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Abstract
We investigate the connection between steering and contextuality in general
probabilistic theories. We show that for a class of bipartite states the steerabil-
ity of the state by given set of measurements is equivalent to non-existence of
preparation noncontextual hidden variable model for certain restricted theory
constructed from the given state and measurements. The connection between
steering and contextuality is provided by the concept of incompatibility in
restricted theories, which we also investigate.
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1. Introduction

One potential solution to the lack of intuitive interpretations of quantum theory is to assume
that quantum theory is not fundamental, but that there is a hidden classical theory which
can explain any prediction made by quantum theory. Such hidden classical theory is often
called hidden variable model. Existence of hidden variable models was investigated in the
past: it was shown by John Bell that local hidden variable models are incompatible with
predictions of quantum theory [1] and it was shown by Kochen and Specker [2] that noncon-
textual hidden variable models are also incompatible with the predictions of quantum theory.
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Here noncontextual means that the probability of observing a measurement outcome in the
hidden variable theory does not depend on other possible measurement outcomes. For a recent
review of noncontextuality in quantum theory see [3].

One possible operational version of contextuality was recently defined and discussed in [4].
By operational we mean that instead of investigating the existence of noncontextual description
of quantum theory, we investigate the existence of noncontextual description of some convex
operational theory. The class of convex operational theories we have in mind are called general
probabilistic theories, or GPTs for short [5, 6]; they are large class of operational theories
including both classical and quantum theories, but also theories that contain PR boxes [7, 8]
or postquantum steering [9]. Noncontextuality was investigated in GPTs before [10–16]. It is
clear that some GPTs must have noncontextual hidden variable model; trivial example is any
classical theory which is itself its own hidden variable model. Using the language of GPTs
we can ask which theories apart from classical do allow given form of noncontextual hidden
variable model. This is an important question as if it turns out that almost no theories allow for
noncontextual hidden variable model, then one can interpret the result of Kochen and Specker
as a mathematical statement about a class of non-classical theories, rather than as a result about
quantum theory itself.

Incompatibility is one of the fundamental non-classical features of quantum theory; we
say that two measurements are incompatible if they cannot be measured jointly. Incompati-
bility was heavily studied within quantum theory [17, 18] but also in GPTs [19–21]; it is for
example known that incompatibility is necessary for steering [22, 23] and for violations of Bell
inequalities [24].

In this paper we formulate and investigate different forms of noncontextuality and their
connection to the notion of incompatibility in restricted GPTs, we show that there is an inherent
connection between incompatibility and contextuality in all GPTs. Our results on compatibility
generalize the results obtained in [25] and they are complementary to [26] where it was shown
that incompatibility is not necessary for the investigated type of contextuality. Our main result
is that we apply the aforementioned connection to steering, where we show that steerability
of certain class of states by given set of measurements directly corresponds to non-existence
of preparation noncontextual hidden variable model for restricted theory constructed from the
given state and measurements.

The paper is organized as follows: in section 2 we review the formalism of GPTs and in
section 3 we introduce the three different types of noncontextual hidden variable models in
GPTs. In section 4 we introduce two different types of incompatibility in restricted GPTs and
we prove that there is a connection between incompatibility and non-existence of preparation
noncontextual hidden variable. Finally in section 5 we put all of the concepts together and we
prove the connection between steerability of a state by given measurement and non-existence
of preparation noncontextual hidden variable model.

2. Restricted GPTs

In this section we will introduce restricted general probabilistic theories (GPTs). This section is
intended mainly to set the notation and introduce only the necessary concepts; for an exhaustive
review of GPTs see [5, 6].

A state space K is a compact convex subset of a finite-dimensional real vector space V . Given
a state space K we define the effect algebra E(K) as the set of affine functions f : K → [0, 1].
An important element of E(K) is the constant function 1K ∈ E(K) given as 1K(ρ) = 1 for
all ρ ∈ K. The interpretation is that E(K) corresponds to all mathematically well-defined
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two-outcome measurements on K, i.e., for f ∈ E(K) and ρ ∈ K the number f (ρ) is the prob-
ability of obtaining the ‘yes’ outcome of the corresponding two-outcome measurement, the
probability of ‘no’ outcome is given by the normalization as 1 − f (ρ).

Under reasonable assumptions one can show that we can use the tensor product to describe
states shared between two parties. For a given state spaces KA and KB let KAB be the bipartite
state space that contains all possible states that the two parties can share, then

KAB ⊂ span({ρA ⊗ ρB : ρA ∈ KA, ρB ∈ KB}). (1)

It is natural to assume that KAB contains all separable states, i.e., that we have ρA ⊗ ρB ∈ KAB

for all ρA ∈ KA and ρB ∈ KB. This leads to the definition of the minimal tensor product

KA⊗̇KB = conv({ρA ⊗ ρB : ρA ∈ KA, ρB ∈ KB}) (2)

and we then require KA⊗̇KB ⊂ KAB. We will also assume that KAB allows for all separable
measurements, i.e., that for all fA ∈ E(KA) and fB ∈ E(KB) we have ( fA ⊗ fB)(ρAB) � 0. This
leads to the definition of the maximal tensor product

KA⊗̂KB =
{
ψ ∈ span(KA⊗̇KB) : (1KA ⊗ 1KB)(ψ) = 1,

( fA ⊗ fB)(ψ) � 0, ∀ fA ∈ E(KA), ∀ fB ∈ E(KB)} (3)

and we then require KAB ⊂ KA⊗̂KB. Using linearity we can define the experiment where Alice
measures but Bob does not: let ρAB ∈ KAB, then using (1) we have ρAB =

∑n
i=1 αiσ

A
i ⊗ σB

i

where αi ∈ R, σA
i ∈ KA, σB

i ∈ KB for all i ∈ {1, . . . , n}. Let fA ∈ E(KA), we then define
( fA ⊗ idB)(ρAB) =

∑n
i=1 αi fA(σA

i )σB
i . Here idB is the identity map on Bob’s system.

