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RESUMEN

En este trabajo se estudian modelos del Universo con inclusión de la enerǵıa oscura, tanto
del tipo quintaesencia como enerǵıa fantasma, en donde se considera interacción adicional
(no gravitatoria) entre la enerǵıa oscura y el fluido de fondo (básicamente materia oscura).
Estos modelos son basados en una Teoŕıa Escalar-Tensorial de gravitación.

En los modelos de quintaesencia se derivan familias de soluciones exactas a las ecuaciones
del campo al elegir adecuadamente la dinámica de la expansión del Universo, además
se estudia la estabilidad y existencia de las mismas. Se hallan soluciones tanto para
acoplamiento mı́nimo como no mı́nimo entre la Materia Oscura y la Enerǵıa Oscura. Los
parámetros libres de los cuales dependen las soluciones halladas se pueden ajustar para
que dichas soluciones reproduzcan la data observacional. A pesar que en este caso se
derivan soluciones exactas a las ecuaciones del campo cosmológicas con relativa facilidad,
no se puede resolver el Problema de la Coincidencia.

En los Modelos con Enerǵıa Fantasma se investiga como una posible interacción adicional
no gravitatoria entre la Materia Oscura y la Enerǵıa Oscura, modifica el Problema de la
Coincidencia y, además, permite evadir el evento del Big-Rip, evento catastrófico t́ıpico
de cosmoloǵıas fantasmas.
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Introducción

La Cosmoloǵıa es la ciencia que tiene por objeto el estudio del Universo como un todo.
Este conocimiento implica la respuesta a algunas preguntas fundamentales, que se incor-
poran a su campo: ¿Tuvo el Universo un comienzo, o existió desde siempre? ¿Tendrá fin?
¿Es infinito el espacio? ¿Evoluciona o es estático, inmutable?

Esta ciencia en estos momentos se encuentra en un peŕıodo excitante de descubrimientos
que podŕıa extenderse en los próximos años. En la actualidad gracias a los satélites
artificiales dedicados a la observación del cosmos, como el COBE (por su nombre en
inglés: Cosmic Background Explorer), el telescopio espacial Hubble y el WMAP (por
su nombre en inglés: Wilkinson Microwave Anisotropy Probe), es posible obtener datos
precisos para entender el Universo.

En 1998 dos grupos de investigadores, uno dirigido por Saul Perlmutter (Supernova Cos-
mology Project Collaboration) y el otro por Brian Schmidt (Supernova Search Team
Collaboration), de forma independiente descubrieron que nuestro Universo se encuentra
en una fase de expansión acelerada[1].

Los datos de las observaciones han permitido establecer un nuevo paradigma cosmológico.
En este nuevo paradigma se ha establecido el contenido material del Universo que obser-
vamos hoy.

Es conveniente medir la densidad de enerǵıa de los distintos componentes en términos
de la densidad de enerǵıa cŕıtica ρc = 3H2

0/8πG, donde H0 = (ȧ/a)0 es la razón de
expansión del Universo en el presente. El parámetro adimensional de la densidad de
enerǵıa Ωi = ρi/ρc nos permite conocer la contribución de los diferentes componentes que
tiene nuestro Universo (donde i se utiliza para representar el i-esimo componente, como
por ejemplo materia oscura, radiación, etc.).

Las observaciones conducen a los siguientes resultados:

• Nuestro Universo tiene 0.98 . Ωtotal . 1.08. El valor de Ωtotal puede ser determinado
por el espectro angular de anisotroṕıa de la radiación cósmica de fondo [2].

• Las observaciones del deuterio primordial, que se origino en la nucleosintesis del Big
Bang (el cual tuvo lugar cuando el Universo teńıa un minuto de vida) aśı como las
observaciones de la radiación cósmica de fondo muestran que la cantidad total de

1



Introducción 2

bariones en nuestro Universo contribuyen como ΩBariones
∼= 0.04 − 0.06[3]. Estas

observaciones toman en consideración todos los bariones, sean luminosos o no, que
existen en el presente. De aqúı se puede concluir que vivimos en un Universo cuyo
contenido material fundamental no es bariónico.

• Las observaciones relacionadas con las estructuras a gran escala aśı como con su
dinámica (curvas de rotación de las galaxias, estimado de la masa de los clusters
de galaxias, lentes gravitacionales) sugieren [4] que el universo presenta un compo-
nente de materia que no es luminoso (conocido como materia oscura) compuesto
por part́ıculas masivas de débil interacción. Este componente contribuye como
ΩMO

∼= 0.20 − 0.35.

• De todas las observaciones anteriores se puede concluir que existe un componente
de densidad de enerǵıa que contribuye cerca de un 70% de la densidad cŕıtica. Un
análisis de algunas observaciones [5] indican que dicho componente (denominado
enerǵıa oscura) no se agrupa, tiene presión negativa y contribuye al contenido del
Universo como ΩEO

∼= 0.60 − 0.75.

• El Universo también contiene radiación (ΩRad
∼= 5 × 10−5) debido a los fotones de

la radiación cósmica de fondo.

Existen muchos modelos los cuales permiten describir la fase actual de expansión acelerada
del Universo. Algunos de estos modelos incluyen la enerǵıa oscura[6], como causante de
la expansión acelerada, y otros modelos no incluyen a la enerǵıa oscura. En esta tesis solo
se verán algunos de los modelos que incluyen la enerǵıa oscura.

Una gran variedad de modelos del Universo que contienen únicamente dos componentes
(enerǵıa oscura y materia oscura) han sido sugeridos. El más simple de todos es un modelo
que contenga Constante Cosmológica o Enerǵıa del Vaćıo cuántico, para representar la
enerǵıa oscura.

Para este modelo en particular, al considerar la enerǵıa oscura como un fluido la expresión
del parámetro de estado queda prefijada: ω = p/ρ = −1, donde p y ρ son la presión y la
densidad de enerǵıa.

A pesar de ser sencillo, este modelo reproduce bien la data observacional [2, 3, 4, 5], pero
presenta serios problemas como los que enumeramos a continuación:

• El Problema de la Constante Cosmológica: Este problema surge cuando se
compara el valor teórico calculado para la constante cosmológica y el valor que se
observa. De dicha comparación resulta que existe una diferencia de 123 órdenes de
magnitud entre ambos[7].

• El Problema del Ajuste Fino: Para poder describir el Universo que observa-
mos hoy la constante cosmológica debe ajustarse en un rango comprendido entre
−10−47 < Λ < 10−47.
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• El Problema de la Coincidencia: Este problema se puede expresar mediante la
siguiente pregunta. ¿Por qué las densidades de materia oscura fŕıa y enerǵıa oscura
se hacen comparables precisamente en la presente etapa de la evolución del universo
y no mucho antes o después? [8]

Para tratar de resolver los problemas que presenta el Modelo con Constante Cosmológica
en la referencia [9] se propone que la enerǵıa oscura no es constante, sino que evoluciona
con el tiempo. Para describir la enerǵıa oscura los autores proponen un campo de nat-
uraleza escalar. A estos modelos con campos escalares, que representan una constante
cosmológica dinámica, se les denomina Modelos de Quintaesencia. Una gran variedad de
modelos de quintaesencia han sido estudiados[9, 10].

Al ser la constante cosmológica dinámica, en estos modelos se suaviza y hasta se puede
evadir el problema de la constante cosmológica.

En los modelos de Quintaesencia la densidad de enerǵıa se define como ρφ = φ̇2/2+V (φ),
donde φ representa el campo escalar, φ̇2/2 es la enerǵıa cinética del campo escalar, V (φ)
es el potencial de auto interacción y el punto significa la derivada respecto al tiempo
cosmológico.

La presión se define como pφ = φ̇2/2 − V (φ), por lo que es conveniente introducir el
parametro de estado para la quintaesencia:

ωφ = pφ/ρφ =
φ̇2/2 − V (φ)

φ̇2/2 + V (φ)
. (1)

De la definición anterior se puede notar que para la quintaesencia el parámetro de estado
siempre va ha ser mayor o igual que menos uno(ωφ ≥ −1). Cuando ωφ = −1 se recupera
la enerǵıa de vaćıo o constante cosmológica.

Si se emplean potenciales atractores, o sea; potenciales para los cuales las condiciones
iniciales sobre el campo escalar y sus derivadas no influyen mucho en la evolución actual
del universo, el problema del ajuste fino se puede suavizar. Estos modelos de forma
general preservan el Problema de la coincidencia[11].

La data observacional reporta que: −1.62 < ωφ < −0.76, por lo que se puede apreciar que
esta favorece valores del parámetro de estado ωφ menores que -1 [12, 13], región donde
los modelos de quintaesencia no son capaces de describir la evolución cósmica. Utilizando
campos escalares, si admitimos el signo “errado”de la enerǵıa cinética del campo escalar,
o sea admitimos campos escalares con enerǵıa cinética negativa, entonces el parámetro de
estado (1) quedaŕıa de la siguiente forma (φ̇2 → −φ̇2):

ωφ =
−φ̇2/2 − V (φ)

−φ̇2/2 + V (φ)
, (2)

por lo que, como se nota, este es siempre menor que -1(ωφ < −1).
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Los campos escalares con enerǵıa cinética negativa carecen de significado f́ısico, por lo que
a estos modelos se les llamo Modelos con Enerǵıa Fantasma. Algunos de estos modelos
se pueden encontrar en [14].

El problema mas serio de los modelos con enerǵıa fantasma es que si se le asocian part́ıculas
a estos campos, o sea, cuando tratamos de formular una teoŕıa cuántica del campo fan-
tasma, el signo errado de la enerǵıa cinética provoca que no exista un estado de mı́nima
enerǵıa y por tanto esta teoŕıa no tiene un estado básico, por lo que las part́ıculas fantas-
mas serian muy inestables. El argumento que salva esta situación se basa en considerar a
los campos fantasmas como una teoŕıa efectiva, o sea, el limite de bajas enerǵıas de una
teoŕıa fundamental, por ejemplo, la teoŕıa de cuerdas, que si puede ser cuantizada.

Debido a estos problemas se pudiera cuestionar la utilidad de los modelos con enerǵıa
fantasma, pero existen razones para no abandonarlos. El primer y principal motivo esta
relacionado con la evidencia observacional. Esta favorece valores del parámetro de estado
menores que -1. Por otra parte, en la teoŕıa de cuerdas aparecen de forma natural campos
moduli con termino de enerǵıa cinética con el signo “errado”, como por ejemplo, los
campos de taquiones.

La propiedad mas inusual, desde el punto de vista cosmológico, de los modelos con enerǵıa
fantasma, es que en un tiempo finito en el futuro, en un universo que se expande, la den-
sidad de enerǵıa crece ilimitadamente y junto con ella crece infinitamente el parámetro de
Hubble, lo que conduce a una singularidad en el futuro de la expansión cósmica, conocida
como singularidad de Big-Rip. Esta singularidad, f́ısicamente, puede interpretarse como
que en un tiempo finito en el futuro, la densidad de enerǵıa oscura va ser tan intensa que va
a ser capaz de destruir todas las estructuras enlazadas que conocemos, desde los cúmulos
de galaxias, hasta los átomos y part́ıculas mas pequeñas, en un evento final catastrófico:
el gran desgarramiento final del espacio-tiempo (Big Rip).

