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Abstract
Discussions of quantum mechanics often loosely claim that time evolution logically 
must be unitary, in order for the probabilistic interpretation of the amplitudes of the 
state vector to make sense at all times. We discuss from first principles whether this 
claim is true: if we assume only that the time-evolution operator is linear, then does 
the stronger requirement that it be unitary follow from the other axioms of quan-
tum mechanics? The answer is subtle. We discuss two mathematically distinct but 
physically equivalent formulations of the axioms of quantum mechanics, and con-
sider generalizing each to postulate only that time evolution is linear. Within one 
formulation, the unitarity of time evolution follows logically from the other axioms 
– but within the other formulation, it does not. Allowing the time-evolution opera-
tor to be (a priori) arbitrarily linear does not change the physical observables in one 
formulation of quantum mechanics, but changes the other formulation to a distinct 
(internally consistent) physical theory that allows new phenomenology like (e.g.) 
faster-than-light communication. Therefore, the unitarity of time evolution is argua-
bly better thought of as a logically independent and experimentally falsifiable axiom 
of quantum mechanics, not as a tautological consequence of the other axioms.

Keywords  Unitarity · Time evolution · Quantum mechanics · Normalization

1  Introduction

Discussions of quantum mechanics (QM) often claim that time evolution logically 
must be unitary in order to preserve total probability [1–3]. A more precise ver-
sion of this claim states that the basic rules of probability require that the norm of 
a quantum state vector must be preserved over time – so if we postulate only that 
time evolution is represented by a linear operator Û , then it must in fact be unitary, 
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because unitary operations are the only linear operators on an inner product space 
that preserve vector norms.1

This article attempts to clarify certain implicit assumptions behind this claim. We 
argue that there are two physically equivalent ways to formulate “textbook” quantum 
mechanics with unitary time evolution. Under one formulation, the unitarity of time 
evolution does follow naturally from the other postulates of QM and the assumption 
of linear time-evolution. But the other formulation permits a natural generalization 
of the time-evolution rule to allow non-unitary time evolution that is fully compat-
ible with the other postulates, but which is not allowed by textbook QM. Moreover, 
this generalized time-evolution rule is not just a different mathematical formalism 
for standard QM, but represents a genuinely different physical theory that allows for 
physical phenonema that are impossible under the axioms of standard QM. There-
fore, under the second formulation of QM, the question whether time evolution is 
unitary is directly experimentally testable.

(Of course, all real-world experimental evidence so far is fully compatible with 
the proposition that time evolution is indeed unitary. In this paper, we are not pro-
posing an alternative to standard QM as an actual theory of the real world; our cen-
tral argument is simply that the unitarity of time evolution does indeed need to be 
specified as an independent axiom of standard QM, which – at least under certain 
formulations of QM – is logically independent of the other axioms.)

The non-standard alternative version of QM mentioned above has been discussed 
before (in a somewhat different context) in Ref. [4] under the name of “manual nor-
malization.” Our goal is not to discuss its phenomenology in detail, but simply to 
clarify the conceptual points that (a) this theory allows for non-unitary time evolu-
tion even in the absence of any measurements, but (b) it is fully compatible with 
(certain formulations of) all of the axioms of standard QM other than the require-
ment of unitary time evolution. Therefore, this theory serves as a concrete counter-
example to the claim that the other axioms automatically imply that time evolution 
must be unitary.

We make the important caveat that we only consider the abstract version of QM 
that is often used in (e.g.) quantum information science, which allows for arbitrary 
unitary time evolution and does not explicitly postulate the Schrödinger equation 
[5]. The unitarity of time evolution does indeed follow automatically from the 
Schrödinger equation. But it does not (necessarily) follow automatically from the 
other axioms of QM (like the Born rule), as is sometimes claimed.

This paper assumes familiarity with the basic axioms of quantum mechanics, but 
no other background (except during one short optional discussion). The footnotes go 
into a bit more mathematical detail than the main text does, but are not necessary for 
conveying the main argument.

1  Throughout this paper, we assume the standard norm on an inner product space ‖�‖ ∶=
√
⟨���⟩ . 

Ref.  [4] considers other choices of norm for vectors in ℂn and finds that only the standard inner prod-
uct space 2-norm (and the 1-norm of classical probability theory, if we restrict ourselves to nonnegative 
entries) permit nontrivial norm-preserving linear maps.
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2 � Two Physically Equivalent Formulations of the Axioms of Quantum 
Mechanics

We will not attempt to be completely rigorous in our statement of the axioms of 
QM; in the usual tradition of physics, we will be just rigorous enough to get our 
point across, but no more.

