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Abstract

Discussions of quantum mechanics often loosely claim that time evolution logically
must be unitary, in order for the probabilistic interpretation of the amplitudes of the
state vector to make sense at all times. We discuss from first principles whether this
claim is true: if we assume only that the time-evolution operator is linear, then does
the stronger requirement that it be unitary follow from the other axioms of quan-
tum mechanics? The answer is subtle. We discuss two mathematically distinct but
physically equivalent formulations of the axioms of quantum mechanics, and con-
sider generalizing each to postulate only that time evolution is linear. Within one
formulation, the unitarity of time evolution follows logically from the other axioms
— but within the other formulation, it does not. Allowing the time-evolution opera-
tor to be (a priori) arbitrarily linear does not change the physical observables in one
formulation of quantum mechanics, but changes the other formulation to a distinct
(internally consistent) physical theory that allows new phenomenology like (e.g.)
faster-than-light communication. Therefore, the unitarity of time evolution is argua-
bly better thought of as a logically independent and experimentally falsifiable axiom
of quantum mechanics, not as a tautological consequence of the other axioms.
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1 Introduction

Discussions of quantum mechanics (QM) often claim that time evolution logically
must be unitary in order to preserve total probability [1-3]. A more precise ver-
sion of this claim states that the basic rules of probability require that the norm of
a quantum state vector must be preserved over time — so if we postulate only that
time evolution is represented by a linear operator U, then it must in fact be unitary,
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because unitary operations are the only linear operators on an inner product space
that preserve vector norms.

This article attempts to clarify certain implicit assumptions behind this claim. We
argue that there are two physically equivalent ways to formulate “textbook” quantum
mechanics with unitary time evolution. Under one formulation, the unitarity of time
evolution does follow naturally from the other postulates of QM and the assumption
of linear time-evolution. But the other formulation permits a natural generalization
of the time-evolution rule to allow non-unitary time evolution that is fully compat-
ible with the other postulates, but which is not allowed by textbook QM. Moreover,
this generalized time-evolution rule is not just a different mathematical formalism
for standard QM, but represents a genuinely different physical theory that allows for
physical phenonema that are impossible under the axioms of standard QM. There-
fore, under the second formulation of QM, the question whether time evolution is
unitary is directly experimentally testable.

(Of course, all real-world experimental evidence so far is fully compatible with
the proposition that time evolution is indeed unitary. In this paper, we are not pro-
posing an alternative to standard QM as an actual theory of the real world; our cen-
tral argument is simply that the unitarity of time evolution does indeed need to be
specified as an independent axiom of standard QM, which — at least under certain
formulations of QM - is logically independent of the other axioms.)

The non-standard alternative version of QM mentioned above has been discussed
before (in a somewhat different context) in Ref. [4] under the name of “manual nor-
malization.” Our goal is not to discuss its phenomenology in detail, but simply to
clarify the conceptual points that (a) this theory allows for non-unitary time evolu-
tion even in the absence of any measurements, but (b) it is fully compatible with
(certain formulations of) all of the axioms of standard QM other than the require-
ment of unitary time evolution. Therefore, this theory serves as a concrete counter-
example to the claim that the other axioms automatically imply that time evolution
must be unitary.

We make the important caveat that we only consider the abstract version of QM
that is often used in (e.g.) quantum information science, which allows for arbitrary
unitary time evolution and does not explicitly postulate the Schrodinger equation
[5]. The unitarity of time evolution does indeed follow automatically from the
Schrodinger equation. But it does not (necessarily) follow automatically from the
other axioms of QM (like the Born rule), as is sometimes claimed.

This paper assumes familiarity with the basic axioms of quantum mechanics, but
no other background (except during one short optional discussion). The footnotes go
into a bit more mathematical detail than the main text does, but are not necessary for
conveying the main argument.

