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Résumé

Ce mémoire de maitrise a pour objet une recherche de leptons lourds de
quatriéme génération avec les données prises par le détecteur ATLAS au
LHC dans les collisions pp a /s = 7 TeV et avec une luminosité intégrée de
1.02 fb~1. Le processus étudié est la production au singulet de leptons lourds
neutres de quatriéme génération (N) par la voie du courant chargé suivi de
la désintégration du celui-ci en un électron et un boson W : pp — W —
Ne — eWe — eevyl ({ = e ou ), et dépend d’'un paramétre de mélange &2
avec un lepton léger. L’analyse passe par plusieurs étapes, soit 1'utilisation
de FeynRules pour construire le modéle pour ensuite générer des événements
par MadGraph 5.1.2.4.

Comme hypothése de référence, on a choisi une masse de 100 GeV pour
le lepton lourd neutre et &%, = 0.19, donnant une section efficace de 0.312
pb pour une énergie au centre de masse de 7 TeV. Puisque la génération du
signal s’est faite de maniére privée a Montréal et non par la collaboration
ATLAS, les résultats ne peuvent pas étre reconnus officiellement. Sur la base
de la simulation, avec des données correspondant a 1 fb~!, la limite supé-
rieure attendue & un niveau de confiance de 95% sur la section efficace du
signal est de 0.145 pb avec 0.294 pb pour un écart type(o) et 0.519 pb pour
20. La limite supérieure attendue a un niveau de confiance de 95% sur &%,

de 0.09 pour une masse de 100 GeV.

Mots clés : ATLAS, LHC, physique, particules, leptons lourds, quatriéme

génération.



Abstract

This M.Sc. thesis describes a search for fourth generation heavy leptons
using data from the ATLAS detector at LHC. The total integrated luminosity
is 1.02 fb~! in pp collisions at /s = 7 TeV. This analysis study the single
production of fourth generation neutral heavy lepton (N) via the charged
channel and where W decays leptonically : pp — W — Ne — eWe — eevl
(¢ = e ou p), which depends on the mixing element between the heavy lepton
and the light lepton. The model of fourth generation leptons is constructed
using FeynRules while the production of events is done by MadGraph 5.1.2.4.

As point of reference, we chose a mass of 100 GeV for the fourth genera-
tion neutral heavy lepton (N) with £2;, = 0.19, which produce a cross section
of 0.312 pb. The generation of the signal was done privately in Montreal and
not by the ATLAS collaboration. Therefore the results cannot be considered
official. With the simulation, the expected superior limit at 95% C.L. on the
cross section is 0.145 pb with 0.294 pb for ¢ and 0.519 pb for 20. The expec-
ted superior limit at 95% C.L. on &%, is 0.09.

Keywords : ATLAS, LHC, physics, particles, heavy leptons, fourth ge-

neration.
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Chapitre 1

Introduction

Le modéle standard représente un cadre théorique de nos connaissances
actuelles sur les particules élémentaires et de leurs interactions. Ces particules
élémentaires sont divisées en trois générations ou trois familles de leptons et
de quarks. Chaque famille est composée de deux leptons, dont un est chargé
et I'autre est neutre, et de deux quarks de différentes charges électriques non-
entiéres. Le modéle standard ne dit rien sur les raisons d’existence des trois
familles de quarks et de leptons et ne donne aucun indice sur le modéle hiérar-
chique de leurs masses. On observe par exemple que le lepton de la troisiéme
génération, soit le tau (1), est beaucoup plus lourd que ’électron et le muon
qui font partie respectivement de la premiére et la deuxiéme génération des
leptons. Cette hiérarchie est a la fois déconcertante et intriguante. Puisque le
modéle standard ne prédit pas le nombre de familles de leptons et de quarks,
I'existence d’'une quatriéme génération de leptons et de quarks de masses
plus élevées, de 'ordre d’une centaine de GeV, est tout a fait envisageable et
pourrait étre mise en évidence au collisionneur proton-proton LHC. Plusieurs
théories au-dela du modéle standard prédisent également 1’existence de nou-

veaux fermions lourds ne faisant pas partie d’'une quatriéme génération.



L’analyse de cette thése a pour but la recherche d’un lepton neutre d’une
quatriéme génération avec le détecteur ATLAS dans les collisions pp a /s = 7
TeV. Comme point de référence, on prend pour hypothése une masse de 100
GeV. Le signal étudié est I’échange dans le canal s d'un boson W (virtuel)
suivi de la production d’un lepton neutre lourd et d’un électron. Le neutrino
lourd se désintégre ensuite, par courant chargé, en deux leptons et un neu-
trino (pp — W*t — Nt — (-WHIT — (70Tl et pareillement pour les
charges opposées). La présence de trois leptons assure que le bruit de fond

sera minimal.

Au cours du deuxiéme chapitre, on passera en revue plusieurs modéles
de fermions lourds, mais on s’intéressera a la génération d’un lepton neutre

lourd de quatriéme génération.

Ensuite, pour le troisiéme chapitre, il sera question du grand collisionneur

de hadrons LHC et plus précisément du détecteur ATLAS.

Le quatrieme chapitre expliquera plus en détail le modéle étudié de la
génération des leptons de quatrieme génération. En effet, on commencera
I’étude de la phénoménologie, soit des modes de désintégration, des bruits de
fond, du générateur pour la simulation du signal par méthode Monte-Carlo,

de la simulation des effets de détecteur ATLAS.

Le cinquiéme chapitre présentera les différentes variables et coupures choi-
sies et les résultats de I'analyse, ainsi que la mesure et I’étude des limites. On

comparera les simulations aux données 2011 d’ATLAS avec une luminosité



intégrée de 1.02 fb~! et une énergie au centre de masse de 7 TeV pour extraire

une limite attendue sur existence d’un tel neutrino lourd.



Chapitre 2

Théories et modeéles de leptons

lourds

2.1 Les faiblesses du modéle standard - un bref
résumeé

Le modéle standard rassemble, en une seule interaction électrofaible uni-
fiée, la physique des interactions faible et électromagnétique tout en ajou-
tant I'interaction forte chromodynamique Quantique (CDQ), sous une méme
théorie. C’est un peu comme lorsque Maxwell a représenté la physique de
Coulomb, d’Ampeére, et les lois de Faraday, qui étaient aussi apparemment
des phénomeénes distincts, comme une seule interaction, au sein d’une seule
théorie unifiée du champ électromagnétique. Tout comme les paramétres in-
déterminés €, et ji, sont reliés a la vitesse de la lumiere (¢ = \/€,/t,) par
I'unification de 1’électricité et du magnétisme démontrées par Maxwell, les
forces des interactions électromagnétiques et faible sont reliées par ’angle

de Weinberg. Les paramétres indéterminés du modéle standard comme les



masses des quarks et des leptons et les angles de mélange pourraient étre fixés

en intégrant le modéle standard dans une certaine grande théorie unifiée.

La théorie du modéle standard en fait ne prédit aucune masse des parti-
cules élémentaires. On sait que les bosons pour la force faible W et Z et que
tous les fermions (sauf peut-étre les neutrinos) 'sont massifs. Les bosons W et
7 obtiennent leurs masses par brisure spontanée de la symétrie électrofaible
(SU(2), xU(1)y). Une telle brisure de symétrie est réalisée par le mécanisme
de Higgs, qui est prédit par le modéle standard mais qui reste encore a étre
prouvé?. Les fermions obtiennent leurs masses par le couplage Yukawa au

champ de Higgs.

Par contre, le modéle standard ne décrit pas I’ensemble des phénomeénes
observés a de trés petites échelles. Ainsi le modéle standard ne peut pas étre
une théorie compléte puisque les masses des fermions ne sont pas prédites,
ni le nombre de génération. Aussi, il n’y a pas de candidat pour la matiére
sombre et le modéle standard n’explique pas la gravitation. Un probléme im-
portant du modéle standard, c’est que les corrections radiatives a la masse
du Higgs divergent ; ainsi un ajustement trés fin est demandé entre les di-
verses contributions pour régler le probléme de hiérarchie, c’est-a-dire que
pour expliquer la masse du Higgs soit beaucoup plus petite que la masse de
Planck(10' GeV). Une solution, qui est trés favorisée par les théoriciens, est
la supersymétrie (voir Sect. 2.2.1). Plusieurs autres modéles qui font partie

de la physique au-dela du modéle standard, ont été suggérés pour tenter de

1. On sait que les neutrinos sont massifs, selon I'observatoire de neutrinos de Sudbury
(SNO) et super Kamoikande, puisque les oscillations de neutrinos suggérent une nouvelle

échelle de masse qui est au-dela du modéle de standard|[12],[13].
2. A moins que le boson nouvellement découvert soit bien le boson de Higgs



relever les défis auxquels nous faisons face aujourd’hui. On donne ci-dessous

un aperc¢u de certaines théories qui vont au-dela du modéle standard.

2.2 La physique exotique au LHC : quelques
exemples

Un riche programme de physique au-dela du modéle standard s’offre aux

chercheurs du LHC. On décrit ci-dessous quelques exemples.

2.2.1 Supersymétrie

Une des extensions possibles du modéle standard est la supersymétrie
[14]. Dans les modéles supersymétriques, chaque fermion posséde un boson
partenaire supersymétrique et vice-versa. Ainsi, grace a cette symétrie entre
les fermions et les bosons, il existerait autant de bosons que de fermions : les
squarks qui sont les partenaires supersymétriques des quarks, les sleptons qui
sont les partenaires supersymétriques des leptons, ainsi que les gauginos qui
sont les partenaires des bosons de jauge (bino, gluino et winos). La version
supersymétrique la plus simple (MSSM ou Minimal Supersymetric Standard
Model) prédit l'existence de deux doublets de Higgs avec leurs partenaires
supersymétriques. La supersymétrie est une modéle favori des théoriciens

pour plusieurs raisons :
1. Elle résout le probleme de la hiérarchie.
2. Les neutralinos sont de bons candidats & la matiére sombre.

3. La brisure de symétrie électrofaible est expliquée naturellement.

W

. La possibilité d’incorporer la gravitation.



5. Les constantes de couplage s’unifient a 1’échelle de GUT.

2.2.2 Technicouleur

Puisque le boson de Higgs n’a toujours pas été découvert 3, il faut envisa-
ger la possibilité que la brisure de symétrie soit due a un autre mécanisme.
Parmi ces autres modéles, il y a la technicouleur qui est une théorie per-
mettant I'introduction de la brisure de symétrie électrofaible sans un champ
fondamental de Higgs. C’est une théorie qui suppose une nouvelle force, simi-
laire & la CDQ), avec des fermions, appelés technifermions, portant une charge
«technicouleur» et qui interagissent fortement a une échelle d’énergie élevée.
Ces technifermions forment des condensats qui brisent la symétrie chirale et
produisent des bosons de Goldstone donnant la masse aux bosons W et Z.
Expérimentalement, la technicouleur peut étre étudiée par 1’observation de
technihadrons tels que des technirhos et des technipions. Aussi, selon leurs

masses, leurs désintégrations sont trés caractéristiques :

e La désintégration d’un technirho en une paire de boson de jauge (pjT[ —
W=*Z — I*vltl7) : I'état final de ce processus contient trois leptons avec

deux de signes opposés et un neutrino.
e [La désintégration d'un technirho en un technipion chargé et un boson
neutre (pi — 75Z — bgltl™) : I'état final de ce processus contient deux

leptons de signes opposés avec deux jets dont un contient un quark b.

e La désintégration d'un technirho en un technipion neutre est un boson

3. On a observé un exces d’événements dans les canaux diphotons et ZZ qui suggérent

lexistence du boson de Higgs de masse de 125 GeV, mais cela reste a étre confirmé.



chargé (pz — mQW* — bbl*v) : L'état final de ce processus contient un

lepton avec deux jets de quark b et un neutrino.

2.2.3 Dimensions supplémentaires

L’existence de dimensions supplémentaires n’est pas exclue puisque ces
dimensions peuvent étre compactes de sorte qu’on ne les observerait pas. La
théorie des supercordes, qui cherche & accorder la relativité générale et la mé-
canique quantique, est un des modéles de compactification ot I’espace a une
structure géométrique compliquée, contenant 10, 11 ou méme 26 dimensions.
Les dimensions supplémentaires permettent aussi de développer une théorie
compléte qui expliquerait ce qui se passe au-dessous de ’échelle de Planck
et ainsi régler le probléme de hiérarchie entre I’échelle de Planck et 1’échelle
électrofaible. Selon les modéles de grandes dimensions supplémentaires, par

2
Mpe _ Avecn — 4 et R —

exemple, la masse de Planck devient Mgf” R Gaer

1600 fm, la masse est environ 1 TeV, ce qui est trés prés a 1’échelle électro-

faible.

2.2.4 Nouveaux bosons de jauge

On peut aussi mentionner les modéles qui possédent des nouveaux bosons
de jauge les W' et Z’. L’apparition de nouveaux bosons de jauge est due a
une extension du groupe de jauge lié au modéle standard. Ces bosons, possé-
dant de grandes masses invariantes, se désintégreraient en paires de leptons
ou de jets ayant une grande impulsion transverse. Les types de désintégration

possibles sont : W/ - W + Z, Z/ - W +W ou W'.Z' — fT + f~ ou [ est



soit un quark ou un lepton.

2.2.5 Leptoquarks

L’expérience ATLAS s’intéresse aussi a la recherche de leptoquarks (LQ)
d’une masse plus grande que 300 GeV /c?. Les leptoquarks sont des particules
qui possédent un nombre quantique leptonique et un nombre quantique ba-
ryonique. L’existence de LQ est prédite par plusieurs extensions du modéle
standard (Théories de Grande Unification, technicouleur, Pati-salam modéle)
et pourrait expliquer la symétrie entre les générations des quarks et des lep-

tons. La production de leptoquarks au LHC résulte de deux processus :

1. le mode de production au singulet est le suivant : ¢ + g — LQ + ¢ ol

LQ est la particule leptoquark et ¢ est un lepton.

2. le mode de production de leptoquarks en paires, qui est beaucoup plus

abondant, est : ¢+ ¢ — LQ + LQ ou g+ g — LQ + LQ.

Le leptoquark ensuite se désintégre en un quark et un lepton. L’état final
sera dans le premier cas deux électrons et un jet. Dans le deuxiéme cas, I’état

final sera deux électrons avec deux jets.