We will follow the general axiom set laid out by Shankar [6], omitting details that 
will not be necessary for our argument. We will deliberately present them somewhat 
vaguely at first, and then refine them with more details below.

In order to avoid the many mathematical subtleties that arise from infinite-dimen-
sional Hilbert spaces, we will assume that all Hilbert spaces are finite-dimensional.

Moreover, in the main body of this article we will mostly follow Shankar’s 
approach and focus on the simple version of QM that Ref.  [4] whimsically refers 
to as “QM lite”. In “QM lite”, we only consider pure states and do not consider any 
mixed states or reduced density operators.2 In particular, we assume that the system 
of interest is isolated, so it remains pure at all times. We also do not consider the 
possibility of superselection rules. Accordingly, in this article we (mostly) do not 
consider multipartite systems, and we (mostly) ignore any tensor product structure 
that the Hilbert space may have. The only exception in the main body of this arti-
cle is a single paragraph in Sect. 3, where we consider a bipartite system in order 
to illustrate our results with a concrete example. In the appendix, we briefly touch 
on how the topics discussed in this paper generalize to the more complex cases of 
mixed states and multipartite systems; the appendix assumes somewhat more back-
ground in quantum information theory than the main body of this article does.

At a high level, the standard theory of QM – neglecting the subtleties mentioned 
above – can be derived from four basic axioms (with some clarifying details in the 
footnotes): 

1.	 The state of an isolated quantum system is (non-uniquely) represented by a vector 
��⟩ in a complex Hilbert space.3

2.	 Physical observables are represented by Hermitian operators on the Hilbert 
space.4

3.	 The rules for measurement: the possible outcomes of a measurement of a physical 
observable are the eigenvalues of the corresponding Hermitian operator Â . If a 
system is in state ��⟩ immediately before the measurement is performed, then the 
probability of observing each eigenvalue � is proportional to �⟨���⟩�2 , where ��⟩ 
is an eigenvector of Â with eigenvalue � . Immediately after the measurement is 

2  If you do not know what these terms mean, that is okay. If you understand the four axioms listed 
directly below, then most of this article should be accessible to you (except for the appendix).
3  “Non-uniquely represented” means that multiple state vectors in the Hilbert space correspond to the 
same physical state.
4  Some treatments, such as Shankar’s, include the canonical commutation relation 

[
X̂i, P̂j

]
= i� 𝛿ij Î as 

part of this axiom. But this commutation relation cannot be represented on the finite-dimensional Hilbert 
spaces that we are considering in this article, and we will not use it here.
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performed, the system’s state is the eigenvector ��⟩ corresponding to the observed 
eigenvalue.5

4.	 Absent an intervening measurement, time evolution from time ti to time tf  is given 
by a unitary operator Û(tf , ti) . That is, a state ��i⟩ at time ti gets mapped to the state 
�𝜓f ⟩ = Û(tf , ti)�𝜓i⟩ at time tf .6

We note that axiom #3, the rules for measurement, can be separated into two logi-
cally independent sub-axioms. The first sub-axiom is the Born rule for the prob-
abilities of measuring each eigenvalue � : P(�) ∝ �⟨���⟩�2 . The second sub-axiom is 
the “update rule”: that after the measurement, the state of the system changes to an 
eigenstate of the measured observable. In this article, we will be almost entirely con-
cerned with the first sub-axiom, the Born rule, and we will not discuss the update 
rule. We will think of time evolution as a single dynamical transition across some 
fixed time interval from an initial state to a final state – potentially immediately fol-
lowed by a single measurement – and we will not consider more complicated issues 
such as repeated measurements or infinitesimally short time evolution.

The axiom set given above is not quite precise enough to be operationally useful. 
For our purposes, we will need to consider two physically equivalent – but slightly 
formally different – variant formulations A and B.

2.1 � Formulation A

Variant A is the formulation that is perhaps more often taught in a first introduction 
to QM, since it is more convenient for concrete calculations: 

	1A.	 The state of an isolated quantum system is (non-uniquely) represented by a 
normalized unit vector ��⟩ in a complex Hilbert space.