! Throughout this paper, we assume the standard norm on an inner product space ||y|| := \/(w|w).
Ref. [4] considers other choices of norm for vectors in C" and finds that only the standard inner prod-
uct space 2-norm (and the 1-norm of classical probability theory, if we restrict ourselves to nonnegative
entries) permit nontrivial norm-preserving linear maps.
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2 Two Physically Equivalent Formulations of the Axioms of Quantum
Mechanics

We will not attempt to be completely rigorous in our statement of the axioms of
QM; in the usual tradition of physics, we will be just rigorous enough to get our
point across, but no more.

We will follow the general axiom set laid out by Shankar [6], omitting details that
will not be necessary for our argument. We will deliberately present them somewhat
vaguely at first, and then refine them with more details below.

In order to avoid the many mathematical subtleties that arise from infinite-dimen-
sional Hilbert spaces, we will assume that all Hilbert spaces are finite-dimensional.

Moreover, in the main body of this article we will mostly follow Shankar’s
approach and focus on the simple version of QM that Ref. [4] whimsically refers
to as “QM lite”. In “QM lite”, we only consider pure states and do not consider any
mixed states or reduced density operators.” In particular, we assume that the system
of interest is isolated, so it remains pure at all times. We also do not consider the
possibility of superselection rules. Accordingly, in this article we (mostly) do not
consider multipartite systems, and we (mostly) ignore any tensor product structure
that the Hilbert space may have. The only exception in the main body of this arti-
cle is a single paragraph in Sect. 3, where we consider a bipartite system in order
to illustrate our results with a concrete example. In the appendix, we briefly touch
on how the topics discussed in this paper generalize to the more complex cases of
mixed states and multipartite systems; the appendix assumes somewhat more back-
ground in quantum information theory than the main body of this article does.

At a high level, the standard theory of QM — neglecting the subtleties mentioned
above — can be derived from four basic axioms (with some clarifying details in the
footnotes):

1. The state of an isolated quantum system is (non-uniquely) represented by a vector
ly) in a complex Hilbert space.’

2. Physical observables are represented by Hermitian operators on the Hilbert
space.?

3. The rules for measurement: the possible outcomes of a measurement of a physical
observable are the eigenvalues of the corresponding Hermitian operator A. If a
system is in state |y ) immediately before the measurement is performed, then the
probability of observing each eigenvalue A is proportional to [{A|y)|?, where | 1)
is an eigenvector of A with eigenvalue A. Inmediately after the measurement is

2 If you do not know what these terms mean, that is okay. If you understand the four axioms listed
directly below, then most of this article should be accessible to you (except for the appendix).

3 “Non-uniquely represented” means that multiple state vectors in the Hilbert space correspond to the
same physical state.

4 Some treatments, such as Shankar’s, include the canonical commutation relation [)A(,-,P,-] =ih 6,_-7-7 as
part of this axiom. But this commutation relation cannot be represented on the finite-dimensional Hilbert
spaces that we are considering in this article, and we will not use it here.

@ Springer



15 Page 4 of 13 Foundations of Physics (2025) 55:15

performed, the system’s state is the eigenvector | 1) corresponding to the observed
eigenvalue.’
4. Absent an intervening measurement, time evolution from time £, to time I is given

by a unitary operator U/ (t;,1,). That is, a state [y; ) at time 7; gets mapped to the state
|‘I/f> = U(y, 1)ly;) at time t_f"()

We note that axiom #3, the rules for measurement, can be separated into two logi-
cally independent sub-axioms. The first sub-axiom is the Born rule for the prob-
abilities of measuring each eigenvalue A: P(A)  |{A|y)|?. The second sub-axiom is
the “update rule”: that after the measurement, the state of the system changes to an
eigenstate of the measured observable. In this article, we will be almost entirely con-
cerned with the first sub-axiom, the Born rule, and we will not discuss the update
rule. We will think of time evolution as a single dynamical transition across some
fixed time interval from an initial state to a final state — potentially immediately fol-
lowed by a single measurement — and we will not consider more complicated issues
such as repeated measurements or infinitesimally short time evolution.

The axiom set given above is not quite precise enough to be operationally useful.
For our purposes, we will need to consider two physically equivalent — but slightly
formally different — variant formulations A and B.