Los modelos de enerǵıa fantasma aun presentan el problema de la coincidencia [11] que es
el mas persistente de todos a través de los distintos modelos de enerǵıa oscura existentes.

Como este es el problema en común de la mayoŕıa de los modelos de enerǵıa oscura; el

motivo de esta investigación es estudiar este problema desde la perspectiva de modelos
con interacción entre la materia oscura y la enerǵıa oscura.

El objetivo del presente trabajo es:

• Investigar como una posible Interacción adicional no gravitatoria entre la Materia
Oscura y la Enerǵıa Oscura puede modificar el Problema de la Coincidencia.

• Derivar familias de soluciones exactas a las ecuaciones del campo en los modelos
que se proponen y estudiar la estabilidad y existencia de las mismas.

• En los Modelos con Enerǵıa Fantasma investigar como una posible Interacción adi-
cional no gravitatoria entre la Materia Oscura y Enerǵıa Oscura modifica el evento
del Big-Rip.
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Las hipótesis de las que partimos son las siguientes:

• Si se selecciona un adecuado término de interacción entre la materia oscura y la
enerǵıa oscura se puede resolver el Problema de la Coincidencia y además se puede
evitar el Big-Rip en modelos con enerǵıa fantasma.

• Si se elije adecuadamente la dinámica de la expansión se pueden encontrar familias
de soluciones exactas a las ecuaciones del campo con relativa facilidad.

La novedad de esta investigación radica en el estudio de modelos del universo con inclusión
de enerǵıa oscura (quintaesencia, enerǵıa fantasma), en donde es posible interacción adi-
cional no gravitatoria entre la enerǵıa oscura y el fluido de fondo (básicamente materia
oscura). Estos modelos son basados en una teoŕıa escalar- tensorial de gravitación.

Todo modelo cosmológico debe ajustarse al principio de Copernico, o principio cos-
mológico: “El universo en la gran escala es homogéneo e isotrópico”. Por ese motivo,
como en la mayoŕıa de las investigaciones sobre la evolución del universo en la gran
escala, que son basadas en teoŕıas métricas de gravitación, se eligen espacio-tiempos
tipo Friedmann-Robertson-Walker (FRW), que reflejan estas simetŕıas. En coordenadas
esféricas el elemento de ĺınea se puede expresar como:1

ds2 = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dϕ2
)

]

, (3)

donde t es el tiempo cosmológico, a(t) es el factor de escala (magnitud que permite dar
una medida de la evolución de las distancias entre dos puntos fijos en una sección espacial
dada), k es la curvatura de la sección espacial, r la coordenada radial, θ la coordenada
angular azimutal y ϕ la coordenada angular polar. Utilizamos el sistema de unidades
donde 8πG = c = 1.

La Tesis esta estructurada de la siguiente forma: En los caṕıtulos (1) y (2) se hace una
breve revisión acerca de la Relatividad General, la Cosmoloǵıa y los Campos Escalares,
en el caṕıtulo (3) se derivan soluciones exactas a modelos con quintaesencia, en el caṕıtulo
(4) se hace un estudio de la estabilidad y existencia de las soluciones halladas y además se
hace un estudio dinámico que da la posibilidad de encontrar modelos en donde se pueda
explicar el Problema de la Coincidencia. Finalmente en el caṕıtulo (5), se proponen
modelos con enerǵıa fantasma, los cuales están libres del problema de la coincidencia y,
además, no manifiestan la singularidad de Big-Rip.

1Ver capitulo I para más detalles.



Caṕıtulo 1

TEORÍA GENERAL DE LA

RELATIVIDAD Y EXPANSIÓN

DEL UNIVERSO.

La observación del cielo nocturno ha sido uno de los mayores est́ımulos intelectuales de
todos los tiempos. Este maravilloso espectáculo ha cautivado la mirada de muchos y
ha suscitado preguntas acerca de nuestro universo, su origen y su evolución futura. No
es sorprendente que al pasar de los años las distintas civilizaciones y culturas que han
habitado en nuestro planeta hayan propuestos sus propias cosmoloǵıas.

La cosmoloǵıa es una ciencia que depende de la observación. El desarrollo que ha alcan-
zado la ciencia y la tecnoloǵıa en la actualidad ha facilitado la construcción de grandes
telescopios y satélites que permiten estudiar los objetos más remotos de nuestro espacio.
Estos adelantos han permitido que en los últimos 80 años esta ciencia haya evolucionado
grandemente, tanto en la parte observacional como en la teórica[15].

Un ejemplo de efectos f́ısicos que se observan en el laboratorio que pueden ser usados
para estudiar objetos astronómicos es el del espectro de la luz. La frecuencia de la luz
que es emitida por una estrella en movimiento aparece aumentada o disminuida ante el
observador, según si la estrella se acerca o se aleja, respectivamente. El corrimiento de la
frecuencia, o efecto Doppler, es proporcional a la velocidad relativa entre el emisor y la
fuente, por lo tanto puede ser usado para medir la velocidad de un objeto remoto. Este
principio fue utilizado por el astrónomo norteamericano Vesto Slipher a partir de 1912 y
más tarde por Hubble, para medir la velocidad de galaxias lejanas. Las observaciones de
Edwin Hubble en el 1935 señalaron que casi todas las galaxias muestran un fenómeno que
fue designado con la expresión “corrimiento hacia el rojo”. Esto significa que el color de la
luz que recibimos de ellas es más rojizo que cuando salió de su fuente. Este descubrimiento
mostro, por primera vez, que nuestro universo esta en un estado de continua expansion.
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Teoŕıa General de la Relatividad y Expansión del Universo 7

1.1 Teoŕıa General de la Relatividad

En 1905 Albert Einstein publica su conocida “Teoŕıa Especial de la Relatividad”donde
esclarećıa la interconexión entre el espacio y el tiempo y dedućıa las consecuencias f́ısicas
que se derivaban de ello.

Sin embargo no fue hasta 1907 (dos años después) que el matemático alemán Hermann
Minkowski demostró que las ideas de Einstein pod́ıan ser expresadas geométricamente sólo
si se consideraba que el espacio f́ısico poséıa cuatro dimensiones: una dimensión temporal
y tres dimensiones espaciales.

La idea matemática fue posteriormente utilizada por Einstein quien, a través de su amigo
y compañero de la Universidad Marcell Grossmann, ya conoćıa sobre la existencia de
la geometŕıa de Riemann. Considerando geometŕıa de Riemann en espacios de cuatro
dimensiones, Einstein derivó, en 1915, las leyes que rigen la gravitación y que generalizan
la ley de Newton para campos gravitatorios intensos. La idea básica es que la gravitación
debe entenderse como curvatura del espacio-tiempo de cuatro dimensiones avizorado por
Minkowski.

La relatividad general está basada en un conjunto de principios fundamentales:

• El principio general de la relatividad: Las leyes de la f́ısica deben ser las mismas
para todos los observadores (inerciales o no).

• El principio general de covariancia: Las leyes de la f́ısica deben tomar la misma
forma en todos los sistemas de coordenadas.

• El movimiento inercial se realiza a través de trayectorias geodésicas.

• El principio de invariancia local de Lorentz: Las leyes de la relatividad especial se
aplican localmente para todos los observadores inerciales.

• Curvatura del espacio tiempo. Esto permite explicar los efectos gravitacionales como
movimientos inerciales en un espacio tiempo curvado.

• La curvatura del espacio-tiempo está creada por la interacción entre la masa y la
enerǵıa con en el espacio tiempo. La curvatura del espacio tiempo puede calcularse
a partir de la densidad de la materia y enerǵıa al igual que de las ecuaciones de
campo de Einstein.

El principio de equivalencia que hab́ıa guiado el desarrollo inicial de la teoŕıa es una
consecuencia del principio general de la relatividad y del principio del movimiento inercial
sobre trayectorias geodésicas.

Una de las principales consecuencias de la gravedad es su manifestación a través de la
geometŕıa local del espacio-tiempo. Las bases matemáticas de la teoŕıa se remontan
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a los axiomas de la geometŕıa eucĺıdea y los muchos intentos de probar, a lo largo de
los siglos, el quinto postulado de Euclides, que dice que las ĺıneas paralelas permanecen
siempre equidistantes, y que culminaron con la constatación por Bolyai y Gauss de que
este axioma no es necesariamente cierto. Las matemáticas generales de la geometŕıa no
euclidiana fueron desarrolladas por el disćıpulo de Gauss, Riemann, pero no fue hasta
después de que Einstein desarrolló la teoŕıa de la Relatividad especial que la geometŕıa
no euclidiana del espacio y el tiempo fue conocida.

Gauss demostró que no hay razón para que la geometŕıa del espacio deba ser euclidiana,
lo que significa que si un f́ısico pone un patrón, y un cartógrafo permanece a una cierta
distancia y se mide su longitud por triangulación basada en la geometŕıa euclidiana,
entonces no está garantizado que sea dada la misma respuesta si el f́ısico porta el patrón
consigo y mide su longitud directamente. Existen medidas equivalentes que deben detectar
la geometŕıa no euclidiana del espacio-tiempo directamente, por ejemplo el experimento
de Pound-Rebka (1959) detectó el cambio en la longitud de onda de la luz de una fuente
de cobalto surgiendo por 22.5 metros contra la gravedad en un local del Laboratorio de
F́ısica Jefferson en la Universidad de Harvard.

Matemáticamente, Einstein utilizo como modelo del espacio-tiempo, una variedad pseudo-
Riemaniana, y sus ecuaciones de campo establecen que la curvatura de la variedad en un
punto está relacionada directamente con el tensor de enerǵıa en dicho punto; dicho tensor
es una medida de la densidad de materia y enerǵıa. La ecuación de campo posible no es
única, habiendo posibilidad de otros modelos sin contradecir la observación.

Las ecuaciones de Einstein se pueden escribir como:

Rab −
1

2
gabR + gabΛ =

8πG

c2
Tab, (1.1)

donde Rab es el tensor de curvatura de Ricci, R es el escalar de curvatura de Ricci, gab es el
tensor métrico, Λ es la constante cosmológica, Tab es el tensor de enerǵıa, c es la velocidad
de la luz y G es la constante gravitatoria universal, de forma similar a lo que ocurre en
la gravedad newtoniana. El tensor métrico describe la métrica de la variedad y es un
tensor simétrico 4 x 4, por lo que tiene 10 componentes independientes. Dada la libertad
de elección de las cuatro coordenadas espaciotemporales, las ecuaciones independientes se
reducen a seis.