2.2.6 Fermions excités

Le modéle des fermions excités présente les fermions en tant qu’objets
possédant une structure composée de constituants plus fondamentaux nom-
més préons. L’introduction des préons peut expliquer le mystére des saveurs :
électron, muon et tau, par exemple, comme simplement des états liés de tels

objets. En effet, la prolifération des quarks, des leptons, des bosons de jauge



et des particules de Higgs commence a ressembler a la situation dans le dé-
but des années 60, alors que la prolifération des états hadroniques observés
a donné place & une description plus cohérente des particules fondamentales
grace a I'introduction des quarks. Ainsi, les quarks excités, se désintégreraient

principalement en un quark ordinaire associé & un photon.

2.3 La recherche des fermions lourds

Comme il est dit plus haut, nous savons qu’il existe trois familles ou géné-
rations de fermions, mais ce nombre de générations n’est pas déterminé par
la théorie. Les contraintes venant seulement des limites de CDQ imposent
un nombre de générations inférieur a 9 [15]|. La largeur mesurée au LEP de
la résonance au pole du Z montre, avec une grande précision, que le nombre
de générations de neutrinos légers (m, << mgz/2) est égal a 3 (voir sec-
tion 2.2.3). La possibilité de l'existence de neutrinos lourds (my > mz/2)
n’est cependant pas exclue puisque la désintégration Z — NN ne serait pas
possible[16]. Selon PDG (Particle data group)|17], qui représente une com-
pilation ainsi qu’une évaluation des mesures des propriétés des particules
élémentaires & partir de toutes les mesures expérimentales publiées, les li-
mites actuelles des masses dans la recherche des leptons lourds non-stables
a un niveau de confiance de 95% sont Mp+ > 100.8 GeV; M,, > 90.3 GeV
(Dirac neutrinos), 80.5 GeV (Majorana neutrinos *). Aussi pour les neutrinos
lourds dans la production en singulet 7 — v, + N = v, +e W — v, +e"j7,

le neutrino lourd, N, doit étre plus lourd que le boson W si on considére que

4. Les particules de Majorana sont de type fermion qui sont leurs propres antiparticules
soit v = D, alors que les particules de Dirac sont de type fermion dont I’antiparticule est

différente (v # )
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I'angle de mélange en v et N est dans 'ordre de = 0.1 ou plus grand|[18].

En ce qui concerne les quarks de quatrieme génération, les limites actuelles
selon PDG sont My > 256 GeV; My > 128 GeV (désintégrations de cou-
rant chargé), 199 GeV (désintégrations de courant neutre). Les expériences
ATLAS et CMS ont le potentiel de découvrir des quarks de la quatriéme
génération, s’ils existent, puisque la section efficace des quarks lourds dans
la production en paires est grande dans le LHC, étant donné qu’il s’agit de
I'interaction forte. Pour des limites plus récentes obtenues au LHC, voir sec-
tion 3.3.4. Les angles de mélange entre les nouveaux fermions et les fermions

déja connus sont contraints & étre inférieurs & O(1071)[18].

Plus récemment, les collaborations ATLAS et CMS ont établi de nouvelles
limites sur les angles de mélange en étudiant les neutrinos lourds de Majorana
(N) [19]. A I'aide des données recueilles par le détecteur CMS au LHC dans
les collisions de pp & /s = 7 TeV et avec une luminosité intégrée de 5.0 b=
la collaboration CMS a étudié la production de neutrinos lourds de Majorana
pour les événements contenant deux leptons de mémes charges et de deux jets
de mémes saveurs : pp — W — (TN — (H(WW* (1) — (14155, Aucun exces
d’événements n’a été observé, mais ils ont établi une limite supérieure sur le
parameétre de mélange entre le lepton lourd et le lepton ordinaire en fonction
de la masse de neutrino de Majorana, |Vyn|> (¢ = e,u). La section efficace
pour le processus étudi¢, pour [Vyn|* = 1, est de 866 pb pour my = 50 GeV,
2.8 pb pour my = 100 GeV et 83 pb pour my = 210 GeV. Pour I’étude des
canaux des électrons, les limites d’exclusion & un niveau de confiance de 95%
sur le carré du paramétre de mélange, en considérant que |V, y|? = |V, y|* =

0, sont, pour my = 90 GeV, |V.y|? < 0.22 et pour my = 203 GeV, |Von|? < 1.
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FIGURE 2.1 — La région d’exclusions a un niveau de confiance de 95% pour le
carrée de I’élément de matrice de mélange en fonction de la masse de neutrino
Majorana (N) : |Von|? vs. my. Les régions au-dessus des lignes d’exclusion

sont exclus & un niveau de confiance de 95%.

Une étude similaire est au cours dans la collaboration ATLAS. Le pro-
cessus analysé (pp — W — (N — (0jj) differe de celui qui est étudié dans

cette thése par :

1. Le modele : les neutrinos Majorana vs les neutrinos de quatriéme gé-

nération.
2. La méthode : les leptons de méme signe dans le cas de CMS.
3. W — 77 pour CMS et W — (v dans cette thése.

Dans la recherche de fermions lourds, on trouve plusieurs catégories [20] :les

12



fermions séquentiels, les fermions vectoriels, les fermions «miroirsy et les fer-
mions singulets. Les fermions séquentiels sont simplement ceux d’une qua-
trieme famille avec les mémes nombres quantiques que ceux des fermions

connus.

Les fermions vectoriels («vector-like» )(voir sect. 2.2.5) sont prédits par
le groupe unifié Fg, qui contient SU(5) et SO(10) comme sous-groupes, et
comprennent deux leptons lourds d’isodoublets faibles dont un est d’hélicité
droite et 'autre d’hélicité gauche. Contrairement au modéle standard, ici
les leptons de chiralité droite et ceux de chiralité gauche sont tous les deux
des doublets et donc se transforment de la méme fagon sous SU(2). On dit
qu'ils sont vectoriels, car ils se couplent vectoriellement (vy,) avec les bosons
de jauge W et Z. Le groupe Ejg est inspiré des théories des supercordes qui
tentent d’unifier toutes les forces fondamentales avec la gravitation. Dans le
groupe Ejg, une représentation de dimension 27 est liée & chaque génération
de fermions. Aussi, en incluant les champs des fermions du modéle standard,
douze nouveaux champs sont ajoutés a cette représentation. Pour chaque
génération, il y a deux nouveaux leptons isodoublets, deux neutrinos d’iso-
singulets et un quark isosingulet de charge de -1/3. La derniére catégorie
de nouveaux fermions, les fermions singulets, contient un neutrino Majorana
d’hélicité droite en plus que 15 Weyl fermions dans chaque génération dans
le groupe SO(10). Dans le groupe Eg, les neutrinos singulets peuvent étre
Majorana ou Dirac|20]. Dans plusieurs modéles, il y a des fermions addition-
nels tels que les fermions miroirs, les neutrinos stériles et les quarks stables.
Aussi les nouveaux fermions peuvent expliquer de nombreux problémes d’as-

trophysiques tels la matiére noire et la physique des pulsars.
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2.3.1 Modéle de quatriéme génération

La recherche des effets de fermions lourds dans ’extension du modéle stan-
dard avec une quatriéme génération fait parie des expériences du LHC. La
quatriéme génération reste toujours un outil attrayant pour la construction
des nouveaux modeéles physiques puisqu’'une nouvelle génération peut étre
accommodée dans le modéle standard sans étre en conflit avec les mesures
électrofaibles. Aussi, le LHC a le potentiel soit de découvrir, soit d’exclure to-
talement une nouvelle génération. De plus, une quatriéme génération pourrait
fournir des indices sur plusieurs problémes non résolus tels que ’asymétrie
baryonique de 1'univers, la «protection» de la masse de Higgs, la hiérarchie

des masses des fermions et la matiére noire.

L’ajott de la quatriéme génération au modéle standard implique une qua-
trieme génération de quarks pour éviter un probléme dit «d’anomalie». Cela
a un fort impact sur la recherche de boson de Higgs dans le LHC et le Te-
vatron, car le mécanisme de production dominant de boson Higgs dans les
collisionneurs de hadrons, la fusion gluon-gluon, fait intervenir des quarks

lourds dans la boucle.
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FIGURE 2.2 — La production du boson de Higgs par la fusion gluon-gluon

montrant la boucle triangulaire de quarks lourds.

Les quarks de la quatriéme génération pourraient contribuer & ce proces-
sus et augmenter la section efficace de production d’un facteur ~ 9[21|. De
plus, un boson de Higgs pourrait étre invisible puisqu’il se désintégrerait de

fagon dominante en leptons neutres de la quatriéme génération.

2.3.2 Les fermions lourds et le boson de Higgs

Les collaborations de CDF et de DO présentent des résultats de la re-
cherche d’'un Higgs du modéle standard dans les processus gg — H —
WHW~ et g9 — H — ZZ dans les collisions pp du collisionneur Tevatron au
Fermilab avec une énergie au centre de masse de /s = 1.96 TeV [22]. Les deux
collaborations ont exclu, en tenant compte de I'existence d’une quatrieme gé-
nération séquentielle de fermions, a un niveau de confiance de 95% un boson
de Higgs du modéle standard avec une masse entre 124 a 286 GeV pour une
exclusion attendue a 120-267 GeV. Ils examinent deux scénarios pour les
masses des fermions de la quatriéme génération. Dans le premier scénario, la

masse de neutrinos de la quatriéme génération est égale a m,4s = 80 GeV et
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celle de lepton chargé de la quatriéme génération est égale a myy, = 100 GeV.
Dans le deuxiéme scénario, qui est celui des grandes masses, les masses sont
égales a m,4 = myy = 1 TeV pour ne pas affecter les rapports de branchement
de désintégrations du boson de Higgs. Ces masses des quarks de quatriéme
génération sont les mémes pour les deux scénarios; la masse du quark down
de la quatrieme génération est égale & mgyy = 400 GeV et celle du quark up
de la quatriéme génération est égale a m,y = mgq + 50GeV + 101log(mg /115

GeV) GeV.

Quant aux derniers résultats du LHC, soit de ATLAS|23] et de CMS|24],
pour la recherche du boson de Higgs du modéle standard avec la présence
des fermions de quatriéme génération, toute masse du boson de Higgs est
essentiellement exclue dans la fenétre de masse 140 < myg < 185 GeV et
144 < my < 207 GeV respectivement. En juillet 2012, CMS et ATLAS ont
annoncé de facon indépendante qu’ils confirment la découverte formelle d’un
boson de masse entre 125 et 127 GeV. Méme si le boson observé est compa-

tible avec le boson de Higgs, il n’est pas encore identifié avec certitude [25, 26].

L’existence d’un fermion lourd pose aussi des problémes théoriques de
«stabilité du vide». Le modéle standard n’est pas viable a de hautes énergies :
La Fig 2.3 montre que la quatriéme génération semble étre complétement

exclue si le boson du Higgs du modéle standard a été découvert :
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FIGURE 2.3 — L’échelle de la nouvelle physique en fonction de la masse de
Higgs montrant la région d’exclusion de I'existence de la quatriéme génération

pour deux scénarios de masses (Figure tirée de : [1]).

2.3.3 Contraintes du LEP

La physique du Z au LEP a permis de tirer d’importantes conclusions
sur plusieurs aspects du modéle standard et aussi sur la physique au-dela
du modéle standard. L’un des premiers résultats est le nombre de familles
de leptons légers dans le modele standard. Le nombre de neutrinos légers
a pu étre déterminé en comparant la largeur du boson Z mesurée dans la
résonance Breit-Wigner avec celle calculée a partir des largeurs partielles

de désintégrations en leptons visibles et en quarks. A 'aide des paramétres
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de désintégration de boson Z, des résultats plus précis ont été rapportés en
étudiant les désintégrations de boson Z avec le détecteur ALEPH dans le
LEP|27]. Ainsi, la masse de boson de Z trouvée est de My = 91.182 + 0.026
(exp.) £0.030 (theor.) avec une largeur de 'y = 2.4952 + 0.0023 GeV. Les
mesures des largeurs partielles des canaux hadroniques et leptoniques sont en
accord avec le modéle standard : I'y,q = 1804 £+ 44 MeV, I' .+, = 82.1 £ 3.4
MeV, I+, = 87.9 £ 6.0 MeV et '+~ = 86.1 5.6 MeV. De plus, a l'aide
de la largeur moyenne des leptons I'j+;- = 83.9+2.2 MeV, 'angle de mélange
faible est mesuré sinj, = 0.231 % 0.008.

On trouve une longueur invisible qu’on associe au processus e* + e~ —
Z — v;+7p;oui = e et 7. Le nombre de neutrinos légers donne :
N, = 2.984 £+ 0.008[28]. La mesure de la largeur de la résonance de boson
7 a donc permis de mesurer le nombre de neutrinos qui existe. Par contre,
ceci n’est vrai que pour les neutrinos légers, soit des neutrinos de masses plus
petites que la moitié de la masse de boson Z : m, < M/2. Tous les neutri-
nos de masses plus grandes ne contribuent pas a la largeur de la résonance

puisque la désintégration du Z dans ces canaux est cinématiquement interdite.

Il est facile de vérifier que ces données impliquent qu’il y a trois types
de neutrinos légers. La largeur partielle invisible, I';,,, est déterminée par la
soustraction des mesures des largeurs partielles visibles, qui correspondent
aux désintégrations de boson Z en quarks et en leptons chargés, de la lar-
geur totale de Z. La largeur invisible est due aux neutrinos légers dont on
connait la contribution a la largeur partielle donnée par le modele standard

(T, = 167.2 MeV).
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On peut calculer les taux partiel du boson Z pour chaque canal : paires
de leptons (ete™, ptu~,7777), paires de quark de type u (u,c) et d (d,s,b)
et vv pour retrouver le nombre de neutrinos légers qui existe. La Langragien

d’interaction d’un fermion f; par le courant neutre est :

4
2cos b,

fr(gv — 9av°) fiZp, (2.1)
ou g est la constante de couplage associée a SU(2).

L’¢lément de matrice qui permet de calculer les largeurs partielles du

boson Z pour Z — ff est donc

i2 i2
|M|* o< |gl | + |94 | (2.2)

Les constantes de couplages vectorielles et axiales-vectorielles sont définies

comme suit|29] :

g4 = ts1(i) — 2g; sin® b, (2.3)

g = tsr (i), (2.4)

ou t3y, est I'isospin faible de fermion f; (+1/2 pour u; et v;; -1/2 pour d;
et e;) et q; est la charge de la particule en unités de e. La charge électrique
- . . o  8M3,Gr
est e = g sinf,, ou g© = #
Ainsi,a partir de ’élément de matrice (équation 2.2), la largeur partielle

du boson Z peut étre estimée comme suit [?] :

2G 1w M3
= ’]’LC—
672

ou n, représente le nombre de couleurs : 1 pour les leptons et 3 pour les

9 + g4] (2.5)

quarks et les deux couplages sont
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Z = ff g g Largeur Nombre de Soustotal (MeV)
partielle(MeV) canaux
i —3 +2sin®6,, =0.038 | —1 84 3 253
uii,ce 3 —3sin’6, =0192 | 1 300 2 600
dd, s5,bb —3+ 2sin”60,, = —0.346 | —3 383 3 1149
Total(I"1*,qq) 2002

TABLE 2.1 — Les largeurs partielles du boson Z pour les canaux vv, [7I, ua,

cé, dd, ss et bb.

