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Mesonic models predict violation of SU(2) symmetry in the nucleon
sea which seems to be necessary to explain the violation of the Gottfried
Sum Rule. Careful analysis of the Drell-Yan processes in p-p and p-
n collisions should provide complementary data to the Gottfried Sum
Rule on the d/% asymmetry. Large one-loop corrections in semileptonic
hyperon decays can be compensated by a tiny shift in the values of D and
F. The meson cloud is an important ingredient in understanding the spin
structure of the nucleon.

PACS numbers: 14.20. Dh, 13.60. Hb, 11.50. Li, 13.30. Ce

1. Introduction

It has been customarily assumed that the nucleon sea is flavor sym-
metric (dp(z) = Tp(z)). There is no general principle that forces one to
this-hypothesis other than the fact that it appears as a natural consequence
of a perturbative approach to the nucleon’s parton distributions. There is
no justification for such a restricted point of view to proton structure and
there is strong indication that nonperturbative physics is crucial. Specifi-
cally, the observed violation of the Gottfried Sum Rule (GSR) [1] provides
experimental evidence that the nucleon sea is not flavor symmetric. There
remains no quantitatively compelling explanation for the effect.

The meson cloud model provides a natural explanation for the excess
of d over & quarks already in its simplest form in which the proton contains
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components of a bare proton and #° and a bare neutron and »+. In this
presentation we review a generalization of this simple idea, developed re-
cently in Jilich. We discuss the role of the meson cloud in deep-inelastic
lepton scattering, especially in connection with the GSR and present predic-
tions for the nucleon-nucleon induced dilepton production at high energies.
In addition, we discuss the one-loop meson corrections in the semileptonic
hyperon decays and for the spin structure of the nucleon.

2. Gottfried sum rule

The GSR addresses the value of the integral over z of the difference
of the F3(z) structure function of the proton (p) and neutron (n). It is
written?! as

1
[1F@) - F@) £
0

1
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0

where u}(z) = up(z) — Up(z), etc., and charge symmetry has been assumed,
i.e., up(z) = dn(z), etc. If one further makes the customary assumption

that @y(z) = dp(z), then
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Equation (2) is referred to as the GSR. However the most recent measure-
ment [2] of the relevant structure functions over the interval 0.004 < z < 0.8
yields, when extrapolatedto 0 < z <1,

1
/ [FP(z) - F3(z)] i'if = 0.24 £+ 0.016, (3)
0

at Q2 =5 GeV?2.

! The structure functions F3(z) are functions of Q2, as are the quark distribution
functions g(z). The Q? dependence is suppressed to keep the expressions from
being too cumbersome.
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Taken at face value, a comparison of Egs (1), (2), and (3) implies

1
/ [dp(2) — Tp(2)] dz = 0.135 + 0.024, (4)
0

in marked disagreement with the customary assumption. It appears im-
possible [3] to generate such a large difference in the d and % distributions
from perturbative processes; hence, the answer likely lies with more compli-
cated nonperturbative physics. For example, there have been a few [4-10]
attempts to calculate the difference due to virtual meson emission. In the
absence of such calculations, all that can be done is to reparametrize the
tp(z) and dp(z) distributions so that they agree with the observed violation
of the GSR.
Typically one defines

A(z)

dp(z) = g(z) + 5 (5)
and

Ty(z) = 3(z) - ° 2, ©)
where

1
/ A(z)dz = 0.135 % 0.024. ()
0

The initial reparametrization [11] used A(z) = A(1 — z)*, which placed
the d-u difference at large z (z > 0.05) and led to very large values for
dp(z)/up(z) for z > 0.1. These large ratios have been ruled out by a recent
reanalysis of earlier Drell-Yan data. More recent [12] parametrizations have
a form A(z) = B(1 — z)%/2°%, which places the bulk of the difference at
smaller z.