Example 1 (Classical theory). A useful example of a state space is the classical theory
where the state space is a simplex Sn. Here a simplex is a convex hull of linearly independent
pure states, that is, Sn = conv({si}n

i=1) where si are linearly independent vectors. The effect
algebra E(Sn) is then generated by the dual basis bj ∈ E(Sn), which is given by bj(si) = δi j

where δi j is the Kronecker symbol. We then have 1Sn =
∑n

j=1b j. Note that we will also use the
following notation: let I be any index set, e.g., I = {1, . . . , n}, then we will use SI to denote
the simplex generated by the states indexed by I, i.e., SI = conv({si}i∈I).

Example 2 (Quantum theory). Quantum theory is another example of a GPT. Here
the state space is the set of all density matrices, i.e., we have K = D(H), where D(H) =
{ρ ∈ B(H) : ρ � 0, Tr(ρ) = 1}, B(H) is the vector space of Hermitian operators on the finite-
dimensional complex Hilbert space H and A � 0 means that A is positive semidefinite. We
also have E(D(H)) = E(H) = {M ∈ B(H) : 0 � M � 1} up to an isomorphism; the value of
the effect M ∈ E(H) on the state ρ ∈ D(H) is given by the Born rule Tr(ρM). Let KA = D(HA)
and KB = D(HB), then the bipartite state space is given by the tensor product of the underlying
Hilbert spaces, that is KAB = D(HA ⊗HB).

Let KA and KB be state spaces, then a channel is an affine mapΦ : KA → KB. A measurement
is a channel where the target state space is a simplex, i.e., measurement is a channel m : KA →
Sn. One can prove that every measurement m corresponds to a tuple of effects fi ∈ E(K), i ∈
{1, . . . , n}, such that

∑n
i=1 f i = 1K and for ρ ∈ KA we have m(ρ) =

∑n
i=1 f i(ρ)si. This is exactly
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the same as saying that p(i), the probability of observing the outcome i, is given as p (i) = fi(ρ).
Finally, a classical post-processing is a channel ν : Sn → Sk that maps a simplex to another
simplex. Every classical post-processing corresponds to a right stochastic matrix ν i j, i.e., ν i j �
0 and

∑k
j=1 νi j = 1, the correspondence is given as ν(si) =

∑n
j=1 νi js j where si is an extreme

point of Sn.
Given a channel Φ : KA → KB we can define the adjoint map Φ∗ : E(KB) → E(KA) as the

unique channel such that (Φ∗( f ))(ρ) = f (Φ(ρ)) holds for all f ∈ E(KB) and ρ ∈ KA.
A restricted GPT is a theory in which not all mathematically well-defined states and mea-

surements are allowed. Restricted GPTs arise in experimental scenarios, where we can usually
prepare only a certain subset of all possible states and perform only a certain subset of all
possible measurements. In order to describe the restricted theory we will use the pair (K, E)
where K is a state space containing all preparable states and E is the effect algebra con-
taining all allowed effects, i.e., all allowed two-outcome measurements. Note that the pair
(K, E) does not completely describe the restricted theory, because we can also have inde-
pendent higher-order restrictions on measurements with more than two outcomes [27]. In
order to also take into account the restrictions on the set of more than two-outcome measure-
ments, we will denote M(E) the set of all measurements allowed in the given restricted theory
(K, E). Going the other way, we can also define E as the smallest effect algebra containing
effects corresponding to measurements mx, where x is a some index; in this case we denote
E = effect(mx). If the set {mx} is closed with respect to post-processing of measurements we
get M(effect(mx)) = {mx}.

For practical reason we will consider a theory with no restrictions as a special case of a
general restricted theory. Moreover we will abuse the notation and we will use (K, E(K)) to
denote the theory with no restrictions.

Let (K, E) be a restricted theory, then in order to make all probabilities positive we must
require that E ⊂ E(K), i.e., that every f ∈ E is an affine function f : K → [0, 1]. Following the
consistency results derived in [27] we will also assume that E is convex and 0K , 1K ∈ E, where
0K(ρ) = 0 for all ρ ∈ K. One also has to consider whether E contains enough measurements
to distinguish any two states in K. Thus we arrive to the following definition:

Definition 1. Let (K, E) be a restricted theory. We say that (K, E) is tomographically
complete if for every ρ, σ ∈ K, ρ �= σ, there is f ∈ E such that f (ρ) �= f (σ).

It is reasonable to expect that in most practical applications the restricted theories (K, E)
will be tomographically complete. We will not assume topographical completeness because
it is not needed for the validity of our results. Given the restricted theory (K, E) it is useful
to define the state space of E as the set of all linear functionals ψ on span(E) such that ψ is
positive on E and normalized, ψ(1K) = 1. We get

S(E) = {ψ ∈ span(E)∗ : ψ( f ) � 0, ∀ f ∈ E,ψ(1K) = 1}, (4)

where V∗ is the dual of the vector space V . For a theory with no restrictions (K, E(K)) we have
S(E(K)) = K up to an isomorphism [6]. If (K, E) is tomographically complete theory, then
K ⊂ S(E) up to an isomorphism. Finally we prove the following lemma which is going to be
useful for working with tomographically incomplete restricted theories.

