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Abstract: Characterizing multiloop topologies is an important step towards developing novel meth-

ods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree

Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops.

Explicitly, we open the loops into connected trees and group them according to their topological

properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows

us to describe any scattering amplitude of up to five loops. Furthermore, we provide factoriza-

tion and recursion relations that enable us to write these multiloop topologies in terms of simpler

subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops.

Our approach takes advantage of many symmetries present in the graphical description of the original

fundamental five-loop topologies. The results obtained in this article might shed light into a more

efficient determination of higher-order corrections to the running couplings, which are crucial in the

current and future precision physics program.

Keywords: perturbative QFT; higher-order calculations; multiloop Feynman integrals

1. Introduction and Motivation

Nowadays, the state-of-the-art in particle physics moves around the challenge of
breaking the precision frontier. As a new generation of experiments [1–4] is approaching
and current colliders are collecting enormous amounts of data; there is an increasing
pressure in the theory community to provide more precise predictions. Thus, it is mandatory
to explore novel techniques to deal with the complex mathematical structures behind the
Standard Model (SM), and Quantum Field Theories (QFT), in general.

Most of the existing phenomenologically-relevant gauge theories, with SM and QCD as
flagship examples, are not exactly solvable with our current technologies. As a consequence,
we rely on approximate methods, which are valid under certain assumptions. In the high-
energy limit, it turns out that the perturbation theory leads to the most reliable description of
particle collisions, and provides a systematic approach to calculate precise predictions. This
approach is based on series expansions involving Feynman diagrams, and reaching higher-
orders requires one to computing more and more loops. At two loops and beyond [5–10],
Feynman diagrams are hard to compute analytically and traditional numerical approaches
quickly lose efficiency, especially when non-integrable singularities are present [11–14].
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In this sense, algebraic and geometrical methods have been developed to enhance the
efficiency in precision calculations, finding some competitive approaches [15–19]. Besides,
several methods were proposed to include these higher-loop contributions into full cross-
section calculations at higher-orders [20–54], leading to an impressive progress in precision
particle physics.

Even if several strategies were devised in the last decades [55–57], the loop-calculation
bottleneck is still a challenge. In this direction, the Loop-Tree Duality (LTD)[58–68] emerges
as a powerful approach to transform complex loop integrals into phase-space ones, which
are more suitable for numerical calculations [69–73], asymptotic expansions [74–77] and
the local renormalization of ultraviolet singularities [78,79]. In particular, LTD leads to a
more transparent interpretation of the singular IR-structure of multiloop integrals [59,80],
paving the road for the development of novel computational strategies. For instance, LTD
is a key ingredient of the so-called Four-Dimensional Unsubtraction (FDU) [79,81–83],
a framework that aims to combine the real, virtual and renormalization counter-terms
into a unique and integrable function in the four physical dimensions for the space-time,
by-passing any additional regularization method.

Still, LTD has another interesting feature: it manifestly exhibits the causal nature of
Feynman diagrams and scattering amplitudes. By using the nested residue strategy [63,84,85],
one degree of freedom per loop is removed. In particular, integrating out the energy
component of each loop by applying Cauchy’s residue theorem, we end up with a multi-
dimensional integration in an Euclidean space. This leads to an integrand representation,
which is very compact and free of spurious unphysical singularities. Explicitly, adding all
the terms generated by the nested residues, only those compatible with causality remain.
The result is a representation that allows a direct interpretation in terms of causal entangled
thresholds [63,86–90], and enables a more stable numerical calculation.

Besides, this novel LTD formulation allows a classification of the families of Feynman
diagrams according to the number of sets of propagators [63]. We call Maximal Loop
Topology (MLT) to those L-loop diagrams with L + 1 sets of propagators; Next-to-Maximal
Loop Topology (NMLT), if they have L + 2 sets of propagators; and so on. Interestingly, it
was proven that factorization formulae exist [84,85], and NkMLT topologies can be reduced
to convolutions of NjMLT and MLT subtopologies (with j < k). Furthermore, the singular
structure of the more complex topologies is constrained by these factorization properties,
thus simplifying their treatment and cancellation.