3. Hybrid meson-baryon model of the nucleon

In this section we briefly review a recent hybrid meson-baryon model
of the nucleon [10] and present its prediction for the asymmetry of the
light sea antiquarks. In this model the nucleon is viewed as a quark core,
termed a bare nucleon, surrounded by the mesonic cloud. The nucleon wave
function can be schematically (we neglect the isospin degrees of freedom for
simplicity) written as a superposition of a few principle Fock components

IN) dressed = 2272 [IN)pare + @ IN7) +B|AT) +(..)] . (8)
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The factor Z measures the probability that the physical nucleon contains a
bare nucleon. The model of Ref. [10] includes all the mesons required in the
description of the low energy nucleon—nucleon and hyperon-nucleon scatter-
ing. Furthermore it ensures charge conservation, number and momentum
sum rules.

The z-dependence of the structure functions in the meson cloud model
can be written as a sum of components corresponding to the expansion given

by Eq. (8).

FN(z)=2 [F;Yco,e(:) +> (J(M)Fz(z) + J(B)Fz(z))] . (9)

MB

The contributions from the virtual mesons and baryons can be written as a
convolution of the meson (baryon) structure functions and its longitudinal
momentum distribution in the nucleon

1

s0R(2) = [ ausm()E (2) (10)

z

Equation (10) can be written in an equivalent form in terms of the quark
distribution functions

26Mg,(z) = ] avsae) (2) () (11)

The longitudinal momentum distributions of virtual mesons (or baryons)
can be calculated assuming a model of the vertex, and depends on the cou-
pling constants and form factors. For the dominant contributions (# N,7A)
they are given by simple formulas

fao @) = Ny [ ([G“” 5, (12)
fra)(¥) =
2 max a2
25?,:#31 / dt(t[f('i) [(mNn +ma) - ][( Y 4m£ 4 —t] - (13)
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The main ingredients of the model are the vertex coupling constants, the
parton distribution functions for the virtual mesons and baryons, and the
vertex form factors which account for the extended nature of the hadrons.
The coupling constants are assumed to be related via SU(3) symmetry. The
measured free-hadron parton distributions are used. In Ref. [10] an overall
cut-off parameter has been used for simplicity. This led to the value of
0.28 for the GSR, about %/ of the original NMC effect. In principle the
cut-off parameter can be slightly different for different components. In our
model the GSR is a delicate interplay between # N and 7 A components and
depends on their probabilities in the nucleon wave function. By lowering
the probability of the # A component one could achieve a better agreement
with the NMC result [2]. This is a crucial point in order to understand the
NMC result and requires a more detailed analysis. Phenomenologically the
N=A vertex can be determined [13] by comparison of the one pion exchange
model (OPEM) with high energy data

(a) pp,ATHX,

(6) p(FATHX. (14)
The cross section for the p(h,B)X reaction in the OPEM can be expressed
as
do _ F tot
dzpdpL f(zB,p1)oty (15)

where f(zp,p) is a function which involves the N7 B form factor and ot°!

is the total cross section for A collision. While reaction (14a) involves gt »

which is well known experimentally, reaction (14b) involves a:r"_ti, which
can be easily related to a;"_’,fp — also well known. Experimentally these
cross sections approximately scale in a broad range of energies, making
application of OPEM very simple.

In Fig. 1 we show prediction of the OPEM with the experimental data
for p(p, AT*)X [14] and p(p, AT 1) X [15] reactions for different values of the
cut-off parameter. The data for both reactions prefer a cut-off of about 1.0
GeV in a dipole parametrization. We note that the slight energy dependence
of cross sections has been disregarded here and we have taken 24 mb for the
olot cross section.

In the following we will use cut-off parameter of 1.2 GeV for the compo-
nents with octet baryons and of 1.0 GeV for the components with decuplet
baryons. The softer form factor for the Nz A vertex than for N#N or NKA
vertices seems be a universal feature of high energy scattering [16, 17].