2.1 Formulation A

Variant A is the formulation that is perhaps more often taught in a first introduction
to QM, since it is more convenient for concrete calculations:

1A. The state of an isolated quantum system is (non-uniquely) represented by a
normalized unit vector |y) in a complex Hilbert space.

2A. [Same as #2.]

3A. [Same as #3, except:] the probability P(4) of observing each eigenvalue 4 is

P() = [(Alw)I%,

where | 1) is a unit eigenvector of A.
4A. [Same as #4.]

3 If A is degenerate, then we instead use P(4) = (y|P 2 lw), where P , is the orthogonal projection opera-
tor onto the eigenspace of A corresponding to the eigenvalue 4. We ignore any interpretational questions
about whether the measurement physically changes the system’s ontic state or only updates the experi-
menter’s epistemic description of the system.

6 A linear operator U/ is unitary iff U0/ =1 = U0. For a finite-dimensional Hilbert space, either of
those equalities automatically implies the other. The initial time #; and final time # are often left implicit,
and the term “the time-evolution operator” is used to refer to the entire family of unitary operators
U (7, 1;). If the time-evolution operator is time-translationally invariant, then the family of operators U(An
parameterized by the time interval At := t, — ¢, forms a one-parameter Lie group.
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In this formulation, the physical state of a quantum system is only specified up to an
arbitrary complex phase factor €, 6 € [0,2x); the state vectors |y ) and e |y) cor-
respond to the same physical quantum state. Put another way: the physical state of
the system is uniquely represented by an equivalence class of unit state vectors with
respect to the equivalence relation

(ly) ~ |¢)) iff (36 € [0,27) such that [y) = €”|¢p)).

2.2 Formulation B
Variant B is sometimes used in more theoretical contexts:

1B. The state of an isolated quantum system is (non-uniquely) represented by a
nonzero vector |y ) in a complex Hilbert space.

2B. [Same as #2.]

3B. [Same as #3, except:] the probability P(4) of observing each eigenvalue 4 is

_ (v Aly)

PO = vy

4B. [Same as #4.]

In this formulation, the physical state of a quantum system is only specified up to an
arbitrary nonzero complex number z; the state vectors |y) and z|y) correspond to
the same physical quantum state. Put another way: the physical state of the system
is uniquely represented by an equivalence class of state vectors with respect to the
equivalence relation

(Iw) ~ 1)) iff (3z € (C\{0}) such that |y) = z[¢h)).

For a given Hilbert space, the set of these equivalence classes is known as the cor-
responding projective Hilbert space.’

The equivalence classes described above are somewhat abstract and unintuitive.
But they have the advantage that each possible physical state of a quantum system
corresponds to a unique equivalence class, and the uniqueness of these represen-
tations is useful in many advanced theoretical applications. The projective Hilbert
space formulation turns out to usually be more mathematically convenient than the
equivalence classes defined within formulation A. So while formulation B may at
first seem needlessly complicated, it is often used in mathematical physics [7].

7 Confusingly, the elements of a projective Hilbert space are sometimes called points and sometimes
rays — although either the term “line” or (in the complex case) “plane” might arguably be a better anal-
ogy, since each element of a projective Hilbert space is a one-dimensional subspace of the original Hil-
bert space that is isomorphic to the underlying field. Also confusingly, a projective Hilbert space is not
itself a Hilbert space, or even a vector space; there is no way to add together different elements of a
projective Hilbert space.

@ Springer



15 Page 6 of 13 Foundations of Physics (2025) 55:15

2.3 Equivalence of Formulations A and B

Formulations A and B are completely physically equivalent: the only difference is
whether things get normalized before or after the inner product in the Born rule is
taken. In formulation A, the state vector itself (and the observable eigenvectors)
are normalized before any inner products are formed, so that the (norm-squared)
inner products are already correctly normalized to sum to 1 and represent direct
probabilities. In formulation B, the (norm-squared) inner products are what get
normalized to actual probabilities. In particular, both formulations yield the same
probabilities P(4), which are the only quantities in QM that are physically measur-
able. These P(A) are guaranteed to lie in [0, 1] and to add up to 1 when summed
over all possible observable values A, as must be the case by the definition of prob-
ability. Therefore, for standard QM, which formulation is more useful is largely a
matter of taste (as well as a few practical or conceptual concerns mentioned above).
But, as we discuss below, the two formulations admit physically distinct natural
generalizations.

