d3d4c3c2r+ + d3c2cr2+ + c1r3+. (26)

This result shows that the metric (19) describes a spacetime which is locally flat near the origin but has a conical singularity at r = 0
with a deficit angle δ (φ) = 8πμ. In order to investigate the effects of different parameters on deficit angle, we plot the deficit angle 
versus r+ in various figures (see Figs. 1–4).

First of all, the upper parts of thin dotted line in figures is forbidden area. In order to have a better picture regarding the behavior of 
solutions, we have presented this part in figures. There is no restriction on negative values of the deficit angle. In addition, in order to 
study the effects of cosmological constant, we have plotted two set of diagrams for variation of different parameters.
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Fig. 2. δ (φ) versus r+ for l = c = c1 = c2 = c3 = c4 = α = m = 1 and d = 5; q = 0 (continuous line), q = 0.2 (dotted line), q = 0.3 (dashed line), q = 0.5 (dashed–dotted line) 
and q = 0.55 (bold continuous line). Left panel: AdS solutions and right panel: dS solutions.

For AdS spacetime, depending on choices of different parameters, deficit angle could have different number of the roots, regions of 
positivity/negativity and divergency. Plotted diagrams for variations of the massive parameter (left panel of Fig. 1), electric charge (left 
panel of Fig. 2) and dimensions (up panels of Fig. 4), show that there exists a divergency and a root (located after divergency) for deficit 
angle. Before the divergency, deficit angle is positive valued but it is located at prohibited area. Therefore, in this region, there is no value 
available for deficit angle. Between the divergency and the root, deficit angle is negative, whereas after the root, it is positive valued 
within permitted region. The divergency and the root are decreasing functions of the massive parameter (left panel of Fig. 1), while they 
are increasing functions of the electric charge (left panel of Fig. 2) and dimensions (up panels of Fig. 4). Interestingly, in the absence 
of the charge, deficit angle is positive valued without any root and divergency (continuous line in left panel of Fig. 2). This shows that 
existences of negative valued deficit angle, the root and the divergency are due to contributions of the electric charge (in case of ci > 0). 
Here, we have considered the variation of c1 as a case example to study the effects of massive coefficients on deficit angle (up panels of 
Fig. 3). Evidently, for very small values of the c1, deficit angle could have three divergencies with three roots. The number of roots and 
divergencies are decreasing function of this parameter. Meaning, by increasing c1, it is possible to have, two divergencies with three roots, 
one divergency with three roots, one divergency with two roots in which one of them is extreme and one divergency with one root (for 
more details see up panels of Fig. 3).

For dS spacetime, the situation is different. Here, it is possible to have one of the following cases: I) Deficit angle is always positive 
but is not in permitted area (right panel of Fig. 1 for small values of m). II) Two divergencies without any root. In this case, between the 
divergencies, the deficit angle is negative valued. Otherwise, although the deficit angle is positive, it is not located at the permitted area. 
III) Two divergencies with one extreme root with similar behavior to previous case. IV) Two divergencies with two roots. Between the 
roots, the deficit angle is positive and within permitted area. While between the smaller (larger) root and the smaller (larger) divergency, 
the deficit angle is negative. V) One root and one divergency with root being before divergency. This case is only observed for absence of 
the electric charge (right panel of Fig. 2). VI) One divergency in which for both sides of the divergency, the deficit angle is positive but 
not in permitted area. Evidently, the number of roots is an increasing function of the massive parameter (right panel of Fig. 1), c1 (down 
panels of Fig. 3) and dimensions (down panels of Fig. 4) while it is a decreasing function of the electric charge (right panel of Fig. 2). 
Here, we see that contrary to AdS case, in the absence of electric charge, root, negative values and divergency exist for deficit angle which 
are originated from contribution of the cosmological constant.

The magnetic solutions presented here contain a conical singularity. The geometrical structure of solutions is determined by deficit 
angle. In other words, positivity/negativity, root and divergencies of the deficit angle determine the total structure of solutions. For the 
positive values of deficit angle, the geometrical shape of solutions is cone-like one. On the contrary, the negative values of it show an 
extra angle known as surplus angle. This extra angle results into a saddle-like cone as the structure of solutions. The absence of deficit 
angle shows that our solutions are brane without any missing segment. In other words, in this case, no topological defect is observable. 
The presence of divergency indicates a type of phase transition for our solutions. The same could also apply for root of the deficit angle 
(except extreme ones), since the total structure of magnetic solutions changes in this case.