Lemma 1. Let (K, E) be a restricted theory, then there is a channel Φ(K,E) : K → S(E) such
that m(ρ) = m(Φ(K,E)(ρ)) for all ρ ∈ K and for all measurements m ∈ M(E).
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Proof. Let f ∈ E and ρ ∈ K. By construction of the restricted theory (K, E) there must be a
way to evaluate f on ρ, i.e., the expression f (ρ) must be well-defined. We will now employ a
standard trick: rather then seeing f as the function and ρ as the input we will exchange their
roles and we will interpret ρ as the function and f as the input. This is done using the evaluation
map ξ : ρ→ ξρ, where ξρ : E →R is a function defined as ξρ( f ) = f (ρ). It is straightforward to
prove that ξρ : E → R is linear and so ξρ ∈ span(E)∗. Similarly we get ξρ( f ) � 0 for all f ∈ E,
ξρ(1K) = 1 and that the evaluation map ξ is affine. It thus follows that ξρ ∈ S(E) and ξ = Φ(K,E)

is the channel we were looking for. �

The interpretation of lemma 1 is that we can formally interpret every measure-and-prepare
experiment in the restricted theory (K, E) as preparation of some state ρ ∈ K, applying the fixed
channelΦ(K,E) and measuring the final state Φ(K,E)(ρ) ∈ S(E) using a measurement m ∈ M(E).
Note that while ρ ∈ K and m ∈ M(E) are given by the choice of the experiment, the channel
Φ(K,E) is always fixed by the structure of the restricted theory (K, E). If (K, E) is tomographically
complete, then K ⊂ S(E) and one usually gets Φ(K,E) = id.

3. Hidden variable models

Given a restricted theory (K, E) one can ask whether hidden variable models with cer-
tain properties exist; the properties in question are for example locality, superdeterminism
[28, 29], or noncontextuality. The hidden variable model is a classical theory that can model
any preparation-measurement experiment performable in (K, E). We will be interested in the
following three different versions of noncontextual hidden variable models [10]: preparation
noncontextual hidden variable models, measurement noncontextual hidden variable models
and preparation and measurement noncontextual hidden variable models.

Consider the following scenario: an experimenter is given a description of the input data,
according to the description the experimenter prepares the input state, measures and obtains
statistics of the experiment. Let SI be the simplex that describes the classical input and SO

the simplex that describes the classical output. The scenario in question can be described
using the channels P : SI → K and m : K → SO, where P is the preparation map and m is the
measurement. Thus the whole experiment can be pictorially represented as

(5)

The upside of including the input data and SI in out model is that the whole formulation
is closer to being time-symmetric [30]. Note that SI contains the full information about the
input of the state preparation which allows us to distinguish scenarios that are later indistin-
guishable. For example, assume that K = D(H), dim(H) = 2, is a two-level quantum system
and let SI = conv({s0, s1, s+, s−}). Let |±〉 = 1√

2
(|0〉 ± |1〉) and define the preparation map

P : SI → K as P(s0) = |0〉〈0|, P(s1) = |1〉〈1|, P(s+) = |+〉〈+|, P(s−) = |−〉〈−|. It then fol-
lows that P

(
1
2 s0 +

1
2 s1

)
= P

(
1
2 s+ + 1

2 s−
)

and so 1
2 s0 +

1
2 s1 and 1

2 s+ + 1
2 s− lead to preparing
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indistinguishable states. But despite that 1
2 s0 +

1
2 s1 and 1

2 s+ + 1
2 s− are perfectly distinguish-

able states of SI . Hence at the level of SI one can distinguish preparation inputs that are
indistinguishable at the level of K.

A hidden variable model for the scenario described by P and m is given by a simplex SΛ,
preparation ηP : SI → SΛ and measurementμm : SΛ → SO such that the statistics of both experi-
ments are the same, i.e., for all si ∈ SI we have (m ◦ P)(si) = (μm ◦ ηP)(si), which can be written
in terms of probability distributions as

p(a|P, m, i) =
∑
λ∈Λ

p(a|m,λ)p(λ|P, i), (6)

where p (a|P, m, i) is the probability of obtaining an outcome a of measurement m when the
input data is i and preparation P is used, p(λ|P, i) is the probability of obtaining the value
of the hidden variable λ when modeling preparation P with input data i and p (a|m,λ) is the
probability of obtaining the outcome a when the value of the hidden variable is λ and when
modeling the measurement m. Here ηP and μm are essentially the maps ηP : i → p(λ|P, i) and
μm : λ→ p(a|m,λ). Note that the preparation ηP can depend on P and the measurement μm

can depend on m, one can capture these dependencies by defining the maps η : P 
→ ηP and
μ : m 
→ μm. Pictorially we get

(7)

where the double arrows denote supermaps, that is maps that map maps. The meaning of (7) is
that both paths from SI to SO lead to the same result. It is straightforward to see that the hidden
variable model corresponding to (7) always exists, for example one may construct such hidden
variable model by calculating the outcomes of the experiment by hand, the hidden variable Λ
then corresponds to all possible (finite) calculations one can write down. This is not surprising
as so far we did not require that the hidden variable model satisfies any properties except that
i and a do not depend on λ and it was already observed in [2] that the hidden variable model
should be required to have some additional properties in order to not be trivial.