Of course, we cannot necessarily consistently mix together axioms between the
two formulations. If we were to combine together axioms 1B and 3A, then we would
get nonsensical “probabilities” that do not sum to 1 as required. But it turns out that
we actually can consistently mix together axioms 1A and 3B, because if axiom 1A
holds, then axiom 3B becomes equivalent to axiom 3A. The next section discusses
in more detail which of the axioms above do or do not logically imply which (under
which additional assumptions).

3 Logical Implications Between Axioms and Possible Generalizations

Theorem If we assume axioms 1A-3A, but we weaken axiom 4A to only postulate
that:

4A’. Time evolution is given by a linear (but not a priori unitary) operator [/ (7, 1),

then axioms 1A-3A and 4A’ still imply that / must be unitary.
This theorem is the rigorous version of the heuristic claim that “conservation of
probability requires that time evolution be unitary.”

Proof Postulate 1A says that only unit vectors |y ) are legitimate state vectors (in
formulation A), which is necessary in order for rule 3A to always yield valid proba-
bilities that sum to 1. So any time-evolution operator U must necessarily preserve

the norm of all unit vectors: if [|[y|| = 1, then ”Ulw)” =14/ (wIU*lA]h//) must equal 1
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as well.® But then it follows by linearity (axiom 4A’) that I/ must preserve the norm
of all vectors in the Hilbert space: if |¢) is any nonzero vector, then

{9l ATA<M>=
<||¢||>UU lon) =
(BIUTU19) = Il
|01 = 1

Next, we use the result that U/ preserves norms to show that it in fact preserves ail
inner products. The proof is almost identical to the derivation of the polarization
identity for a complex inner product space, which uses the norm of an arbitrary vec-
tor in the space to derive the form of the space’s inner product [8]. Consider the
generic vector sum |a) + |f):

al +(BDUTT(a) + |B)) = Cal + (BD(la) + |8)).

Expanding out the sums, using {(a|UTU|a) = (a|a) and (B|UTU|p) = (B|p), and
simplifying yields

Re [(a|UTU|8)] = Re [(a]B)].

Similar manipulations starting from the complex linear combination |a) + i|f) give
that Im [(a| U"U|)] = Im [(a|B)]. so

(a|UT018) = (alp).

Since this identity holds for all vectors |a) and |#) in the Hilbert space, we have that
U0 = 1. For a finite-dimensional Hilbert space, this implies that / is unitary.

So we can weaken axiom 4A to axiom 4A’ without changing the resulting theory:
formulations A and A’ are equivalent.

But the analogous proposition does not hold for formulation B. Suppose we con-
sidered weakening axiom 4B to an axiom 4B’ that is the same as 4A’; that is, we
weaken the postulate that the time-evolution operator U/ is unitary to merely require
U to be linear. Axiom 1B requires that state vectors be nonzero, so the time-evo-
lution operator {/ cannot map a nonzero vector to 0, so {/ must be invertible (for a

8 We assume on physical grounds that time evolution must map a valid physical state to a valid physical
state; states cannot “self-destruct” in finite time.

We are making an additional implicit assumption here. The argument presented here only applies to
physical states. Postulate 1A only says that all physical states are represented by unit vectors in the Hilbert
space. Here, we are implictly assuming that the converse holds as well: that all unit vectors in the Hilbert
space represent a valid physical state. Strictly speaking, we only prove here that {/ must preserve the norm
of all physical unit vectors in the Hilbert space. (We thank the reviewer for pointing out this subtlety.) We
note to expert readers that in situations involving quantum gauge theories, superselection rules, etc., it is
not obvious that all unit vectors in the Hilbert space do indeed necessarily represent physical states. But,
as discussed in Sect. 2, we do not focus on these more complicated situations in this article.
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finite-dimensional Hilbert space).” But other than that, its form is not logically con-
strained by the generalized axioms 1B-4B’.