The concrete purpose of this work is to study the application of the LTD approach
to describe families of multiloop topologies that appear for the first time at five loops.
Besides, the knowledge of the features at this topological complexity could help to improve
the determination of the running couplings in gauge theories, reproducing known results
up to five loops [17,91–95] and paving the road for higher-order calculations. As we did
in Ref. [84], with the analysis of four-loop topologies, we define here a N7MLT universal
topology that allows one to generate the LTD representation of any possible five-loop
Feynman diagram or scattering amplitude. We exploit the recursive formulation in terms
of simpler subtopologies and MLT insertions, in order to extract the main features of the
more complex diagrams.

The outline of this paper is the following. In Section 2, we present a brief description of
the LTD framework, with special emphasis in the nested residue strategy. Then, in Section 3,
we explain the construction of the universal N7MLT kernel generator. Subtopologies count-
ing and relevant factorization formulae are provided, and we present a concrete application
example in Section 4. Finally, conclusions and possible future research directions are
discussed in Section 5.
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2. LTD Framework

Any loop scattering amplitude is written in the Feynman representation as an integral
in the Minkowski space of the L loop momenta, {ℓs}L, as

A(L) =
∫

ℓ1,...,ℓL

A
(L)
F (1, . . . , n) , (1)

where the integration measure in dimensional regularization [96–99] is given by

∫

ℓs

= −ıµ4−d
∫

ddℓs

(2π)d
, (2)

with d the number of space-time dimensions, µ an arbitrary energy scale. The integrand in
Equation (1) considers N external legs, {pj}N , and is composed by the product of Feynman
propagators and the numerator given by the specific theory,

A
(L)
F (1, . . . , n) = N ({ℓs}L, {pj}N) GF(1, . . . , n) , (3)

with

GF(1, . . . , n) = ∏
i∈1∪...∪n

(GF(qi))
ai , (4)

with ai arbitrary powers. It is important to mention that in the following the powers ai

will appear only implicitly. Furthermore, the LTD expressions to be computed do not need
to detail the internal configuration of each set. The Equation (4) stands for the product
of Feynman propagators of one set that depends on a specific loop momentum or the
union of several sets that depend on different linear combinations of the loop momenta,
qi. For instance, at one loop qi = ℓ1 + ∑

i
j=1 pj, implying qN = ℓ1 due to momentum

conservation. We write Feynman propagators in the following alternative form,

GF(qi) =
1

(qi,0 − q
(+)
i,0 )(qi,0 + q

(+)
i,0 )

, (5)

exhibiting the location of the poles, q
(+)
i,0 =

√

q2
i + m2

i − ı0, which includes the customary

ı0 prescription of the Feynman propagators, with qi,0 and qi the temporal and spacial
components of qi, respectively, and mi the mass of the particle. It is important to remark

that the internal structure of A
(L)
F is implicitly specified via the overall tagging of the

different sets of internal momenta.
To compute the LTD representation, we integrate out one of the components of the

loop momenta by applying the Cauchy’s residue theorem. Regarding multiloop scattering
amplitudes, the LTD representation is expressed in terms of nested residues [63,85],

A
(L)
D (1, . . . , r; r + 1, . . . , n) = −2πı ∑

ir∈r

Res(A
(L)
D (1, . . . , r − 1; r, . . . , n), Im(η · qir ) < 0) , (6)

starting from

A
(L)
D (1; 2, . . . , n) = −2πı ∑

i1∈1

Res(A
(L)
F (1, . . . , n), Im(η · qi1) < 0) , (7)

where A
(L)
F (1, . . . , n) is the integrand in the Feynman representation in Equation (1). The

sets located before the semicolon have one on-shell propagator, whereas the sets appear-
ing after the semicolon contain off-shell propagators only. The residues are evaluated
through the selection of the poles with negative imaginary components by implementing
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the future-like vector η selecting the component of the loop momenta to be integrated.
This characteristic is taken into account by setting the condition Im(η · qir ) < 0, which
establishes that the Cauchy contour must be always closed in the lower half plane. In this
way, the interior of the contour only contains poles with a negative imaginary part. We
conveniently take ηµ = (1, 0), allowing it to work in the integration domain of the loop
three-momenta of an Euclidean space instead of a Minkowski space.