One can require the hidden variable model to be preparation noncontextual, meaning that
for all preparations P : SI → K and all input data si ∈ SI the prepared distribution of hidden
variables depends only on P(si). This means that for any s, s′ ∈ SI and P, P′ : SI → K such
that P(s) = P′(s′) we must have ηP(s) = ηP′(s′). It follows that one can define a map ι : K →
SΛ as follows: let P be a preparation P : SI → K, let s ∈ SI and denote P(si) = ρ, then we
define ι(ρ) = ηP(s). This is well-defined because if there is a different preparation P′ : SI →
K and input data s′ ∈ SI such that P′(s′) = ρ, then P′(s′) = ρ = P(s) and so ι(ρ) = ηP(s) =
ηP′ (s′). Moreover ι is affine map: let ρ, σ ∈ K and let P be a preparation such that P(s) = ρ and
P(s′) = σ, we can always construct such preparation as a preprocessing of the preparations of
ρ and σ. Let λ ∈ [0, 1], we then have P(λs + (1 − λ)s′) = λρ+ (1 − λ)σ and

ι(λρ+ (1 − λ)σ) = ηP(λs + (1 − λ)s′) = ληP(s) + (1 − λ)ηP(s′)

= λι(ρ) + (1 − λ)ι(σ). (8)

6
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Thus ι is a channel and we get the following definition:

Definition 2 (Preparation noncontextuality). A restricted theory (K, E) is preparation
noncontextual if there is a map ι : K → SΛ such that for any experiment given by preparation
P : SI → K and measurement m : K → SO we have

p(a|P, m, i) =
∑
λ∈Λ

p(a|m,λ)bλ((ι ◦ P)(si)), (9)

where bλ ∈ E(SΛ) is such that bλ(sλ′) = δλλ′ . One can also denote bλ((ι ◦ P)(si)) = p (λ|P(si)),
explicitly showing that the distribution of hidden variable λ depends only on P(si). (9) is the
same as

(10)

Analogically one can require that the hidden variable model is measurement noncontex-
tual, meaning that for all measurements m : K → SO and all outcome labels sa ∈ SO the dis-
tribution of the outcome data depends only on fa = m∗(ba) and λ. This means that for any
b, b′ ∈ E(SO) and m, m′ : K → SO such that m∗(b) = (m′)∗(b′) we must have μ∗

m(b) = μ∗
m′ (b′).

It follows that there must exist a map κ : E → E(SΛ) such that if f = m∗(b), then κ( f ) =
μm(b), moreover one can show that κ is affine in the same way as for ι. We thus get the
definition:

Definition 3 (Measurement noncontextuality). A restricted theory (K, E) is measure-
ment noncontextual if there is a map κ∗ : SΛ → S(E) such that for any experiment given by
preparation P : SI → K and measurement m : K → SO we have

p(a|P, m, i) =
∑
λ∈Λ

ba((m ◦ κ∗)(sλ))p(λ|P, i), (11)

where one can denote ba((m ◦ κ∗)(sλ)) = p (a|m∗(ba)). Diagrammatic equivalent of (11) is

(12)

The diagram (12) is quite different from (10), but one can make the diagrams similar by
explicitly including the channel Φ(K,E) given by lemma 1 and treating m as only measurement
on S(E).
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One can also require both at the same time, i.e., one can require the hidden variable model
to be both preparation noncontextual and measurement noncontextual. In this case we will say
that (K, E) is simplex-embeddable, as already defined in [4].

Definition 4 (Simplex-embeddability). A restricted theory (K, E) is simplex-
embeddable if there is a simplex SΛ and channels ι : K → SΛ and κ∗ : SΛ → S(E) such
that for all ρ ∈ K and f ∈ E we have (κ( f ))(ι(ρ)) = f (ρ), which is the same as

(13)

4. Two definitions of incompatibility in restricted operational theories

Before defining incompatibility of measurements in restricted theories, lets remind ourselves
of the definition used in theories with no restrictions. Although we will define compatibility of
only two measurements, it is straightforward to extend the notion to finite or infinite amount
of measurements. Let (K, E(K)) be a theory satisfying no-restriction hypothesis and let m1

and m2 be two measurements corresponding to the sets of effects fi ∈ E(K) and gj ∈ E(K)
respectively, where i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} and

∑n1
i=1 f i =

∑n2
j=1 g j = 1K . Then we

say that m1 and m2 are compatible if there is a measurement m given by the set of effects
hi j ∈ E(K), i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} such that

f i =

n2∑
j=1

hi j, (14)

g j =

n1∑
i=1

hi j. (15)

Measurement m satisfying (14) and (15) is called the joint measurement. The definition of
compatibility is equivalent to requiring that there is a measurement m given by the set of
hλ, λ ∈ Λ, where Λ is some arbitrary index set, and conditional probability distributions
p (i|1,λ) and p ( j|2,λ) such that fi =

∑
λ∈Λ p (i|1,λ)hλ, g j =

∑
λ∈Λ p ( j|2,λ)hλ, see [19] for a

proof.
Given a restricted theory (K, E) we have two options when defining compatibility of mea-

surements: we either require that hi j ∈ E or we relax this to hi j ∈ E(K). One may be inclined
to argue that hi j ∈ E is the correct option, as the joint measurement m given by the effects hi j

should be an allowed measurement, but, as we will see, the other option is also useful and quite
interesting, since it implies that even though the joint measurement is not an allowed measure-
ment, the available states from K cannot witness [31] the incompatibility of m1 and m2. Thus
we obtain the following two definitions:

Definition 5 (E-compatibility). Let (K, E) be a restricted theory and let m1 and m2 be mea-
surements given by fi ∈ E and g j ∈ E respectively, where i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}.

8
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Figure 1. Embedding of the classical state space S3 inside the circle S(E) used in
example 3.

We say that m1 and m2 are E-compatible if there are hi j ∈ E, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2},
such that (14) and (15) hold. The measurement m will be called E-joint measurement of m1

and m2.