The generalized axiom set B’ allows a state vector’s norm to change over time.
Does this possibility have physically observable consequences? That is, can axiom
set B’ produce measurement probability distributions {P(4)} that are not possible
within the standard axiom set B? The answer is an emphatic yes.

Ref. [4] briefly discusses the physical theory (which it refers to as global manual
normalization'®) described by this generalized axiom set B’. The author points out
that this generalized theory has physical consequences that are very different from
those of standard quantum mechanics. In particular, it allows entanglement to be
used for faster-than-light communication!

To see how, consider two physically separated qubits initially in the entangled
Bell state |y;) = [00) + [11)."! The reduced density matrix for Bob’s qubit (listed
second) is the maximally mixed state j, = 1, and Bob initially has an equal prob-
ability 1/2 of measuring his qubit to have either value 0 or 1. If Alice wants to trans-
mit a 0 bit to Bob, then she can apply the non-unitary qubit gate

(6)

to her qubit, where 0 < ¢ < 1. The global state becomes |y;) = |00) + €|11), which
has a different norm from |y;). Bob’s reduced density matrix is now

A 10
p3=<0€2>, )

and Bob’s new normalized measurement probabilities are
{(P0)=1/(1 +€?), P(1) =€?/(1 4+ €?)}, so Bob is almost guaranteed to meas-
ure his qubit to have the transmitted value 0.2 Similarly, Alice could have chosen
to apply a different non-unitary gate to her qubit in order to transmit the bit 1. By

 We again make the physical assumption that time evolution must map a valid physical state to a valid
physical state.

In full generality, a linear operator {/ does not map any nonzero vector to 0 iff its kernel is trivial iff {7
is injective. Physically, this means that two different initial states cannot evolve to the same final state,
so time evolution must be reversible. For a finite-dimensional vector space, this implies that / must be
invertible. But for an infinite-dimensional vector space, an injective linear operator might not be surjec-
tive, and therefore not invertible. There can be states that cannot be “reached” via time evolution from
any previous state.

Returning to the finite-dimensional case: in this generalized theory, the set of possible time-evolution
operators is expanded from the N2-dimensional unitary Lie group U(N) to the larger 2N>-dimensional Lie
group GL(N, C), where N is the dimension of the Hilbert space.

10 Strictly speaking, Ref. [4] only refers to this theory as “manual normalization”, but it contrasts this
theory with another variant that it refers to as “local manual normalization”. In this paper, we use the
term “global manual normalization” to distinguish the theory from local manual normalization.

"' This paragraph (alone in the main text of this article) assumes some background in quantum informa-
tion theory. See the appendix for some additional details that we gloss over in this discussion.

12 Interestingly, Alice still cannot use entanglement to communicate completely deterministically within
this protocol, because ¢ = 0 would make U singular and annihilate the | 1), state — although she can make
the probability of transmission error arbitrarily small.
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contrast, the no-communication theorem gives that if Alice can only apply unitary
operators to her qubit, as in axiom 4B, then she cannot use entanglement to change
Bob’s reduced density matrix at all, nor any of his measurement probabilities.

Ref. [4] also gives a (much more complicated) proof that a hypothetical quantum
computer that operated under the generalized axioms B’ would be able to solve all
problems in the complexity class PP in polynomial time. The complexity class PP
is believed to contain a much larger and more difficult set of problems than does
the complexity class BQP of problems solvable by a standard quantum computer in
polynomial time.!?