To conclude this section, it is important to notice that LTD formalism is also useful
for dealing with raised propagators or, equivalently, higher-order poles. This expressions
could arise in counter-term calculations, especially beyond one loop level. In any case, it is
possible to demonstrate that these amplitudes can be generated by taking derivatives, i.e.,

(GF(qi))
αi =

1

(αi − 1)!

∂αi−1

∂

(

(

q
(+)
i,0

)2
)αi−1

GF(qi) , (8)

allowing us to treat them by analyzing the single-pole case. In the following, we shall
present our results with N ({ℓs}L, {pj}N) = 1, even though a realistic matrix element shall
have a numerator different from unity. From the mathematical point of view, this particular
scenario is the most challenging, since numerators usually reduce the complexity of the
calculations. Different studies has been carried out towards these directions and can be
found, for instance, in Refs. [86,100].

3. Universal Topology

In this section, we analyse the multiloop topologies that appear for the first time at
five loops, i.e., the family composed by those loop topologies described by L + 5, L + 6
and L + 7 propagators. We start identifying the representative diagrams, followed by a
unified description and the application of the LTD framework to obtain the dual opening
to connected trees.

Based on the classification scheme presented in Refs. [63,85], the topological complexity
of this set of diagrams corresponds to N7MLT, which has L + 5 common sets of propagators:

{1, . . . , L + 1, 12, 123, 1234, 2345} , (9)

and two additional specific sets distinguishing them from each other. To achieve a global
representation of this family, we first need to unravel the representative topologies through
the identification of the distinctive pair of sets.

Inspired by the N4MLT universal topology [84], we recall the concept of a current to
encode in a compact form the distinctive sets. This arrangement is diagrammatically
represented in Figure 1. Each specific topology is characterized by a pair of sets from the
list {23, 24, 25, 34, 35, 45, 234, 235, 245, 34}. It is important to take into account that one of the
internal sets, 2345, is imposed by momentum conservation. The total number of distinctive
pairs is fifteen, and they can be conveniently grouped in five channels, as presented in
Table 1 and displayed in Figure 2. Many nonplanar topologies arise; in fact, they account
for ten from the total of fifteen.

Each pair of sets from Table 1 is associated to a single Feynman diagram. The first
L common sets of propagators depend on one characteristic loop momentum ℓs, and the
momenta of their propagators have the form

qis = ℓs + kis s ∈ {1, . . . , L} . (10)
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Figure 1. Diagrammatic representation of the general N7MLT topology. The current J considers all

the possible combinations among the internal propagators. The blue line merges L − 4 propagators,

which encodes a MLT with L − 5 loops and L − 4 propagators introduced in Ref. [63].

The remaining five common sets are denoted as linear combinations of all the loop
momenta, explicitly:

qi(L+1)
= −

L

∑
s=1

ℓs + ki(L+1)
, qi12

= −ℓ1 − ℓ2 + ki12
,

qi123
= −

3

∑
s=1

ℓs + ki123
, qi1234

= −
4

∑
s=1

ℓs + ki1234
,

qi2345
= −

5

∑
s=2

ℓs + ki2345
, (11)

with kis , ki(L+1)
, ki12

, ki123
, ki1234

and ki2345
linear combinations of external momenta.

Table 1. Pair of sets identifying the representative topologies of the N7MLT family. The star indicates

that the set is associated to a nonplanar diagram.

J1: {234, 23} {234, 24} ⋆ {234, 34}
J2: {235, 23} ⋆ {235, 25} ⋆ {235, 35} ⋆

J3: {245, 24} ⋆ {245, 25} ⋆ {245, 45} ⋆

J4: {345, 34} {345, 35} ⋆ {345, 45}
J5: {23, 45} {24, 35} ⋆ {25, 34} ⋆

The extra sets are the distinctive key to generate each of the fifteen topologies. We
identify the momenta of their propagators as different linear combinations of ℓ2, ℓ3, ℓ4 and
ℓ5, writing them as

qirs
= −ℓr − ℓs + kirs

, qirst
= −ℓr − ℓs − ℓt + kirst

, r, s ∈ {2, 3, 4, 5} . (12)