Definition 6 (E(K)-compatibility). Let (K, E) be a restricted theory and let m1 and
m2 be measurements given by fi ∈ E and g j ∈ E respectively, where i ∈ {1, . . . , n1} and
j ∈ {1, . . . , n2}. We say that m1 and m2 are E(K)-compatible if there are hi j ∈ E(K),
i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, such that (14) and (15) hold. The measurement m will be
called E(K)-joint measurement of m1 and m2.

The following result is immediate:

Lemma 2. Let (K, E) be a restricted theory and let m1 and m2 be measurements. If m1 and
m2 are E-compatible, then they are also E(K)-compatible.

Proof. The proof follows from E ⊂ E(K). �

It is straightforward to construct a restricted theory (K, E) and measurements m1 and m2

that are E(K)-compatible, but E-incompatible.

Example 3 (Triangle-in-circle). Let K = S3 be a triangle and let S(E) be a circumscribed
circle of K, see figure 1. Then S(E) coincides with the state space of the real quantum theory and
so there clearly are E-incompatible measurements m1 and m2. But since K = S3 is a simplex,
it follows that all measurements are E(K)-compatible.

In the following we will investigate what happens if all measurements in a restricted the-
ory (K, E) are either E-compatible or E(K)-compatible and we will compare these concepts to
simplex-embeddability. We will take this path because, as we will see later, exactly these con-
cepts become crucial when investigating the steerability of a bipartite state. Also note that we
are not loosing too much generality by taking this path as when investigating the compatibility

9
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of measurement m1, . . . , mN one can always take E to be the smallest effect algebra includ-
ing all effects corresponding to the measurements m1, . . . , mN . The first result is an immediate
application of known results on theories with no-restrictions.

Proposition 1. Let (K, E) be a restricted theory. All measurements in (K, E) are E-
compatible if and only if S(E) is a simplex.

Proof. If S(E) is a simplex, then all measurements containing effects from E are compatible
and so all measurements in (K, E) are E-compatible.

If all measurements are E-compatible, then it follows that all pairs of two-outcome mea-
surements are E-compatible. Let m1 and m2 be a pair of two-outcome measurements, then
their E-joint measurement m is a well-defined measurement on S(E). Then (S(E), E) is a the-
ory with no restrictions in which all pairs of two-outcome measurements are compatible. It
follows that S(E) is a simplex [32, 33]. �

The following result is similar to [25, theorem 1].

Proposition 2. Let (K, E) be a restricted theory. All measurements in (K, E) are E(K)-
compatible if and only if there exists a preparation noncontextual hidden variable model for
(K, E).

Proof. Let {mx} = M(E), i.e., we index all measurements in M(E) by the index x, and
denote fa|x the effects corresponding to mx . Since mx are E(K)-compatible, it follows that
there are hλ ∈ E(K) such that fa|x =

∑
λ∈Λ p(a|x,λ)hλ. Let us define ι : K → SΛ by ι(ρ) =∑

λ∈Λ hλ(ρ)sλ and μmx : SΛ → SO by ba(μmx (sλ)) = p(a|x,λ). We then have

p(a|P, mx, i) = fa|x(P(si)) =
∑
λ∈Λ

p(a|x,λ)hλ(P(si)) (16)

= ba((μmx ◦ ι)(P(si))). (17)

Thus ι and μ : mx 
→ μmx constitute the preparation noncontextual hidden variable model.
Now assume that there is a preparation noncontextual hidden variable model for (K, E). We

then have that for every measurement m : K → SO there are maps ι : K → SΛ and μm : SΛ → SO

such that m = μm ◦ ι. Observe that ι is a measurement on K corresponding to effects hλ ∈ E(K)
and μm is just a classical post-processing, so any measurement m in (K, E) can be obtained as
a classical post-processing μm of the measurement ι. It follows that all measurements in (K, E)
are E(K)-compatible [17, subsection 5.2]. �

Finally, we get to describe the hierarchy between E-compatibility, simplex-embeddability
and E(K)-compatibility.

Theorem 1. Let (K, E) be a restricted theory. Then the following two implications hold:

(a) If all measurements on (K, E) are E-compatible, then (K, E) is simplex-embeddable.
(b) If (K, E) is simplex-embeddable, then all measurements on (K, E) are E(K)-compatible.

Proof. If all measurements in (K, E) are E-compatible then S(E) is a simplex, see
proposition 1. The main idea used to prove (a) is to take SΛ = S(E), κ∗ = id and ι = Φ(K,E),
where Φ(K,E) is the channel given by lemma 1. Let ρ ∈ K and f ∈ E, we then have κ( f ) = f
and f (Φ(K,E)(ρ)) = f (ρ) follows from lemma 1.

Assume that (K, E) is simplex-embeddable and let mx be a collection of measurements in
(K, E). Let ρ ∈ K, we then have

m(ρ) = (m ◦ κ∗ ◦ ι)(ρ) = (m ◦ κ∗)(ι(ρ)), (18)

10
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Figure 2. Embedding of the square state space K inside the larger square S(E) used in
example 4.

where ι : K → SΛ can be seen as a measurement with effects from E(K) and m ◦ κ∗ :
SΛ → SO can be seen as classical post-processing. Thus the measurements mx are E(K)-
compatible [17, subsection 5.2]. �

Another way to prove (b) is to observe that if (K, E) is simplex embeddable, then there
also exists a preparation noncontextual model for (K, E) and we get the wanted result using
proposition 2.

The following example proves that the inclusion in theorem 1(a) is strict.

Example 4 (Square-in-square). Example of a theory that is simplex-embeddable, but
not E-compatible is the stabilizer rebit theory used in [4]. Let both K and S(E) be squares,
such that K is the convex hull of the midpoints of edges of S(E), see figure 2. It is well-known
that there are E-incompatible two-outcome measurements [34, 35], since S(E) is a square and
E(S(E)) = E. It was shown in [4] that (K, E) is simplex-embeddable.