En prenant I'angle de Weinberg sin® 6, égal a environ 0.231 et en tenant
compte du nombre des canaux présents, soit trois pour les leptons (e, u et
7) et cinq en tout pour les quarks (u, ¢, d,s et b), I’équation 2.5 permet
de calculer les largeurs partielles pour chaque désintégration. Le tableau 2.1

montre qu’il est possible de déduire le nombre de neutrinos légers existant :

N _ FZ_FZ%had_FZ*}l*l+ ~ 3
v FZ*H/D ’

La largeur totale observée du boson Z (voir p.34) est opserve = 2495
MeV alors que la largeur manquante est égale a I'yanguante — 2495 - 2002
(Liot(a-1+,q3)) = 493 MeV. Ainsi, le nombre de canaux pour les neutrinos donne
F]Wanquants . @

T = 17 = 2.95. Des calculs plus précis, tenant compte de corrections

radiatives résultent en un nombre de neutrino encore plus précis de 3.0.

2.3.4 Les quarks lourds

Une quatriéme génération de quark telle que dans le modéle standard est
exclue si la découverte du Higgs est confirmée. Par contre, il est important
de poursuivre les recherches directes de quatriéme génération de quark avant
cette confirmation. En ce qui concerne les fermions de quatriéme génération,

les échantillons des données recueillies par les détecteurs CDF II et DO au
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collisionneur pp du Fermilab, le Tevatron, présentent des limites & un niveau
de confiance de 95% sur les masses des nouveaux fermions|30|. Au Tevatron,
ils sont produits via l'interaction forte soit en paires ou en singulet via la
production électrofaible. La recherche pour la production en paires de ¢/t se
fait pour les désintégrations suivantes : ' — Wb et t' — Wq ou g = d, s, b.
CDF a analysé des données des collisions pp d’une luminosité intégrée de
5.6 tb~! pour chercher les deux possibilités ou q est un quark léger (d,s)
ou un quark plus lourd(b). Les événements sont caractérisés par un lepton
de haute impulsion transverse, d’'une grande énergie transverse manquante
et d’au moins quatre jets hadroniques. Les plus importants bruits de fonds
venant du modéle standard pour de tels processus sont la production de
tt et de W-+jets qui sont modelés par les deux générateurs PYTHIA[31] et
ALPGEN]|32]. En comparant la masse de quark ¢'(M,..,) avec Hp, qui est
une somme scalaire des énergies transverse de tous les objets dans l'événe-
ment, on ne trouve pas d’excés d’événements pour la production de tt. Par
contre, une masse de quark t' inférieure a 358 GeV est exclue & un niveau de
confiance de 95% pour B(t' — Wb) = 100% et la limite est de 340 GeV /c?
pour B(t' — Wq) = 100% ot q est un quark léger.

La recherche de quarks lourds dans la production en paires (QQ) qui se
désintégre en (Q — Wq ot q = u,d,c,s ou b a I'aide des données d’une lumino-
sité intégrée de 1.04 fb~! recueillies par le détecteur ATLAS au CERN avec
une énergie au centre de masse de 7 TeV permet d’exclure la masse de quark
lourd de type «downy inférieure a 350 GeV & un niveau de confiance de 95%
pour BR(Q) — W¢q) = 100%|33|. Cette recherche a été faite en sélectionnant
les états finals dilepton possédant une grande énergie transverse manquante

et ot moins deux jets : QQ — [Tvgl~ g, ou ] est soit un électron ou un muon.
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Quant a la collaboration CMS, la masse du quark lourd t’ est exclue infé-
rieure a 557 GeV/c? a un niveau de confiance de 95% pour BR(t' — Wb) =
100%]34]. Cette limite a été faite en analysant des données recueillies par
I'expérience CMS au LHC avec une luminosité intégrée de 5.0 fb~! dans les

collisions pp avec une énergie au centre de masse de 7 TeV.

La recherche de la production en paires de b’V se fait pour les désinté-
grations suivantes : b’ — tW. CDF a analysé des données & une luminosité
intégrée de 4.8 fb~! en considérant le processus b0’ — WitWt — WWbW Wb
ot un boson W se désintégre de fagon leptonique[30]|. Ces événements sont
caractérisés par un lepton chargé et une énergie transverse manquante de bo-
son W qui se désintégre leptoniquement, un grand nombre de jets provenant
des deux quarks b et de la désintégration hadronique des trois bosons W. Les
évenements qui sont sélectionnés sont ceux qui ont au moins cing jets dont au
moins un d’entre eux provient de la désintégration du quark b. Les bruits de
fonds les plus importants provenant du modéle standard sont la production
de tt et de W-jets qui sont modelés par MADGRAPH et ALPGEN et de
plus ils sont interfacés avec PYTHIA.

Une recherche similaire a été présentée par la collaboration ATLAS[35].
En analysant des données d'une luminosité intégrée de 1.04 fb=! des colli-
sions pp a v/s = 7 TeV recueillies par le détecteur ATLAS, la masse du quark
lourd de type «top» est exclue & un niveau de confiance de 95% plus bas que

480 GeV.

Quant a la collaboration CMS qui analyse des données possédant une
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luminosité intégrée de 4.9 fb~! dans la recherche du quark lourd de type bas
dans la production en paires dans les collisions pp a /s = 7 TeV, la masse
du quark b’ inférieur a 611 GeV/c? est exclue & un niveau de confiance de

95%]36].

2.3.5 Les fermions exotiques

Fermions vectoriels

Dans le modéle standard, les fermions sont chiraux. Ainsi, les particules
se transforment différemment sous la théorie électrofaible selon leur hélicité
qui peut étre gauche ou droite. Pour les leptons dits chiraux, les composantes
d’hélicité gauche se transforment comme un doublet de SU(2), tandis que
les composantes d’hélicité droite se transforment comme des singulets. Dans

le cas de la premiére génération :

Ve
doublet ; singulet <e> (2.6)
R

L

Les fermions «vector-like» sont des fermions non-chiraux. Ainsi, les fer-
mions «vector-like» qu’ils soient d’hélicité gauche ou droite interagissent de
fagon identique sous transformation SU(2). Des leptons dits non-chiraux dou-

blets sont représentés comme suit :

N N
E E
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Les fermions dans ce modéle n’obtiennent pas leurs masses par un cou-
plage Yukawa au boson de Higgs. Donc il n’y a pas de limites sur les masses

des fermions dits non-chiraux dans les modéles avec un doublet de Higgs|37].

Pour les quarks dits «vector-likey, la section efficace de production devient
plus grande au singulet (pp — Qq) qu’en paires (pp — QQ) si le couplage de
force (k4q) aux quarks du modéle standard (u ou d ) est suffisamment grand.
DO a fait des recherches pour les «vector-like» quarks dans deux canaux,
(W — lv) + jets et (Z — ll) + jets pour des données de luminosité de 5.4
fb~1[30]. Les événements recherchés sont ceux contenant soit un seul lepton
et une énergie transverse (W) ou ceux avec exactement deux électrons ou
muons formant une masse invariante proche de celle de boson Z. De plus,
pour les deux cas, les événements doivent avoir au moins deux jets de haute
énergie transverse. La collaboration D0 calcule les limites supérieures sur les
sections efficaces de la production de «vector-like» quark qui sont montrées

sur la figure suivante :

(
wz
ﬂ”\f \u'ﬂ"'dn \/ "u'n"u'ﬂ"v*'
—t
¢ (a)
7 q

FIGURE 2.4 — Les diagrammes de Feynman pour la production en singulet

de quark «vector-like» pp — Qq.
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De la méme maniére, la collaboration CDF a analysé la production en
singulet des «vector-like» quarks qui se désintégrent en Wq pour les données
d’une luminosité intégrée de 5.7 fb~1[30]. Dans la recherche de la production
en singulet des quarks «vector-like», ATLAS analyse les processus de courant
chargé et de courant neutre, pp — Qq — Wqq et pp = Qq — Zqq , et ou
les bosons se désintégrent de fagon leptonique. Avec les données recueillies
en 2011 par ATLAS avec une luminosité intégrée de 1.04 fb~! et une éner-
gie au centre de masse de /s = 7 TeV, les masses inférieures a 900 GeV et
760 GeV sont exclues a 95% pour les processus de courant chargé et neutre

respectivement|38| (voir Fig 3.4).

g i T .
‘E'mz | I 10 Cross Section, ¥,=1 o % E I LO Cross Section, k=1
o S P e Expected 95% CL_upper limit = O N o oy Expected 95% CL_upper limit
= F E N [ =
- F P + 1o Uncertainty + L I + 1o Uncertainty
a F + 2o Uncertainty =1 L + 20 Uncertainty
= B Observed Limit 5 Observed Limit
» x 10
= 10F T
a. E s F
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FIGURE 2.5 — Les limites supérieures a un niveau de confiance de 95% calculée
par la collaboration ATLAS sur les sections efficaces fois les rapports des
branchements de o(pp — @Qq) x BR(Q — V¢q) pour le courant chargé(a
gauche) et pour le courant neutre (a droite) en fonction des masses des quarks

u et d.

Fermions de symétrie droite-gauche

Outres que les fermions «vector-like», le modéle de symétrie droite-gauche
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LRSM (left-right symmetric models) présentent aussi des fermions doublets,
mais qui peuvent interagir dans un plus grand groupe de jauge soit SU(2), x
SU(2)g x U(1)p_r[39]. Selon le modeéle standard, les couplages de l'interac-
tion faible se font seulement avec les particules d’hélicité gauche, mais il est
possible que cette symétrie droite-gauche soit brisée a haute énergie. Il y au-
rait donc une nouvelle interaction qui agit sur les leptons d’hélicité droite.
Ce modéle inclut 'existence de nouveaux bosons de jauge de hélicité droite

Wg et Zg et de fermions de hélicité droite en tant que doublets dans SU(2)g.

En analysant des données avec une luminosité intégrée de 2.1 fb™! re-
cueillies dans les collisions pp & /s = 7 TeV avec le détecteur ATLAS au
LHC, les régions de masse pour les neutrinos Majorana et Dirac ont été
exclues dans la recherche de neutrinos lourds, N, et de bosons de jauge d’hé-
licité droite, Wg[40]. Les événements sont caractérisés par deux leptons d’une
grande impulsion transverse et au moins un jet possédant une grande impul-
sion transverse q¢ — Wgr — I[N ou N — [W} — ljj. Dans le modéle de
LRSM, il etait possible avec les données d’obtenir une limite inférieure pour
la masse du boson de jauge Wg. Pour les deux scénarios, non-mélange et
mélange maximal entre N, et N, pour les neutrinos lourds Majorana et Di-
rac, les bosons Wy avec les masses inferieures a ~ 1.8 TeV (=~ 2.3 TeV) sont
exclues pour les différences de masse Wgr — N plus grandes que 0.3 TeV (0.9
TeV). La limite sur la masse du neutrino lourd Majorana recherchée par CMS

et ATLAS, a été décrite a la section 3.3.

Fermions Miroir

Parmi d’autres modéles exotiques qui prédisent 1’existence de nouvelles
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particules, on peut mentionner les fermions miroirs. Ces fermions possédent
des propriétés chirales opposées a celles des autres fermions du modéle stan-
dard. Les chiralités droites sont dans les iso-doublets faibles alors que les
chiralités gauches sont dans les iso-singulets faibles. Un neutrino lourd de
chiralité gauche est aussi prédit par ce modeéle. De plus, la symétrie de jauge
et la configuration de la symétrie de brisure sont les mémes que celles trouvées
dans le modéle standard. Par contre, il faudra ajouter aux trois familles des
fermions lourds possédant une masse ne dépassant pas les quelques centaines

de GeV avec des chiralités opposées|39] :

N
Ny Ep; (2.8)
FE

Quarks exotiques

Ensuite, on recherche aussi des quarks exotiques, qui peuvent se désinté-
grer en un quark top t et une particule X lourde, neutre et stable, candidate a
la matiére sombre [41]. Ainsi la signature de ’événement recherché est X X
avec une énergie manquante venant de X. En utilisant des données d’une
luminosité intégrée de 4.8 fb~!, CDF a analysé les événements contenant £
+ 4jets + énergie manquante plus grande que 100 GeV|[30]. Les limites sont
obtenues en faisant un ajustement de ’'log-likelihood’ (vraisemblance) a la
masse transverse de boson W. Les figures suivantes présentent les limites ob-
servées et attendues a un niveau de confiance de 95% en fonction de la masse

de quark 7" et de la masse de la matiére noire X :
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FIGURE 2.6 — Les limites observées et attendues sur la masse d’une particule

X lourde neutre et stable calculées par la collaboration CDF en fonction de

la masse de quark lourd 77.

2.3.6 Les fermions excités

Selon les modéles composites ol les leptons et les quarks possedent une
sous-structure constituée d’éléments encore plus petits appelés préons, il
pourrait exister de nouvelles particules notamment les fermions excités. Ainsi,
ces modeéles adressent les questions laissées ouvertes par le modéle standard
telles que celles reliées au nombre de familles et les masses des fermions.