	2A.	 [Same as #2.]
	3A.	 [Same as #3, except:] the probability P(�) of observing each eigenvalue � is 

 where ��⟩ is a unit eigenvector of Â.
	4A.	 [Same as #4.]

P(�) = �⟨���⟩�2,

5  If Â is degenerate, then we instead use P(𝜆) = ⟨𝜓�P̂𝜆�𝜓⟩ , where P̂𝜆 is the orthogonal projection opera-
tor onto the eigenspace of Â corresponding to the eigenvalue � . We ignore any interpretational questions 
about whether the measurement physically changes the system’s ontic state or only updates the experi-
menter’s epistemic description of the system.
6  A linear operator Û is unitary iff Û†Û = Î = ÛÛ† . For a finite-dimensional Hilbert space, either of 
those equalities automatically implies the other. The initial time ti and final time tf  are often left implicit, 
and the term “the time-evolution operator” is used to refer to the entire family of unitary operators 
Û(tf , ti) . If the time-evolution operator is time-translationally invariant, then the family of operators Û(Δt) 
parameterized by the time interval Δt ∶= tf − ti forms a one-parameter Lie group.



Foundations of Physics           (2025) 55:15 	 Page 5 of 13     15 

In this formulation, the physical state of a quantum system is only specified up to an 
arbitrary complex phase factor ei� , � ∈ [0, 2�) ; the state vectors ��⟩ and ei���⟩ cor-
respond to the same physical quantum state. Put another way: the physical state of 
the system is uniquely represented by an equivalence class of unit state vectors with 
respect to the equivalence relation

2.2 � Formulation B

Variant B is sometimes used in more theoretical contexts: 

	1B.	 The state of an isolated quantum system is (non-uniquely) represented by a 
nonzero vector ��⟩ in a complex Hilbert space.

	2B.	 [Same as #2.]
	3B.	 [Same as #3, except:] the probability P(�) of observing each eigenvalue � is 

	4B.	 [Same as #4.]

In this formulation, the physical state of a quantum system is only specified up to an 
arbitrary nonzero complex number z; the state vectors ��⟩ and z��⟩ correspond to 
the same physical quantum state. Put another way: the physical state of the system 
is uniquely represented by an equivalence class of state vectors with respect to the 
equivalence relation

For a given Hilbert space, the set of these equivalence classes is known as the cor-
responding projective Hilbert space.7

The equivalence classes described above are somewhat abstract and unintuitive. 
But they have the advantage that each possible physical state of a quantum system 
corresponds to a unique equivalence class, and the uniqueness of these represen-
tations is useful in many advanced theoretical applications. The projective Hilbert 
space formulation turns out to usually be more mathematically convenient than the 
equivalence classes defined within formulation A. So while formulation B may at 
first seem needlessly complicated, it is often used in mathematical physics [7].

(��⟩ ∼ ��⟩) iff
�
∃ � ∈ [0, 2�) such that ��⟩ = ei���⟩

�
.

P(�) =
⟨���⟩⟨���⟩
⟨���⟩⟨���⟩ .

(��⟩ ∼ ��⟩) iff (∃ z ∈ (ℂ⧵{0}) such that ��⟩ = z��⟩).

7  Confusingly, the elements of a projective Hilbert space are sometimes called points and sometimes 
rays – although either the term “line” or (in the complex case) “plane” might arguably be a better anal-
ogy, since each element of a projective Hilbert space is a one-dimensional subspace of the original Hil-
bert space that is isomorphic to the underlying field. Also confusingly, a projective Hilbert space is not 
itself a Hilbert space, or even a vector space; there is no way to add together different elements of a 
projective Hilbert space.
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2.3 � Equivalence of Formulations A and B

Formulations A and B are completely physically equivalent: the only difference is 
whether things get normalized before or after the inner product in the Born rule is 
taken. In formulation A, the state vector itself (and the observable eigenvectors) 
are normalized before any inner products are formed, so that the (norm-squared) 
inner products are already correctly normalized to sum to 1 and represent direct 
probabilities. In formulation B, the (norm-squared) inner products are what get 
normalized to actual probabilities. In particular, both formulations yield the same 
probabilities P(�) , which are the only quantities in QM that are physically measur-
able. These P(�) are guaranteed to lie in [0, 1] and to add up to 1 when summed 
over all possible observable values � , as must be the case by the definition of prob-
ability. Therefore, for standard QM, which formulation is more useful is largely a 
matter of taste (as well as a few practical or conceptual concerns mentioned above). 
But, as we discuss below, the two formulations admit physically distinct natural 
generalizations.