In Fig. 2 we present the difference z(d—%) obtained in the framework of
the meson cloud model and for various parametrizations with asymmetric
sea-quark distributions. It is interesting to notice that the mesonic model
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Fig. 1. Differential cross section do/dp? as a function of p2 for A** production
in (a) pp collision {14] measured at Fermilab and (b) Pp collision [15] measured at
Serpukhov. The solid line is for cut-off of 1.0 GeV, whereas the dotted lines are
for 0.8 GeV and 1.2 GeV.
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Fig. 2. The difference zd(z) — zi(z) magnified by the factor 10. Result of the
meson cloud model is shown by the solid line. We present also the difference
for asymmetric phenomenological parametrigations: Eichten—Hinchliffe~-Quigg [8]
(dashed curve) and Martin—Stirling-Roberts [12] (dotted curve).
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is qualitatively similar both in shape and magnitude to the result of a very
recent global fit of Martin, Stirling and Roberts (MSR) to the world deep-
inelastic and Drell-Yan data [12]. For instance, the GSR obtained from our
model is 0.255, with 0.235 in the experimentally measured region. This can
be compared with the value of 0.26 obtained from the recent MSR fit. The
Eichten-Hinchliffe-Quigg [8] and Ellis-Stirling [11] parametrizations give
larger differences; however, they have been adjusted to reproduce the NMC
value [2] of the GSR.

In Table I we present the contributions of each of the components in
Eq. (8). One notes that only the processes involving virtual = and p mesons
contribute to the asymmetry. The ratio (d(z) — %(z))/(d(z) + ©(z)) turns
out to be rather insensitive to the choice of parton distributions in mesons
and in the bare baryons.

TABLE 1

A list of the processes contributing to the violation of the T-d symmetry in the
nucleon sea. In addition we show also probabilities (in %) of the individual Fock
components in the expansion of the nucleon wave function given by Eq. (8) and
numbers of antiquarks contained in the proton wave function.

component probability u d d—u
bare N 59.38 - - -
-+ N 21.15 0.0353 0.1763 0.1410
p+ N 1.73 0.0029 0.0144 0.0115
w+ A 10.69 0.0712 0.0356 —0.0356
p+A 0.30 0.0020 0.0010 -0.0010
symm. cont. 6.75 0.0256 0.0256 -
sum 100.00 0.1370 0.2529 0.1159

4. Drell-Yan processes

The Drell-Yan (DY) process with incident nucleons can be made ex-
tremely sensitive to the d,(z)/%,(z) distribution in the target [11].

The Drell-Yan process [18] involves the electromagnetic annihilation of
a quark (antiquark) from the incident hadron A with an antiquark (quark)
in the target hadron B. The resultant virtual photon materializes as a
dilepton pair (£¥£~). The cross section for the DY process can be written
as

doAB 4ra?

dzydzy  9sziz2

K(z1,22) Y € [¢}(21)h(22) + Th(en)ah(22)] ,

f
(16)
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where s is the square of the center-of-mass energy and z; and z, are the
longitudinal momentum fractions carried by the quarks of flavor f. The
qﬁ(zl) and qé(zz) are the quark distribution functions of the beam and
target, respectively. The factor K(z;,z2) accounts for the higher-order
QCD corrections that enter the process.

The valence quark distribution in the nucleon falls off as a much smaller
power of (1—z) than does its sea quark distribution, so that as z — 1, there
are only valence quarks and no sea quarks. Indeed, if z; is selected such
that z; = 22 + 0.3, the first term in Eq. (16) dominates the second term by
a factor of more than 10. Thus, forming the ratio of the Drell-Yan yields
for pp to pn, we have

dopfy ~ 4up(za )?p(”) + dp(z1)dp(22) (17)
doBy | p>0.3  4up(21)dp(22) + dp(21)Up(22) ’

where it is assumed that K,(z1,22) = Kn(21,22) and up(z) = dn(2), etec.
In the limit 27 — 1, %";(—(% — 0, and in that limit one has

do? =~ Z(z2)
opy |=5>0.8 p(z2)
31-—»
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Fig. 3. (a) The ratio 0§y /ofh, as a function of the target z; for selected values
of the beam z;. Predictions of the meson cloud model are shown on the left
side, while the result of a phenomenological parametrization [19] with symmetric
antiquark distributions is presented on the right side.