In order to achieve a single expression to represent the N7MLT topologies, we merge
the sets presented in Table 1 into a current labeled as J,

J = ∪5
i=1 Ji . (13)

The setting of this scenario allows us to assemble the Feynman representation of the
N7MLT family as

A
(L)
N7MLT

=
∫

ℓ1,...,ℓL

A
(L)
F (1, . . . , L + 1, 12, 123, 1234, 2345, J) , (14)

diagrammatic, represented in accordance with Figure 1.
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Figure 2. Diagrammatic representation of the multiloop topologies associated to the sets defined in

Table 1, where only the internal propagators are labeled. The blue bold line represents an arbitrary

number of propagators. In the case of the channel J5, the characterize sets are established by merging

two of the common sets, as depicted in Figure 3.

The dual opening of Equation (14) is computed by the direct application of the nested
residues through the LTD framework. With the purpose of obtaining a manageable dual
expression, we also propose an ansatz based in a graphical interpretation of the opening.
The comparison between these two ingredients allow us to achieve a LTD representation
exhibited in a factorized form in terms of simpler subtopologies,

A
(L)
N7MLT

(1, . . . , L + 1, 12, 123, 1234, 2345, J)

= A
(5)
N6MLT

(1, . . . , 5, 12, 123, 1234, 2345, J)⊗A
(L−5)
MLT (6, . . . , L + 1)

+A
(4)
N5MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123, J)⊗A
(L−4)
MLT (6, . . . , L + 1) ,

(15)

where the bar in a set means that the momentum flows of the set are reversed. The term
A

(L)

Nk−1MLT
refers to the integrand of the corresponding topology in the LTD representation;

integration over the L loop momenta is assumed. The convolution symbol indicates that
each component is open independently, while the on-shell conditions of all elements
act together over the remaining off-shell propagators. Regarding the selected on-shell
propagators, they are restricted so as not to generate disjoint trees due to the dual opening.

Figure 3. Diagrammatic representation of the multiloop topologies conforming the channel J5.

The LTD expression in Equation (15) opens any multiloop N7MLT topology to con-
nected trees, furthermore, it is valid for all Nk−1MLT configurations with k ≤ 7. The
dual opening interpretation is depicted in Figure 4, where the diagram associated to

the term A
(5)
N6MLT

on the r.h.s. of Equation (15) contemplate all possible configurations
with five on-shell propagators in the sets {1, 2, 3, 4, 12, 123, 1234, 2345, J}, and the con-

tribution of A
(4)
N5MLT

in the second term assumes four on-shell conditions selected from
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{1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123, J}. The term A
(L−5)
MLT (6, . . . , L + 1) is opened according to

the MLT opening introduced in Ref. [63]; in A
(L−4)
MLT (6, . . . , L + 1) all the momentum flows

are reversed and all the sets contain one on-shell propagator.
The unfolding of Equation (15) is computed recursively through the subtopologies

arising, for instance, the five-loop contribution opens as follows

Figure 4. Diagrammatic representation for the factorized opening of the multiloop N7MLT general

topology, described by Equation (15). Only the on-shell cut of the last MLT-like subtopology with

reversed momentum flow is shown.

A
(5)
N6MLT

(1, . . . , 5, 12, 123, 1234, 2345, J)

= A
(5)

N4MLT
(1, . . . , 5, 12, 123, 1234, 2345)

+ ∑
s∈J

A
(4)

N4MLT
(1, . . . , 5, 12, 123, 1234, 2345, s) .

(16)

The first term in the r.h.s. gives a LTD contribution with all the propagators with
momenta in J remaining off shell. The second term on the r.h.s. of Equation (16) considers all
the contributions with a pair of propagators with momenta belonging to Table 1, therefore,
these dual trees correspond to a single representative channel. The bold symbol, s, is used
to identify the contributions with on-shell propagators belonging to J.