Of course, we cannot necessarily consistently mix together axioms between the 
two formulations. If we were to combine together axioms 1B and 3A, then we would 
get nonsensical “probabilities” that do not sum to 1 as required. But it turns out that 
we actually can consistently mix together axioms 1A and 3B, because if axiom 1A 
holds, then axiom 3B becomes equivalent to axiom 3A. The next section discusses 
in more detail which of the axioms above do or do not logically imply which (under 
which additional assumptions).

3 � Logical Implications Between Axioms and Possible Generalizations

Theorem  If we assume axioms 1A-3A, but we weaken axiom 4A to only postulate 
that: 

	4A’.	 Time evolution is given by a linear (but not a priori unitary) operator Û(tf , ti),

then axioms 1A-3A and 4A’ still imply that Û must be unitary.
This theorem is the rigorous version of the heuristic claim that “conservation of 
probability requires that time evolution be unitary.”

Proof  Postulate 1A says that only unit vectors ��⟩ are legitimate state vectors (in 
formulation A), which is necessary in order for rule 3A to always yield valid proba-
bilities that sum to 1. So any time-evolution operator Û must necessarily preserve 

the norm of all unit vectors: if ‖�‖ = 1 , then ���Û�𝜓⟩��� =

�
⟨𝜓�Û†Û�𝜓⟩ must equal 1 
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as well.8 But then it follows by linearity (axiom 4A’) that Û must preserve the norm 
of all vectors in the Hilbert space: if ��⟩ is any nonzero vector, then

Next, we use the result that Û preserves norms to show that it in fact preserves all 
inner products. The proof is almost identical to the derivation of the polarization 
identity for a complex inner product space, which uses the norm of an arbitrary vec-
tor in the space to derive the form of the space’s inner product [8]. Consider the 
generic vector sum ��⟩ + ��⟩:

Expanding out the sums, using ⟨𝛼�Û†Û�𝛼⟩ = ⟨𝛼�𝛼⟩ and ⟨𝛽�Û†Û�𝛽⟩ = ⟨𝛽�𝛽⟩ , and 
simplifying yields

Similar manipulations starting from the complex linear combination ��⟩ + i��⟩ give 
that Im

�
⟨𝛼�Û†Û�𝛽⟩

�
= Im

�
⟨𝛼�𝛽⟩

�
 , so

Since this identity holds for all vectors ��⟩ and ��⟩ in the Hilbert space, we have that 
Û†Û = Î . For a finite-dimensional Hilbert space, this implies that Û is unitary.

So we can weaken axiom 4A to axiom 4A’ without changing the resulting theory: 
formulations A and A’ are equivalent.

But the analogous proposition does not hold for formulation B. Suppose we con-
sidered weakening axiom 4B to an axiom 4B’ that is the same as 4A’; that is, we 
weaken the postulate that the time-evolution operator Û is unitary to merely require 
Û to be linear. Axiom 1B requires that state vectors be nonzero, so the time-evo-
lution operator Û cannot map a nonzero vector to 0, so Û must be invertible (for a 

�
⟨𝜙�
‖𝜙‖

�
Û†Û

�
�𝜙⟩
‖𝜙‖

�
= 1

⟨𝜙�Û†Û�𝜙⟩ = ‖𝜙‖2
���Û�𝜙⟩��� = ‖𝜙‖.

(⟨𝛼� + ⟨𝛽�)Û†Û(�𝛼⟩ + �𝛽⟩) = (⟨𝛼� + ⟨𝛽�)(�𝛼⟩ + �𝛽⟩).

Re
�
⟨𝛼�Û†Û�𝛽⟩

�
= Re

�
⟨𝛼�𝛽⟩

�
.

⟨𝛼�Û†Û�𝛽⟩ = ⟨𝛼�𝛽⟩.

8  We assume on physical grounds that time evolution must map a valid physical state to a valid physical 
state; states cannot “self-destruct” in finite time. 
  We are making an additional implicit assumption here. The argument presented here only applies to 
physical states. Postulate 1A only says that all physical states are represented by unit vectors in the Hilbert 
space. Here, we are implictly assuming that the converse holds as well: that all unit vectors in the Hilbert 
space represent a valid physical state. Strictly speaking, we only prove here that Û must preserve the norm 
of all physical unit vectors in the Hilbert space. (We thank the reviewer for pointing out this subtlety.) We 
note to expert readers that in situations involving quantum gauge theories, superselection rules, etc., it is 
not obvious that all unit vectors in the Hilbert space do indeed necessarily represent physical states. But, 
as discussed in Sect. 2, we do not focus on these more complicated situations in this article.
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finite-dimensional Hilbert space).9 But other than that, its form is not logically con-
strained by the generalized axioms 1B-4B’.