4. Conclusions

In this paper, we have considered magnetic solutions of Einstein gravity with three generalizations: massive gravity, adding cosmolog-
ical constant and Gauss–Bonnet gravity. We have obtained the analytical solutions and investigated their geometrical structure. Among 
properties of the solutions, the deficit angle was studied thoroughly since it plays a crucial role in geometrical structure of the solutions.

Despite the effects of Gauss–Bonnet gravity on the magnetic solutions, it was shown that deficit angle is not affected by this gravity. 
Whereas the generalization to massive gravity and adding the cosmological constant resulted into diverse modifications in the deficit 
angle. It was pointed out that positivity or negativity of the deficit angle, its roots and divergencies were both massive and � parameters 
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Fig. 3. δ (φ) versus r+ for l = c = c2 = c3 = c4 = α = m = 1, q = 0.1 and d = 5; c1 = −11 (continuous line), c1 = −7 (dotted line), c1 = −6.5 (dashed line), c1 = −5
(dashed–dotted line) and c1 = −1 (bold continuous line). Up panels: AdS solutions (different scales) and down panels: dS solutions (different scales).

dependent. In other words, existence of the massive gravitons modified the structure of solutions on a significant level, and the nature 
of background of spacetime has also a significant role on total structure of the solutions. One of the interesting results of this paper was 
related to the existence of divergencies in deficit angle. In the case of AdS spacetime, this was due to the presence of the electrical charge. 
On the contrary, for dS case, even in the absence of the electrical charge, we encountered with the divergencies. In this case, existence of 
divergency was due to the contributions of the cosmological constant and massive parameters.

Also, it is worth mentioning that, despite the positive deficit angle (deleted segment) which is bounded by the value of 2π , the negative 
deficit angle (added segment or surplus angle) is unbounded, and therefore, one can conclude that the range of real deficit angles is from 
−∞ to 2π . On the other hand, considering this fact that the metric function could be interpreted as a potential (see for example chapter 9 
of Ref. [96], for more details), it is arguable that the singular points could be interpreted as phase transitions. Likewise, the geometrical 
structure of the obtained solutions in this gravity in the case of positive and negative values of the deficit angle is different. For positive 
deficit angle, the geometrical structure of the object is cone-like with a deficit angle whereas for the negative deficit angle, the structure 
will be saddle-like with a surplus angle. So, one may state that due to these differences in the structure of the obtained solutions, the 
roots of the deficit angle represent another type of phase transition point.

The importance of topological defects lies within the fact that they were formed during the early universe phase transition. This 
indicates that these topological defects carry in formation regarding the early universe which could help us draw a better picture regarding 
the evolution of universe. That being said, it is very important to see what type of geometrical structure these solutions could have. This 
point could be understood through studies that are conducted in the context of deficit angle. The roots, divergencies and signature of the 
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Fig. 4. δ (φ) versus r+ for l = c = c1 = c2 = c3 = c4 = α = 1, m = 0.55 and q = 0.1; d = 5 (continuous line), d = 6 (dotted line), d = 7 (dashed line) and d = 8 (dashed–dotted 
line). Up panels: AdS solutions (different scales) and down panels: dS solutions (different scales).

deficit angle play the key roles in describing the geometrical, hence physical properties of topological defects. The horizonless magnetic 
solutions belong to one of the classes of topological defects. In addition, these topological defects have lensing property which enables 
them to be detected if instrumental advances reached certain level. The lensing property is governed by the factor which is known as 
deficit angle [72,97–99]. Therefore, we are expecting to have different lensing property in the context of negative deficit angle versus 
positive ones. This highlights the importance of roots and divergencies of deficit angle, hence phase transition like behaviors that were 
observed for the solutions.

Taking into account the conceptions of deficit and surplus angles, one may discuss a typical geometrical phase transition. In other 
words, it will be interesting to analyze the effects of different generalizations on such transition. In addition, one may regard a nonlinear 
gauge field and investigate its effects on the geometrical properties of the magnetic solutions. Moreover, it will be fascinating to use the 
cut-and-paste method for gluing two copies of the mentioned spacetime by a traversable bridge with a typical wormhole interpretation 
[100–102]. We will address these subjects in the future works.
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