Concerning the four-loop subtopology in Equation (15), the dual opening is given by

A
(4)
N5MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123, J)

= A
(4)
N3MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123)

+ ∑
s∈J

A
(3)
N3MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123, s) ,

(17)

where similar to Equation (16), the first term in the r.h.s. considers all the pair of propagators
with momenta in J off shell, whereas the second term is associated to a specific three-loop
N3MLT topology.

Every representative topology in the N7MLT family have common dual terms, those
associated to the first term in the r.h.s. in Equations (16) and (17), respectively,

A
(5)

N4MLT
(1, . . . , 5, 12, 123, 1234, 2345) and A

(4)
N3MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123) . (18)

These contributions can be graphical represented with the first diagram in the r.h.s. of both
sums depicted in Figure 4 by replacing J with a five point interaction among the internal
sets, i.e., by taking J as an empty set. To entirely unfold them and obtain the explicit dual
terms, we continue to open the subtopologies recursively. Even if the ordering of opening
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any topology is arbitrary, following the guide of a diagrammatic interpretation allows us to
work in a more manageable form.

Concerning the common dual terms in the N7MLT topologies, we have that

A
(4)
N3MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123) (19)

opens according Ref. [84] by considering the set 234 as empty and, in the case of the
five-loop contribution, the explicit dual opening is given by

A
(5)

N4MLT
(1, . . . , 5, 12, 123, 1234, 2345)

=A
(4)

N4MLT
(1, 2, 3, 4, 12, 123, 1234)⊗A

(1)
MLT(5, 2345)

+
[

A
(3)
NMLT(1, 2, 3, 12, 123) +

(

A
(2)
MLT(1, 2, 12) +A

(2)
MLT(1, 3)

)

⊗ A
(1)
MLT(4)

]

⊗A
(2)
MLT(5, 2345) +

[

A
(2)
MLT(1234, 2 ∪ 12)⊗A

(1)
MLT(3, 123)

+A
(3)
MLT(1234, 3, 123) +A

(2)
MLT(1234, 2 ∪ 312)⊗A

(1)
MLT(4)

+
(

A
(2)
MLT(3, 12) +A

(2)
MLT(1234, 2 ∪ 3 ∪ 12)

)

⊗A
(1)
MLT(4)

]

⊗A
(2)
MLT(5, 2345) .

(20)

The expression given in Equation (20) is understood in the same way as in Ref. [63],
where the convolution means that we must combine the opening of one subset of momenta

with the opening of other subset. For instance at three-loops, inside A
(3)
NMLT(1, 2, 3, 4, 12),

we have the contribution

A
(2)
MLT(1, 2, 12)⊗A

(1)
MLT(3, 4)

=
∫

ℓ1,ℓ2,ℓ3

[

A
(3)
D (2̄, 12, 4̄; 1, 3) +A

(3)
D (1, 12, 4̄; 2, 3) +A

(3)
D (1, 2, 4̄; 12, 3) + (4̄ ↔ 3)

]

, (21)

where A
(L)
MLT(1, . . . , 12) is defined as

A
(L)
MLT(1, . . . , n) =

∫

ℓ1,...,ℓL

n

∑
i=1

A
(L)
D (1, . . . , i − 1, i + 1, . . . , n; i) . (22)

It is important to notice from this simple example that in order to write effortless
expressions, the result of simpler topologies must be known. For five-loop topologies,
the definitions presented in Refs. [63,84] must be taken into account. Hence, the number
of dual terms arising from the contributions in Equations (19) and (20) for an arbitrary
number of loops is given by 11(6L − 19).

The contributions corresponding to the second term in the r.h.s. in Equations (16) and (17)
depend on the particular topology to be opened. In the following section, we take a specific
example and present the explicit contributions characterising the topology.

4. Specific Channels

In order to deepen in the dual opening methodology, we present the development of
the topology associated to the pair of sets {234, 23} belonging to the current J1. The fac-
torized dual opening is obtained through the application of Equation (15) replacing J by
{234, 23}. The diagrammatic representation of the associated topology, and its factorized
dual opening is depicted in Figure 5.
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Figure 5. Diagrammatic representation for the topology having J = {234, 23} and its factorized dual

opening from Equation (15).