Is it possible to formulate this non-standard physical theory (global manual
normalization) in a way that “looks similar” to the more familiar formulation A?
We have already shown that this theory is not fully compatible with formulation
A (which is simply standard QM), but we can formulate global manual normaliza-
tion in a way that is compatible with axioms 1A-3A at the cost of slightly modify-
ing axiom 4A. In this reformulation, we are not allowed to wait to normalize until
a measurement is made; postulate 1A requires that the state vector be normalized
at all times. So if a time-evolution process looks like |y) — U |w) within formula-
tion B (where U is not necessarily unitary), then in order to respect axiom 1A in the
other formulation, after applying &/ we must additionally “manually” rescale the out-
put back to a unit vector. This composed time-evolution map — the modification of
axiom 4A that describes the theory of global manual normalizaion — takes the form

1

V <Wi|fﬁ0|ll/i>

which is nonlinear because the scalar prefactor depends on the input state |y;)
(unless U U is proportional to the identity). This perspective makes it clear why
global manual normalization leads to very different phenomenology than standard
QM does.

Interestingly, global manual normalization does reproduce standard QM if the
time-evolution operator is proportional to a unitary operator, even if the (nonzero)
proportionality constant does not equal 1. Such an operator can be thought of as uni-
formly dilating the entire Hilbert space. This suggests that the fundamental charac-
teristic of time evolution in QM may be best thought of not as preserving norms per
se, but instead as preserving relative norms or angles between states.

Of course, we could also consider other “intermediately strong” generalizations
of axiom 4B, in which we allow some non-unitary time-evolution operators, but not
the full set of invertible operators. Such theories could perhaps be made compatible
with existing experimental results, but they would probably need to be quite convo-
luted and unnatural.

lw;) = lwp) = Ulw,).

13 PP is also believed to contain a larger and more difficult set of problems than the more famous com-
plexity class NP.
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4 Conclusion

This article attempted to address the question of whether the basic mathematical
rules of probability alone require that time evolution in quantum mechanics be uni-
tary. The answer turns out to be rather subtle.

We developed two physically equivalent versions of the basic axioms of QM,
which each postulate that time evolution is unitary. But while these two formulations
are physically equivalent, they naturally generalize in different ways to two theories
that turn out to be physically distinct. In particular, in one formulation (axiom set
A), the postulate of unitary time evolution is indeed unnecessary; the unitarity of
time evolution follows logically from the assumption of /inearity only (and the other
axioms). But in the other formulation (axiom set B), the postulate of unitary time
evolution is essential. If we weaken that axiom to only postulate linear time evolu-
tion, then we end up with a new physical theory that is completely logically self-
consistent, but which makes very different experimental predictions than standard
QM does.

Of course, all the experimental evidence collected so far supports the hypothesis
that time evolution is indeed unitary and is given by the Schrodinger equation. But,
contrary to what is sometimes loosely implied, this hypothesis of unitarity is exper-
imentally falsifiable, and is not merely a tautological claim that follows from the
basic rules of probability and from every formulation of the other axioms of QM.

Appendix

In this appendix, we briefly extend the discussion in the main text to discuss mixed
states, multipartite systems, and reduced density matrices. (Unlike in the main text,
in this appendix we assume that the reader is familiar with these more advanced
concepts in quantum mechanics.) This is a much more complicated subject than the
“QM lite” covered in the main text, so we will not go into depth but will only briefly
touch on how this situation differs from the simpler situation considered in the main
text.

In textbook QM, mixed states are postulated to be represented by a density opera-
tor p: a positive-semidefinite (trace-class) Hermitian operator on the Hilbert space
that is typically defined to be normalized to have trace 1. This postulate generalizes
formulation A discussed in the main text to the case of mixed states. Any physical
observable is represented by a self-adjoint operator A, and the expectation value of
the observable for the state p is postulated to equal (A) = Tr(pA). This postulate
generalizes the postulate 3A discussed in the main text.

Just as in the case of pure states, we can decide whether to formulate the nor-
malization requirements for mixed states as applying either before or at the point of
measurement. Instead of the standard normalization conventions stated above (the
generalization of formulation A), we can instead generalize formulation B to a set
of postulates in which the density operator is trace-class and positive semidefinite,
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but its trace is unconstrained (within the definition), and the expectation value of an
observable A is postulated to equal (A) = Tr (pA)/ Tr (p).