Las ecuaciones de Eisntein (1.1) relacionan la curvatura del espacio (parte izquierda de
la ecuación) con la masa-enerǵıa (parte derecha). Una masa cualquiera curva el espacio y
esta curvatura modula la trayectoria de cualquier part́ıcula en el espacio curvado alrededor
de la masa.
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1.2 El modelo del Big-Bang.

En la segunda década del siglo XX, la teoŕıa de Albert Einstein sobre la relatividad
general no admit́ıa soluciones estáticas (es decir, el universo debe estar en expansión o en
reducción) un resultado que él mismo consideró equivocado, por lo que trató de corregirlo
agregando la constante cosmológica. El primero en aplicar formalmente la relatividad
a la cosmoloǵıa sin la constante cosmológica fue Alexander Friedman cuyas ecuaciones
describen el universo de Friedman-Lemâıtre-Robertson-Walker, que puede expandirse o
contraerse. Entre 1927 y 1930, Georges Lemâıtre obtuvo independientemente las mismas
ecuaciones y propuso, sobre la base de la recesión de las nebulosas espirales, que el universo
se inició con la explosión de un átomo primordial, lo que más tarde fue llamado el Big
Bang.

Las observaciones realizadas por Edwin Hubble sirvieron de base para comprobar la teoŕıa
de Lemâıtre. Hubble probó que las nebulosas espirales eran galaxias y midió sus distan-
cias observando las estrellas variables cefeida que se encontraban en galaxias distantes.
Descubrió que las galaxias se alejan entre ellas a velocidades (relativas a la tierra) di-
rectamente proporcionales a su distancia. Este hecho se conoce ahora como la Ley de
Hubble. El mismo Hubble no estaba muy seguro de cómo interpretar sus observaciones y,
poco dispuesto al principio a arribar a la conclusión de un universo en expansión, llamó al
fenómeno del “corrimiento hacia el rojo”como “aparentes desplazamientos de velocidad”.
Poco después, Hubble abandonó parcialmente sus reservas y concluyó que la mayoŕıa de
las galaxias se estaban alejando de nosotros. Es aśı que se acuñó la expresión “el universo
en expansión”.

Si hoy el universo está en expansión, entonces, en el pasado, el universo debe haber sido
más pequeño. Retrocediendo lo suficiente en el pasado, el universo tiene que haber tenido
un tamaño mı́nimo del que se expandió. Parećıa una conclusión lógica decir que el universo
tuvo un principio en el tiempo. Pero la respuesta a la pregunta acerca de cuánto tiempo
hace que ocurrió este principio no se dio tan fácilmente. No sólo era necesario medir la
velocidad de expansión actual sino también su variación por la distancia.

El año 1948 George Gamow (1904-1968), planteó que el Universo se creó a partir de una
gran explosión (Big Bang). Aun cuando surgieron con los años otras teoŕıas acerca de
la historia temprana del universo, el mundo cient́ıfico en general adoptó la teoŕıa del Big
Bang, después del descubrimiento de cierta evidencia importante en 1965.

El modelo del Big Bang, teoŕıa hoy ampliamente aceptada, sostiene que el universo
comenzó a existir bruscamente, hace unos 15.000 millones de años, en una gigantesca
explosión. La expansión que hoy observemos no es sino un vestigio o rastro de la ex-
plosión primordial. Se piensa que en sus fases tempranas, este modelo consist́ıa en un gas
muy caliente y muy denso de part́ıculas elementales primero y después de hidrógeno y
helio. En dicho gas la luz emitida por una part́ıcula no pod́ıa viajar lejos sin que se encon-
trara con otra part́ıcula, la que la afectaŕıa de tal manera que cambiaran su frecuencia y
dirección. De manera que si hubiera sido posible mirar el universo primitivo desde afuera,
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uno habŕıa podido ver solamente sus capas exteriores; el universo no era transparente.
Este modelo se sustenta en la teoŕıa de la relatividad general que, como sabemos, es uno
de los pilares del modelo: las ecuaciones predicen una expansión del universo desacelerada
por la gravedad. Las evidencias emṕıricas o los datos de las observaciones que sustentan
este modelo son: En primer lugar, la observación de la expansión del universo expresada
en la ley de Hubble; y en segundo lugar, dos predicciones hoy comprobadas, la radiación
cósmica de fondo y la abundancia relativa de elementos primordiales como por ejemplo el
helio.

Como resultado de la continua expansión del universo, eventualmente su densidad dismi-
nuyó lo suficiente como para permitir que la radiación emitida por una part́ıcula viajara a
través de casi todo el universo antes de encontrarse con otra part́ıcula. En ese momento,
el universo llegó a ser transparente. Esta situación hab́ıa sido predicha por Gamow. El
y sus colaboradores hab́ıan calculado que la radiación emitida en esa época debeŕıa ser
capaz de llegar a nosotros hoy sin modificaciones y de esa manera informarnos acerca de
la condición del universo en ese tiempo.

Entonces, en 1965, dos ingenieros en electrónica que trabajaban para la compañ́ıa telefónica
Bell descubrieron algo inesperado. Percibieron cierto ruido extraño que llegaba a la antena
de su radio y, después de analizarlo, concluyeron que proveńıa de una fuente de radiación
que era uniforme en todo el cielo y que teńıa una temperatura de sólo 3K. Pronto se supu-
so que esta era la radiación emitida en la época cuando el universo se tornó transparente.
Este descubrimiento le dio un fundamento fuerte a la teoŕıa del Big Bang y convenció a
la mayoŕıa de los cosmólogos acerca de su validez.

Esta radiación CMB (en inglés, Cosmic Microwave Radiation, o sea radiación de micro-
onda cósmica de fondo) parećıa tener la misma intensidad en todas las direcciones. Esto
significaba que se originó de distintos lugares a la misma temperatura y densidad, lo cual
era un problema. ¿Cómo se pudieron formar las actuales estructuras del universo (estre-
llas, galaxias, súper grupos de galaxias) en semejante medio uniforme? Esta estructura
representa heterogeneidades que debeŕıan haber estado presentes desde una fecha tem-
prana ya que una vez que un medio es completamente homogéneo es imposible introducir
heterogeneidades en él sin recurrir a una influencia exterior.

Como exist́ıan todas estas conclusiones tempranas en base a observaciones terrestres, con
todas sus incertidumbres introducidas por el paso de la radiación a través de la atmósfera
terrestre, se hicieron planes para lanzar un satélite que pudiera observar desde el espacio
y llegar a una exactitud mayor. En 1990 se lanzó el COBE (Cosmic Background Explorer
Satellite, o satélite explorador del fondo cósmico). En 1992 se analizaron los resultados
y se detectaron pequeñas diferencias de temperatura mirando en distintas direcciones.
Estas pequeñas fluctuaciones de temperatura, y por lo tanto de densidad, parecieron ser
suficientes para explicar la formación de galaxias y otras estructuras. Como resultado, la
gran mayoŕıa de los cosmólogos aceptó la teoŕıa del Big Bang en sus lineamientos generales
y, con la ayuda de los medios de comunicación, mucha otra gente también.

Algunos de los problemas y enigmas que presenta este modelo son:
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a) El problema del horizonte

El problema del horizonte, también llamado problema de la causalidad, resulta del hecho
de que la información no puede viajar más rápido que la luz, de manera que dos regiones
en el espacio separadas por una distancia mayor que la velocidad de la luz multiplicada
por la edad del universo no pueden estar causalmente conectadas. La isotroṕıa observada
de la radiación de fondo de microondas (CMB) es en este aspecto problemática debido a
que el tamaño del horizonte de part́ıculas en ese tiempo corresponde a un tamaño de cerca
de dos grados en el cielo. Si el universo hubiera tenido la misma historia de expansión
desde la época de Planck, no habŕıa mecanismo que pudiera hacer que estas regiones
tuvieran la misma temperatura.

Esta aparente inconsistencia se resuelve con la teoŕıa inflacionista, propuesta por Alan
H. Guth a principios de los años 80, en la cual un campo de enerǵıa escalar isotrópico
domina el universo. Durante la inflación, el universo sufre una expansión exponencial,
y regiones que se afectan entre ellas se expanden más allá de sus respectivos horizontes.
El principio de incertidumbre de Heisenberg predice que durante la fase inflacionista
habrá fluctuaciones primordiales, que serán amplificadas hasta la escala cósmica. Estas
fluctuaciones sirven de semilla para toda la estructura actual del universo. Al pasar la
inflación, el universo se expande siguiendo la ley de Hubble y las regiones que estaban
demasiado lejos para afectarse entre ellas vuelven al horizonte. Esto explica la isotroṕıa
observada de la CMB. La inflación predice que las fluctuaciones primordiales son casi
invariantes según la escala y que tienen una distribución normal o gaussiana, lo cual ha
sido confirmado con precisión por medidas de la CMB.

b) El problema de la planitud.

El problema de la planitud (flatness en inglés) es un problema observacional que resul-
ta de las consecuencias que la métrica de Friedmann-Lemaitre-Robertson-Walker tiene
para con la geometŕıa del universo. En general, se considera que existen tres tipos de
geometŕıas posibles para nuestro universo según su curvatura: geometŕıa hiperbólica, ge-
ometŕıa euclidiana o plana y geometŕıa eĺıptica. Dicha geometŕıa viene determinada por la
cantidad total de densidad de enerǵıa del universo (medida mediante el tensor de enerǵıa
momento).

Siendo ρ la densidad de enerǵıa medida observacionalmente y ρc la densidad cŕıtica se
tiene que para las diferentes geometŕıas las relaciones entre ambos parámetros han de ser
las que siguen:

• Hiperbólico: Si se cumple que ρ < ρc.

• Plano: Si se cumple que ρ = ρc.

• Eĺıtico: Si se cumple que ρ > ρc.

Se ha medido que en los primeros momentos del universo su densidad tuvo que ser 10−15

veces (una milbillonésima parte) de la densidad cŕıtica. Cualquier desviación mayor hu-
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biese conducido a una muerte térmica o un Big Crunch y el universo no seŕıa como ahora.
La solución a este problema viene de nuevo de la teoŕıa inflacionaria. Durante el periodo
inflacionario el espacio-tiempo se expandió tan rápido que provocó una especie de esti-
ramiento del universo acabando con cualquier curvatura residual que pudiese haber. Aśı
la inflación pudo lograr que nuestro universo fuese plano, de ah́ı el nombre de “planitud”.

c) Edad de los cúmulos globulares.

A mediados de los 90, las observaciones realizadas de los cúmulos globulares parećıan no
concordar con la Teoŕıa del Big Bang. Las simulaciones realizadas por un ordenador,
de acuerdo con las observaciones de las poblaciones estelares de cúmulos de galaxias,
sugirieron una edad de cerca de 15.000 millones de años, lo que entraba en conflicto con
la edad del universo, estimada en 13.700 millones de años. El problema quedó resuelto a
finales de esa década, cuando las nuevas simulaciones realizadas, que inclúıan los efectos
de la pérdida de masa debida a los vientos estelares, indicaron que los cúmulos globulares
eran mucho más jóvenes. Quedan aún en el aire algunas preguntas en cuanto a con qué
exactitud se miden las edades de los cúmulos, pero está claro que éstos son algunos de los
objetos más antiguos del universo.

d) Monopolos magnéticos.