Les leptons excités ont des isospins doublets avec des chiralités gauche et

droite|2] :
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L* = (V*l*>L + (V*l*)R (29)

Avec | = e, u, 7 et v = v, v, et v,. Une recherche des leptons chargés et
neutres excités a été faite avec le détecteur L3 au LEP & partir des données
recueillies des collisions eTe™ avec une luminosité intégrée de 216.9 pb™! et
une énergie au centre de masse de 202 GeV jusqu’a 209 GeV|2|. Ces leptons
excités ont été produits par le mécanisme de production en paires et en
singulet ; ete™ — [*I*, v*v* et ete™ — lI*, vv*. La production en paires des
leptons excités favorise la recherche des masses de ces leptons allant jusqu’a
la limite cinématique /s/2. La production en singulet est sensible jusqu’a
une masse des leptons excités de /s, mais la section efficace de production
dépend de paramétre du modeéle. Le lagrangien représentant la production

en paires des leptons excités par bosons de jauge est écrit comme tel :

_ 7 .
LL*L* = L*V“(Q§W# + g/YBM>L (210)
Les leptons excités produits a partir de la production en singulet pré-
sentent un lagrangien différent qui s’écrit comme suit :
f T > /.f '

_ 1—A5
LL*L - L*O'HV( K?Wm/ + g XYB,LW)T/YL + (hC), (211)

N . . T AV
ol v sont les matrices de Dirac, " = %

, g et g/ sont les constantes
de couplage de SU(2) et U(1) du modeéle standard, 7 sont les matrices de
Pauli, Y = —1/2 est I'hypercharge et W et B sont les champs de jauge
associés avec les groupes SU(2) et U(1) respectivement. L représente les lep-
tons du modéle standard, A est 1’échelle de la nouvelle physique responsable

de D'existence des leptons excités et f et f’ servent a donner un poids aux

constantes de couplage de SU(2) et U(1) respectivement.
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La section efficace de production en paires des leptons excités dépend
seulement de leurs masses et de 'énergie au centre de masse y/s. Quant a la
production au singulet, la section efficace dépend aussi de f/A et de f'/A.
L’équation 2.11 tient compte des désintégrations des leptons excités en lep-
tons associés a un photon ou un boson; [* — [y et v* — vy, ¥ — vW
et vx — W et I* — [Z et v* — vZ. Les rapports de branchement de
ces trois modes de désintégration, soit les désintégrations radiatives, de cou-
rant chargé et de courant neutre, dépendent des valeurs associées a f et f'.
Lorsque f = f’, la désintégration radiative est seulement permise pour les
leptons excités. Alors que lorsque f = —f’; elle est seulement permise pour

les neutrinos excités et interdite pour les leptons chargés excités.

Le signal utilisé avec le détecteur L3 au LEP contient des échantillons
de Monte Carlo pour la production en paires des leptons excités de masse
égale a 101 GeV et pour la production en singulet pour les leptons excités
de masses de 110, 160 et 201 GeV. Les limites absolues sur les masses des
leptons chargés et neutres excités ont été calculées a partir des processus
de la production en paires tandis que des limites sur les couplages effectifs
telle une fonction des masses ont été calculées a partir des processus de la
production en singulet. Les sections efficaces du signal ont été calculées et
les limites & un niveau de confiance de 95% sur les masses correspondantes

sont montrés dans le tableau 2.2.
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Excited 95% CL Mass Limit (GeV)
Lepton | f=f"| f=—f"| Any Coupling

e* 102.8 96.6 96.5

f* 102.8 96.6 96.6

i 102.8 96.6 95.6

v= | 1017 | 1026 1015

v, 101.8 102.6 101.4

v 92.9 102.6 01.3

TABLE 2.2 — Les limites a un niveau de confiance de 95% sur les masses infé-
rieures pour les leptons chargés et neutres excités produits par la production

en paires (tableau tiré de [2]).

Pour les processus produits par la production en singulet, une limite su-
périeure sur la section efficace a été calculée en fonction de la masse de lepton
excité. Ces limites sur les sections efficaces ont été traduites dans les limites
supérieures sur les valeurs des rapports de |f|/A et de |f’|/A. La figure 2.8
montre ces limites & un niveau de confiance de 95% en fonction de la masse

de lepton excité.
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FIGURE 2.7 — Les limites supérieures a un niveau de confiance de 95% sur
|f|/A en fonction de la masse de lepton excité avec f = f’ pour a) e*, u* et

7, b) vl v et vy et avec f = —f' pour c)e*, u* et T, d)v}, v et v [2].
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Chapitre 3

Le LHC et le détecteur ATLAS

3.1 Le Grand collisionneur de Hadrons

Le Grand collisionneur de Hadrons (Large Hadron Collider ou LHC) est
le plus puissant accélérateur circulaire au monde, cong¢u pour fournir des
collisions protons sur protons a une énergie de 14 TeV dans le centre de
masse avec une luminosité allant jusqu’a 1034 cm=2 s=1. Il est construit dans

le tunnel du LEP au CERN, le collisionneur électron-positron qui était en

opération au CERN entre 1999-2001.
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FIGURE 3.1 — Le Grand collisionneur de Hadrons, un tunnel de 27 kilométres
de circonférence construit a 100 meétres sous terre, a la frontiére franco-suisse
prés de Geneéve, Suisse, compte quatre grands détecteurs ATLAS, ALICE,
CMS et LHC-B [3].

Le LEP, qui a été équipé de quatre détecteurs soient ALEPH, DELPHI,
L3 et OPAL, a commencé a fonctionner en 1989. En tout, 18 millions bosons
de Z ont été recueillis durant la premiére phase, entre 1989 et 1995. On
y a mesuré avec haute précision les propriétés du boson Z et de la théorie
électrofaible sous-jacente en mesurant la section efficace totale, les asymétries
avant-arriere des leptons et des quarks et la polarisation des leptons 7. Les
mesures expérimentales de la résonance due au boson Z donnent une forme
telle qu’illustrée sur la figure 3.2. On a vu (Sect. 2.3.3) que la forme de cette

résonance est sensible au nombre de neutrinos légers du modéle standard.
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FIGURE 3.2 — La section efficace ee™ — Z/v* — hadrons a partir des
basses énergies initiales dans les premiers collisionneurs jusqu’aux énergies

maximales au LEP [4].

Le collisionneur LHC, qui a remplacé le LEP, et dans un tunnel ayant une
circonférence de 27 km. Le PS (Proton Synchroton) et le SPC (Super Proton
Synchrotron) accélérent les protons qui sont ensuite injectés dans le tunnel
(voir Fig 3.3). Les protons sont injectés dans ’anneau principal a une énergie
de 450 GeV pour étre ensuite accélérés jusqu’a 7 TeV par faisceau dans le
LHC. 11 y a environ 100 milliards de protons dans des paquets (bunches)
espacés de 7.48 m, ce qui correspond a des croisements de faisceaux toutes

les 24.95 ns, soit une fréquence de 40 MHz.
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FIGURE 3.3 — Les accélérateurs présents au CERN représentant les diffé-
rentes étapes d’injection de protons et leur énergie avant d’arriver a I’anneau

principal pour étre accélérés jusqu’a 7 TeV par faisceau du LHC [5].

ATLAS, CMS, LHC-B et ALICE sont les quatre détecteurs majeurs ins-
tallés dans le tunnel. Ils sont congus pour étre sensibles a différents signaux
de physique. LHC-B se concentre sur la physique du méson B et sur la mesure
des coefficients de la matrice CKM alors qu’ALICE est une expérience dédiée
a la physique des ions lourds, (car le LHC fonctionne en mode de collisions
d’ions lourds quelques mois par an). ATLAS et CMS sont deux détecteurs
plus multifonctionnels, adaptés & la recherche de physique aux hautes éner-
gies. Les deux collaborations cherchent a mieux mesurer les paramétres du
modéle standard pour vérifier sa validité et, bien stir, trouver éventuellement
le boson de Higgs!. Elles cherchent aussi & mettre a 1'épreuve des modéles

de la physique des particules au-dela du modéle standard en recherchant des

1. En juillet 2012, les collaborations ATLAS et CMS ont annoncé la «découverte» d’un
nouveau boson, ayant une masse de 126 GeV. Ce boson aurait des propriétés similaires &

celles attendues du boson de Higgs.

36



signaux de nouvelle physique tels que ceux de la supersymétrie, de la techni-
couleur, des dimensions supplémentaires et des fermions lourds. L’objectif du
LHC est donc de répondre aux questions soulevées par le modéle standard

de la physique des particules, et d’aller au-dela, si possible.

3.2 L’expérience d’ATLAS

ATLAS est une des quatre expériences au LHC. Le détecteur est le plus
volumineux des quatre, ayant une forme approximativement cylindrique avec
44 meétres de longueur et 22 métres de diamétre. Comme il a été dit plus haut,
ATLAS est un détecteur congu pour étre sensible a une grande variété de si-
gnaux de physique. Grace a la précision avec laquelle il peut mesurer les diffé-
rents objets : électrons, muons, photons, jets de hadrons, mésons B, et grace
a la couverture angulaire presque compléte qui permet de mesurer I’énergie
transverse manquante, le détecteur permet 1’étude d’un riche programme de
physique. Un des principaux objectifs est de découvrir le boson de Higgs, ou
d’exclure sa présence. Quel que soit le résultat, notre compréhension du phé-
noméne de brisure de symétrie électrofaible en sera définitivement améliorée.
L’expérience ATLAS permettra aussi d’accéder & une physique au-dela du
modéele standard ou d’exclure une grande partie de ’espace de phase que ce
soit la supersymeétrie, les dimensions supplémentaires ou d’autres possibilités
théoriques telles que la technicouleur ou les sous-structures des quarks et des

leptons.

Le détecteur ATLAS |7, 8| est composé de trois modules de détection :

le détecteur interne, la partie calorimétrique et le détecteur de muons. Leurs
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principales caractéristiques sont décrites briévement ci-dessous, car ces sous-
détecteurs sont essentiels a la recherche d’un neutrino lourd. On peut trouver

une description détaillée du détecteur ATLAS dans : [8].

FIGURE 3.4 — Une vue en 3D du détecteur ATLAS montrant ses différentes
composantes telles que le détecteur interne, les calorimeétres et le détecteur a

muons [3].

3.2.1 Le détecteur interne

Le détecteur interne d’ATLAS (voir Fig. 3.5) est composé de trois sous-
détecteurs : le détecteur a pixels, le SCT (SemiConductor Tracker) et le TRT
(Transition Radiation Tracker), placés de fagon concentrique, et le tout bai-

gné dans un champ magnétique solénoidal de 2 T.
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FIGURE 3.5 — Les trois sous-détecteurs internes qui composent le détecteur
interne d’ATLAS. a) une vue de face en 3D des détecteurs internes. b) Une
vue de coté des trois détecteurs montrant les différentes distances du point

d’interaction de leurs composantes [6].

Ces détecteurs internes permettent de mesurer avec haute précision la tra-
jectoire des particules chargées. Connaissant le champ magnétique, la cour-
bure de la trajectoire sert de mesure de la quantité de mouvement. L’origine
de la trajectoire, ou vertex, peut aussi étre évaluée, ce qui permet d’étique-
ter les mésons B qui ont un temps de vie suffisant pour leur permettre de

parcourir quelques centaines de microns avant de se désintégrer.

Le sous-détecteur qui est le plus prés du point d’interaction et qui a
la meilleure résolution spatiale est le détecteur a pixels. Ainsi, la trés bonne
résolution de ce détecteur et sa proximité du point d’interaction rendent pos-
sible la mesure des coordonnées des vertex des désintégrations des particules.
La résolution en impulsion obtenue avec le sous-détecteur est généralement
Apr/pr = 0.04% X pr & 2% (pr en GeV). De plus, il fournit des recons-
tructions des traces précises pour une pseudo-rapidité? de |n| < 2.5. 1l est

composé de trois cylindres concentriques et de cinq disques dans chaque bou-

2. n est la pseudo-rapidité : n = -log(tan(6/2))
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chon qui sont placés a différentes distances du point d’interaction.

Le SCT, plus éloigné de la ligne de faisceau, permet de compléter la re-
construction des trajectoires. La partie centrale, ou tonneau, est composée
de quatre cylindres concentriques tandis qu’aux bouts, le SCT bouchon est
composé de neuf disques, tous placés a différentes distances du point d’inter-

action.

Le détecteur a radiation de transition, TRT, permet d’améliorer la me-
sure des impulsions en prolongeant la mesure de la trajectoire jusqu’a de
plus grand rayons. Pour faire cela, le TRT détecte le rayonnement de transi-
tion lors du passage des particules. On observe un rayonnement de transition
lorsque les particules relativistes chargées voyagent d’un milieu a un autre
possédant une permittivité diélectrique e différente. En traversant le détec-
teur, selon le type de particule et sa vitesse, la quantité d’énergie déposée

varie. Cela permet, entre autres, d’identifier particuliérement les électrons.

3.2.2 Les calorimétres électromagnétique et hadroniques

Le détecteur ATLAS comprend une partie calorimétrique qui est com-
posée de trois ensembles principaux : un calorimétre électromagnétique, un
calorimétre hadronique et un ensemble calorimétrique vers 'avant (voir Fi-
gure 3.6). Des mesures précises de ’énergie des photons et électrons sont
obtenues par le calorimétre électromagnétique. Le calorimeétre hadronique
entoure le calorimétre électromagnétique. Les particules hadroniques, telles
que les pions, I'atteignent et s’y arrétent, ce qui fournit une mesure compléte

de I’énergie des hadrons et des jets.
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FIGURE 3.6 — Coupe transversale des calorimétres d’ATLAS. Le tonneau et
le bouchon du calorimétre électromagnétique (EMB et EMEC), le bouchon
du calorimétre hadronique (HEC) et les calorimétres vers l'avant (FCAL)

utilisent tous de 'argon liquide comme milieu actif |7, §|.

Le calorimétre électromagnétique a l'intérieur d’ATLAS est divisé en trois
parties : un tonneau couvrant une pseudo-rapidité de |n| < 1.475 et deux bou-
chons s’étendant vers I'avant et vers I'arriére. Chaque calorimétre bouchon
a deux compartiments coaxiaux, couvrant les intervalles de pseudo-rapidité
1.375 < |n| < 2.5 et 2.5 < |n| < 3.2. Comme il est expliqué plus bas, chaque
compartiment est lui-méme divisé en deux ou trois segments longitudinaux,
d’une profondeur d’environ 6X, pour chaque segment, o X, représente la
longueur de radiation, soit la quantité du matériau que doit traverser un élec-

tron afin que son énergie soit réduite d'un facteur e (e = 2.71). Le tonneau
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du calorimeétre électromagnétique, qui couvre la région centrale : |n| < 1.475
et qui a une profondeur totale de 6.X,, sert a mesurer la totalité de 1’énergie
des gerbes dans cette région angulaire. Le tonneau et les bouchons du calori-
metre électromagnétiques utilisent du plomb comme absorbeur pour générer
les gerbes électromagnétiques et de I'argon liquide comme milieu actif. Cet
argon liquide est contenu dans un cryostat & une température de 87 K. La
premiére couche longitudinale d’échantillonnage du tonneau et des bouchons
du calorimétre électromagnétique est appelée la région des «strips» et pos-
séde une granularité de An x A¢ = 0.0031 x 0.098 (¢ est angle azimutal).
Ceci permet une excellente résolution en 7 afin de contribuer a la séparation
v/7° (le ™ se désintégre en deux photons avec un petit angle d’ouverture).
La seconde couche est ’endroit ot la plus grande partie de I'énergie est dépo-
sée. Elle a une granularité de An x A¢ = 0.025 x 0.025. La troisiéme partie,
n’est atteinte que par les électrons de haute énergie. Afin de contenir toute
I’énergie d’une gerbe, la profondeur des trois compartiments est supérieure
a 24X,. Dans les trois compartiments, une géométrie de type accordéon est

choisie pour assurer une couverture azimutale totale (voir Fig 3.7).
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Towers in Sampling 3
ApxAn =0.0245:0.05

Square towers in
Sampling 2

;4_\‘_' ‘ /|

4n=005 *

=0.0245

Strip towers in Sampling 1

FIGURE 3.7 — La structure du calorimétre central électromagnétique (baril)
montrant la granularité des différents segments ainsi que la géométrie des

électrodes de type accordéon [9)].