Using the result of proposition 2 and theorem 1 we get the following corollaries about
theories with no restrictions.

Corollary 1. Let (K, E(K)) be a theory satisfying the no-restriction hypothesis and assume
that (K, E(K)) is simplex-embeddable. Then K is a simplex.

Proof. If (K, E(K)) is simplex-embeddable, then according to theorem 1 all measurements
in (K, E(K)) are E(K)-compatible and so K must be a simplex [32, 33]. �
Corollary 2. Let (K, E(K)) be a theory satisfying the no-restriction hypothesis and assume
that there is preparation noncontextual hidden variable model for (K, E(K)). Then K is a
simplex.

Proof. The result immediately follows from proposition 2: the existence of preparation
noncontextual hidden variable model for (K, E(K)) implies that all measurements are E(K)-
compatible, which implies that K is a simplex [32, 33]. �

11
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5. Connecting steering and noncontextuality

In this section we will apply the concepts of E(K)-compatibility to the problem of a steerability
of a bipartite state ρAB ∈ KAB. In order to do so, we first provide a short review on steering in
GPTs and then we show how to construct the restricted theory (K, E) corresponding to a given
steering scenario. For an in-depth review on steering in quantum theory see [36].

Let ρAB ∈ KAB be a bipartite state shared between Alice and Bob and let mx be a set
of measurements that Alice can choose from, each given by a set of effects fa|x ∈ E(KA),
such that

∑
a fa|x = 1KA . After measuring mx and obtaining the outcome a, Bob is left with

the post-measurement state σa|x given as σa|x = ( fa|x ⊗ idB)(ρAB). Note that if KA = D(HA),
KB = D(HB) and KAB = D(HA ⊗HB), then the measurements mx are given by quantum effects
Ma|x ∈ E(HA) and σa|x = TrA((Ma|x ⊗ 1)ρAB). In general σa|x /∈ KB since they are subnormal-
ized as 1K(σa|x) is the probability of Alice obtaining the outcome a when measuring x. The set
of states {σa|x} is called an assemblage and we say that the assemblage {σa|x} is not steerable
if there exists a local hidden state model [37], that is if there is set of states {σλ} ⊂ KB, λ ∈ Λ,
and probability distributions p(λ) and p (a|x,λ) such that σa|x =

∑
λ∈Λ p(λ)p (a|x,λ)σλ. It is

known that a necessary conditions for steering are that the state ρAB is not separable and that
the measurements mx are incompatible. It is of special interest do decide whether a given state
ρAB ∈ KAB is steerable by some set of measurements mx , or whether ρAB is steerable by all
possible measurements. We will not restrict the cardinality of the set mx, hence one can take
mx to include all possible measurements.

For the purposes of the following proof we will introduce the notion of full-dimensionality
of ρAB.

Definition 7. Let ρAB ∈ KAB. We say that ρAB is KB-full-dimensional if

span(KB) = span({( f ⊗ idB)(ρAB) : f ∈ E(Kρ)}), (19)

where Kρ is given as in (21).

The following is an immediate result.

Lemma 3. Let ρAB ∈ KAB. ρAB is KB-full-dimensional if

span(KB) = span({( f ⊗ idB)(ρAB) : f ∈ E(KA)}). (20)

Proof. The result follows from E(KA) ⊂ E(Kρ), which follows from Kρ ⊂ KA. �
It is easy to see that in quantum theory if the dimensions of the local Hilbert spaces

are the same, then every state with full Schmidt rank is both KA-full-dimensional and KB-
full-dimensional. Let us now build the restricted theory (K, E) corresponding to the steering
scenario. Let ρAB ∈ KAB and let g ∈ E(KB), then (idA⊗g)(ρAB)

(1KA
⊗g)(ρAB) ∈ KA and so we define

Kρ =

{
(idA ⊗ g)(ρAB)
(1KA ⊗ g)(ρAB)

: g ∈ E(KB)

}
. (21)

Let {mx} be the set of measurements that we want to use for steering. Note that we can without
loss of generality assume that {mx} is closed with respect to post-processing of measurements,
as if the set {mx} does not steer a state ρAB, then we can also construct the local hidden state
model for every measurement that is a post-processing of mx. We will define Em to be the
smallest effect algebra containing all of the effects corresponding to mx, i.e.,

Em = effect(mx). (22)

12
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It follows that if mx includes all possible measurements, then Em = E(KA). The theory (Kρ, Em)
does not have to be tomographically complete, take for example ρAB = ρA ⊗ ρB, then Kρ con-
tains only a single state. In some cases one can get rid of the tomographical incompleteness
but there are also pathological cases, both of these cases will be addressed later on.

We can now introduce the result that connects noncontextuality and steering.

Theorem 2. Let ρAB ∈ KAB be KB-full-dimensional state and let (Kρ, Em) be the restricted
theory as given by (21) and (22). Then ρAB is not steerable by mx if and only if there exists a
preparation noncontextual hidden variable model for (Kρ, Em).