La objeción de los monopolos magnéticos fue propuesta a finales de la década de 1970. Las
teoŕıas de la gran unificación predicen defectos topológicos en el espacio que se manifes-
taŕıan como monopolos magnéticos encontrándose en el espacio con una densidad mucho
mayor a la observada. De hecho, hasta ahora, no se ha dado con ningún monopolo. Este
problema también queda resuelto mediante la inflación cósmica, dado que ésta elimina
todos lo puntos defectuosos del universo observable de la misma forma que conduce la
geometŕıa hacia su forma plana. Es posible que aun aśı pueda haber monopolos pero se
ha calculado que apenas habŕıa uno por cada universo visible. Una cantidad ı́nfima.

e) Materia oscura (MO).

En las diversas observaciones realizadas durante las décadas de los 70 y 80 (sobre todo las
de las curvas de rotación de las galaxias) se mostró que no hab́ıa suficiente materia visible
en el universo para explicar la intensidad aparente de las fuerzas gravitacionales que se
dan en y entre las galaxias. Esto condujo a la idea de que hasta un 90% de la materia en el
universo no es materia común o bariónica sino materia oscura. Además, la consideración
de que el universo estuviera compuesto en su mayor parte por materia común llevó a
predicciones que eran fuertemente inconsistentes con las observaciones. En particular,
el universo es mucho menos “inhomogéneo”y contiene mucho menos deuterio de lo que
se puede considerar sin la presencia de materia oscura. Mientras que la existencia de la
materia oscura era inicialmente polémica, ahora es una parte aceptada de la cosmoloǵıa
estándar, debido a las observaciones de las anisotroṕıas en el CMB, la dispersión de las
velocidades en los cúmulos de galaxias y en las estructuras a gran escala, los estudios de
las lentes gravitacionales y a las medidas por medio de rayos x de los cúmulos de galaxias.
La materia oscura se ha detectado únicamente a través de su huella gravitacional; no se ha
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observado en el laboratorio ninguna part́ıcula que se le pueda corresponder. Sin embargo,
hay muchos candidatos a materia oscura en f́ısica de part́ıculas (como, por ejemplo, las
part́ıculas pesadas y neutras de interacción débil o WIMPS (Wikly interactive massive
particles)), y se están llevando a cabo diversos proyectos para detectarla. Existen varios
tipos de materia oscura: la fŕıa, que es la materia que al desprenderse de su interacción
con el resto de la materia es lo suficientemente fŕıa para moverse en esos momentos a
velocidades lejanas de la luz, y la caliente, que es la materia que al desprenderse viaja a
velocidades cercanas a la de la luz.

f) Enerǵıa oscura (EO).

En los años 90, medidas detalladas de la densidad de masa de la enerǵıa del universo
revelaron que ésta sumaba en torno al 30% de la densidad cŕıtica. Puesto que el universo
es plano, como indican las medidas del fondo cósmico de microondas, quedaba un 70%
de densidad de enerǵıa sin contar. Este misterio aparece ahora conectado con otro: las
mediciones independientes de las Supernovas del Tipo Ia han revelado que la expansión
del universo experimenta una aceleración de tipo no lineal, en vez de seguir estrictamente
la Ley de Hubble. Para explicar esta aceleración, la relatividad general necesita que gran
parte del universo consista en un componente energético con gran presión negativa. Se
cree que esta enerǵıa oscura constituye ese 70% restante. Su naturaleza sigue siendo uno
de los grandes misterios del Big Bang. Entre los candidatos posibles se incluyen: una
constante cosmológica, un campo escalar (quintaesencia), un campo fantasma, defectos
topológicos, etc. Actualmente se están realizando observaciones que podŕıan ayudar a
aclarar este punto.

1.3 La Historia Térmica del Universo.

Poco después del Big-Bang, la materia se encontraba en forma de un gas muy caliente.
Esta gran explosión calentó toda la materia hasta temperaturas de millones de millones
de grados. La temperatura de este gas era tan alta, el gas era tan caliente, que todas
las part́ıculas elementales estaban separadas en sus partes fundamentales. La enerǵıa
cinética del gas era tan alta que no permit́ıa que estas part́ıculas se unieran para formar
algún tipo de part́ıcula compuesta. Pero al mismo tiempo esta explosión causó que toda
la materia saliera fluyendo en todas direcciones. Esto es lo que se conoce como expansión
del Universo.

Al terminar este periodo inflacionario cósmico, una oleada de enerǵıa permitió que part́ı-
culas y antipart́ıculas pudieran tener una existencia independiente. Fue prácticamente
la inflación cósmica la que creó toda la estructura másica actual del universo. En esta
sopa primordial se fue enfriando conforme continuaba la expansión. En principio todas
las part́ıculas se mov́ıan a velocidades cercanas a las de la luz, incluso las más pesadas, lo
que provocaba que las part́ıculas no pudieran unirse con otras para formar compuestos.

Cuando la temperatura descendió unos mil millones de grados, los protones y neutrones
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comenzaron a combinarse para producir hidrógeno pesado, que contiene un protón y un
neutrón. Estos núcleos se combinaron con más protones y neutrones para formar núcleos
de helio, que contienen dos protones y dos neutrones, y también pequeñas cantidades de
elementos más pesados, litio y berilio. Los restantes neutrones se habŕıan desintegra-
do en protones, que son los núcleos de los átomos de hidrógeno ordinario. Esta es la
época de la Nucleośıntesis Primordial donde la cantidad de núcleos que se forman son
aproximadamente de 74% de Hidrógeno y de un 24% de Helio.

Al continuar la expansión la temperatura fue disminuyendo aún más, conforme a esto tam-
bién disminúıa la temperatura de los fotones, hasta que estos fueron capaces de solo alterar
la trayectoria de las part́ıculas más ligeras, es decir, los electrones. Pero al bajar aun más
la temperatura, la enerǵıa de los fotones ya no fue capaz de alterar nada, es decir ellos ya
no interactuaban directamente con la materia por lo que comenzaron a viajar libremente
por el Universo. Este momento es conocido como la época de Recombinación. Después,
durante el siguiente millón de años, el universo habŕıa continuado expandiéndose, sin que
ocurriese mucho más. Finalmente, una vez que la temperatura hubiese descendido a unos
pocos miles de grados, los electrones y núcleos habŕıan comenzado a combinarse para
formar átomos. El Universo segúıa expandiéndose y enfriándose, pero en regiones más
densas, la expansión habŕıa sido retardada por la atracción gravitatoria, hasta detenerla
y estas regiones habŕıan empezado a colapsar nuevamente, el tirón gravitatorio debido a
la materia de afuera de estas regiones, provocó que estas comenzasen a girar lentamente.
A medida que la región colapsante se hiciese más pequeña, daŕıa vueltas más rápido, de
este modo habŕıan nacido las galaxias giratorias en forma de disco.

Con el tiempo, el gas de hidrógeno y helio de las galaxias se separó en nubes más pequeñas
que comenzaron a colapsarse debido a su propia gravedad, la temperatura aumentaŕıa y
se iniciaron las fusiones nucleares. Las reacciones convert́ıan el hidrógeno en helio y
se desprend́ıa calor, aśı se formaron estrellas como nuestro Sol, constituyendo centros
de sistemas planetarios solares. La mayor parte del gas de la nube forma el Sol y otra
cantidad más pequeña junto con elementos mas pesados se acumularon juntos para formar
los cuerpos que ahora giran alrededor del Sol, como los planetas.

1.4 El Modelo de Espacio-Tiempo para el Universo.

Acorde con la Teoŕıa General de la Relatividad (TGR) el espacio y el tiempo son aho-
ra entidades indistinguibles. Por lo que podemos definir la distancia entre dos puntos
cercanos en 4d a través del elemento de ĺınea:

ds2 = −dt2 + a2(t)

[

1

1 − kr2
dr2 + r2dΩ2

]

, (1.2)

donde dΩ2 = dθ2 + sin2(θ)dϑ2. Visto de esta manera, el espacio-tiempo admite ser “re-
banado”en cortes espaciales perpendiculares a la dirección del tiempo cosmológico t, por
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lo que k representa la curvatura de cada corte espacial, homogéneo e isotrópico.

En el elemento de ĺınea (1.2) es escogido de esta forma debido al principio cosmológico,
el Universo visto por un observador es Homogéneo e Isótropo, y al hecho de que ya se
rompió la simetŕıa entre las coordenadas espaciales y la temporal.

Las derivadas parciales de la métrica respecto a las coordenadas permiten determinar los
śımbolos de Christoffel:

Γabc =
1

2
gan (gbn,c + gcn,b − gcb,n) (1.3)

donde gbn,c = ∂gbn/∂x
c. Con ayuda de estos śımbolos se puede expresar la derivada co-

variante de un vector arbitrario Vb, como ∇aVb = ∂Vb/∂x
a−ΓnabVn. La derivada covariante

del tensor métrico es nula:∇agbc = 0. Esta es la propiedad fundamental de la geometŕıa de
Riemann sobre la cual se sienta la TGR. A partir de la métrica y sus derivadas se pueden
construir otros objetos covariantes de la geometria de Riemann como, por ejemplo, el
tensor de Ricci: Rab = Γnab,n − Γnnb,a + ΓnnmΓmab − ΓnamΓmnb, que define las propiedades de

curvatura del espacio-tiempo conjuntamente con el escalar de curvatura: R = gabRab.

La generalización de la ley de conservación de los momentos y la enerǵıa, en forma co-
variante se puede escribir como:

∇aTab = 0. (1.4)

1.5 Modelos de la Expansión: Modelo LCDM.

Acorde con la cosmoloǵıa moderna nuestro Universo se encuentra en una fase de expansión
acelerada y además casi todo el contenido material del Universo esta formado básicamente
por una tercera parte de Materia Oscura Fŕıa (MOF), en forma de polvo, y dos terceras
partes en forma de un fluido con presión negativa y semejante en magnitud a su densidad
de enerǵıa, la denominada Enerǵıa Oscura (EO).

Uno de los modelos más aceptados en la actualidad es el modelo LMOF (Lambda Materia
Oscura Fŕıa). Este es un modelo donde se considera que el termino Lambda (Λ, constante
cosmológica), representa la enerǵıa oscura.