The common terms in the fifteen topologies are the ones associated to Equations (19)
and (20), which are illustrated with the first diagram in the r.h.s. of each sum in Figure 6.
From the previous section, we know that the contributions for this specific topology arise
from the second term in the r.h.s. of Equations (16) and (17), which are diagrammatically
represented by the sum of the second and third diagrams in the r.h.s. of each sum in
Figure 6.

Figure 6. Diagrammatic representation of the dual opening of the contributions associated to the

five-loop N4MLT in Equation (20) (top) and the four-loop N3MLT in Equation (19) (bottom).

The unfolding of the second term in the r.h.s. of Equation (16) with s ∈ {234, 23} is
given by
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A
(4)

N4MLT
(1, . . . , 5, 12, 123, 1234, 2345, 23, 234)

+A
(4)

N4MLT
(1, . . . , 5, 12, 123, 1234, 2345, 23)

=
[(

A
(3)
N2MLT

(1, 2, 3, 12, 123, 23) +A
(2)
MLT(1, 2, 12)⊗A

(1)
MLT(4) +A

(3)
MLT(1, 3, 4)

)

⊗A
(1)
D (234) +

(

A
(2)
MLT(1234, 2 ∪ 12)⊗A

(1)
MLT(3, 4 ∪ 23) +A

(3)
MLT(1234, 3, 4 ∪ 23)

+ A
(3)
MLT(12, 3, 4) +A

(3)
MLT(4 ∪ 1234, 2 ∪ 3 ∪ 12, 123)

)

⊗A
(1)
D (234)

]

⊗A
(1)
MLT(5, 2345)

+
[(

A
(2)
MLT(1, 2, 12) +A

(2)
MLT(1, 3)

)

⊗
(

A
(2)
MLT(4, 5, 2345) +A

(1)
MLT(5, 2345)⊗A

(1)
MLT(1234)

)

+ A
(1)
MLT(2 ∪ 3, 12)⊗A

(2)
MLT(5, 2345)⊗A

(1)
MLT(1234)

]

⊗A
(1)
D (23)

+
[(

A
(2)
MLT(123, 3, 12) +A

(2)
MLT(123, 2)

)

⊗A
(2)
MLT(4, 5, 2345) +

(

A
(2)
MLT(4 ∪ 123, 3, 12)

+ A
(2)
MLT(4 ∪ 123, 2)

)

⊗A
(1)
MLT(5, 2345)⊗A

(1)
MLT(1234)

]

⊗A
(1)
D (23) ,

(23)

and the one corresponding to Equation (17),

A
(3)
N3MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123, 23, 234)

+A
(3)
N3MLT

(1 ∪ 2345, 2, 3, 4, 5 ∪ 1234, 12, 123, 23)

=
[

A
(3)
N2MLT

(1 ∪ 2345, 2, 3, 12, 123, 23) +A
(2)
MLT(1 ∪ 2345, 2, 12)⊗A

(1)
MLT(4)

+ A
(3)
MLT(1 ∪ 2345, 3, 4)

]

⊗A
(1)
D (234)

+
[

A
(2)
MLT(5 ∪ 1234, 2 ∪ 12)⊗A

(1)
MLT(3, 4 ∪ 23) +A

(3)
MLT(5 ∪ 1234, 3, 4 ∪ 23)

+ A
(3)
MLT(12, 3, 4) +A

(3)
MLT(5 ∪ 1234 ∪ 4, 2 ∪ 3 ∪ 12, 123)

]

⊗A
(1)
D (234)

+
(

A
(2)
MLT(1 ∪ 2345, 2, 12) +A

(2)
MLT(1 ∪ 2345, 3)

)

⊗A
(1)
MLT(4, 5 ∪ 1234)⊗A

(1)
D (23)

+
[(

A
(2)
MLT(123, 3, 12) +A

(2)
MLT(123, 2)

)

⊗A
(1)
MLT(4, 5 ∪ 1234)

+ A
(1)
MLT(2 ∪ 3, 12)⊗A

(2)
MLT(4, 5 ∪ 1234)

]

⊗A
(1)
D (23) .