Proof. Assume that a preparation noncontextual hidden variable model for (Kρ, Em) exists.
According to theorem 1 the measurements given by fa|x are E(Kρ)-compatible, and so there
is a measurement given by effects hλ ∈ E(Kρ), λ ∈ Λ, such that fa|x =

∑
λ∈Λ p (a|x,λ)hλ. Let

ω ∈ Kρ, then there is g ∈ E(KB) such that ω = (idA⊗g)(ρAB)
(1KA

⊗g)(ρAB) and we get

fa|x(ω) =
∑
λ∈Λ

p(a|x,λ)hλ(ω), (23)

( fa|x ⊗ g)(ρAB) =
∑
λ∈Λ

p(a|x,λ)(hλ ⊗ g)(ρAB), (24)

for all g ∈ E(KB), which implies that

( fa|x ⊗ idB)(ρAB) =
∑
λ∈Λ

p(a|x,λ)(hλ ⊗ idB)(ρAB). (25)

Denoting (hλ ⊗ idB)(ρAB) = p (λ)σλ we get

( fa|x ⊗ idB)(ρAB) =
∑
λ∈Λ

p(λ)p(a|x,λ)σλ (26)

which is the local hidden state model for ρAB and fa|x . Hence ρAB is not steerable by fa|x .
Now assume that ρAB is not steerable by fa|x and so there always is a local hidden state

model given as

( fa|x ⊗ idB)(ρAB) =
∑
λ∈Λ

p(λ)p(a|x,λ)σλ, (27)

where σλ ∈ KB for all λ ∈ Λ. Since ρAB is KB-full-dimensional it follows that for every
σλ ∈ KB there is some hλ ∈ span(E(Kρ)) such that

p(λ)σλ = (hλ ⊗ idB)(ρAB) (28)

and so we have

( fa|x ⊗ idB)(ρAB) =
∑
λ∈Λ

p(a|x,λ)(hλ ⊗ idB)(ρAB). (29)

Let g ∈ E(KB), then we have

( fa|x ⊗ g)(ρAB) =
∑
λ∈Λ

p(a|x,λ)(hλ ⊗ g)(ρAB) (30)

13
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which implies

fa|x(ω) =
∑
λ∈Λ

p(a|x,λ)hλ(ω) (31)

for all ω ∈ Kρ. Thus we have

fa|x =
∑
λ∈Λ

p(a|x,λ)hλ. (32)

This already is close to the wanted result, we only need to prove that hλ are positive functions
and that

∑
λ∈Λhλ = 1Kρ .

So assume that there is some ω ∈ Kρ and λ ∈ Λ such that hλ(ω) < 0. Then there is some
g ∈ E(KB) such that ω = (idA⊗g)(ρAB)

(1KA
⊗g)(ρAB) and we get

0 > hλ(ω) =
(hλ ⊗ g)(ρAB)
(1KA ⊗ g)(ρAB)

=
p(λ)

(1KA ⊗ g)(ρAB)
g(σλ). (33)

Since p (λ)
(1KA

⊗g)(ρAB) � 0 it follows that g(σλ) < 0, but this is a contradiction because g ∈ E(KB)

and σλ ∈ KB. To show that
∑

λ∈Λhλ = 1Kρ observe that

(1KA ⊗ idB)(ρAB) =
∑

a

( fa|x ⊗ idB)(ρAB) =
∑
λ∈Λ

∑
a

p(λ)p(a|x,λ)σλ (34)

=
∑
λ∈Λ

p(λ)σλ =
∑
λ∈Λ

(hλ ⊗ idB)(ρAB). (35)

Let g ∈ E(KB), then we have (1KA ⊗ g)(ρAB) =
∑

λ∈Λ(hλ ⊗ g)(ρAB) which implies that for all
ω ∈ Kρ we get 1KA(ω) =

∑
λ∈Λhλ(ω) and the result follows. �

Let us first discuss the requirement that ρAB is KB-full-dimensional. If ρAB is not KB-full-
dimensional, then not all is lost, as in some cases one can restrict KB to KB ∩ span({( f ⊗
idB)(ρAB) : f ∈ E(Kρ)}). Denote J = span({( f ⊗ idB)(ρAB) : f ∈ E(Kρ)}) and assume that
there is a channelΦ : KB → KB such that for all x ∈ KB we haveΦ(x) ∈ J andΦ(v) = v for all
v ∈ J. Assume there is a local hidden state model ( fa|x ⊗ idB)(ρAB) =

∑
λ∈Λ p (λ)p(a|x,λ)σλ.

Since ( fa|x ⊗ idB)(ρAB) ∈ J by definition, by applying Φ to both sides we get
( fa|x ⊗ idB)(ρAB) =

∑
λ∈Λ p (λ)p(a|x,λ)Φ(σλ). Now since Φ(σλ) ∈ KB ∩ J we can without

loss of generality replace KB with KB ∩ J, simply because from any local hidden state model
given by σλ ∈ KB we can construct a new local hidden state model given by Φ(σλ) ∈ KB ∩ J.
Note that it is sufficient that there is a channel Φ′ : KB → KB such that Φ′(v) = v for all v ∈ J,
then one can use [38, lemma 1] to construct Φ : KB → KB with the desired properties.

One may now hope to use similar ideas to extend theorem 2 to all states ρAB ∈ KAB, but the
following example shows that this is not possible.