Les bouchons du calorimétre hadronique (HEC), situés derriére ceux du
calorimeétre électromagnétique dans le méme cryostat, couvrent une pseudo-
rapidité de 1.5 < |n| < 3.2. Ce sont des calorimétres a échantillonnage qui
utilisent aussi de 'argon liquide comme milieu actif, mais utilisent de cuivre
comme absorbeur pour mieux résister aux radiations. De plus, ils n’utilisent

pas une géométrie de type accordéon, mais plutot une géométrie paralléle.
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Les plaques de cuivre sont séparées par un espace de 8.5 mm contenant de
l'argon liquide. Le détecteur est divisé en deux roues (HEC1 et HEC2) pla-

cées perpendiculairement au faisceau comme il est montré a la figure 3.8.

Tile extended barrel

LAr hodronic
end-cap (HEC)

LAr electromagnetic
end-cap (EMEC)

FIGURE 3.8 — Les quatre calorimétres a argon liquide de I’expérience ATLAS.
On trouve le bouchon du calorimétre hadronique (HEC) juste derriére le

bouchon du calorimétre électromagnétique [9].

Les calorimetres vers l'avant sont des calorimeétres a échantillonnage qui
utilisent du cuivre comme absorbeur. mais dans la région la plus «avant»
(FCAL), labsorbeur utilisé est du tungsténe, car le tungsténe est un maté-
riau de trés haute densité (14 g/cm?) ou les particules ont un court parcours
libre. Il posséde trois compartiments de granularité An x A¢ = 0.15 x 0.15.
De plus, il couvre un intervalle de pseudo-rapidité de 3.9 < |n| < 4.9, et pré-

sente ainsi une bonne herméticité avec HEC et EMEC pour détecter les jets
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émis prés du faisceau. Dans cette région du détecteur, les jets sont trés éner-
gétiques, ce qui explique pourquoi il faut choisir des matériaux trés denses
pour limiter, d'une part, les fuites d’énergie vers I'extérieur du détecteur et
d’autre part la dispersion latérale du dépot d’énergie (rayon de Moliére). Pour
le premier module, on trouve donc une matrice du cuivre et pour les deux
suivants, c’est le tungsténe qui a été choisi. La matrice absorbante est percée
de cylindres remplis d’argon liquide. Des «slugs» du tungsténe jouent le role
d’absorbeur et sont insérés dans les espaces entre les trous remplis d’argon
liquide. L’écart entre la paroi du cylindre d’argon liquide et le tungsténe est

de 250 pm dans le premier module et de 350 gm pour les deux suivants (voir

Fig 3.9).

CFCall FCal2  FCal

L) (Had) | (Had)

350 400 450 s00 50 ) 650 2 (cm)

FIGURE 3.9 — A gauche, une coupe longitudinale des calorimétres vers I’avant
(FCAL) montrant le FCAL1 & matrice de cuivre, les FCAL2 et FCAL3 en
tungsténe. A droite, une coupe transversale du FCAL montrant les tubes a

argon liquide [10].

3.2.3 Le spectrométre & muons

Le sous-détecteur le plus éloigné de la ligne de faisceau dont le détecteur

ATLAS est composé est celui de muons. Le spectrométre de muons (MS) est
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composé de plusieurs types de détecteurs qui permettent tous de mesurer la

position des particules qui les traversent (voir Fig 3.10). De plus, il permet

de calculer les impulsions des particules les plus énergétiques qui ont traversé

tous les détecteurs internes et calorimeétres, soit essentiellement uniquement

des muons, puisque les muons sont des particules qui ont un minimum de

perte par ionisation (MIP). Ils traversent donc les calorimétres avec trés peu

de perte d’énergie. Les traces des muons laissées dans le MS permettent de

mesurer leurs quantités de mouvement puisqu’il y a un champ magnétique

toroidal. La quantité de mouvement est obtenue en combinant les traces dans

le détecteur des muons avec celles du détecteur interne.

(MDT)

Precision chambers

Trigger chambers

Barrel toroid
coil

CSC chambers

12m

FIGURE 3.10 — Les différentes composantes du détecteur de muons selon

leur position dans le détecteur ATLAS. Une vue longitudinale du détecteur

ATLAS montrant les éléments qui composent le détecteur de muons [11].
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FIGURE 3.11 — Une vue transversale du détecteur ATLAS illustrant les po-

sitions des détecteurs de muons [11].
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Chapitre 4
Phénoménologie

Ce chapitre décrit toute la phénoménologie de la génération de lepton
neutre lourd de quatriéme génération. On commence par voir en détail com-
ment le programme FeynRules permet de créer un modeéle de quatrieme gé-
nération. Ensuite, on étudie les modes de désintégrations qui sont importants
et qui contribuent au signal généré. Il est aussi question des bruits de fond
provenant du modéle standard qui sont considérés dans l’analyse du signal
de lepton lourd neutre puisqu’ils possédent des événements qui ressemblent

a ceux du signal.

4.1 La génération de lepton neutre lourd de
quatriéme génération

Cette thése étudie le signal d’un lepton neutre de quatriéme génération
ayant une masse de 100 GeV. Ce lepton lourd peut provenir d’un boson de
jauge W et sera ainsi couplé a un lepton qu’on supposera de la premiére

génération, soit 1’électron. Les résultats pourront s’appliquer également au
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cas de deuxiéme génération (muons) puisque les interactions sont identiques,
quoique, d'un point de vue expérimental, 1'efficacité de reconstruction et la
résolution des muons sont quelque peu différentes de celles des électrons.
Dans la mesure ou le neutrino lourd est considéré comme un neutrino élec-
tronique excité, il sera justifié de ne prendre en compte que la désintégration
en mode électron. Il est possible de paramétriser le mélange d’un fermion
lourd avec un fermion léger a ’aide d’une constante £. Le vertex W Ne aura
donc un couplage proportionnel & £ et la section efficace de production sera

ainsi proportionnelle & £2.

Les événements ont été générés par Madgraph 5.1.2.4 en utilisant Feyn-
Rules (voir Sect. 4.2) pour construire le modeéle. MadGraph est un générateur
d’éléments de matrice pour la simulation des événements pour les processus
de collisions aux niveaux partonique dans les collisionneurs & hautes énergies.
Pour un modéle de physique donné, avec des particules données et des inter-
actions données, le programme génére tous les diagrammes au niveau arbre
qui donnent lieu & I’état final recherché, calcule la section efficace et génére
des événements. La version 5 de MadGraph permet la génération d’éléments
de matrice et d’événements pour tous les modéles qui peuvent étre décrits par

un lagrangien en utilisant les régles de calculs de Feynman dans FeynRules.

Se basant sur I'exemple d’'un modéle de quatriéme génération de quark,
on a construit un modéle de quatriéme génération de leptons, de sorte qu’on
ajoute au Lagrangien du modéle standard une matrice de mélange pour les
leptons. Ce modéle permettra le couplage de la premiére génération avec la
quatriéme génération avec une valeur de paramétre £2 choisi de 0.19 (voir

p.55 pour plus de détails). Le signal qui sera analysé comprend un lepton
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neutre lourd qui se désintégre en boson W et un électron. Ce boson sera
ensuite désintégré en lepton soit I'électron ou le muon avec un neutrino.
Ainsi, comme il est illustré sur la figure 4.1, I’état final du signal contiendra
trois leptons et une énergie transverse manquante signalant la présence d’un

neutrino.

dagram 2 CCD=0, QED=d

FIGURE 4.1 — Le diagramme de Feynman généré par Madgraph 5 montrant
la désintégration de neutrino lourd (vtaup) en un boson et un électron. L’état

final de ce processus est trois leptons ou trois électrons et un neutrino.

Cet état final de trois leptons avec un neutrino présente, par rapport aux
désintégrations en jets, certains avantages et désavantages lorsqu’on recherche
le lepton lourd. Les avantages sont que les bruits de fond sont faibles. Le
désavantage est que ces types de désintégrations possédent de faibles sections
efficaces. On verra que la section efficace de la désintégration de lepton neutre

lourd de 100 GeV est d’environ 0.312 pb pour un couplage de £2 = 0.19.
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4.2 Modes de désintégration

Suite a la collision des deux protons au LHC, un lepton lourd peut étre
produit en association avec un lepton de la premiére génération par la fusion
d’un quark et d’'un antiquark, par échange d’'un W ou Z dans le canal s. Ces
leptons lourds se désintégrent ensuite en un boson et un autre lepton de la
premiére génération. L’état final qu'on cherche a étudier contient au moins
trois leptons associés & un neutrino. Donc, en tenant compte de la conserva-
tion du nombre leptonique et de la charge, il existe quatre types de modes de
désintégration pour cet état final. A 'aide d’une interaction faisant intervenir
un courant neutre, le lepton lourd chargé (E), qui est couplé au lepton chargé
de la premiére génération, I’électron (e), se désintégre via le boson Z pour
produire a I'état final quatre leptons, soit quatre électrons ou deux électrons

et deux muons (voir Fig 4.2).

FIGURE 4.2 — La désintégration de lepton lourd chargé via le courant neutre

produisant a ’état final 4 leptons : eeee ou eeup

Lors d'une interaction faisant intervenir un courant chargé, il existe trois

types de désintégration qui contiennent trois leptons associés & un neutrino.
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Premiérement, un lepton lourd chargé produit via le boson W, donc couplé
au neutrino, se désintégrera en un boson 7 produisant ensuite deux leptons
(voir Fig 4.3a). Les deux autres processus passent par la production d’un
lepton lourd neutre (N). Ce lepton lourd neutre produit via W se désintégre
apreés soit par courant chargé (We), soit par courant neutre(Zv), pour donner
comme état final 3 leptons et un neutrino.Ces deux modes de désintégrations
sont illustrés sur les figure 4.3b et 4.4. On ne tiendra pas compte, ici, de
la, désintégration par courant neutre (qui introduit des courant neutres avec

changement de saveur).
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b) v

FIGURE 4.3 — Les deux processus produits d’un courant chargé qui ont comme
états finals trois leptons et un neutrino provenant de la désintégration de
lepton lourd via un courant neutre. (a) La désintégration de lepton lourd

charge E~. (b) La désintégration de lepton lourd neutre N.

Dans cette analyse, on étudiera la génération de lepton lourd neutre pro-
duit par un courant chargé, ce qui fait intervenir deux modes de désintégra-
tion. Par contre, le signal étudié est celui qui permet au lepton lourd neutre

illustré sur la figure 4.4 de se désintégrer en un boson chargé et un électron.
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FIGURE 4.4 — Le signal étudié dans cette analyse permettant au lepton lourd
neutre de 100 GeV de se désintégrer via le boson W en deux leptons et un

neutrino. L’état final comprend trois leptons et un neutrino : eeev ou eeuv.

4.3 FeynRules

FeynRules est un programme qui utilise Mathematica42], un environne-
ment de trés haut niveau de programmation scientifique et mathématique.
FeynRules permet la construction d’un nouveau modéle de physique des par-
ticules & partir du lagrangien d’interaction [43]. Il calcule les régles de Feyn-
man & partir de U'information contenue dans le modéle telle que les parti-
cules, leurs nombres quantiques et leurs couplages. Ces régles de Feynman
peuvent étre ensuite mises sous forme d’un fichier qui va servir a un généra-
teur Monte Carlo, par un programme qui calcule les diagrammes de Feynman
d’un processus donné. Le modéle construit peut étre produit dans un format
spécifique au programme a partir des interfaces de traduction de FeynRules.
Parmi ces programmes, on trouve CalcHEP /ComHEP, FeynArts/FormCalc,
MadGraph/MadEvent et Sherpa. Ainsi, FeynRules dérive les régles de Feyn-

man a partir du lagrangien pour ensuite insérer les modéles de la nouvelle
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physique dans plusieurs calculateurs des diagrammes de Feynman.

A partir du lagrangien, FeynRules calcule les régles de Feynman associées
aux vertex de l'interaction. Pour construire un modele de physique dans Feyn-
Rules, il est nécessaire de construire d’abord un fichier qui contient toutes les
propriétés de ce modele incluant le lagrangien qui contient toutes les infor-
mations sur les interactions entre les particules du modéle. Ainsi, on trouvera
dans le fichier les parameétres tels que les valeurs de différentes constantes qui
entrent dans le calcul du lagrangien : les constantes de couplage, les angles
de mélange, les masses des particules, les charges et masses des bosons de
jauge, pour calculer a I'intérieur de Mathematica les interactions des vertex.
On écrit ensuite le lagrangien en respectant une certaine syntaxe bien parti-

culiére.

4.4 Le modéle de leptons lourds dans Feyn-
Rules

Il existe une collection de modeéles qui sont construits dans FeynRules.
Pour chaque modéle, il y a un fichier complet du modéle qui contient toutes
les informations nécessaires incluant le lagrangien. Parmi les modéles dispo-
nibles dans FeynRules est «Simple extensions of the SM». Ce modéle com-
prend I'ajotit d’une ou plusieurs particules au modeéle standard tel que 'ajotit
d’une quatriéme génération, d'un second doublet Higgs ou d’autres scalaires
de couleur. Ainsi, le modéle de quatriéme génération, qui est compris dans
«Simple extensions of the SM», est une extension du modéle standard et ou

on a ajouté une quatriéme génération de quarks t’ et b’ avec des couplages

95



du modéle standard. Ce modéle ne prend pas en compte des leptons de qua-

trieme génération.

FeynRules est utilisé ici pour construire le modéle de production de
leptons lourds. Une matrice de mélange similaire & celle des quarks a été
construite pour les leptons pour ensuite étre insérée dans le lagrangien du
modéle standard. Ainsi, lorsque cette matrice est incluse dans les termes de
lagrangien des fermions, elle contribue au calcul de lagrangien total des lep-
tons de quatriéme génération. Dans cette matrice de mélange, on a permis
le couplage des leptons de la quatriéme génération avec ceux de la premiére

génération.

Le groupe de jauge dans ce modéle est caractérisé comme suit :

SU2), x U(l)y x SU(3)¢ (4.1)

Groupes | Abelian | Bosons de jauge | Constantes de couplage | Charges

U(l)y Vrai B g1 Y
SU(2), | Faux Wi Juw Ts1
SU@3)c | Faux G Js Couleur

TABLE 4.1 — Les groupes de jauge et leurs bosons de jauge et constantes de

couplage.

