
DESIGN STUDIES OF THE CYLINDRICALLY SYMMETRIC
MAGNETIC INFLECTOR

Lige Zhang∗, Yi-Nong Rao, Rick Baartman, Yuri Bylinski, Thomas Planche
TRIUMF, Vancouver, BC, Canada

Abstract
The magnetic inflector is a promising alternative to

achieve axial beam injection in a cyclotron with high beam
energy. To demonstrate the technology, we use the TR100,
a conceptual H2+ cyclotron, as a testbench to study the in-
flection conditions and optics of the passive magnetic inflec-
tor with a cylindrically symmetric structure. A mirror-like
field with optimized mirror length and ratio provides a well-
focused beam arriving at the median plane. The required
magnetic field is produced by shimming a center plug in
the injection hole. The space charge effect is also discussed
with the simulation of a high-intensity injection beam.

INTRODUCTION
The spiral inflector steers the beam from the bore in the

main magnet into the median plane to achieve the axial
injection with an external ion source. In a conventional elec-
trostatic inflector, the injection beam energy is limited by the
breakdown voltage on the electrodes. While the injection
intensity is also limited by the small aperture in the electro-
static inflector. Magnetic inflector is promising to overcome
these disadvantages.

Recently, There are two types of magnetic inflector. One
is the passive type which uses the iron in the injection hole
to produce the required magnetic field. [1] The other is the
active one which uses a permanent magnet array. [2] The
passive type is more robust because there is no concern about
the degaussing of the permanent magnet under the high beam
loss in the injection hole. But it is only a concept, that has no
existing design. To demonstrate the technology, we designed
a magnetic inflector model for the conceptual H2+ cyclotron,
TR100 [3]. The inflection conditions and focal properties of
the passive magnetic inflector are studied using the particle
tracking method. The preliminary simulation considering
space charge is also discussed.

REFERENCE ORBIT
Motion Equations

In a cylindrically symmetric magnet. The magnetic vector
potential A only consists of the azimuthal component A𝜃 .
A𝜃 is the function of 𝑟 and 𝑧. Thus, the hamiltonian is
independent from 𝜃, which is written as:

𝐻 =

√︄
𝑃2
𝑟𝑐

2 + 𝑃2
𝑧𝑐

2 + 𝑐4𝑚2
0 +

𝑐2 (𝑃𝜃 − 𝑞𝑟 A𝜃 (𝑟, 𝑧))2

𝑟2

(1)
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where the canonical momenta are:

𝑃𝑟 = 𝑝𝑟

𝑃𝜃 = 𝛾𝑚0𝜃
′𝑟2 + 𝑞𝑟𝐴𝜃

𝑃𝑧 = 𝑝𝑧

. (2)

We can easily find that the canonical momentum in the az-
imuthal direction is a constant. Defining a potential function
𝑈 with the constant azimuthal momenta and the magnetic
vector potential as:

𝑈 =
(𝑃𝜃 − 𝑞𝑟 A𝜃 (𝑟, 𝑧))2

2𝛾𝑚0𝑟2
(3)

the motion equation, essentially as obtained by Glaser [4],
could be written in the following form:

𝑃′
𝑟 =

𝜕𝑈

𝜕𝑟

𝑃′
𝜃 = 0

𝑃′
𝑧 =

𝜕𝑈

𝜕𝑧

. (4)

Substituting Eq. (2) into Eq. (4), the motion equation is
written as:

𝜃′ = 𝜃′0𝑟
2
0/𝑟

2 + 𝑞

𝛾𝑚0𝑟2 (𝑟0 A𝜃0 −𝑟 A𝜃 )

𝛾𝑚0𝑟
′′ − 𝜕𝑈

𝜕𝑟
= 0

𝛾𝑚0𝑧
′′ − 𝜕𝑈

𝜕𝑧
= 0

(5)

Because 𝑈 is independent of 𝜃 and time 𝑡, the motion on
the r-z plane is conservative. To find a proper reference orbit,
we only need to solve the 2-D motion equation on the r-z
plane.

Numerical Solution for a Mirror-like Magnetic
Vector potential

The magnetic mirror is a component that is used to confine
the charged particles. The particles inside a magnetic mirror
are bounced back before the mirror point, in this paper we
use a similar field to inflect the beam. The vector potential
used to define the axial symmetric magnetic field in a mirror
field is given as:

𝐴𝜃 =
𝐴1𝛽𝑟

2
− 𝐴2𝐼1 (𝛽𝑟) cos 𝛽𝑧 (6)

where 𝜋/𝛽 is the mirror length, 𝛽(𝐴1 + 𝐴2)/(𝐴1 − 𝐴2) is
the mirror ratio.
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The given magnetic field satisfies Laplace’s equation,
which ensures the curl of the magnetic field is zero. The
linear approximation of the vector potential is given as:

𝐴𝑡ℎ𝑒𝑡𝑎 =
𝛽𝑟

2
(𝐴1 − 𝐴2 cos 𝛽𝑧) . (7)

We use the TR100 main magnet model as a test bench
to study the injection. The magnetic field in the central
region is 2 T. The designed injection energy is around 35
keV. Figure 1(a) shows the conceptual model. By tracking
the particle reversely from the median plane to the injection
point with different Pitch angles, the different reference or-
bits are shown in Fig. 1 (b). Without breaking the median
plane symmetry, the particle starting with 0 pitch angles on
the median plane could not travel up to the injection point,
which means we still need an electrostatic deflector on the
median plane to fully steer the beam into the median plane.
The single 𝐵𝑟 bump field near the median plane could reduce
the pitch angle by about 20° from the injection point to the
median plane.

The final pitch angle on the median plane is around 20°,
which only needs around 5 times less electrical field to fully
steer the beam onto the median plane compared with a simi-
lar size inflector.

Figure 1: Reference orbit in the injection hole.

BEAM OPTICS
Coordinates Transformation

In this paper, we use the coordinate (𝛼, 𝛽, 𝛾) in the optical
coordinate system, which moves along the reference orbit
as shown in Fig. 2 [5]. The 𝛾 direction is the same as the
velocity of the reference particle. The 𝛽 direction is perpen-
dicular to the 𝛾 direction and parallel to the median plane.
At the same time, the cross product of the unit vector of the
𝛾 direction and 𝛽 direction should have a positive projection
on 𝑧-axis. The 𝛼 direction is defined by the cross product of
the unit vector of the 𝛾 direction and 𝛽 direction.

The position vector ®𝑐 of the point on the reference orbit
in cartesian is written as:

®𝑐 = (𝑥𝑐 (𝑠), 𝑦𝑐 (𝑠), 𝑧𝑐 (𝑠)) (8)

where 𝑠, the distance along the reference orbit, is the inde-
pendent variable. The base vector ®𝑒 = ( ®𝑒𝛼, ®𝑒𝛽 , ®𝑒𝛾) of the
moving optical coordinate on the reference orbit is written
as:

(xc, yc, zc)

Figure 2: The moving optical coordinate system.

®𝑒𝛼 = (𝑥𝛼 (𝑠), 𝑦𝛼 (𝑠), 𝑧𝛼 (𝑠))
®𝑒𝛽 = (𝑥𝛽 (𝑠), 𝑦𝛽 (𝑠), 𝑧𝛽 (𝑠))
®𝑒𝛾 = (𝑥𝛾 (𝑠), 𝑦𝛾 (𝑠), 𝑧𝛾 (𝑠)) .

(9)

The transformation from cartesian coordinates (𝑥, 𝑦, 𝑧) to
the moving coordinates (𝛼, 𝛽, 𝛾) is written as:

𝑥 = 𝑥𝑐 (𝑠) + 𝛼𝑥𝛼 (𝑠) + 𝛽𝑥𝛽 (𝑠) + 𝛾𝑥𝛾 (𝑠)
𝑦 = 𝑦𝑐 (𝑠) + 𝛼𝑦𝛼 (𝑠) + 𝛽𝑦𝛽 (𝑠) + 𝛾𝑦𝛾 (𝑠)
𝑧 = 𝑧𝑐 (𝑠) + 𝛼𝑧𝛼 (𝑠) + 𝛽𝑧𝛽 (𝑠) + 𝛾𝑧𝛾 (𝑠) .

(10)

Thus, the transformation matrix from the moving coordi-
nates to the cartesian coordinates is:

M =


𝑥𝛼 (𝑠) 𝑥𝛽 (𝑠) 𝑥𝛾 (𝑠)
𝑦𝛼 (𝑠) 𝑦𝛽 (𝑠) 𝑦𝛾 (𝑠)
𝑧𝛼 (𝑠) 𝑧𝛽 (𝑠) 𝑧𝛾 (𝑠)

 . (11)

The inverse transformation matrix M′ = M𝑇 , as the
(𝑒𝛼, 𝑒𝛽 , 𝑒𝛾) are orthogonal bases. Choosing a possible gen-
erating function that is consistent with Eq. (10).

𝐺 = −𝑃𝑥 [𝑥𝑐 (𝑠) + 𝛼𝑥𝛼 (𝑠) + 𝛽𝑦𝛼 (𝑠) + 𝛾𝑧𝛼 (𝑠)]
− 𝑃𝑦 [𝑦𝑐 (𝑠) + 𝛼𝑥𝛽 (𝑠) + 𝛽𝑦𝛽 (𝑠) + 𝛾𝑧𝛽 (𝑠)]
− 𝑃𝑧 [𝑧𝑐 (𝑠) + 𝛼𝑥𝛾 (𝑠) + 𝛽𝑦𝛾 (𝑠) + 𝛾𝑧𝛾 (𝑠)] .