Consideraremos un modelo de Universo FRW, homogéneo e isótropo y además, por sen-
cillez y porque la data observacional aśı lo señala, consideraremos solo el caso plano (k = 0
en la ecuación 1.2). Bajo estas condiciones, la métrica del espacio-tiempo puede escribirse:

ds2 = −dt2 + a2(t)δikdx
idxk, (1.5)

donde los ı́ndices latinos i, k = ¯1, 3 son los ı́ndices espaciales y δik es la delta de Kronecker.
El Universo esta lleno de MOF en forma de polvo y de un fluido de vació (constante
cosmológica). Para este modelo la ecuación de Friedmann (componente 0,0 de la ecuación
1.1) se puede escribir como:
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H2 ≡ ȧ

a
=

8 π G

3
ρmof +

Λ

3
, (1.6)

donde el punto significa derivada respecto al tiempo cosmológico, ρmof es la densidad de
enerǵıa de la MOF y la constante cosmológica se relaciona con la densidad de enerǵıa del
vació como: ρvac = Λ

8πG
.

La componente i,k de la ecuación 1.1 se denomina ecuación de Raychaudhuri:

ä(t)

a(t)
= −4 π G

3
ρmof +

Λ

3
(1.7)

Se nota que la constante cosmológica da lugar a una fuerza repulsiva que puede contra-
restar la fuerza atractiva de la gravedad generada por la MOF. La ecuación de continuidad
(componente 0 de la ecuación 1.4) se escribe como:

ρ̇mof +H(ρmof + Pmof ) = 0. (1.8)

Las ecuaciones 1.6 y 1.7 no son independientes. En realidad aqúı tenemos dos ecuaciones
independientes, por ejemplo, 1.6 y la ecuación de continuidad (1.8), y tres incógnitas:
a, ρmof y Pmof , por lo que es necesario, además, proponer una ecuación de estado que
relacione a ρmof y Pmof .

El fluido de vacio viola la conocida condición fuerte de enerǵıa (ρ + 3P ≥ 0), toda vez
que ρvac + 3Pvac = −2ρvac < 0.

Esta es la propiedad del modelo que permite a la constante cosmológica describir a la
enerǵıa oscura, como un fluido de vaćıo con presión negativa igual en magnitud a su
densidad de enerǵıa.

La idea f́ısica de este modelo esta basada en el hecho que después del desacople materia-
radiación, la densidad de MOF domina la composición del universo y la expansión es
desacelerada. En la medida que la expansión avanza la densidad de MOF decae como
ρmof ∝ a−3(t), mientras que la densidad de vaćıo, que es muy pequeña, permanece cons-
tante. Llegando el momento a partir del cual ρmof < 2ρvacio = Λ/4πG, la expansión se
torna acelerada. Esto esta de acuerdo con las observaciones que plantean que la expansión
fue desacelerada hasta recientemente (para corrimientos al rojo de aproximadamente 0.5)
cuando ocurre una transición a una fase acelerada.

Al resolver las ecuaciones del campo se obtiene la siguiente expresión para el factor de
escala:

a(t) ∝ sinh2/3

[

√

3Λ

4
t

]

(1.9)

Este expresión se interpola perfectamente entre un universo dominado por materia en el
pasado (a(t) ∝ t2/3) y uno dominado por EO en el futuro.
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A pesar de ser uno de los modelos que mejor se ajusta a la data observacional este modelo
presenta algunas deficiencias:

a) El problema de la constante cosmológica

Existe una notable discrepancia de 123 ordenes de magnitud entre el valor calculado de la
enerǵıa de vaćıo (< ρvacio >∝ 1076 GeV 4) con el valor observado (ρvacio ∝ 10−46 GeV 4).

b) El problema del ajuste fino.

La constante cosmológica debe ser ajustada de tal forma que su valor este en el intervalo
(−10−47 < Λ < 10−47). Si su valor inicial se sale de ese pequeño intervalo el universo
no será como lo observamos hoy. Valores de Λ menores que el ĺımite inferior implicaŕıa
que el Universo recolapse 1.6 GigaAños después del Big-Bang, un peŕıodo muy corto
para que se formen las galaxias. Valores mayores que el ĺımite superior implican que el
Universo comenzó a acelerarse mucho antes de la época actual, inhibiendo de esta forma
la formación de estructura.

c) El problema de la coincidencia.

Muy asociado al problema anterior y consiste básicamente en la siguiente pregunta ¿Será
una coincidencia que la equipartición entre la densidad de MOF y de EO ocurrió en una
época reciente?

1.6 El Destino Final de Nuestro Universo.

El modelo del Bin Bang predice que el destino del Universo tomará uno de dos caminos:
volverá a colapsar en un Big Crunch (el Universo se expandiŕıa hasta alcanzar un tamaño
máximo a un tiempo finito en el futuro y luego se contraeŕıa hasta acabar de nuevo en un
punto), o se expandirá por siempre hacia un estado infinitamente diluido.

Una tercera posibilidad ha sido estudiada últimamente: la expansión del universo ocurre
a un ritmo súper acelerado, de tal forma que en un tiempo finito en el futuro, todas las
estructuras enlazadas se separan y el universo literalmente se “despedaza”en un evento
catastrófico denominado Big Rip.

Las galaxias, estrellas, planetas, poco a poco al principio y después muy rápidamente, se
separan unas de otras, empezando por los objetos más lejanos, unos tras otros se vayan
perdiendo más allá de nuestro horizonte.

Cerca ya del Big Rip, los mismos átomos y part́ıculas elementales se convertiŕıan en
objetos cosmológicos y sufriŕıan la gran separación. Finalmente, en el momento del Big
Rip, nada quedaŕıa: seŕıa el fin del universo y de todo lo que contiene.

La historia que condujo finalmente a esta descripción catastrófica del fin del mundo
comenzó con el descubrimiento de que la expansión de nuestro Universo se estaba aceleran-
do. Este descubrimiento no implicaba necesariamente nada parecido al Big Rip, sino que
pod́ıa perfectamente dar lugar a una expansión acelerada eterna o incluso limitada a un
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cierto periodo, como ya ocurrió con la inflación.

De hecho, la primera interpretación del fenómeno observado consistió en recurrir a la
llamada constante cosmológica, la enerǵıa de vaćıo: debido a las peculiaridades de la
teoŕıa cuántica, lo que tradicionalmente se entend́ıa como vaćıo está lleno de objetos
submicroscópicos en continua creación y aniquilación, que existen durante un tiempo lo
suficientemente corto como para no poder ser observados. Pues bien, la enerǵıa de vaćıo,
ya considerada por Einstein, puede generar efectivamente una expansión acelerada eterna.

Sin embargo, esta interpretación no es sino un caso particular de otra más general en la
que el vaćıo posee una densidad de enerǵıa (enerǵıa por unidad de volumen) y una presión
que están mutuamente relacionadas a través de un parámetro constante, por lo que se
denomina ecuación de estado.

La constante cosmológica de Einstein corresponde al caso particular en el que el parámetro
vale −1. No obstante, dicho parámetro puede tomar otros valores. En realidad, los últimos
datos de las observaciones permiten valores entre −1.62 y −0.74 para este parámetro. Si
este parámetro resultara ser mayor o igual que −1 (si es mayor que −1 la enerǵıa oscura
seŕıa quintaesencia y si fuera −1 seria constante cosmológica) estaŕıamos en presencia de
un Universo que se expande de forma acelerada eternamente.

El problema aparece para aquellos valores del parámetro menores que −1 no excluidos
por las observaciones. Para cualquiera de tales valores, por muy próximo a −1 que sea,
deberemos enfrentarnos con el fenómeno Big Rip y con la llamada “enerǵıa fantasma”(es
decir, una enerǵıa de vaćıo para la que la suma de la densidad de enerǵıa más la presión da
un valor negativo y, por ello, permite la existencia de objetos patológicos en el Universo,
tales como agujeros de gusano).

En tal caso, y dependiendo de cuanto menor que −1 fuera el parámetro de estado y del
tamaño del Universo al iniciarse la expansión acelerada, tendŕıan nuestros descendientes
en un futuro más o menos lejano, pero siempre finito, que enfrentarse al Big Rip.

Las observaciones actuales han predicho que la constante cosmológica de Einstein es la
que más se adapta a estos datos de todas las teoŕıas sobre el fin del universo. Se ha
encontrado una semipermanente forma de enerǵıa oscura. Si está cambiando, lo hace
muy lentamente.

A pesar de que los nuevos resultados apoyan la predicción de Einstein, es bueno tener
en cuenta alguna de las teoŕıas alternativas sobre el fin del universo. La información
espećıficamente deja abierta la posibilidad de que la fuerza antigravitatoria eventualmente
se vuelva más fuerte y destruya los planetas, las estrellas e incluso los átomos en un Big
Rip.
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TEORÍAS

ESCALAR-TENSORIALES DE

GRAVITACIÓN.

La Teoŕıa General de la Relatividad (TGR) de Einstein es una teoŕıa geométrica del
espacio-tiempo. Se basa fundamentalmente en el tensor métrico del campo. Por lo que
es conocida como una Teoŕıa Tensorial. La TGR tiene muchas teoŕıas alternativas por
diferentes razones y una de estas es la Teoŕıa Escalar-Tensorial (TET). En esta teoŕıa no
solo se combinan dos tipos de campo, el campo escalar y el tensor métrico, sino que se
construye a partir de fundamentos sólidos de la TGR en donde el campo escalar juega un
papel importante, espećıficamente debido a que esta acoplado de forma no mı́nima.

El origen de estas teoŕıas se debe al esfuerzo de varios cient́ıficos por unificar el campo
gravitatorio con los demás campos fundamentales. Los principales intentos para lograr
esta unificación fueron incorporando a estos otros campos un marco geométrico adicional
al que ya teńıan, apareciendo múltiples dimensiones del espacio tiempo. Esta geometŕıa
adicional reside en una o más dimensiones extra que están compactadas dentro el espacio
de cuatro dimensiones. Los trabajos más conocidos en la bibliograf́ıa son los de Kaluza y
Klein y los de Applequist y colaboradores [16].

Muchos de estos trabajos de unificación, especialmente los desarrollados por Kaluza y
Klein, Jordan y otros, asumı́an la incorporación de más dimensiones espaciales y además,
en algunos modelos, comenzó a aparecer la posibilidad de que la constante gravitatoria
introducida en la teoŕıa de Newton no fuera precisamente una constante, sino que pudiese
depender de las variables espacio temporales.

En la teoŕıa de Kaluza-Klein, construida en 5 dimensiones (una dimensión temporal y cua-
tro dimensiones espaciales), la dimensión espacial adicional está enrollada en un ćırculo de
radio muy pequeño (del orden de la longitud de Planck), por lo que esta dimensión com-
pactificada no puede ser observada ya que se requieren enerǵıas colosales para penetrarla,
las cuales están fuera del alcance experimental. Producto del proceso de compactificación
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de la dimensión extra (necesario para poder recobrar la teoŕıa de Newton de gravitación
en el ĺımite de bajas enerǵıas y campos de gravitación débiles), aparece un campo escalar
o moduli que da una medida del volumen del espacio compacto.