Les trois constantes des trois forces sont calculées a 1’aide du couplage
électrique (e), du cosinus et du sinus de I'angle de Weinberg (c,, et s,), du
couplage de la force électromagnétique (o = ﬁic =1/127.9 pour Q? = My)
ainsi que du couplage de la force forte au pole Z (a, = 0.1172). A TI'aide de
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ces définitions,

e =2y/ma = 0.313451 (4.2)
Y 2 0.23369 (4.3)
Sy=1—1—] =0. .

2 4 2
My = MZ+ Mz Mzro (4.4)
2 4 V2G;

les constantes de couplage sont calculées comme suit :

Vra = 0.35807 (4.5)

o = 5 = 0.648409 (4.6)
1 (2
gs = VAma, = 1.21358 (4.7)

En ce qui concerne les champs de vecteurs, il en existe en tout quatre :

Champs Physiques | Masses(GeV) | Largeur totale (GeV) | PDG
A = photon 0 0 22
/ My = 91.188 I'y =2.4414 23
W% My = 79.8252 'y = 2.0476 24
G = gluon 0 0 21

TABLE 4.2 — Les quatre champs physiques de vecteurs avec leur masse et leur

largeur totale.
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Le tableau 4.3 présente une description de toutes les particules présentes
dans le modéle de la quatriéme génération. Il existe quatre classes de parti-
cules soient les neutrinos, les leptons, les quarks de méme charge positive et

les quarks de méme charge négative.

Classes de particules | Nombres quantiques | Particules | Masses (GeV) | PDG
Ve 12
Nombre leptonique = 1 vy, 14
. vy 16
vy M,, =100 | 18
M/
e M, = 0.000511 11
1 Charge = -1 m M, = 0.10566 13
Nombre leptonique = 1 T M. =1.777 15
7’ 18
Mu
u M, = 0.00255 2
uq Charge = 2/3 c M, =1.42 4
£ M, =172 6
t’ 8
Md
d M,y = 0.00504 1
dq Charge = -1/3 s M, =0.104 3
b M, =47 5
b’ My = 500 7

TABLE 4.3 — Les quatre classes de particules avec leurs différentes caractéris-
tiques : les nombres quantiques, le nombre de génération, leurs masses, leurs
largeurs totales et leur code d’identification. Des masses arbitraires ont été
choisies pour les fermions de quatriéme génération. La masse du 7/(E) est

supérieure a celle du v,.(N) pour exclure la désintégration : v, — Wr'.

Finalement, dans le calcul du lagrangien, il y a quatre termes que Feyn-

Rules calcule :
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LAGen = LGauge + LHiggs + LFermions + LY ukawa (4.8)

Les champs de boson de jauge, soit Wu = (Wl},Wj,Wj) et B, contri-
buent a la partie de jauge du lagrangien (LGauge). Le terme fermionique du
lagrangien (LFermions) inclut les deux chiralités des fermions soit la chiralité
gauche et droite. Les deux termes ci-dessus définissent une théorie de jauge
d’isospin faible et d’hypercharge faible. Une partie sur le Higgs (LHiggs) est
ajoutée de sorte que le modéle Weinberg-Salam est complet. L’interaction
Yukawa (LYukawa) tient compte de couplage entre le champ de Higgs et les

champs des quarks et des leptons de masse nulle.

Il existe déja une matrice de mélange pour les quarks soit CKM. Elle
posséde une partie réelle non-nulle et une partie imaginaire nulle. Elle entre
en compte dans le calcul du lagrangien des fermions. De fagon similaire, on
a ajouté une autre matrice de mélange pour les leptons, Ksi, avec une partie
imaginaire nulle, de sorte qu’il y a un couplage entre la premiére génération
et la quatrieme génération des leptons. La matrice Ksi et CKM représentant

les quatre générations sont définies comme suit :

KSZ.Z‘J' = RKSZ.LJ‘ + ’L.IKSZ.Z‘J‘ (49)
09 0 0 0436
0 10 0
Ksi= (4.10)
0 01 O
0436 0 0 0.9

Il est possible de paramétriser le mélange d’un fermion lourd avec un fer-

mion léger par la constante £. On a choisi de mettre &2 égal & 0.43622 ~ 0.19.
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On a choisi &; = 0.9 puisque la matrice doit étre unitaire et on suppose
un mélange avec la premiére génération de & = /1 — 0.92. La matrice de
mélange Ksi des fermions est aussi insérée dans le calcul du lagrangien de

fermions.

Le lagrangien, exprimant 'interaction avec le boson de jauge B, est écrit

comme suit :

eBMd_q.’y“.P,.dq eB#d_q.fy“.PJr.dq eBJ.KsiT.’y”.P,.l
6¢y 3Cy 2Cy
eB#l_q“.PJr.l N eB,uq.y*.P_.uq n 2eB,uq.v*. Py .uq

LB =

4.11
- i . (4.11)
B eB“I/_l.KSi.’y“.P_.Vl
2Cy

Quant au lagrangien présentant l'interaction avec les bosons de jauge

W1, W4y, W3, il est exprimé de cette maniére :

LW = QL(ﬁil.Ksi.wP_.lwu + V2uq.CKMA" P dqW,

Sw
+ ﬁi.Ksi.’y“.P,.l/lWL + ﬂJq.CKMT.’y“.P,.quJ (412)
— dgA".P_.dg.Wi, 3 — LKsiy" P_1 Wy, 3

+ ug A" P_ug.Wi, 3 + V1L Ksin* P_v1L Wy, 3)
Pour tous les termes qui comprennent un couple leptonique soit 71, lv,
Dy, 1l et qui sont écrits en caractére gras dans les équations 4.11 et 4.12, on a

inséré la matrice de mélange des fermions Ksi pour permettre la construction

d’un modele de la quatriéme génération pour les leptons.
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4.5 Différentes étapes de la simulation du si-
gnal

Le signal étudié dans cette analyse est la production d’un lepton lourd
neutre de masse de 100 GeV au LHC!, avec une énergie au centre de masse
de 7 TeV se désintégrant en un électron et un boson W, ce dernier se désin-
tégrant en un lepton de la premiére et deuxiéme génération et un neutrino.
A laide de Madgraph 5.1.2.4, on a généré le signal en produisant 10 000

éveénements.

Il est nécessaire de mettre la bonne valeur de la largeur totale de lepton
lourd neutre afin que le générateur calcule la bonne section efficace du pro-
cessus. Pour faire cela, il suffit de générer des événements pour les différents
modes de désintégration un lepton lourd neutre pour calculer les largeurs
partielles. La largeur totale de lepton lourd neutre est la somme de ces lar-
geurs partielles. Pour vérifier qu’on a la bonne valeur de la largeur totale,
on compare, en connaissant le pourcentage de la largeur totale que le signal
représente, la section efficace du signal généré avec la section efficace lorsque
le lepton lourd ne se désintégre pas. Pour le lepton lourd neutre de 100 GeV,
on observe dans le tableau 4.5 qu’il existe 5 modes de désintégrations. Dans
Madgraph 5, le lepton lourd peut se désintégrer selon les trois générations

des leptons : e, u, 7.

1. On a choisi une masse de 100 GeV pour permettre une désintégration avec un boson
W sur sa couche de masse (my = 80 GeV) et ainsi pouvoir reconstruire la masse invariante

du neutrino lourd, et non pas seulement la masse transverse.
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Modes de désintégration | Largeurs partielles (GeV) | T'par/Tior(%)
eIty 0.57292 x 1072 26.3*
e 0.12160 x 10~ 55.8
vl Tl 0.18579 x 1072 8.5
Veji 0.14921 x 1072 6.8
Vel 0.56481 x 1072 2.6
ot = 2.1804 x 1072 100.0

TABLE 4.4 — Les cinqg modes de désintégrations avec leur largeur partielle
permettant de calculer la largeur totale de lepton lourd neutre. Le paramétre

de mélange €2 a été fixé a 0.19

Les sections efficaces calculées dans Madgraph sont les suivants :

Modes de désintégration | Sections efficaces (pb) | opar/0tot(%)

e N (lepton lourd neutre) 0.82 100.0
eIty 0.21 925.6*
Vel Tl 0.07 8.5

TABLE 4.5 — Les sections efficaces calculées par MadGraph 5 pour trois modes

de désintégrations.

On observe que le rapport I',q, /'y est trés similaire au rapport 0,4/ 0tor,
donc la largeur totale de lepton lourd est de 2.1804 x 1072 GeV et la section
efficace a été bien calculée. On a des résultats similaires quand on génére des
évenements produisant 'anti-lepton lourd neutre. Ainsi, la section efficace
du signal de lepton lourd se désintégrant en trois leptons et un neutrino via

le boson W est 0.312 pb, pour un paramétre £2 = 0.19.
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4.6 Bruits de fond

Les bruits de fond provenant du modéle standard qui donneraient des
événements qui ressemblent a ceux du signal de trois leptons et un neutrino,
eeev ou eeur, ne sont pas nombreux. Pour étudier le signal, on tient compte
de six types de bruits de fond. La plus grande contribution au signal est la
production de WZ— (vll puisque ce bruit de fond a les mémes particules &

I’état final que le signal.

Les autres bruits de fond qui sont considérés dans I'analyse du signal de
lepton lourd neutre sont la production de WW, ZZ, Z+jets, W-jets et tt.
Ces bruits de fond ont été produits par la collaboration ATLAS en utilisant
le générateur MC@QNLO[44| pour la production des dibosons soient WW, ZZ,
WZ et la production de tt et le générateur ALPGEN pour la production de
Z+jets et W-jets. Aussi, on a travaillé avec les bruits de fonds provenant
des dibosons qui sont générés par HERWIG[45]. On a mis une coupure sur
les impulsions transverses des leptons, électrons et muons, exigeant qu’elles
soient supérieurs a 20 GeV. Le bruit de fond Z + gamma est déja pris en
compte puisque les événements Z+jets contiennent les photons, a I'ordre do-

minant en alpha, produits par rayonnement a 1’état initial ou final.

ALPGEN est un générateur d’événements pour un grand nombre de pro-
cessus de physique. Les événements sont générés avec différentes multiplicités
de partons : 0,1,2,...5. ALPGEN décrit les états finals des multi partons a
I'ordre dominant (leading order) sans corrections virtuelles (les boucles) dans
la théorie des perturbations. Il ne tient compte que des diagrammes au niveau
arbre (tree-level). Ces diagrammes de Feynman sont évalués selon les régles

de CDQ et les interactions électromagnétiques. Les événements sont ensuite
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envoyés & HERWIG qui génére des gerbes de partons et fait ’hadronisation.
L’interface entre APLGEN et HERWIG permet de faire un «matching» entre
les éléments de matrices et les gerbes de partons, qui sont tous les deux néces-
saire pour I’étude de précisions des processus multijets, de sorte que lorsqu’ils
sont combingés, il n’y a pas un double comptage. Les générateurs des éléments
de matrice décrivent trés bien les jets dits séparés alors que les gerbes de par-
tons décrivent la distribution de partons lorsqu’ils sont colinéaires ou mous.
HERWIG finit par combiner différentes multiplicités de jets provenant des
éléments de matrices avec les émissions des gerbes de partons sans double

comptage.

MCQNLO est un générateur d’élément de matrice a 'ordre supérieur
(Next-to-leading-Order) reliés aux taux des processus de CQD. Les généra-
teurs d’événements Monte Carlo que MCQNLO utilise sont appelés HERWIG
et Herwig++. HERWIG est un générateur Monte Carlo écrit en Fortran. A
part l'interaction partonique «dure», il simule ensuite des gerbes partoniques
puis I’hadronisation. L’interaction primaire entre partons est donc simulée
par MCQNLO puis envoyée 8 HERWIG, qui va procéder a la fragmentation et
hadronisation des partons. Avec le générateur MCQNLO, on trouve des évé-
nements possédant des poids négatifs. Ils sont présents, car des diagrammes
en boucles divergents doivent annuler des diagrammes au niveau arbre. De
facon pratique, ce n’est pas la valeur absolue des poids qui est utilisée lors
du remplissage des histogrammes, mais plutot la somme des poids avec leur
signe pour obtenir les bonnes distributions. Pour le cas des processus dibo-
sons produits par MCQNLO, 14.6% des événements ont un poids négatif (-1)
et 85.4% ont un poids positif (+1). Par conséquent, le poids moyen est de 0.7.
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De plus, pour les échantillons générés soit par MCQNLO, ALPGEN ou
HERWIG, il y a quatre autres poids de correction dont il faut tenir compte
lors de la comparaison de Monte Carlo et des données. Ils sont compris dans
la variable? « evt_weight ». La variable « evt_weight » comprend quatre

poids qui sont :

1. elSFweight : Cette variable représente les points qui tiennent compte
des facteurs d’échelle (scale factor) pour faire correspondre les simu-
lation de Monte Carlo aux données. Ainsi «elSFweight» présente les

valeurs pour 'efficacité de l'identification des électrons.

2. muonSFweight : Un poids qui tient compte du facteur d’échelle pour

la simulation des muons.

3. mcevt_weight : Un poids fourni par le générateur (pour MC@NLO, il
est parfois égal a -1)

4. pileup_weight : Vu que les échantillons de simulation de Monte Carlo
sont générés avec de multiples pp interactions par paquet de croisement
(pile-up), les événements simulés sont re-pondérés par pileup_weight
de sorte que la distribution du nombre des interactions par croisement

dans la simulation correspond a celle provenant des données.

Ainsi, pour chaque événement de chaque processus, il y a un poids dif-
ferent avec lequel on le multiplie avec la variable « evt_weight » = el S Fweight x

muonS Fweight X mcevt_weight X pileup_weight.

Les cinq tableaux suivants, soit Tableau 4.6, 4.7, 4.8 et 4.9, donnent la

liste des échantillons d’événements Monte Carlo de dibosons, Z+jets, W+jets

2. On garde ici les noms des variables, tels que donnés dans le logiciel d’analyse d’AT-

LAS.
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et tt. Toutes les informations présentes dans les quatre tableaux ont été prises

sur le site d’AMI (ATLAS Metadata interface).

