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Abstract 
In vacuum, in the chiral limit the coupling of a pion to two on-shell photons is directly related to 
the coefficient of the axial anomaly in QED. This relationship is lost at any nonzero temperature. 
Explicit calculations show that the coupling decreases with temperature and vanishes at Tc , the 
temperature of chiral symmetry restoration. 
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Consider QCD with two light flavors (up a.nd down) . The La.gra.ngia.n has a.n a.pproxima.te 
SU(2)1 x SU(2)r chiral symmetry, spontaneously broken to SU(2) in vacuum. The resulting Gold­
stone bosons (the pions) ha.ve a. direct coupling to the axial current, 

(1) 

with a, b = 1. .3 a.nd f" � 93MeV is the pion decay constant. In the chiral limit the a.xial current 
is conserved a.nd, consequently, the pions a.re massless. 

Currents which are conserved classicaly may not remain so quantum mechanically. In particular, 
a.t one-loop order the third component of the a.xial current develops a.n a.noma.lous divergence [1) , 

(2) 

where F,_,v is the QED field strength. A striking manifestation of the QED a.xial anomaly is to 
allow the 11'0 to deca.y into two photons. Let us define the amplitude for 11'0 -+ 'Y'Y as 

(3) 

where k1 , k2, and £1 , £2 are the momenta a.nd pola.riza.tion vectors of the photons. In vacuum, the 
spontaneous breaking of chiral symmetry, (1) ,  and the anomaly equation, (2) ,  suffice to deduce 
the beautiful relation ,  

(4) 

This formula is valid in the chiral limit a.nd for on-shell photons. The r.h.s. of (4) comes from 
the anomaly of (2): without this term, g"YY would vanish, which is the content of the Sutherla.nd­
Veltman theorem [2]. Another rema.rka.ble theorem [1] states tha.t the coefficient of the anomalous 
term is not affected by higher-order corrections, so that in the vacuum, (4) is exa.ct. 

What about finite temperature ? The non-renorma.liza.tion of the axia.l anomaly holds at finite 
T or density [3, 4] but is (4) still va.lid ? Let us first assume so. We know [5] that, to lea.ding order 
at low temperature a.nd in the chiral limit, the pion decay constant changes as 

(5) 

(for N1 = 2 light flavors) . As the r.h.s. of (4) is T independent 1 , one concludes that g"..,.., (T) 
increases at low T, g"YY (T) = g"..,.., ( 1  + T2 /12J'ir) .  At higher tempera.tu res, f" (T) goes to zero a.t 
Tc, where chiral symmetry becomes manifest, which would imply that g"YY blows up at Tc. This is 
obviously absurd a.nd ( 4) cannot hold as such a.t finite temperature. Actually, a closer look a.t the 
conditions under which (4) is derived, reveals that Lorentz invariance is crucial. In the presence 
of a. thermal ba.th, Lorentz invariance is lost and (4) is not true a.t a.ny non-zero temperature. 
Apparently, this has not been fully appreciated before (see [3] for related issues) . A more deta.illed 
discussion of our claim based on Ward identities ca.n be found in [6] . 

How is g"YY changing with temperature ? Because the direct connection with the coefficient of 
the anomaly is lost, this is a. dynamical problem tha.t ca.n only be a.dressed by an explicit ca.lcula.tion. 
In this respect, finite T is similar to the problem of computing the amplitude for 11' -+ 'Y'Y for off-shell 
photons (see e.g [7] ) :  the Wa.rd identities provide only limited information . 

1We neglect Co:.m(T) � log(T), corrections. These are subleading with respect to the 7" term of f,(T) in (5). 
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Consider first a linear sigma model with constituent quarks (see [8, 9) for details). This is a 
renormalizable theory and the pion has a pseudoscalar coupling to the quarks 2, 

£int = g<fiifML + h.c. = g aijq + ig 7rif/sq (6) 

The scalar potential is such that the chiral symmetry is spontaneously broken in vacuum, a --t 
a0 + a. Then, to leading order, f,, = ao and m9 = gao and the 7r is a Goldstone boson. The 
7r couples to two photons through the triangle diagram (fig. 1 below) . Because the pion-quark 
coupling is pseudoscalar, g15, and the photons vertices are vector-like, a mass insertion is necessary 
to restore chirality; thus Dirac trace brings in one power of the constituent quark mass. The 
remaining loop integral is ultraviolet finite, 

g,,yy ex Ctem g m9 jdp 
( 2 l 2)3 
p + mq 

The constituent quark mass provides and infrared cut-off, so I ex l/m�, and 

Thus, as expected, the constituent quark model respects ( 4) . 

. . 

. " 

(7) 

(8) 

Figure 1: 7ro couples to 'Y'Y through the triangular diagram. L and R refer to quark chiralities. 

It is easy to extend this calculation to finite T
. 

As there is no dependence in the external 
momenta, we compute the integral I in the imaginary time formalism. Then 

(9) 

with q0 = 7r(2n + l)T. As T gets close to Tc, m9 � T, and T provides the infrared cut-off, 
Ir ex l/T2. Consequently, near and below Tc, 

( 10) 

This calculation suggests that the coupling goes to zero at Tc as a consequence of chiral symmetry 
restoration. For further arguments, see [8) . 

Now, let us consider the low temperature limit. At low T, the dynamics is dominated by the 
massless pions and we use a gauged non-linear sigma model with a Wess-Zumino term [10), 

[, = 
1 (D ")2 1 

( •a ")2 
- µ'Ir + -f2 7r µ'Ir + . . .  2 6 " (e2Nc) 1 0 
+ --2 -f 7r E:af3µvFa13Fµv + · · · 967r " 

2We consider a simple U(l) x 1/(1) model. The extension to the non-abelian case is trivial. 
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where the dots stands for operators with more pions or higher derivatives. At tree level, the 
effective Lagrangian (11)  is normalized so that (4) holds [10]. Pion one-loop corrections (fig. 2) to 
the anomalous vertex are easily computed. Consider first vacuum corrections [11]. In the chiral 
limit and for on-shell photons, these simply amount to replace f" in ( 11 )  by its renormalized, 
physical value. This is how the Adler-Bardeen theorem, which states that the anomaly is not 
renormalized beyond one loop order, works at the level of the effective action. In the chiral limit 
m" -+ 0 and for on-shell photons, the O(P') anomalous operator of (11 )  is the unique operator 
which contributes to the amplitude for rro -+ TYi all other operators are O(P6) or higher, and 
vanish on the photon mass shell. Hence, all the divergences have to be absorbed by ( 1 1 ) .  (1 •JL 

Figure 2: pion one-loop corrections to rr0 -+ 'Y'Y in the gauged WZW model. 

At finite temperature, T � f" , a careful calculation [6] reveals 3 that 

g"yy(T) = Ym ( 1 - l�;;) (12) 

Hence, g"TY decreases like J" (T) at low temperature (5) , consistent with (10) close to Tc. That the 
temperature dependence of g"TY can be non-trivial is due to the fact that at T i  0, unlike in the 
vacuum, it is possible to add new O(P' T2 / J'/r) terms to the Lagrangian (11) [6, 13]. These terms 
are non-local, similar to the hard thermal loops of hot QCD [14]. 

The result (10) shows that the amplitude for 11' -+  'Y'Y vanishes at the critical temperature. With 
non-zero quark current quark masses, this translates to a decrease of the effective coupling near Tc, 
with J" (Tc) � l/3J" .  Also, in the linear sigma model, if 11' -+  II is suppressed, rra -+ 'Y'Y is not [8]. 
This is because the mass insertion, ex: a0, is equivalent to the insertion of a a particle. 
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