Jordan y su grupo realizó numerosas investigaciones en teoŕıas alternativas de la teoŕıa
estándar de Einstein en la cual la “constante”de gravitación estaba acoplada con un campo
escalar.

Dicke tomando las ideas de Sciama [17] notó que algunas de las cantidades dimensio-
nales que aparećıan no teńıan significado f́ısico y eran constantes. Por lo que para poder
incorporar el principio de Mach a estas teoŕıas se le hacen algunas modificaciones a la
relatividad general estándar cuando se reescribe la acción de la forma

δ

∫

d4x
√−g (R + k Lm) = 0 (2.1)

donde k ≡ 8πG y Lm es el lagrangeano de materia. Aqúı se puede ver que si la cons-
tante de gravitación se considera variable puede traer consigo dificultades en la teoŕıa,
ya que las leyes de conservación para la materia usual podŕıan no ser validas. Dicke
[18] distinguió del Principio de Equivalencia Fuerte (PEF - localmente todos los efectos
gravitatorios pueden ser eliminados por una transformación) del Principio de Equiva-
lencia Débil (PED-el efecto de aceleración de la gravedad puede ser eliminado por una
transformación apropiada, o, dicho de otra manera: todas las part́ıculas de prueba caen
localmente con la misma aceleración de gravedad independientemente de su estructura
qúımica y composición). Si no es constante en 2.1 las part́ıculas materiales no siguen
las geodésicas, lo que implicaŕıa una violación del PED, el cuál ha sido comprobado con
suficiente exactitud con experimentos en el sistema solar. Una manera natural de aislar
k de la materia en 2.1 seŕıa dividiendo por ella.

δ

∫

d4x
√−g (φ R + Lm) = 0 (2.2)

donde k ≡ 1/φ. al considerar k como función escalar variable, se puede apreciar que
la teoŕıa que se deriva de 2.2 no viola el PED (aunque si viola el PEF que no está tan
detalladamente comprobado). Al tomar en cuenta este nuevo campo escalar φ, la forma
más sencilla para generalizar la teoŕıa de Einstein y preservar el PED es proponer una
nueva acción [19]:

δ

∫

d4x
√−g (φ R + Lm + Lφ) = 0 (2.3)

donde
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Lφ = −ωφ,µφ,νgµν/φ, (2.4)

en el cual φ tiene dimensiones del inverso de la constante gravitacional

[φ] = [k]−1. (2.5)

La expresión 2.5 conduce a una acción la cual es referida como “Jordan-Brans-Dicke”en
marco de Jordan (MJ):

SMJ
JBD =

∫

d4x
√−g

(

φR + Lm − ω

φ
φ,µφ,νgµν

)

. (2.6)

Esta teoŕıa significa la generalización más simple de la Teoŕıa General de Gravitación de
Einstein y es el prototipo de Teoŕıa Escalar-Tensorial. Con ayuda del principio variacional
y con la topoloǵıa estándar, resultan las siguientes ecuaciones del campo:

δ

∫

d4x
√−gLm = 0 (2.7)

φ

(

Rαβ −
1

2
gαβR

)

= T
(materia)
αβ + φ;α ;β − gαβ�φ+

ω

φ

(

φ;α ;β −
1

2
gαβφ

,λ
,λ

)

(2.8)

ω

(

2

φ
�φ− φ,λφ

,λ

φ2

)

(2.9)

La ecuación 2.7 es el principio variacional estándar para la materia la cual cumple con
el PED. Para las part́ıculas de pruebas 2.7 resulta en la ecuación de la geodésica. Es
bueno aclarar que, en realidad, la interacción de segundo orden de la materia mediante
el acoplamiento entre el campo escalar y la métrica conlleva una muy débil violación del
PED. Debido a que no esta acoplada al campo escalar en 2.6 (se dice que el acoplamiento
es mı́nimo entre el campo escalar y la materia ordinaria) el tensor de enerǵıa-momento
de la materia todav́ıa se conserva.

T
(m) β
α;β = 0 (2.10)

Con ayuda de una transformación conforme de la métrica del espacio tiempo, la teoŕıa
de Jordan-Brans-Dicke puede ser reformulada en el marco de Eisntein (ME), donde el
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acoplamiento entre el campo escalar y la curvatura desaparece (esto conlleva mayor sen-
cillez de las ecuaciones del campo), pero, en su lugar, el acoplamiento entre el campo
escalar y la materia es no mı́nimo (esto conlleva violación del PED) y las part́ıculas no
siguen las geodésicas de la métrica. La acción para la teoŕıa de Brans-Dicke en el marco
de Einstein se escribe de la siguiente manera:

SME
JBD =

∫

d4x
√−g

{

R−
(

ω +
3

2

)

φ,αφ
,α + e−2φLm

(

ge−φ
)

}

(2.11)

La teoŕıa JBD puede ser generalizada si se considera una función de acoplamiento arbi-
traria ω(φ) en lugar de una constante. La teoŕıa JBD se recupera cuando ω(φ) = cte = ω.

2.1 Transformaciones Conformes de la Métrica: Mar-

cos de Jordan y Einstein.

Con la ayuda de transformaciones conforme se puede colocar el acoplamiento no mı́nimo
en otro término, por ejemplo en 2.6 existe un acoplamiento no mı́nimo entre el campo
escalar y el escalar de curvatura y mediante una transformación conforme de la métrica
se puede eliminar este acoplamiento pero aparecerá el acoplamiento en otro término en la
acción 2.6, el campo material.

Al aplicar una transformación conforme se dice que uno se mueve de un marco conforme
a otro, pero esto no es aśı realmente. Primeramente esto es un cambio de la métrica
y por tanto un cambio f́ısico real. En segundo lugar, las ecuaciones de movimiento de
la materia son distintas en los dos marcos. Por ejemplo, si la materia es polvo que
sigue las geodésicas en un marco, este no seguirá la geodésica en el marco conforme.
Aśı, para la materia masiva, existen limitaciones f́ısicas relacionadas con la elección del
marco. No es simplemente una cuestión de formalismo [20]. Este problema ha sido
extensamente discutido en la literatura [21],[22],[23] pero aún no existe un punto de vista
prevaleciente [24]. En esta sección mostraremos como varias magnitudes geométricas y
f́ısicas se transforman ante transformaciones conformes de la métrica, de la forma:

gαβ → ḡαβ = Ω2gαβ (2.12)

donde Ω2 es el factor conforme (este debe ser positivo para preservar la signatura de
la métrica), la barra sobre una magnitud denota la expresión de dicha magnitud en la
métrica conforme. Ante esta transformación el elemento de ĺınea se transforma según:

ds̄2 = Ω2ds2. (2.13)
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El determinante de la métrica, para cuatro dimensiones (que es el caso que nos interesa),
se transforma como:

√

|ḡ| = Ω4
√

|g| (2.14)

Los śımbolos de Christoffel se transforman de la siguiente forma:

Γ̄µνλ = Γµνλ +
(

fνδ
µ
λ + fλδ

µ
ν − f̄ ν ḡνλ

)

(2.15)

donde

f ≡ ln(Ω)

fν ≡
∂νΩ

Ω
= ∂νf

f̄µ ≡ ḡµνfν

Mientras que el escalar de curvatura lo hace de la siguiente manera:

R̄ = Ω−2 [R− 6∇n∇n ln(Ω) − 6∇n(ln(Ω))∇n(ln(Ω))] (2.16)

Ante 2.12 con Ω2 = e−φ, la acción general para una teoŕıa Escalar-Tensorial en Marco de
Jordan (o Marco de Cuerda en Teoŕıa de Cuerdas):

S =

∫

M4

d4x
√

|g|e−φ
(

R− ω(∇φ)2
)

+

∫

M4

d4x
√

|g|Lmateria, (2.17)

se transforma en la acción en Marco de Einstein:

S =

∫

M4

d4x
√

|ḡ|
(

R̄− (ω + 3/2)(∇φ)2
)

+

∫

M4

d4x
√

|g|Ω−4Lmateria, (2.18)

En la ecuación 2.17 el campo escalar esta acoplado de forma no mı́nima a la curvatura
pero esta acoplado de manera mı́nima a la lagrangeana de materia. En (2.18), por el
contrario, el campo escalar esta acoplado de forma mı́nima a la curvatura y de forma no
mı́nima a los grados de libertad materiales.
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MODELOS DE QUINTAESENCIA.

Como el contenido de enerǵıa oscura en el Universo es de un 70% aproximadamente, ella
determina el estado actual y el futuro del Universo en que vivimos. Por eso es muy natural
que se propongan modelos donde aparezca dicho componente de enerǵıa.

Los modelos del universo con enerǵıa oscura más estudiados en la bibliograf́ıa se basan en
la teoŕıa de gravitación de Einstein con inclusión de un campo escalar con auto interacción
como fuente de materia conjuntamente con la materia ordinaria.

En estos modelos se postula un acoplamiento mı́nimo entre el campo escalar (enerǵıa
oscura) y la materia ordinaria, esto implica que no existe intercambio de enerǵıa entre
ambas componentes del contenido material del Universo. Estos modelos del universo no
pueden resolver, en general, el problema de coincidencia y el del ajuste fino [25, 26].

En este caṕıtulo se proponen modelos utilizando las teoŕıas escalar-tensoriales de gravi-
tación, que representan la generalización más simple de la teoŕıa de Einstein. En el
(Caṕıtulo 2) aparece una breve introducción a estas.

Una generalización natural de estos modelos es considerar un campo escalar que no esta
acoplado de forma mı́nima con la materia, o sea, la enerǵıa oscura (modelada por el campo
escalar) y la materia oscura fŕıa intercambian enerǵıa entre ellas. La acción para la Teoŕıa
Escalar-Tensorial con acoplamiento no mı́nimo entre el campo escalar y los grados de
libertad materiales en el marco de Einstein tiene la forma:

S =

∫

M4

d4x
√

|g|
{

R

2
− ∇φ2

2
− V (φ) + C2(φ)Lm

}

, (3.1)

donde R es el escalar de curvatura de Ricci,
√

|g|d4x es el elemento de volumen 4-
dimensional,M4 es una variedad 4-dimensional Pseudo Riemann, φ es el campo escalar,
V (φ) es el potencial de auto interacción, C(φ) la función de acoplamiento entre el campo
escalar y Lmla lagrangeana de los grados de libertad de la materia ordinaria.