Example 5 (Sqaure-in-tetrahedron). Let s00, s10, s01, s11 be four points such that
1
2 (s00 + s11) = 1

2 (s10 + s01), then S = conv({s00, s10, s01, s11}) is, up to an isomorphism, a

14
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Figure 3. Embedding of the square state space S inside the simplex S4 used in
example 5.

square. Moreover let S4 be the tetrahedron, i.e., a simplex with four vertices, then there is a sub-
space J such that S = S4 ∩ J, see figure 3. Note that J ⊂ span(S4), where dim(span(S4)) = 4,
while figure 3 represents only aff(S4) as dim(aff(S4)) = 3. Let KA = S and KB = S4 then
we have S⊗̇S4 = S⊗̂S4 [39] and so all bipartite states are separable. This trivially implies
that for any measurements mx ∈ M(E(KA)) = M(E(S)) there is a local hidden state model
and so no steering occurs. Let V = span(S), then it follows from [21, proposition 4.5] that
(S⊗̇S4) ∩ (V ⊗ J) = S⊗̂S. It is known that there are bipartite states ρAB ∈ S⊗̂S that maximally
violate the CHSH inequality [7, 8, 40–44] which necessary implies that there are measurements
given by mx ∈ M(E(KA)) = M(E(S)) that steer ρAB ∈ S⊗̂S, because steering is necessary for
violations of Bell inequalities [45]. Since ρAB ∈ S⊗̂S and S ⊂ S4, we also have ρAB ∈ S⊗̇S4. It
follows that in this case we cannot restrict S4 to S4 ∩ J, because for ρAB ∈ S⊗̇S4 a local hidden
variable model always exists, while for the same ρAB ∈ S⊗̂S it does not.

Note that in the last example we said that ρAB ∈ S⊗̇S4 is separable while ρAB ∈ S⊗̂S violates
Bell inequality. This is because the measurements that Bob has to measure on S in order to
violate the CHSH inequality are not valid measurements on S4. This is simply because S ⊂ S4

implies E(S4) ⊂ E(S) where the inclusion is strict and the missing effects correspond to those
measurements that are needed in order to violate the CHSH inequality.

Finally we present an example of steering of the isotropic state. Similar result was also
obtained in [46] using incompatibility breaking channels.
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Example 6 (Steering of the isotropic state). Let H be a complex Hilbert space,
dim(H) = 2 and let KA = KB = D(H). Let ργAB = γ|φ+〉〈φ+|AB + 1−γ

4 1A ⊗ 1B be the isotropic
state, where |φ+〉 = 1√

2
(|00〉+ |11〉) is the maximally entangled state and |0〉, |1〉 is the compu-

tational basis. We will assume that Alice and Bob share the state ρAB and that Alice has access
to all possible measurements. It is known that the isotropic state is not steerable for γ � 5

12 [36,
47]. In order to apply the result of theorem 2 we must show that ργAB is KB-full-dimensional.
Let M ∈ E(H), which is equivalent to 0 � M � 1, then we have

TrA((M ⊗ 1)ργAB) = γMᵀ + (1 − γ) Tr(M)1. (36)

It is now straightforward to check that for γ > 0 we have

span (γMᵀ + (1 − γ) Tr(M)1 : 0 � M � I) = B(H), (37)

thus according to lemma 3 ργAB is KB-full-dimensional for γ > 0.
Let 0 < γ � 5

12 then according to theorem 2 (Kρ
γ
AB

, E(H)) is a restricted theory with prepa-
ration noncontextual hidden variable model. According to proposition 2 this is equivalent to
all measurements in (Kρ

γ
AB

, E(H)) being E(Kρ
γ
AB

)-compatible. This is in fact a dual form of the

known result that for 0 � γ � 5
12 the depolarizing channel is incompatibility-breaking [46],

the connection here is that the state ργAB is the Choi matrix of the corresponding depolarizing
channel.

Let us now change the set of measurements available to Alice: we will assume that Alice can
perform only projective measurements and their post-processings. The corresponding effect
algebra is still E(H), but the set of all measurements available to Alice is not M(E(H)) since
we have just introduced higher-order restrictions. It is known that the state ργAB is steerable by
projective measurements if and only if γ > 1

2 [36, 37], thus we get that the induced restricted
theory has preparation noncontextual hidden variable model for γ � 1

2 . This is clearly different
from our previous results and demonstrates that also introducing higher-order restrictions can
in principle affect the existence of a hidden variable model.

It is not known whether the state ργAB is steerable by all measurements for 5
12 < γ < 1

2 , which
means that it is not known whether for such γ there is a preparation noncontextual hidden
variable model for (Kρ

γ
AB

, E(H)) where Alice is allowed to perform any measurement. In the
language of steering this is usually framed as an open problem of whether POVMs provide
an advantage over projective measurements, in the language of contextuality this leads to an
open problem of whether introducing higher-order restrictions can affect the existence of the
respective hidden variable model for the induced restricted theory.

6. Conclusions

We investigated the connection between existence of noncontextual hidden variable models,
incompatibility in restricted GPTs and steering. Our main results are theorem 1 which connects
simplex-embeddability and incompatibility in restricted GPTs and theorem 2 which connects
steerability of a state with existence of preparation noncontextual hidden variable model for
the induced restricted theory. The proof of theorem 2 is build on proposition 2 which connects
compatibility and existence of preparation noncontextual hidden variable model.

There are several open questions to be addressed in the future, the main is to search
for operational equivalents of measurement noncontextual hidden variable models similar to
proposition 2 and theorem 2. One can also ask for which GPTs satisfying no-restriction hypoth-
esis measurement noncontextual hidden variable model exists; it is an open question whether
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this is the case only if the state space of the GPT in question is a simplex, i.e., it is an open
question whether equivalent of corollaries 1 and 2 also holds for measurement noncontextual
hidden variable models.
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[35] Jenčová A and Plávala M 2017 Phys. Rev. A 96 022113
[36] Uola R, Costa A C S, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001
[37] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[38] Barnum H, Barrett J, Leifer M and Wilce A 2007 Phys. Rev. Lett. 99 240501
[39] Aubrun G, Lami L, Palazuelos C and Plávala M 2021 Geom. Funct. Anal. 31 181–205
[40] Beckman D, Gottesman D, Nielsen M A and Preskill J 2001 Phys. Rev. A 64 052309
[41] Hoban M J and Sainz A B 2018 New J. Phys. 20 053048
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