Just as discussed in Sect. 2.3, this alternate formulation is completely physically
equivalent to the standard textbook formulation; we are simply “moving” the math-
ematical requirement that probabilities sum to 1 from the normalization of p to the
formula for extracting experimental probabilities.

But a new wrinkle arises in the case of mixed states. A mixed state p on a Hilbert
space H, is often (either implicitly or explicitly) assumed to be a reduced density
matrix Tr z(|y ){y|) that results from taking the partial trace of a pure state'* |y ) (|
in a larger Hilbert space H, ® H . Sometimes, the “auxiliary” Hilbert space Hj is
considered to represent the physical environment around the system, whose detailed
state is not of experimental interest; other times, H is simply thought of as a formal
Hilbert space used to mathematically “purify” the mixed state 5 to a formal pure
state in a larger Hilbert space, which can sometimes be a convenient mathematical
technique for certain theoretical analyses. Under the relation p = Tr z(|y){w|), the
density operator is normalized (i.e. Tr (p) = 1) iff the “larger” pure state is normal-
ized (i.e. |y || = D).

In the context of reduced density matrices, there are three natural choices of
where to impose the normalization requirement: “before”, “while”, or “after” taking
the partial trace. More precisely, we have three choices of physically equivalent sets
of formulas:

1. As in the standard textbook formulation (the equivalent of formulation A in the
main text), we can require that the “larger” pure state |y) be normalized. In this
case, the relation p = Tr z(Jy ){(y|) implies that the reduced density operator j is
normalized as well.

2. We can allow the “larger” pure state to have arbitrary norm, but modify the rela-
tion between the pure state and the reduced density operator to

Tr z(ly ) wl)

p=
llwl?

In this case we still automatically have Tr (p) = 1, so we can still consistently
take the expectation value of an observable AonH 4 to equal (A) = Tr(pA).

3. We can allow the “larger” pure state to have arbitrary norm and keep the usual
relation p = Trz(ly)(w]|) between the pure state |y) and the reduced density
operator 5. In this case, the reduced density operator will generically not be
normalized (Tr () # 1). In order to be mathematically well-defined, we need to
impose the normalization requirement at the point of taking expectation values
of observables for the reduced system: similarly to the formulation B discussed

4 For conciseness, we will use the term “pure state” to refer to either (a) the abstract physical state
itself, (b) the vector representation |y ), or (c) the rank-1 operator representation |y ){y|, depending on
the context.
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in the main text, we must define the expectation value of the obervable A on H,
to equal (A = Tr (ﬁA)/ Tr (p).

In some sense, we can think of the new case #2 as being “intermediate” between
formulations A and B in the main text.

As long as the global pure state |y )(y | evolves unitarily, all three of these formu-
lations are physically equivalent to standard QM. But we see that the situation gets
rather complicated if we generalize standard QM to allow for the global pure state
|y ) to evolve according to an arbitrary linear operator U; in that case, these three for-
mulations might generalize in several different inequivalent ways. '

In the example with Alice and Bob that we discussed in the main text, we implic-
itly chose to generalize choice #3 above: note that after Alice applies her non-uni-
tary operation to her qubit, the global state |y;) of the entangled pair of qubits is no
longer normalized to its previous norm, nor is Bob’s reduced density matrix (1). We
see that even in this very simple case where the global time-evolution operator {J
happens to factorize into a tensor product U/ = U, ® I, that only acts on subsystem
A, if U is non-unitary then subsystem B can still experience nontrivial dynamics that
“survive” the partial trace over subsystem A.'® This fact is what leads to the viola-
tion of the no-signaling theorem, which hinges critically on the assumption that the
global time-evolution operator is unitary.
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15 For example, the fact that in formulation #3 the density operator is not required to be normalized
opens up the possibility of generalizing the time-evolution map for subsystem A to be completely posi-
tive but not trace-preserving.

16 See Ref. [4] for another (arguably) natural generalization of standard QM (which it calls local
manual normalization) that applies to the case where the global time-evolution operator factorizes as
U=U,Q®I;
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