Las ecuaciones del campo que se derivan de esta acción son:
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Rab −
1

2
gabR = Tmateriaab + φ,aφ,b −

1

2
gab (∇φ)2 − gabV (φ), (3.2)

�φ =
dV (φ)

dφ
− 1

2

d

dφ
[lnC(φ)]Tmateria, (3.3)

donde,

Tmateriaab = − 2
√

|g|
δ
{

√

|g|C2(φ)Lm

}

δgab

es el tensor de enerǵıa-momento de la materia ordinaria. Además también se obtiene la
siguiente “ecuación de conservación”:

∇nTmateriana =
1

2
[lnC(φ)]φ,aT

materia. (3.5)

El acoplamiento no mı́nimo entre el campo escalar y los grados de libertad materiales
conduce a que las part́ıculas no siguen las geodésicas de la geometŕıa de M4

1, por lo que
se viola el principio débil de equivalencia, el cual está bien comprobado con observaciones
en el sistema solar. Este tipo de acoplamiento solo tiene sentido si se considera que la
materia ordinaria es materia oscura fŕıa, ya que esta no se observa directamente y por
tanto no se detectarán violaciones del principio de equivalencia.

En [26] se plantea que un campo escalar de enerǵıa oscura gobernado por una ley ex-
ponencial, linealmente acoplado a la materia oscura en una cierta región del espacio de
parámetros, produce una expansión acelerada con una razón constante Ωc/Ωφ (donde Ωi

es el parmetro adimensional de desnidad de enerǵıa del coponente i-ésimo de materia del
Universo (Ωi ≡ ρi/(3H

2))) y un parámetro de estado ωφ constante a lo que se refiere como
“era estacionaria acelerándose”. Se considera el acoplamiento a la enerǵıa oscura como
una nueva interacción que se suma a la gravedad. Como el acoplamiento a la materia
bariónica esta fuertemente constreñido por la gravedad local entonces, por simplicidad,
no se considera expĺıcitamente acoplado a la enerǵıa oscura (campo escalar).

En [27] se demuestra que un acoplamiento adecuado entre el campo de quintaesencia y
el fluido de materia oscura sin presión conduce a una razón constante de las densidades
de enerǵıa de ambas componentes lo cual es compatible con una expansión acelerada del
universo. En este trabajo los autores no especifican el tipo de acoplamiento desde un
inicio, sino que lo determinan a partir del requerimiento de que se obtengan soluciones
escalantes (soluciones en donde existe una razón entre la densidad de enerǵıa de la materia
oscura y la densidad de enerǵıa de la quintaesencia (enerǵıa oscura)).

1Esto se puede ver de forma clara en la ecuación de “conservación”(3.5), donde se observa que cuando
la función de acoplamiento no es constante la enerǵıa de la materia ordinaria no se conserva por separado
de la enerǵıa del campo escalar.
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En [28] se propone que la mejor explicación para la coincidencia, de la expansión acelerada,
está asociada con nuestra proximidad a la transición cosmológica de la radiación a la
dominación del polvo.

La acción (3.1) (y las ecuaciones del campo) también se pueden escribir en el Marco
de Jordan donde existe acoplamiento no mı́nimo entre el campo escalar y el escalar de
curvatura R, pero no existe acoplamiento entre el campo escalar y los grados de libertad
de la materia (ver Caṕıtulo 2).

Un caso particular de (3.1) es cuando se hace C(φ) = cte = 1. En este caso se obtiene
una teoŕıa con acoplamiento mı́nimo que incluye a la teoŕıa de gravitación de Einstein.
Cuando se escoge C(φ) = exp(−ωφ), se recupera la Teoŕıa de Brans-Dicke en el Marco
de Jordan (ver Caṕıtulo 2).

3.1 Soluciones: Modelos con Acoplamiento Mı́nimo.

Los modelos del Universo con enerǵıa oscura son muy usados en la actualidad. En los
más sencillos la enerǵıa oscura está acoplada de forma mı́nima con el fluido de fondo.

En este eṕıgrafe se propone un modelo del Universo donde el campo escalar está acoplado
de forma mı́nima con el fluido de fondo, compuesto básicamente de materia oscura fŕıa.
Para obtener la familia de soluciones a las ecuaciones del campo se impone la dinámica
del Universo y se observa que tipo de potencial se ajusta a esta dinámica.

Este modelo no puede ser usado desde el mismo inicio de la expansión del Universo, es
decir en la vecindad del Big Bang donde las correcciones cuánticas son de peso y los
modelos clásicos como este, dejan de operar correctamente. Solamente es válido a partir
del desacople entre la materia y la radiación.

De manera general las ecuaciones del campo son muy complicadas de resolver, además
existen más variables de campo incógnitas que ecuaciones por lo que, para obtener solu-
ciones exactas, es necesario realizar algunas consideraciones. Estas consideraciones se
pueden concebir de varias formas, pero las más usadas son las siguientes: 1) se elije la for-
ma del potencial de auto interacción y se obtienen soluciones y 2) se impone una dinámica
de evolución del universo y a partir de aqúı se obtiene la forma del potencial que cumple
con esa dinámica.

En este eṕıgrafe, para obtener las soluciones a las ecuaciones del campo se impone una
relación lineal entre el parámetro de Hubble y la primera derivada del campo escalar, es
decir se fija la dinámica de la evolución. La primera motivación para elegir está dinámica
del Universo es de carácter matemático: las ecuaciones del campo muestran una simetŕıa
aparente bajo esta elección y, además, ella permite derivar soluciones exactas en cuadra-
turas. Estos argumentos de carácter matemático son reforzados por el estudio de estabi-
lidad de las soluciones presentado en [30]. Se puede apreciar que al imponer esta relación,
se decantan las soluciones que son inestables, por lo que dicha relación funciona como un
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selector de soluciones estables o atractoras[30].

Es bueno puntualizar que los campos escalares, que se utilizan para representar la enerǵıa
oscura, son campos que ruedan suavemente sobre su potencial de auto interacción. Esto
conduce a que la constante de proporcionalidad entre la primera derivada del campo
escalar y el parámetro de Hubble tiene que ser de tal forma que se pueda cumplir con la
condición de rodamiento suave (la enerǵıa cinética del campo escalar debe ser pequeña).

En esta sección se analiza un modelo que tiene solamente dos componentes cosmológicos:
materia “ordinaria”(materia oscura fŕıa) y enerǵıa oscura modelada por un campo escalar
o quintaesencia. Como ya hemos señalado, la forma del potencial de auto interacción no
es asumida desde el inicio, sino que producto del procedimiento usado para obtener las
soluciones de las ecuaciones del campo, se obtiene como “salida”la forma del potencial.

Las ecuaciones del campo (3.2-3.5), asumiendo la métrica FRW (1.5) del (Caṕıtulo 1),
son las siguientes

3H2 = ρm +
1

2
φ̇2 + V (φ), (3.6)

2Ḣ + 3H2 = (1 − γ)ρm − 1

2
φ̇2 + V (φ), (3.7)

φ̈+ 3Hφ̇+ V ′(φ) = 0, (3.8)

donde γ es es el ı́ndice barotrópico del fluido de fondo, ρm es la densidad de materia oscura
y H = ȧ/a es el parámetro de Hubble.

La densidad de enerǵıa de la materia (materia oscura fŕıa) está relacionada con el factor
de escala a través de la ecuación de conservación que tiene la forma:

ρ̇m + 3γHρm = 0. (3.9)

Al integrar está expresión se obtiene que la expresión para la densidad de materia es:

ρm = ρ0,γa
−3γ , (3.10)

donde ρ0,γ es una constante de integración.

Al sumar las dos primeras ecuaciones del campo se obtiene que:

Ḣ + 3H2 =
2 − γ

2
ρm + V (φ). (3.11)

Si se considera ahora una relación lineal entre el parámetro de Hubble y la primera
derivada del campo escalar:
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H = kφ̇ ⇒ a = exp(kφ), (3.12)

donde k es un parámetro constante, entonces la ecuación de Klein-Gordon, o ecuación de
evolución del campo escalar (tercera ecuación del campo), se puede escribir como:

Ḣ + 3H2 = −kV ′(φ). (3.13)

Se puede apreciar que existe una simetŕıa aparente entre las partes izquierdas de las
ecuaciones (3.11) y (3.13). Comparando estas dos ecuaciones podemos reducir nuestro
sistema de ecuaciones de campo a una sola ecuación diferencial para el potencial de
autointeracción:

V ′(φ) +
1

k
V (φ) =

γ − 2

2k
ρ0,γ exp(−3kγφ). (3.14)

Integrando esta ecuación diferencial podemos obtener la forma del potencial, que satisface
la relación escogida entre el parámetro de Hubble y la primera derivada del campo escalar.
El potencial obtenido es un combinación de dos exponenciales de la forma:

V (φ) = ξ0 exp(−φ
k

) +
2 − γ

6k2γ − 2
ρ0,γ exp(−3kφ), (3.15)

donde ξ0 es una constante de integración. Este potencial es un caso particular del potencial
V (φ) = M 4 [exp(αφ) + exp(βφ)] que aparece en [14], donde α = 1/k. β = 3kγ y ξ0 =
(2 − γ)ρ0,γ/(6k

2γ − 2) = M 4.

El potencial obtenido se puede expresar en términos del factor de escala de la forma

V (a) = ξ0a
−φ/k +

2 − γ

6k2γ − 2
ρ0,γa

−3kφ. (3.16)

Un rasgo caracteŕıstico de este potencial es que depende del ı́ndice barotrópico de la
materia.

Si se introduce el tiempo conforme dt = a1/2k2

dτ y se sustituye, conjuntamente con el
potencial obtenido, en la primera ecuación del campo (3.6) o ecuación de Friedmann, se
obtiene la siguiente relación:

(

ȧ

a

)2

=
2k2γ

6k2 − 2
ρ0,γa

−3γ+1/k2

+
2k2ξ0

6k2 − 1
, (3.17)

donde el punto significa derivada respecto al tiempo conforme. Esta ecuación puede ser
integrada en cuadraturas de la forma

∫

a3γ/2+1/2k2−1da√
A+Ba3γ+1/k2

= τ + τ0, (3.18)
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dondeA = (2k2γρ0,γ)/(6k
2−2), B = (2k2ξ0)/(6k

2−1) y τ0 es una constante de integración.