(12)

The new canonical momenta is derived from the given
generating function:

𝑃𝛼 = −𝜕𝐺

𝜕𝛼
= 𝑃𝑥𝑥𝛼 (𝑠) + 𝑃𝑦𝑥𝛽 (𝑠) + 𝑃𝑧𝑥𝛾 (𝑠)

𝑃𝛽 = −𝜕𝐺

𝜕𝛽
= 𝑃𝑥𝑦𝛼 (𝑠) + 𝑃𝑦𝑦𝛽 (𝑠) + 𝑃𝑧𝑦𝛾 (𝑠)

𝑃𝛾 = −𝜕𝐺

𝜕𝛾
= 𝑃𝑥𝑧𝛼 (𝑠) + 𝑃𝑦𝑧𝛽 (𝑠) + 𝑃𝑧𝑧𝛾 (𝑠) .

(13)

The canonical momenta under the cartesian coordinate
system is given by:

𝑃𝑥 = 𝑚0𝑣𝑥 + 𝑞𝐴𝑥 = 𝑚0𝑣0𝑥
′ + 𝑞𝐴𝑥

𝑃𝑦 = 𝑚0𝑣𝑦 + 𝑞𝐴𝑦 = 𝑚0𝑣0𝑦
′ + 𝑞𝐴𝑦

𝑃𝑧 = 𝑚0𝑣𝑧 + 𝑞𝐴𝑧 = 𝑚0𝑣0𝑧
′ + 𝑞𝐴𝑧

(14)

23rd Int. Conf. Cyclotrons Appl. CYCLOTRONS2022, Beijing, China JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 1 2 - 7 ISSN: 2 6 7 3 - 5 4 8 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - C Y C L O T R O N S 2 0 2 2 - M O P O 0 1 4

MOPO014

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B

Y-
4
.0

li
ce
n
ce

(©
20

22
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

88 Cyclotron and Technology



where the prime denotes differentiation with respect to 𝑠,
𝑣0 is the velocity. Substitute Eq. (14) into Eq. (13), the new
canonical momenta is written as


𝑃𝛼

𝑃𝛽

𝑃𝛾

 = 𝑚0𝑣0M𝑇


𝑥′

𝑦′

𝑧′

 + 𝑞M𝑇


𝐴𝑥

𝐴𝑦

𝐴𝑧

 . (15)

Substituting the coordinates on the reference orbit into
Eq. (15), the canonical momenta on the reference trajectory
is:


𝑃𝛼0
𝑃𝛽0
𝑃𝛾0

 = 𝑚0𝑣0M𝑇


𝑥′𝑐
𝑦′𝑐
𝑧′𝑐

 + 𝑞M𝑇


𝐴𝑥0
𝐴𝑦0
𝐴𝑧0

 . (16)

To make the canonical variable small quantities, we sub-
tract Eq. (16) from Eq. (15). Thus, the generating function
becomes:

𝐺 = −𝑃𝑥 [𝑥𝑐 (𝑠) + 𝛼𝑥𝛼 (𝑠) + 𝛽𝑦𝛼 (𝑠) + 𝛾𝑧𝛼 (𝑠)]
− 𝑃𝑦 [𝑦𝑐 (𝑠) + 𝛼𝑥𝛽 (𝑠) + 𝛽𝑦𝛽 (𝑠) + 𝛾𝑧𝛽 (𝑠)]
− 𝑃𝑧 [𝑧𝑐 (𝑠) + 𝛼𝑥𝛾 (𝑠) + 𝛽𝑦𝛾 (𝑠) + 𝛾𝑧𝛾 (𝑠)]
+ 𝛼𝑃𝛼0 + 𝛽𝑃𝛽0 + 𝛾𝑃𝛾0

. (17)

The new momenta is given by:


𝑃𝛼

𝑃𝛽

𝑃𝛾

 = 𝑚0𝑣0M𝑇


𝑥′ − 𝑥′𝑐
𝑦′ − 𝑦′𝑐
𝑧′ − 𝑧′𝑐

 + 𝑞M𝑇


𝐴𝑥 − 𝐴𝑥0
𝐴𝑦 − 𝐴𝑦0
𝐴𝑧 − 𝐴𝑧0

 .