(24)

The sets in blue in the arguments of the terms in the l.h.s. of Equations (23) and
(24) indicate the set that we use as a starting cut in the second and third diagram of
each sum in Figure 6. After this action, we end up with known subtopologies that we
recursively compute by applying the results from Refs. [63,84]. The total number of dual
terms emerging from Equations (23) and (24) for an arbitrary number of loops is given by
119L − 380. The number of dual terms arising from every specific channel for an arbitrary
number of loops is summarized in Table 2.

Table 2. Numbers of dual terms for the individual channels. The blue star denotes all non-equivalent

configurations. The remaining possibilities can be obtained from the ones with the blue star.

J1: {234, 23} 119 L − 380 ⋆ {234, 24} 132 L − 418 {234, 34} 119 L − 380
J2: ⋆ {235, 23} 143 L − 473 ⋆ {235, 25} 158 L − 519 ⋆ {235, 35} 165 L − 554
J3: ⋆ {245, 24} 165 L − 554 ⋆ {245, 25} 165 L − 554 ⋆ {245, 45} 165 L − 583
J4: {345, 34} 143 L − 500 ⋆ {345, 35} 165 L − 583 {345, 45} 158 L − 575
J5: {23, 45} 143 L − 500 ⋆ {24, 35} 165 L − 554 ⋆ {25, 34} 143 L − 473

It is worth mentioning that among the fifteen configurations, some of them are topo-
logically equivalent. For example, the dual representation of the diagram characterized
by {234, 34} can be obtained from the dual representation computed to the topology
characterized with {234, 23}, by the substitution 23 → 34 and the exchange 2 ↔ 4,
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A
(L)
N7MLT

(1, . . . , 234, 23)
23→34
−−−→

2↔4
A

(L)
N7MLT

(1, . . . , 234, 34) .

For the remaining equivalent topologies, we require to exchange 2 ↔ 4 and 5 ↔ 2345,
as well as applying the proper substitution between the distinctive sets. Explicitly, we have
that

A
(L)
N7MLT

(1, . . . , 235, 23)
235→25, 23→34
−−−−−−−−−→

2↔4, 5↔2345
A

(L)
N7MLT

(1, . . . , 25, 34) ,

A
(L)
N7MLT

(1, . . . , 235, 35)
235→25, 35→245
−−−−−−−−−→

2↔4, 5↔2345
A

(L)
N7MLT

(1, . . . , 245, 25) ,

A
(L)
N7MLT

(1, . . . , 245, 24)
245→35

−−−−−−−→
2↔4, 5↔2345

A
(L)
N7MLT

(1, . . . , 24, 35) ,

A
(L)
N7MLT

(1, . . . , 245, 45)
245→35, 45→345
−−−−−−−−−→

2↔4, 5↔2345
A

(L)
N7MLT

(1, . . . , 345, 35) ,

A
(L)
N7MLT

(1, . . . , 345, 34)
345→45, 34→23
−−−−−−−−−→

2↔4, 5↔2345
A

(L)
N7MLT

(1, . . . , 23, 45) .

Certainly, there are topologies that cannot be obtained from a direct replacement
of indices, mainly those related with non planar topologies. Nevertheless, the direct
application of the LTD shows that there are no disjoint trees in the forest of the N7MLT
topology and these feature is important to compute physical observables at high precision.
Therefore, we let the application of these expressions go to further analysis.

5. Conclusions and Outlook

In this work, we applied the Loop-Tree Duality (LTD) and the nested residue rep-
resentation to characterize all the possible five-loop Feynman diagrams. Following the
approach presented in Ref. [84], we identified a universal topology, i.e., the N7MLT diagram,
and then related the possible subtopologies through factorization formulae. As already
known for simpler cases (such as N4MLT, N3MLT and N2MLT, studied in Refs. [63,84,86]),
these factorization formulae lead to a recursive representation of complex topologies in
terms of simpler ones. In this way, it is possible to understand the singular properties of all
the five-loop amplitudes in terms of objects with a lower complexity.

Beyond the important recursive relations found among multiloop amplitudes, the de-
velopments shown in this paper could be further explored to simplify the calculation
of important quantities at five-loop accuracy. In this way, the LTD representation and
its factorization properties could allow us to break the bottleneck of multiloop multileg
calculations in QFT.
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