In practice this kinematical region is not accessible experimentally and
a more general expression based on Eq. (16) has to be used. In Fig. 3 we
present the prediction of the meson cloud model sketched in the previous
section for the ratio oD (21, 22)/0ER (21, 22) as a function of 2, for the ex-
pected experimental range of z;. We also present the results obtained from
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the symmetric phenomenological sea-quark distributions of Ref. [19]. As is
clearly seen from the figure, the experimental ratio, larger or smaller than
unity in the experimentally meaningful region z2 < 0.3, should definitely
discriminate between symmetric and asymmetric nucleon seas. It would
also give a quantitative measure of the effect, putting further constraints on
the mesonic models.
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Fig. 4. The ratio 20{,‘; /Aa-%‘; as a function of the target z; for iron and natural
tungsten. The experimental data are taken from Ref. [20] and Ref. [31]. Predic-
tions of the meson-cloud model are shown by the solid line and the result with
symmetric sea quark distribution by the long dashed line. Results obtained from
the phenomenological parametrizations with the asymmetry builc in are shown
for comparison: Field-Feynman [21] (dotted curve), Eichten—Hinchliffe~Quigg [8]
(dashed curve), Ellis-Stirling {11} (dash-dotted curve). Note that no nuclear effects
have been included.

The ratio of the DY yield from a nucleus with N # Z to that from an
isoscalar target such as deuterium, is sensitive to the dp(z)—u,(z) difference.
These ratios have been measured by the E772 Collaboration at FNAL [20]
for carbon, calcium, iron and tungsten targets. Elementary algebra leads to
the following result:

2d20'5‘§ _2Z N-2Z 2005 (21, 22)
Adzag% A A (off(z1,22) + 0By (21,22))°

(19)
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where Z, N, A are the number of protons, neutrons and the atomic number,
respectively. In Fig. 4 we present the ratios for iron and natural tungsten
targets as a function of z2 (target) for fixed value z; = 0.3, which corre-
spond roughly to the experimental situation. For comparison we present
also the experimental data of the E772 Collaboration. In addition we show
the results with the flavor symmetric sea distributions of Ref. [19]. No
large difference between the result of the mesonic model and the symmetric
parametrization can be seen. In our opinion the data do not select in a con-
vincing way the symmetric vs. asymmetric distributions. We present also
in Fig. 4 similar results with the flavor asymmetric sea-quark distributions
of Refs [21, 11, 8]. As can be seen from the figure, the data exclude such
asymmetric parametrizations.

5. Semileptonic decays of the octet baryons

The matrix elements of the current operators for the semileptonic decays
of the baryons belonging to the octet can be parametrized in terms of the
¢%-dependent form factors,

(Bf|Vu + AulBi) = CuBf(P )[fl(q e+ ’ml +“m20uvq + —ml +m, qu
2 . 92(4%) v g3(¢%)
+ 91(¢")7p7s + e T2 ML + p—I— qms]um (p)-

(20)

The factor C here is the Cabbibo factor. At low transferred momenta
only two terms, f; (vector) and g; (axial vector), become important. It
is customary to extract the experimental value g4/gv = ¢1(0)/f1(0). The
operators for the Fermi transitions (d — u) and Gamov-Teller transitions
(s — u) can be expressed in terms of the SU(3) group generators

ALF? =y ys[T? +4T?) and ASTS = qup5[T* +4T%]. (21)

The semi-leptonic decays can be well described assuming the so-called SU(3)
model. In this model the matrix elements of the vector current can be
calculated without any free parameters. The matrix elements of the axial-
vector currents can be expressed in terms of two parameters, denoted as F
and D.

Mesonic corrections lead to the renormalization of the axial-vector cou-
pling constants. The vector coupling constants are protected against renor-
malization by vector current conservation. Mesonic corrections to the axial-
vector coupling constant can be taken into account by calculating the loop
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Fig. 5. Diagrams for the axial-vector current matrix elements. The single solid lines
correspond to the octet baryons, the double solid lines to the decuplet baryons, and
the dashed lines to the pseudoscalar mesons.

corrections to the tree level approximation (see Fig. 5). Here we report
on the results with the inclusion of intermediate pseudoscalar mesons and
associated octet and decuplet baryons only (the calculations with inclusion
of vector mesons are in progress and will be presented elsewhere [17]).