(18)
Using Eq. (10) and Eq. (18) expand the transform ma-

trix M into a 6 × 6 matrix the transformation from
(𝑥, 𝑃𝑥 , 𝑦, 𝑃𝑦 , 𝑧, 𝑃𝑧) to (𝛼, 𝑃𝛼, 𝛽, 𝑃𝛽 , 𝛾, 𝑃𝛾) is given by:



𝛼

𝑃𝛼

𝛽

𝑃𝛽

𝛾

𝑃𝛾


= M𝑇



𝑥 − 𝑥𝑐
𝑚0𝑣0 (𝑥′ − 𝑥′𝑐)

𝑦 − 𝑦𝑐
𝑚0𝑣0 (𝑦′ − 𝑦′𝑐)

𝑧 − 𝑧𝑐
𝑚0𝑣0 (𝑧′ − 𝑧′𝑐)


+ 𝑞M𝑇



0
𝐴𝑥 − 𝐴𝑥0

0
𝐴𝑦 − 𝐴𝑦0

0
𝐴𝑧 − 𝐴𝑧0


.

(19)

Transfer Matrix
In order to calculate the transfer matrix, we need to run 6

particles with orthogonal initial coordinates and momenta
in the magnetic inflector. After transforming the coordinates
at the end of the orbit into the moving coordinates system
with the unit (mm, mrad, mm, mrad, mm, mrad), the transfer
matrix is calculated as:

R =



1.99 0.15 −1.68 −0.02 0.38 0.13
−5.02 0.19 −0.23 −0.18 3.87 0.21
0.58 0.02 0.84 0.03 −0.55 −0.01

−13.80 −0.37 −8.08 0.39 1.94 −0.64
−0.03 0.04 −0.30 0.02 0.61 0.10
5.32 0.22 −12.48 0.27 −5.43 0.86


.

(20)
Testing the symplectic of the transfer matrix,

RTJR − J =

0 −0.004 −0.026 0.036 0.008 −0.008
0.004 0 −0.015 0.001 −0.003 −0.000
0.026 0.015 0 −0.002 0.001 0.004
−0.036 −0.001 0.002 0 0.001 −0.001
−0.008 0.003 −0.001 −0.001 0 −0.001
0.008 0.000 −0.004 0.001 0.001 0


(21)

where J is given as:

J =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


. (22)

The symplectic error is between 10−3 and 10−2, which
may be resulted from the non-linear of the motion and the
noise when tracking the particles numerically.

Beam Envelopes
The beam envelope is studied in the 𝛼 − 𝛽 − 𝛾 moving

frame. In previous study [6], we found that a proper beam
focusing in both directions could be achieved by adjusting
the mirror length and the mirror ratio. In this paper, an
optimal magnetic inflector field with mirror length of 10 cm
and mirror ratio of 2 is produced by carefully shimming the
iron in the injection hole. The envelop and 3D trajectory in
the designed magnetic inflector is shown in Fig. 5 (a).

MAGNET DESIGN
A 2D model is used to calculate the magnetic field in the

injection hole. The sector structure is modelled by intro-
ducing the pseudo material which uses a lumped factor 𝑘 to
calculate the B-H curve, different 𝑘 means different width ra-
tios of the sectors. for a 4-sector magnet with a sector width
of 45 degrees, 𝑘 is 0.5. For the yoke, 𝑘 is 1, thus the B-H
curve is that of the real steel. Figure 3 shows the structure
of the central plug that we used to optimize the mirror field
in the injection hole. Figure 4 shows the magnetic field of
the optimal magnet model.

HIGH INTENSITY SIMULATION
Figure 5 shows the Comsol simulation of the beam injec-

tion with considering space charge.
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Figure 3: Steel plug in the injection hole. Blue colored
material is the vacuum, green is the sector poles and red is
the steel structure in the injection hole.

Figure 4: On-axis magnetic field in the injection hole after
optimizing the shape of the center plug. The green line
is the theoretic mirror field that could properly focus the
beam in the inflector. Blue line is the on-axis magnetic
field produced by the designed main magnet with a properly
shimmed central plug.

Figure 5: Envelope simulation considering space charge.
The upper plots show the simulation a 1 nA injection beam.
The lower one shows that of the 10 mA injection beam. The
frame of a spiral pipe in the lower 3D beam plot shows the
reference beam path without considering the space charge
effect. Obviously, the reference orbit is changed by the space
charge. A further design study of a shielding structure is
needed to remove the repulsive force from different turns.

CONCLUSION

To maintain the median plane symmetry of the magnet,
an electrostatic deflector should be placed at the end of the
magnetic inflector, which will finally deflect the beam into
the median plane with 0 vertical momenta. The required
electric field strength in the electrostatic deflector is much
lower than that in a conventional inflector. The envelope
study suggests that the beam could be focused both horizon-
tally and vertically in the moving frame under the optimized
mirror ratio and mirror length. A steel plug in the center
region is designed to produce the required field in the in-
jection hole. A preliminary simulation of the high-intensity
DC beam injection is simulated using Comsol, the reference
orbit is changed by the space charge. Thus, a further design
study of a shielding structure should be pursued.
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