Processus Section efficace Numéro de run | Evénements générés | Générateur | Tags de production
(0) x B x kfacteurx > w)
efficacité du filtre
(pb)
ww 17.86 105985 249915 HERWIG €598
77 1.172 105986 249906 HERWIG €598
wz 5.423 105987 249923 HERWIG €598

TABLE 4.6 — Les échantillons des Monte Carlo des dibosons soit en WW,

77 et WZ montrant pour chaque processus, la section efficace, le nombre

d’événements générés, le numéro de run, le tag de production et le générateur

qui 'a généré.
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Processus Section efficace Numéro de run | Evénements générés | Générateur | Tags de production
(0) X B x kfacteurx > w;)
efficacité du filtre
(pb)

WW — evev 0.52 105921 199920 MC@NLO e707
WW — evuv 0.52 105922 199960 MC@NLO e707
WW — evrtv 0.52 105923 199966 MC@NLO e707
WW — pvuv 0.52 105924 199956 MC@NLO e707
WW — pvev 0.52 105925 199961 MC@NLO e707
WW — pvtv 0.52 105926 199960 MC@NLO e707
WW — tvtv 0.52 105927 199966 MC@NLO e707
WW — tvev 0.52 105928 199958 MC@NLO e707
WW — tvuv 0.52 105929 199957 MC@NLO e707

727 — llgq 0.53 105930 24990 MC@NLO €98

Z7Z — Ul 0.024 105931 99982 MC@NLO €598

Z7Z — llvy 0.15 105932 99978 MC@NLO €598
W*Z — lvqq 1.69 105940 24989 MC@NLO €98
W+Z — il 0.16 105941 24995 MC@NLO €h98
W*Z — qqll 0.50 105942 24992 MC@NLO €h98
W=7 — lvgq 0.91 105970 24993 MC@NLO €598
W=7 — vl 0.086 105971 99972 MC@NLO €598
W=Z — qqll 0.27 105972 99968 MC@NLO e707
W+Z — rull 0.08 106024 24994 MC@NLO €h98
W+Z — lvrr 0.08 106025 24992 MC@NLO €98
W+Z — tvrt 0.04 106026 24990 MC@NLO €598
W=Z — 1vll 0.043 106027 24997 MC@NLO €598
W*Z — lvrr 0.043 106028 24993 MC@NLO €598
W=Z — tvrt 0.022 106029 24941 MC@NLO €h98
W+Z — qqrr 0.25 113190 24987 MC@NLO €98
W=Z — qqrt 0.13 113191 24989 MC@NLO €598

TABLE 4.7 — Les échantillons des Monte Carlo de dibosons soit en WW,
77 et WZ montrant pour chaque processus, la section efficace, le nombre
d’événements générés, le numéros de run, le tag de production et le générateur

qui 'a généré.
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Processus Section efficace Numéro de run | Evénements générés | Générateur | Tags de production
(o) x B X kfacteurx > wy)
efficacité du filtre
(x10~!nb)
ZeeNp0_pt20 6.6967 107650 6612265 ALPGEN e737
ZeeNpl_pt20 1.3441 107651 1333745 ALPGEN e737
ZeeNp2_pt20 0.4072 107652 404873 ALPGEN e737
ZeeNp3_pt20 0.1130 107653 109942 ALPGEN e737
ZeeNpd_pt20 0.0286 107654 29992 ALPGEN e737
ZeeNp5_pt20 0.0076 107655 8992 ALPGEN e737
ZppNpO_pt20 6.6968 107660 6619010 ALPGEN e737
ZppNpl_pt20 1.3464 107661 1334723 ALPGEN e737
ZppnNp2_pt20 0.4075 107662 403886 ALPGEN e737
Z N p3_pt20 0.1125 107663 109954 ALPGEN e737
ZppNpd_pt20 0.0285 107664 29978 ALPGEN e737
ZppNpb_pt20 0.0076 107665 9993 ALPGEN e737
ZTTNpO_pt20 6.6956 107670 6618801 ALPGEN e737
ZTTNpl_pt20 1.3465 107671 1334664 ALPGEN e737
ZTTNp2_pt20 0.4076 107672 404853 ALPGEN e737
ZTTNp3_pt20 0.1127 107673 109944 ALPGEN e737
ZTTNpd_pt20 0.0284 107674 29982 ALPGEN e737
ZTTNpb_pt20 0.0076 107675 9993 ALPGEN e737

TABLE 4.8 — Les échantillons des Monte Carlo des Z+jets montrant pour
chaque processus, la section efficace, le nombre d’événements générés, le nu-

méro de run, le tag de production et le générateur qui I’a généré.
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Processus Section efficace Numéro de run | Evénements générés | Générateur | Tags de production
(0) x B x kfacteurx > wy)
efficacité du filtre
(x10~1nb)
WevNp0_pt20 69.216 107680 3455037 ALPGEN €600
WevNpl_pt20 13.043 107681 641361 ALPGEN €600
WevNp2_pt20 3.7801 107682 3768265 ALPGEN €760
WevNp3_pt20 1.0185 107683 1009641 ALPGEN €760
WevNpd_pt20 0.2572 107684 249869 ALPGEN €760
WevNp5_pt20 0.0702 107685 69953 ALPGEN €760
W v N p0_pt20 69.196 107690 3466523 ALPGEN €600
WpvNpl_pt20 13.042 107691 641867 ALPGEN €600
W pv Np2_pt20 3.7806 107692 3768893 ALPGEN €760
W v N p3_pt20 1.0196 107693 1009589 ALPGEN €760
W pv N pd_pt20 0.2564 107694 254879 ALPGEN €760
W v Np5_pt20 0.0699 107695 69958 ALPGEN €760
WrvNp0_pt20 69.186 107700 3416438 ALPGEN €600
WrvNpl_pt20 13.032 107701 641809 ALPGEN €600
WrvNp2_pt20 3.7780 107702 3768750 ALPGEN €760
WrvNp3_pt20 1.0190 107703 1009548 ALPGEN €760
WrvNpd_pt20 0.2565 107704 249853 ALPGEN €760
WrvNp5_pt20 0.0699 107705 63692 ALPGEN €760

TABLE 4.9 — Les échantillons des Monte Carlo des W+jets montrant pour

chaque processus, la section efficace, le nombre d’événements générés, le nu-

méro de run, le tag de production et le générateur qui ’a généré.

Processus Section efficace Numéro de run | Evénements générés | Générateur | Tags de production
(0) X B X kfacteurx > w;)
efficacité du filtre
(x107'nb)
TTbar_T1 1.4413 105200 14957047 MC@NLO €598
TThar_FullHad 1.4433 105204 1198875 MC@NLO €598

TABLE 4.10 — Les échantillons des Monte Carlo des ¢t montrant pour chaque

processus, la section efficace, le nombre d’événements générés, le numéro de

run, le tag de production et le générateur qui I'a généré.
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Chapitre 5

Analyse

Pour rechercher la présence de neutrinos lourds, il faut sélectionner les
événements de telle sorte a réduire les bruits de fond sans perdre trop d’évé-
nements du signal. Ce chapitre décrit les critéres de sélection, basés sur une
simulation puis une comparaison avec les données réelles, et une analyse sta-
tistique pour obtenir une limite attendue sur I'existence de neutrinos lourds.

Une comparaison non-quantitative avec les données réelles est ensuite faite.

5.1 Les variables et coupures

Le signal généré par le générateur MadGraph, a partir du modeéle Feyn-
rules décrit au chapitre 4, comprend 10 000 événements de la production en
singulet de lepton neutre lourd N : pp — W** — N(N)et — [TWHe*t —

IF1Fy(7)e*. Seuls 5000 événements ont été analysés, ce qui correspond & une

5000

031200 — 16.03 fb~! en supposant un paramétre

luminosité intégrée de L =
de mélange entre le lepton lourd et le lepton ordinaire de ¢2 = 0.19. On n’a
généré qu'un échantillon de 5000 événements parce que l'incertitude statis-

tique sera minimale, si on compare & des données correspondant & 1 fb-1,

70



et parce que la génération d’événements avec Athena! se fait généralement
par bloc de 5000 événements. Ainsi, les états finals qui nous intéressent sont
eeev et eeuv. Le signal a été créé de fagon privée, mais les versions officielles
d’Athéna ont été utilisées pour la simulation, digitisation et reconstruction.
A Taide des fichiers d’événements de quadrivecteurs de format «les Houchesy
[46], des échantillons «evgen» en format root, tenant compte de I’hadroni-
sation grace a Pythia, ont été crées. Un AOD (Analysis Object Data) est
ensuite produit, aprés que ces événements aient été envoyés a Geant4|47|
pour la simulation des effets du détecteur. Le AOD contient les données re-
construites par les logiciels officiels de reconstruction d’ATLAS. A cause de
sa grande taille et de complexes structures de classes, il est difficile a 'uti-
liser pour des analyses interactives. Ainsi pour créer un fichier avec un seul
ROOT TTree qui contient toutes les sorties de toutes les analyses définies par
l'utilisateur, le code généré produit un fichier plus adapté soit un D3PD 2.
Un D3PD permet d’analyser les données reconstruites de facon plus efficaces
puisque c’est un ntuple standard ROOT. Finalement, un ntuple personnalisé
est crée qui permet de présenter les données dans un format facile d’acces,
pour étre manipulées, tracées et analysées. Il faut dire que, en ce qui concerne
le signal, le poids «pileup_weight» (section 4.4 pour plus de détails) peut ne
pas étre tout a fait exact dans le cas des événements du signal générés de
facon privée. La chaine de production du signal a partir des quadrivecteurs
de MadGraph jusqu’au ntuple final a été soumise a la grille du LHC utilisant
les outils officiels d’ATLAS (merci & Merlin Davies).

1. Athéna est le logiciel A’ATLAS qui permet de générer, simuler et analyser des éveé-

nements Monte Carlo ou des données réelles.
2. DPD = «Derived Physics Data»
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5.1.1 Masse Transverse du lepton neutre lourd

Le signal considéré ici sera celui attendu aux données prises par ATLAS
en 2011 avec une luminosité intégrée de 1.02 fb~! et une énergie au centre de
masse de 7 TeV et des différents bruits de fond mentionnés a la section 4.6. Ici,
une des variables qui sert d’étude pour le signal est la masse transverse (mr)
de lepton neutre lourd soit la masse transverse de /v, ot il y a au moins un
électron dans I’état final. Il y a plusieurs fagons de définir la masse transverse

pour un tel événement. Celle que nous avons choisie est la suivante :

mr =\ (BY + )2 — (ot + B2 (5.1)

ot B est I'énergie transverse des deux leptons (ee ou eu), EY% est I'énergie
transverse du neutrino, pf est le vecteur de 'impulsion des deux leptons (ee
ou ep) et EY est le vecteur de I'énergie transverse du neutrino. L’énergie

transverse des deux leptons est définie comme suit :

- 2

B =\ ) + (mty (5.2
L’énergie transverse du neutrino est égale a I'impulsion du neutrino puisque

la masse de celui-ci est négligeable ; EY. = p%.. En introduisant la définition de

I’énergie transverse des deux leptons avec le neutrino, I’équation 5.1 devient :

-

mr = \/m?z + 20\ (1P + mi)p — (0 - )] (5.3)

Le vecteur d’impulsion des deux leptons est défini comme suit :

P = PR+ Py = (0 p)T+ (b)) +py)d (5.4)
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Ainsi le produit scalaire dans la définition de la masse transverse de lepton

neutre lourd (équation 5.4) se développe comme suit :

P ph = (0 + PPk + (08 + ) (5.5)

5.1.2 Masse invariante du lepton neutre lourd

La masse invariante de neutrino lourds (N) a aussi été reconstruite : my =
v/ E? — p?. Le neutrino lourd se désintégre en deux leptons et un neutrino.
Puisqu’on ne connait pas 'impulsion en z des neutrinos, on commence par
la, chercher en supposant que la combinaison (fv) donne la masse de boson

W soit 80.398 GeV :

my = Egy — piy
= (m; +p(0);) + (p(0); +p(0)2) + (p(v); + p(v); +p(¥)2)+
20y /P02 + P02 + p(0)2 + m? [p(0)2 + ()2

- (pw)x +p(V)x)2 - (p(g)y +p;)2 - (p(@z _|_p(1/)z)2

En réarrangeant I’équation 5.6 en isolant la variable impulsion des neu-

(5.6)

trinos p¥, on a une équation quadratique :

0=pW)[AE(0)? — 4p(0)2] + p(v).(—4(m, — m{)p(L).—
8p(0)ap(¥)xp(€) — 8p(£)yp(v)yp(0).) + (AE(0)*p(v)7:
— (mi, —mi)? — 4(my, — m§)(p(0)zp(v)o+ (5.7)
p(0)yp(v)y) = 4((p(0)up(¥)2)? + (p(€)yp(v)y)*+
2(p(£)ap(¥)2) (P(£)yp(v)y)))

On choisit seulement les solutions qui ont un déterminant positif (b? —

4ac > 0). De plus, lorsque la solution de déterminant est positive, on prend
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la solution qui a la plus petite impulsion en z des neutrinos pour reconstruire
la masse de boson W puisqu’on s’attend a ce que le neutrino soit le plus
souvent dans une région centrale du détecteur, étant donné que le neutrino
de quatriéme génération, un objet lourd, aura tendance a étre relativement
immobile lorsqu’il sera produit. Ce processus de sélection fait perdre des éve-

nements pour la masse du neutrino lourd.

5.1.3 Critéres de sélection

Tous les événements qui ont soit eeev soit eeurv sont a analyser pour
reproduire le signal. Les conditions sur les événements sont qu’il y ait au
moins deux électrons de signes opposés (voir Fig. 4.4). De plus, on s’assure
que chaque événement qui contient une combinaison ¢*¢— ayant une masse
invariante entre 86 et 96 GeV soit éliminé lors de la reconstruction de la
masse transverse et invariante du lepton neutre lourd (N). De cette maniére,
les événements provenant de la désintégration du boson Z ne brouillent pas
le signal. Les événements qui ont au moins un muon sont faciles a étudier.
Le muon a une charge différente de 1’électron venant directement du lepton
lourd neutre, ce qui fait qu’on ne compte pas deux fois les événements et on

s’assure que la masse transverse de lepton lourd neutre est bien reconstruite.

En ce qui concerne les événements de trois électrons, il faut s’assurer que
les événements ne sont pas comptés deux fois. Il faut commencer par séparer
les événements en trois cas selon leur charge. Si on ordonne les électrons par
la valeur décroissante en impulsion transverse, le premier cas est efeteT,
le deuxiéme est eteFeT et le dernier est efeFe®. Puisque 1'électron venant

directement du lepton lourd neutre a une charge différente des deux autres
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¢électrons, il ne nous reste qu’a choisir entre les deux électrons de méme signe.
Afin de reconstruire la masse transverse de lepton lourd neutre, on choisit
entre les deux combinaisons de ev celle qui a la masse transverse la plus
grande et I’événement est seulement ajouté a 1’échantillon final si la masse

transverse reconstruite de ev est plus petite que la masse du boson W.