In this section and in the next one we use a slightly different technique.
Instead of the covariant method of Ref. {10] we use the light cone method
proposed recently [16, 22]. The advantage of the method is that it guaran-
tees local gauge invariance and energy-momentum sum rules automatically.
The essence of the method is a use of form factors which fulfill certain sym-
metries. In terms of the invariant mass of the intermediate system M B
they read as \ ,

ms —m
GMB/N = exp [‘im&g] . (22)
The form factors commonly used in the traditional nuclear physics do not
guarantee the required symmetries.

In contrast to the problems discussed in the previous sections, the axial-
vector current matrix elements are very sensitive to the details of the model.
This requires very careful analysis of the model parameters. Here the form
factors of the vertices are especially important. The cut-off parameters of
the form factors (22) have been fixed by fitting to the high energy data:
p(p,n)X, p(p, A)X and p(p, A++)X (details will be presented in Ref. [17]).

Including the diagrams shown in Fig. 5 and assuming the SU(3) symme-
try for axial-vector currents, there exist 4 independent coupling constants:
F and D for the transitions between the octet baryons, g10—10 for the tran-
sitions within the decuplet of baryons, and gy = gs—10 = g10—s for the
mixed transitions (interference diagrams). In order to reduce number of
free parameters g19—10 and gy have been fixed to their SU(6) values and,
as in the case of the simple SU(3) fit, only F and D have been fitted to
the experimental data on g4/gy. The obtained values of F' and D are not
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far from the SU(6) limit (F = 0.47,D = 0.91 compared with F = 0.44,
D = 0.82 in the pure SU(3) fit). The resulting values of g4 /gy are com-
pared in Table IT with the SU(6) tree results and that obtained in the SU(3)
tree model with parameters fitted to the semileptonic decay data. The x?
values presented in Table II give an idea of the fit quality. The quality of the
fit within our model is very similar to that obtained within the traditional
SU(3) fit. It would even improve with allowance for the variation of g19-10
and g7. A completely unrestricted fit could result, however, in unphysical
values of parameters due to very limited number of experimental data.

TABLE II
The value of g4 /gv in different models in comparison with the experimental data.

decay su(6) SU(3) our model experiment
l.n—p 1.67 1.26 1.25 1.2573 £ 0.0028
2.2 = A 0.82 0.67 0.72 0.6000 - 0.0300
3.A—-p -1.22 -0.87 -0.88 —0.8570 1+ 0.0180
4. E- = A 0.41 0.20 0.20 0.3100 + 0.0600
5, L7 —mn 0.33 0.38 0.42 0.3400 £ 0.0500
X2/N 4369 2.00 4.90

6. Spin structure of the nucleon

In recent years there has been much excitement about polarised deep-
inelastic scattering [23, 24]. After a Regge extrapolation of the deep-inelastic
structure function gf(z) to z = 0, EMC found

1
P = / ¢P(2)dz = 0.126 + 0.010(stat) + 0.015(syst).  (23)
0

In the parton model of Feynman gf can be expressed as
95 (z) = 1 [3Au(z) + 1Ad(z) + 3 As(2)] , (24)
where Ags(z) = q}(z) - q}(:c). The quantity
9% = Au+ Ad+ As, (25)

determines the fraction of the proton spin which is carried by its quarks. The
result (23) combined with semileptonic decay data yields a most surprising
result

g% = 0.120 % 0.094(stat) £ 0.138(syst), (26)
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which is consistent with zero. This result is often called the proton spin
crisis. The experimental result has inspired one of the most serious debates
in the last decade about the theoretical interpretation of the spin and its
connections to QCD. Here we concentrate only on the classical part of the
problem in the framework of our meson cloud model of the nucleon.

The parameters fixed in the previous section can be used to estimate
the effect of the meson cloud on the spin structure of the nucleon. The
matrix elements of the flavor singlet axial-vector current can be calculated
analogously to those for the semileptonic decays.