The generalized axiom set B’ allows a state vector’s norm to change over time. 
Does this possibility have physically observable consequences? That is, can axiom 
set B’ produce measurement probability distributions {P(�)} that are not possible 
within the standard axiom set B? The answer is an emphatic yes.

Ref. [4] briefly discusses the physical theory (which it refers to as global manual 
normalization10) described by this generalized axiom set B’. The author points out 
that this generalized theory has physical consequences that are very different from 
those of standard quantum mechanics. In particular, it allows entanglement to be 
used for faster-than-light communication!

To see how, consider two physically separated qubits initially in the entangled 
Bell state ��i⟩ = �00⟩ + �11⟩.11 The reduced density matrix for Bob’s qubit (listed 
second) is the maximally mixed state 𝜌̂

B
= Î , and Bob initially has an equal prob-

ability 1/2 of measuring his qubit to have either value 0 or 1. If Alice wants to trans-
mit a 0 bit to Bob, then she can apply the non-unitary qubit gate

to her qubit, where 0 < 𝜖 ≪ 1 . The global state becomes ��f ⟩ = �00⟩ + ��11⟩ , which 
has a different norm from ��i⟩ . Bob’s reduced density matrix is now

and Bob’s new normalized measurement probabilities are 
{P(0) = 1∕(1 + �2), P(1) = �2∕(1 + �2)} , so Bob is almost guaranteed to meas-
ure his qubit to have the transmitted value 0.12 Similarly, Alice could have chosen 
to apply a different non-unitary gate to her qubit in order to transmit the bit 1. By 

(
1 0

0 �

)

(1)𝜌̂B =

(
1 0

0 𝜖2

)
,

9  We again make the physical assumption that time evolution must map a valid physical state to a valid 
physical state.
  In full generality, a linear operator Û does not map any nonzero vector to 0 iff its kernel is trivial iff Û 
is injective. Physically, this means that two different initial states cannot evolve to the same final state, 
so time evolution must be reversible. For a finite-dimensional vector space, this implies that Û must be 
invertible. But for an infinite-dimensional vector space, an injective linear operator might not be surjec-
tive, and therefore not invertible. There can be states that cannot be “reached” via time evolution from 
any previous state.
  Returning to the finite-dimensional case: in this generalized theory, the set of possible time-evolution 
operators is expanded from the N2-dimensional unitary Lie group U(N) to the larger 2N2-dimensional Lie 
group GL(N,ℂ) , where N is the dimension of the Hilbert space.
10  Strictly speaking, Ref.  [4] only refers to this theory as “manual normalization”, but it contrasts this 
theory with another variant that it refers to as “local manual normalization”. In this paper, we use the 
term “global manual normalization” to distinguish the theory from local manual normalization.
11  This paragraph (alone in the main text of this article) assumes some background in quantum informa-
tion theory. See the appendix for some additional details that we gloss over in this discussion.
12  Interestingly, Alice still cannot use entanglement to communicate completely deterministically within 
this protocol, because � = 0 would make U singular and annihilate the �1⟩A state – although she can make 
the probability of transmission error arbitrarily small.
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contrast, the no-communication theorem gives that if Alice can only apply unitary 
operators to her qubit, as in axiom 4B, then she cannot use entanglement to change 
Bob’s reduced density matrix at all, nor any of his measurement probabilities.