Puisque le signal doit avoir a ’état final des leptons de grande impulsion
transverse, et bien isolés, une premiére coupure est faite sur les impulsions
transverses des leptons soit des valeurs supérieures a 22 GeV pour les élec-
trons et supérieures a 25 GeV pour les muons. Le signal comprend ainsi 1038
événements sur les 5000 générés au total, dont 215 événements présentent
trois leptons dans ’état final avec 85 événements contiennent 3 électrons et

130 pour 2 électrons et 1 muon.

A T’aide des variables dites «truth» (vérité, obtenues des événements simu-
lés avant la simulation des effets du détecteur), la masse transverse du lepton
lourd neutre my(N) (selon l'équation 5.3), ainsi que la masse invariante du

neutrino lourds, ont été reconstruites (voir Fig. 5.1 et Fig. 5.2).
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FIGURE 5.1 — La masse transverse reconstruite du lepton lourd neutre a

partir des variables dites «truth», qui présente en total 139 événements.
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FIGURE 5.2 — La masse invariante reconstruite du lepton lourd neutre a partir

des variables dites «truth», qui présente en total 139 événements.

Il ne reste que 139 évenements des 215 de départ lorsqu’on tient compte
de toutes les conditions de sélection mentionnées au début de la section 5.1.1.
Parmi les 139 événements, 18 événements contiennent 3 électrons et 121 ont

2 électrons et 1 muon.

5.2 Reésultats

Afin de vérifier le nouveau modéle construit a ’aide de MadGraph qui
tient compte d’'une quatriéme génération, on compare les données prises par
le détecteur ATLAS avec le signal et les bruits de fond qui sont simulés par

méthode Monte-Carlo. Pour pouvoir comparer les événements simulés aux
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données réelles, il faut tout normaliser & la luminosité intégrée soit 1.02 fb=1.
Chaque échantillon est multiplié par une constante (c¢) qui tient compte de
trois parameétres soit la luminosité des données, la section efficace (o)et le
nombre d’événement (N) générés dans cet échantillon.

(1.02fb71) x o(pb)

c= ~ (5.8)

Avec 5000 événements et une section efficace de 0.312 pb (en supposant
¢? = 0.19), cela donne un facteur de normalisation de ¢ = 0.064 pour les
événements simulés du signal. Ce signal sera comparé a la somme de tous
les bruits de fond du modéle standard qui pourraient obscurcir la signature
du signal afin d’exclure ou non la nouvelle physique présentée par ce mo-
déle. Si nous prenons par exemple un échantillon du bruit de fond, principal
WZ, généré par MCQNLO, pour un processus tel que W+Z — (vll (voir
tableau 4.4), la section efficace est de 0.16 pb et le nombre d’événements gé-
nérés est de 24995, la constante ¢ qui est le facteur de normalisation devient
¢ = L0/ x1600/b _ g 364 % 10~3, dont le poids moyen est de 70% (voir Sect.

24995%0.7
4.6 : bruits de fond).

Une coupure a été ajoutée afin de réduire les bruits de fond ZZ et Z-+jets :
on demande que I’énergie manquante transverse provenant des neutrinos soit
supérieure a 30 GeV. On remarque que les bruits de fond du modéle stan-
dard les plus importants proviennent des dibosons et plus précisément de
la production de WZ (couleur cyan sur la Fig 5.3 et Fig 5.4). Ce qui est
normal puisque ce bruit de fond a une signature similaire & celle du signal
(pp — W*t — N(N)et — [TWEet — [FI*y(7)e*). Les deux contiennent
a ’état final trois leptons et un neutrino. Le nombre total des événements

pour la masse transverse du neutrino lourds (mg(N)) incluant la coupure
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sur les énergies transverses provenant des neutrinos des trois contributions
soit le signal et les bruits de fond pour la variable de la masse transverse de

neutrino lourd est illustré dans le tableau 5.1.

Neutrino Transverse Mass

4]
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g & ] Legend: Pour: £2 =(.19
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FIGURE 5.3 — Le nombre d’événements en fonction de la masse transverse de
neutrino lourd (N) pour le signal(ligne noir) combiné aux bruits de fond(en
différentes couleurs). La distribution du signal suppose une valeur de £ =
0.19. Puisque les résultats ne peuvent pas étre considérés officiels par la

collaboration ATLAS, les données ne sont pas ajoutées dans la figure.
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FIGURE 5.4 — Le nombre d’événements en fonction de la masse invariante de
neutrino lourd (N) pour le signal(ligne noir) combiné aux bruits de fond(en
différentes couleurs). La distribution du signal suppose une valeur de £? =

0.19.

Signal | Bruits de fond

Neye | 5.11 5.08

TABLE 5.1 — Le nombre total d’événements apres la reconstruction de la
masse transverse de neutrino lourd incluant la coupure sur les impulsions
transverses des neutrinos et le facteur de normalisation pour les bruits de

fond et le signal possédant une valeur de £2 = 0.19.

La coupure sur I’énergie transverse manquante (due au neutrino) diminue

le nombre d’événements sur les trois contributions et plus précisément permet
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d’éliminer les plus petites masses. Les figures suivantes (Fig 5.5 et Fig 5.6)
sont similaires aux Fig 5.3 et Fig 5.4 respectivement sauf que la coupure sur

les énergies manquantes transverses des neutrinos n’a pas été ajoutée.

Neutrino Transverse Mass

£ |
£ 8 — Legend: Pour: {2 =0.19
1]
[ =
‘2 WW : 0.55 events
L d I ZZ:0.74 events
= WZ: 4.05 events
) I Z+jets: 0.37 events
I W+jets : 0 events
5 ttbar : 2.40 events
B Z+gamma : 5.03 events
— Signal 100 GeV : 8.04 events
4

iy el | | 1 ><103
300 400 500 600 700
M~ (N) MeV

FIGURE 5.5 — Le nombre d’événements en fonction de la masse transverse de
neutrino lourd (N) pour le signal(ligne noir) combiné aux bruits de fond(en
différentes couleurs) sans inclure la coupure sur les impulsions transverses

des neutrinos.
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FIGURE 5.6 — Le nombre d’événements en fonction de la masse invariante de
neutrino lourd (N) pour le signal(ligne noir) combiné aux bruits de fond(en
différentes couleurs) sans inclure la coupure sur les impulsions transverses

des neutrinos.

5.3 Limites

On compare les distributions de masse transverse ¢/v des données réelles
d’ATLAS a celles prédites par le modéle de neutrino lourd avec bruits de fond
du modele standard afin de construire une limite d’exclusion. Ainsi, il y a
deux prédictions a comparer, soit ce que le modéle standard prédit et observe
avec une forme «B» (pour background) et I'autre est ce que la nouvelle
physique prédit avec une forme «S» (pour signal) et une variable de force

«u». Les deux hypotheses B et B4+uS sont analysées en générant des pseudo-
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expériences en tenant compte aussi des variations systématiques. B et S sont
affectés par un parameétre de nuisance () qui tient compte des incertitudes
systématiques. S est produit avec une variable de force i qui est inconnue et
qu’on évaluera. On permet a u de varier entre -oo,+00. En ce qui concerne le
paramétre de nuisance (6), toutes les valeurs possibles sont contenues dans
une distribution possédant une fonction de densité de probabilité (F(0)) telle

une gaussienne. En prenant comme fonction de densité de probabilité une

distribution de Poisson p(x|f) = £¢- ® la fonction de vraisemblance s’écrit
comme suit :
n
91}1'6—9
LO|xy,...,x,) = o (5.9)
=1 v

La fonction de vraisemblance L(p,0) calculée avec ’hypothése (B+S) pré-
sentée par la nouvelle physique et le modéle standard est une fonction des
deux paramétres u et 6 qui définissent le test statistique. Avec un test statis-
tique basé sur la méthode d’un profil de vraisemblance, les valeurs les plus
probables, /i et é, sont obtenues en maximisant le logarithme de la fonction
de vraisemblance L(u,0) de p et 6. Le rapport de vraisemblance est défini

comme suit :

~

g, = —21n L(’f’e) (5.10)
L(j1,0)

6 est une estimation de 6 qui maximise le logarithme de vraisemblance

pour une valeur arbitraire de p.

Pour construire une limite d’exclusion, on utilise RooStats[48, 49|, qui un
outil statistique dans ROOT. RooStats est un code assez général qui utilise

RooF'it pour répondre aux question statistiques. Il existe plusieurs exemples
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pour calculer des tests statistiques avec RooStats. On fournit & RooStats
deux fichiers dont un définit la mesure de la luminosité, spécifie le paramétre
d’'intérét qui est ici o/ogy et renvoie a la liste des canaux soient les don-
nées, le signal et les bruits de fond. L’autre fichier spécifie le fichier root qui
contient les histogrammes des données, du signal et des bruits de fond et
contient 'information sur les incertitudes systématiques sur le signal et les
bruits de fond. L’approche statistique que nous avons choisie est «power-
constrained one-sided frequentist limits with a profile likelihood ratio». C’est
une approche fréquentiste ot la probabilité est la limite d’une fréquence d’oc-

currence d’événements.

Les histogrammes des bruits de fond et le signal avec des taux d’incer-
titudes systématiques sont adaptés aux données. L’étude des incertitudes
provenant de la modélisation du signal et des bruits de fond est tres fasti-
dieuse et ainsi au dela de la portée de cette analyse. Par contre, les sources
des incertitudes systématiques sont nombreuses telles que les incertitudes sur
la simulation des «trigger» des leptons qui tiennent compte de 'efficacité de
I'identification des leptons, les incertitudes dans le modélisation de 1’échelle

d’énergie et de la résolution des leptons, les incertitudes reliées & ET

miss QU
sont dues aux jets d’impulsions faibles, I’empilement des paquets de croise-
ment (pileup) et de 'énergie du calorimétre qui ne sont pas associés avec
les jets et les leptons reconstruits et aussi les incertitudes reliées a 1’échelle
d’énergie des jets. Il y a aussi des erreurs systématiques théoriques : les sec-
tions efficaces des bruits de fond et une erreur systématique sur la mesure de
la luminosité intégrée (~ 3.9%). Ici, nous avons choisi un taux d’incertitude

systématique symétrique de 20% sur le signal et de 20% sur les bruits de

fond, ce qui correspond approximativement a ce qui est adopté, par exemple
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dans [50].

En utilisant les distributions de la masse transverse de neutrino lourd
mp(N), on obtient des limites attendues a un niveau de confiance de 95%
pour la paramétre d’'intérét soit o /ogy de 0.465 comme médiane avec 0.165
pour un écart type (-o) , 0.945 pour +o et 1.665 pour +20. Ici o5y représente
le «modéle standard», ce qui est ici en fait le modéle avec neutrino lourd de
quatriéme génération associé & un paramétre de mélange de £2 = 0.19. On
peut donc s’attendre & exclure un signal ayant une section efficace qui serait
0.465 fois celle supposée (avec £2 = 0.19), c’est-a-dire 0.465x0.312 pb = 0.145
pb. Il est possible de déterminer une limite supérieure sur ce parameétre de
mélange puisque la section efficace est proportionnelle au carré de € : o oc k&2
ou k est une constante. En sachant que pour £2 = (.19, la section efficace du
signal est de 0.312 pb et que la limite attendue & un niveau de confiance de

95% est de 0.465, on obtient la limite supérieure sur £? comme suit :

o, = 0.4650&* =0.19)
k& <k x0.465 x 0.19
& < 0.0 (5.11)

(5.12)

Malgré que le signal n’ait pas été créé de fagon officielle, le modéle construit
a partir de MadGraph est un modéle qui est intéressant & poursuivre pour
étudier la nouvelle physique. Il n’est pas permis de donner un résultat basé
sur les données réelles étant donné que ce n’est pas approuvé par la collabo-

ration ATLAS.
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En utilisant les distributions de la masse invariante du neutrino lourd
m(N), plutdt que la masse invariante, on obtient des valeurs attendues pour
la paramétre d’intérét soit o/ogy de 0.495 comme médiane avec 0.223 pour
un écart type (-0) , 0.735 pour +o et 1.395 pour +20. Dans ce cas, on peut
donc s’attendre & exclure un signal ayant une section efficace qui serait 0.495
fois celle supposée (avec £2 = 0.19), c’est-a-dire 0.495 x 0.312 pb = 0.154 pb,
et la limite supérieure attendue & un niveau de confiance de 95% sur &2 ne

change pas de fagon significative.
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Chapitre 6

Conclusion

Cette analyse est basée sur la recherche de production simple de leptons
neutres lourds de quatriéme génération via un courant chargé. A 1'aide des
données de 2011 prises par le détecteur ATLAS dans les collisions pp a /s =7
TeV et avec une luminosité intégrée de 1.02 fb=1, le processus étudié, ayant un
lepton neutre lourd (N) de masse de 100 GeV et un état final de trois leptons
et un neutrino, est le suivant : pp — W — N{ — (W — (lv,L. Le signal est
basé sur un modéle tenant compte d'une quatriéme génération de fermions.
Un échantillon de 10000 événements a été généré par MadGraph, dont seule-
ment la moitié sont analysés a la fin. La section efficace est de 0 = 0.312 pb
pour un parameétre de mélange entre la quatrieme génération et la premiére
de €2 = 0.19. En comparant les simulations des bruits de fond et du signal
simulé, la limite attendue & un niveau de confiance de 95% obtenue est une
section efficace de 0.145 pb pour le processus pp — W* — eN toeelv, avec
0.295 pb pour une écart type (+o0) et 0.519 pb pour +20. Les résultats de
cette analyse imposent aussi une limite supérieure attendue sur le mélange
entre un lepton lourd neutre et un lepton ordinaire, ici I’électron, en fonction

de la masse du lepton lourd. La limite supérieure & un niveau de confiance de
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95% sur le paramétre de mélange est £2 ~ 0.09 pour un lepton neutre lourd
de masse de 100 GeV. Le signal, produisant le lepton lourd neutre ayant une
masse de 100 GeV, a été généré de maniére privée & Montréal. Ainsi les ré-

sultats obtenus ne peuvent pas étre approuvés par la collaboration d’ATLAS.

Pour une analyse plus compléte, il serait intéressant d’étudier la produc-
tion de leptons lourds neutres via le courant neutre pour différentes masses et
la production de leptons lourds chargés via le courant chargé et neutre. Ainsi,
il serait possible d’établir une limite sur le paramétre de mélange entre le lep-

ton lourd et le lepton ordinaire pour les différentes masses de lepton lourd.
Les canaux de muons restent aussi a étudier puisque le parameétre de mé-

lange £2 ne tient pas compte ici de couplage de lepton lourd (N) et du muon

et donc le canal ppp n’est pas étudié.
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