TABLE II1

Quark polarizations, the Ellis-Jaffe sum rules for proton and neutron and the
Bjorken sum rule in the SU(6) model and in our meson cloud model (MCM).

model Au Ad As % S%; SEs Sp

SU(s) 4/3 | —1/3 | 0.000 | 1.000 | 5/18 0.000 | 5/18
MCM (SU(6)) | 1.128 | -0.326 | 0.002 | 0.804 | 0.233 | —0.009 | 0.242
MCM (SU(3)) | 0.858 | -0.399 | 0.001 | 0.461 | 0.169 | —0.041 | 0.210

In Table III we compare the results of our model with those in the clas-
sical SU(6) model, so successful in the description of the neutron-to-proton
magnetic moment ratio. As seen from the table, the meson cloud model
predicts a strong reduction of the spin carried by quarks in comparison to
the naive SU(6) model. In addition to SE; we present the Ellis-Jaffe sum
rule for the neutron Sg; and the Bjorken sum rule Sg. Although we get a
strong reduction from the 5/15 of the SU(6) model for the S%;, the meson
cloud model alone cannot account for the experimentally measured value.
Obviously other effects, such as those discussed in Ref. [25], must play an
important role. The effect of the meson cloud cannot, however, be neglected
in the total balance of the proton spin. As far as Sg; is considered, the ex-
periments at CERN and at SLAC are under way. Recently some preliminary
results have been announced [26]. The value of Sf; and Sp obtained in our
model are consistent with those obtained by SMC [26]:

Sg3 = —0.08 £ 0.04(stat) + 0.04(syst), (27)
Sp = 0.20 £ 0.05(stat) £ 0.04(syst). (28)

7. Conclusions

In the light of recent experiments on the deep-inelastic muon scattering
by nucleons, the understanding of the nucleon structure has become one of
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the most intriguing problems of particle and nuclear physics. The recent
observation of the Gottfried Sum Rule violation suggests a flavor asymmetry
of the light sea quarks in the nucleon. Although the asymmetry does not
contradict any fundamental principles, the flavor symmetry of the nucleon
sea had become a part of the folklore in the particle physics community.

An asymmetry occurs in a natural way within certain non-perturbative
models of the nucleon, built with valence quarks surrounded by a meson
cloud. There exist two classes of models of this type. In the chiral quark
model [8] the mesons are directly coupled to quarks. In the model discussed
in the present paper, the nucleon is regarded as a quark core surrounded by
the meson cloud. This picture of the nucleon provides a good description
of nucleon electric polarizabilities [27]. It also has a close connection to
models of low-energy hadron-hadron scattering [28, 29]. The value for the
Gottfried Sum Rule is almost in agreement with that obtained by NMC.

In contrast to phenomenological parametrizations of the d-@ asymmetry,
the meson cloud model discussed here predicts asymmetry concentrated
at small z, quite similar to a recent fit [12] to the world data for DIS
and Drell-Yan processes. As a consequence, the model predicts only 10%-
20% deviations to be observed in a Fermilab experiment [30] measuring
the relative dilepton yield in proton—proton and proton—deuteron Drell-Yan
processes. ,

The mesonic corrections lead to the renormalization of the axial-vector
current matrix elements, which seems to be unwanted in the light of the
success of the simple Cabibbo theory. Large one-loop corrections to g4,
which explicitly violate SU(3) symmetry, can be compensated by a shift
in the values of the symmetric (D) and antisymmetric (F) axial coupling
constants. It appears accidental that values for D and F, consistent with ex-
perimental data, can be obtained in both the SU(3) fit and by the inclusion
of the meson cloud. , _

We get a significant flow of the nucleon spin to the angular momentum
of the mesonic cloud. Although the meson cloud model does not reproduce
completely the EMC result for the Ellis—Jaffe sum rule, the contribution of
the meson cloud cannot be neglected in the total balance of the proton spin.

We wish to thank J. Durso, G.T. Garvey, N.N. Nikolaev and J. Speth
for valuable discussions.
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