Ref. [4] also gives a (much more complicated) proof that a hypothetical quantum 
computer that operated under the generalized axioms B’ would be able to solve all 
problems in the complexity class PP in polynomial time. The complexity class PP 
is believed to contain a much larger and more difficult set of problems than does 
the complexity class BQP of problems solvable by a standard quantum computer in 
polynomial time.13

Is it possible to formulate this non-standard physical theory (global manual 
normalization) in a way that “looks similar” to the more familiar formulation A? 
We have already shown that this theory is not fully compatible with formulation 
A (which is simply standard QM), but we can formulate global manual normaliza-
tion in a way that is compatible with axioms 1A-3A at the cost of slightly modify-
ing axiom 4A. In this reformulation, we are not allowed to wait to normalize until 
a measurement is made; postulate 1A requires that the state vector be normalized 
at all times. So if a time-evolution process looks like �𝜓⟩ → Û�𝜓⟩ within formula-
tion B (where Û is not necessarily unitary), then in order to respect axiom 1A in the 
other formulation, after applying Û we must additionally “manually” rescale the out-
put back to a unit vector. This composed time-evolution map – the modification of 
axiom 4A that describes the theory of global manual normalizaion – takes the form

which is nonlinear because the scalar prefactor depends on the input state ��i⟩ 
(unless Û†Û is proportional to the identity). This perspective makes it clear why 
global manual normalization leads to very different phenomenology than standard 
QM does.

Interestingly, global manual normalization does reproduce standard QM if the 
time-evolution operator is proportional to a unitary operator, even if the (nonzero) 
proportionality constant does not equal 1. Such an operator can be thought of as uni-
formly dilating the entire Hilbert space. This suggests that the fundamental charac-
teristic of time evolution in QM may be best thought of not as preserving norms per 
se, but instead as preserving relative norms or angles between states.

Of course, we could also consider other “intermediately strong” generalizations 
of axiom 4B, in which we allow some non-unitary time-evolution operators, but not 
the full set of invertible operators. Such theories could perhaps be made compatible 
with existing experimental results, but they would probably need to be quite convo-
luted and unnatural.

�𝜓i⟩ → �𝜓f ⟩ =
1�

⟨𝜓i�Û†Û�𝜓i⟩
Û�𝜓i⟩,

13  PP is also believed to contain a larger and more difficult set of problems than the more famous com-
plexity class NP.
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4 � Conclusion

This article attempted to address the question of whether the basic mathematical 
rules of probability alone require that time evolution in quantum mechanics be uni-
tary. The answer turns out to be rather subtle.

We developed two physically equivalent versions of the basic axioms of QM, 
which each postulate that time evolution is unitary. But while these two formulations 
are physically equivalent, they naturally generalize in different ways to two theories 
that turn out to be physically distinct. In particular, in one formulation (axiom set 
A), the postulate of unitary time evolution is indeed unnecessary; the unitarity of 
time evolution follows logically from the assumption of linearity only (and the other 
axioms). But in the other formulation (axiom set B), the postulate of unitary time 
evolution is essential. If we weaken that axiom to only postulate linear time evolu-
tion, then we end up with a new physical theory that is completely logically self-
consistent, but which makes very different experimental predictions than standard 
QM does.

Of course, all the experimental evidence collected so far supports the hypothesis 
that time evolution is indeed unitary and is given by the Schrödinger equation. But, 
contrary to what is sometimes loosely implied, this hypothesis of unitarity is exper-
imentally falsifiable, and is not merely a tautological claim that follows from the 
basic rules of probability and from every formulation of the other axioms of QM.

Appendix

In this appendix, we briefly extend the discussion in the main text to discuss mixed 
states, multipartite systems, and reduced density matrices. (Unlike in the main text, 
in this appendix we assume that the reader is familiar with these more advanced 
concepts in quantum mechanics.) This is a much more complicated subject than the 
“QM lite” covered in the main text, so we will not go into depth but will only briefly 
touch on how this situation differs from the simpler situation considered in the main 
text.

In textbook QM, mixed states are postulated to be represented by a density opera-
tor 𝜌̂ : a positive-semidefinite (trace-class) Hermitian operator on the Hilbert space 
that is typically defined to be normalized to have trace 1. This postulate generalizes 
formulation A discussed in the main text to the case of mixed states. Any physical 
observable is represented by a self-adjoint operator Â , and the expectation value of 
the observable for the state 𝜌̂ is postulated to equal ⟨Â⟩ = Tr (𝜌̂Â) . This postulate 
generalizes the postulate 3A discussed in the main text.

Just as in the case of pure states, we can decide whether to formulate the nor-
malization requirements for mixed states as applying either before or at the point of 
measurement. Instead of the standard normalization conventions stated above (the 
generalization of formulation A), we can instead generalize formulation B to a set 
of postulates in which the density operator is trace-class and positive semidefinite, 
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but its trace is unconstrained (within the definition), and the expectation value of an 
observable A is postulated to equal ⟨Â⟩ = Tr (𝜌̂Â)∕Tr (𝜌̂).

Just as discussed in Sect. 2.3, this alternate formulation is completely physically 
equivalent to the standard textbook formulation; we are simply “moving” the math-
ematical requirement that probabilities sum to 1 from the normalization of 𝜌̂ to the 
formula for extracting experimental probabilities.

But a new wrinkle arises in the case of mixed states. A mixed state 𝜌̂ on a Hilbert 
space HA is often (either implicitly or explicitly) assumed to be a reduced density 
matrix Tr B(��⟩⟨��) that results from taking the partial trace of a pure state14 ��⟩⟨�� 
in a larger Hilbert space HA ⊗HB . Sometimes, the “auxiliary” Hilbert space HB is 
considered to represent the physical environment around the system, whose detailed 
state is not of experimental interest; other times, HB is simply thought of as a formal 
Hilbert space used to mathematically “purify” the mixed state 𝜌̂ to a formal pure 
state in a larger Hilbert space, which can sometimes be a convenient mathematical 
technique for certain theoretical analyses. Under the relation 𝜌̂ = Tr B(�𝜓⟩⟨𝜓�) , the 
density operator is normalized (i.e. Tr (𝜌̂) = 1 ) iff the “larger” pure state is normal-
ized (i.e. ‖�‖ = 1).

In the context of reduced density matrices, there are three natural choices of 
where to impose the normalization requirement: “before”, “while”, or “after” taking 
the partial trace. More precisely, we have three choices of physically equivalent sets 
of formulas: 

1.	 As in the standard textbook formulation (the equivalent of formulation A in the 
main text), we can require that the “larger” pure state ��⟩ be normalized. In this 
case, the relation 𝜌̂ = Tr B(�𝜓⟩⟨𝜓�) implies that the reduced density operator 𝜌̂ is 
normalized as well.

2.	 We can allow the “larger” pure state to have arbitrary norm, but modify the rela-
tion between the pure state and the reduced density operator to 

 In this case we still automatically have Tr (𝜌̂) = 1 , so we can still consistently 
take the expectation value of an observable Â on HA to equal ⟨Â⟩ = Tr (𝜌̂Â).

3.	 We can allow the “larger” pure state to have arbitrary norm and keep the usual 
relation 𝜌̂ = Tr B(�𝜓⟩⟨𝜓�) between the pure state ��⟩ and the reduced density 
operator 𝜌̂ . In this case, the reduced density operator will generically not be 
normalized ( Tr (𝜌̂) ≠ 1 ). In order to be mathematically well-defined, we need to 
impose the normalization requirement at the point of taking expectation values 
of observables for the reduced system: similarly to the formulation B discussed 

𝜌̂ =
Tr B(�𝜓⟩⟨𝜓�)

‖𝜓‖2
.

14  For conciseness, we will use the term “pure state” to refer to either (a) the abstract physical state 
itself, (b) the vector representation ��⟩ , or (c) the rank-1 operator representation ��⟩⟨�� , depending on 
the context.
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in the main text, we must define the expectation value of the obervable A on HA 
to equal ⟨Â⟩ = Tr (𝜌̂Â)∕Tr (𝜌̂).

In some sense, we can think of the new case #2 as being “intermediate” between 
formulations A and B in the main text.

As long as the global pure state ��⟩⟨�� evolves unitarily, all three of these formu-
lations are physically equivalent to standard QM. But we see that the situation gets 
rather complicated if we generalize standard QM to allow for the global pure state 
��⟩ to evolve according to an arbitrary linear operator Û ; in that case, these three for-
mulations might generalize in several different inequivalent ways.15

In the example with Alice and Bob that we discussed in the main text, we implic-
itly chose to generalize choice #3 above: note that after Alice applies her non-uni-
tary operation to her qubit, the global state ��f ⟩ of the entangled pair of qubits is no 
longer normalized to its previous norm, nor is Bob’s reduced density matrix (1). We 
see that even in this very simple case where the global time-evolution operator Û 
happens to factorize into a tensor product Û = ÛA ⊗ ÎB that only acts on subsystem 
A, if Û is non-unitary then subsystem B can still experience nontrivial dynamics that 
“survive” the partial trace over subsystem A.16 This fact is what leads to the viola-
tion of the no-signaling theorem, which hinges critically on the assumption that the 
global time-evolution operator is unitary.
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