Integrando la ecuación anterior obtenemos la expresión para el factor de escala:

a(τ) = a0 {sinh [µ(τ + τ0)]}2k2/(3k2γ−1) , (3.19)

donde a0 = (A/B)k
2/(3k2γ−1) y µ = (3k2γ − 1)

√
B/k2. Como el factor de escala está rela-

cionado con el campo escalar (ver ecuación (3.12)), podemos obtener, consecuentemente,
una expresión para el campo escalar

φ(τ) =
1

k
ln(a0) +

2k2

3k2γ − 1
ln {sinh [µ(τ + τ0)]} , (3.20)

A partir de la ecuación (3.19) se pueden obtener el parámetro de Hubble

H(τ) =

√

2k2

6k2 − 1
ξ0a

−1/(2k2)(τ) coth [µ(τ + τ0)] . (3.21)

El parámetro adimensional de densidad de enerǵıa de la materia se puede escribir de la
forma:

Ωm =
ρm
3H2

=
3k2γ − 1

3k2γ
{cosh [µ(τ + τ0)]}−2 . (3.22)

El parámetro de estado para la enerǵıa oscura tiene la siguiente expresión:

ωφ =
pφ
ρφ

= −1 +
1

3k2(1 − Ωm)
. (3.23)

El parámetro de desaceleración es

q = −1 +
1

2k2
+

3γ

2
Ωm. (3.24)

En este punto es adecuado introducir la variable de corrimiento al rojo (z = a0/a −
1), debido a que la data observacional se reporta usando precisamente esta variable.
Utilizando la ecuación de Friedmann el parámetro de Hubble se puede escribir en función
del corrimiento al rojo como:

H(z) =
√
A
√

(1 + z)3γ + (B/A)(1 + z)1/k2 , (3.25)

donde la densidad de enrǵıa de la materia es ρm = ρ0,γ(z+1)3γ y el parámetro adimensional
de densidad de enerǵıa de la materia es

Ωm(z) =
(ρ0,γ

3A

) (z + 1)3γ−1/k2

(z + 1)3γ−1/k2 +B/A
. (3.26)
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Si se considera que acorde con la data observacional Ωm(z = 0) ≈ 1/3 se puede obtener
que A + B = ρ0,γ y además si se asume que en el inicicio de la evolución del Universo,
para nuestro modelo, (cuando z → ∞) existe una pequeña cantidad de enerǵıa oscura
(representada por la variable adimensional ε), es decir que la materia oscura no domina
completamente, entonces se tiene que (Ωm(z → ∞) ≈ (1 − ε), donde ε es muy pequeña
pero diferente de cero). Estas consideraciones nos permite reescribir la expresión para el
parámetro adimensional de densidad de enerǵıa de la materia como:

Ωm(z) = (1 − ε)
(z + 1)3γ−1/k2

(z + 1)3γ−1/k2 + 2 − 3ε
. (3.27)

Este modelo posee tres parámetros libres: (γ, k, ε), donde γ es el ı́ndice barotrópico, k
es la constante de proporcionalidad entre el parámetro de Hubble y la primera derivada
respecto al tiempo del campo escalar y ε es una constante que f́ısicamente da una medida
de la densidad de quintaesencia en el inicio del Universo2.

La gráfica (3.1) muestra la evolución del parámetro de estado del campo escalar, para
tres valores diferentes del parámetro libre k. Se puede observar que para valores de k ∼ 1
en una época en el pasado, el parámetro de estado fue positivo. Esto significa que hubo
una época en el pasado donde la gravedad de la enerǵıa oscura fue atractiva, lo que es
consistente con la desaceleración y con el incremento del parámetro de desaceleración para
altos corrimientos al rojo, hechos más o menos bien establecidos dentro del paradigma
cosmológico moderno. Además de la gráfica podemos decir que solamente para valores
de k > 5 nuestro modelo cumple con los requirimientos de la datos observacionales, los
cuales favorecen que el valor de hoy en d́ıa del parámetro de estado del campo escalar sea
ωφ ∼ −1. Esto implica que la enerǵıa oscura se comporta aproximadamente como una
constante cosmológica o enerǵıa de vaćıo cuántica y por tanto el modelo estudiado no se
diferencia mucho, en el presente, del modelo Lambda Materia Oscura Fŕıa (LCDM).

La evolución del parámetro de desaceleración se muestra en la figura (3.2). Para valores
k > 5 se puede apreciar que la fase actual de aceleración es un fenómeno reciente, teniendo
una transición de una fase desacelerada en el pasado a otra acelerada en el presente para
un corrimiento cercano a (z ∼ 0.55), de acuerdo con [35].

En la figura (3.3) se puede apreciar la evolución de la densidad de materia y de la densidad
del campo de quintaesencia. Los valores de los parámetros libres tomados son ε = 0.01 y
k = 5. Se puede apreciar que la igualdad de ambas densidades ocurre aproximadamente
para un corrimiento al rojo de (z ≈ 0.3−0.4) de acuerdo con las conjeturas observacionales
más aceptadas [35]. Podemos notar también que en el pasado la materia dominaba sobre
el campo escalar que representa la enerǵıa oscura, en el presente ambas densidades son
comparables (aunque predomina la densidad de enerǵıa oscura) y en el futuro domina la
enerǵıa oscura, que es quien determina el destino de la evolución cósmica3

2Debemos puntualizar que este modelo clásico no se puede usar para modelar los mismos inicios de
evolución del universo, solamente se puede usar para modelar el universo a partir del desacople entre
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Figura 3.1: Grafica de la evolución del parámetro de estado contra el corrimiento al rojo
para tres valores del parámetro, k = 1 (ĺınea continua más oscura), k = 5 (ĺınea continua
más clara) y k = 100 (ĺınea discontinua). En todos los casos se fijo el parámetro libre ε
(ε = 0.01). Para la solución del modelo con acoplamiento mı́nimo

De las gráficas mostradas se puede concluir que para que el modelo este acorde con el
paradigma cosmológico actual los valores del parámetro libre k deben ser mayores que
cinco.

Nosotros hemos obtenidos otras familias de soluciones a las ecuaciones del campo cos-
mológicas, en caso de acoplamiento mı́nimo, en donde se ha utilizado un método diferente
de trabajo. En estos trabajos para obtener las soluciones se fija la forma del potencial de
auto interacción (ver [31, 32]).

3.2 Soluciones: Modelos con Acoplamiento No Mı́nimo.

En esta sección se analizará un modelo del Universo constituido por un fluido de fondo
que es la materia oscura y el campo escalar que representa la enerǵıa oscura. En este
modelo el campo escalar se acopla de forma no mı́nima con el fluido de fondo, compuesto
básicamente de materia oscura fŕıa. Esto significa que ambas componentes del fluido
cósmico intercambian enerǵıa.

La acción (3.1) de este modelo difiere de la que aparece en [28]; en este caso no consi-
deramos la contribución del sector de materia visible (el cual es despreciable respecto a la
componente de materia oscura). Esta simplificación permite obtener un modelo simple y

materia y radiación.
3Hoy en d́ıa se puede ver que el parámetro de densidad de quintaesencia tiene un valor cerca de 0.7

y el parámetro de densidad de materia tiene un valor aproximado de 0.3 lo que está acorde con la data
observacional
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Figura 3.2: Grafica de la evolución del parámetro de desaceleración respecto al corrimiento
al rojo para para tres valores del parámetro, k = 1 (ĺınea continua más oscura), k = 5
(ĺınea continua más clara) y k = 100 (ĺınea discontinua). En todos los casos el parámetro
libre ε es ε = 0.01. Para la solución del modelo con acoplamiento mı́nimo.

soluble en cuadraturas. A diferencia de los que aparecen en [26, 27, 28], no se especifica
el tipo de potencial de auto-interacción desde un inicio, en su lugar, como en el eṕıgrafe
anterior, se asume una relación lineal entre la derivada del campo escalar respecto al
tiempo y el parámetro de Hubble. Esto es sugerido por una simetŕıa aparente entre las
ecuaciones del campo. Esta relación ha sido formalmente utilizada en [30] y ella garantiza
que se puedan derivar soluciones escalantes (tipo atractor).

Al revisar algunos modelos que se proponen en la bibliograf́ıa podemos notar que en [26]
aparece un factor multiplicando la traza del tensor de enerǵıa-momento y la ecuación
de conservación, y el gradiente del campo escalar es tomado como una constante. En
[26] los autores utilizan C para la constante (que no debemos confundir con la función
de acoplamiento C(φ) en el presente trabajo), por lo que es un caso particular del aqúı
propuesto, cuando elegimos la función de acoplamiento C(φ) = C0 exp(2kφ). Para C =
cte. recuperamos el modelo estándar de quintaesencia mı́nimamente acoplada a la materia
ordinaria.

Si en el modelo que se propone se selecciona C = χ−1(φ) y φ =
∫

χ−1dχ
√

ω + 3/2 donde
ω es el parámetro de acoplamiento de Brans-Dicke, se recupera la teoŕıa estándar de
Jordan-Brans-Dicke formulada en el marco de Einstein [34].

Cuando se hace C(a)(3γ−4)/4 = C0a
3(1−γφ)/(r+1) se recupera el modelo propuesto en [27].

Aqúı γφ es el ı́ndice barotrópico para el campo escalar y r = ρm/ρφ = cte.

Para derivar soluciones a las ecuaciones del campo, usamos el mismo método de solución
propuesto en la seccion (3.1), en donde se impone la dinámica de evolución del Universo
(se emplea una relación lineal entre la primera derivada del campo escalar y el parámetro
de Hubble).
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Figura 3.3: Se nuestra la evolución de Ωm (ĺınea continua) y Ωφ (ĺınea discontinua) vs
corrimiento al rojo. Los valores de los parámetros libres son ε = 0.01 y k = 5. La
igualdad de la densidad de enerǵıa de materia y de quintaesencia ocurre aproximadamente
a z ≈ 0.3 − 0.4. Para la solución del modelo con acoplamiento mı́nimo.

En este eṕıgrafe se estudian tres posibles soluciones a las ecuaciones del campo, las cuales
(como se verá mas adelante) permiten describir adecuadamente la dinámica de evolución
del Universo. Estas soluciones fueron plubicadas en [30, 33]

Las ecuaciones del campo son:

3H2 = ρm +
1

2
φ̇2 + V (φ) (3.28)

2Ḣ + 3H2 = (1 − γ)ρm − 1

2
φ̇2 + V (φ) (3.29)

φ̈+ 3Hφ̇ = −V ′(φ) − (ln[X(φ)])′ρm (3.30)

y la ecuación de “conservación”

ρ̇m + 3γHρm = −(ln[X(φ)])′φ̇ρm (3.31)

Integrando esta ecuación se obtiene

ρm = Ma−3γX−1(φ) (3.32)

donde M es una constante de integración.

En las ecuaciones anteriores el punto significa derivada respecto al tiempo, la coma deriva-
da respecto al campo escalar y X(φ) es una función que se relaciona con la función de
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acoplamiento por la expresión X(φ) = C(φ)(3γ−4)/2. A partir de este momento, indistin-
tamente, tanto a C(φ) como a X(φ) las llamaremos función de acoplamiento.

Considerando una relación lineal entre la primera derivada del campo escalar y el parámetro
de Hubble

φ̇ = λH ⇒ a = exp(φ/λ). (3.33)

Utilizando esta expresión en la ecuación (3.30) se obtiene

Ḣ + 3H2 =
−V ′(φ) − [lnX(φ)]′ρm

λ
. (3.34)

Por otra parte, sumando las ecuaciones (3.28) y (3.29) se tiene

Ḣ + 3H2 =
2 − γ

2
ρm + V (φ). (3.35)

Se puede apreciar que los miembros izquierdos de ambas ecuaciones coinciden. Al igualar-
las se obtiene una ecuación diferencial para el potencial de auto interacción donde aparece
además la función de acoplamiento:

dV (φ)

dφ
+ λV (φ) = ρm

[

d lnX(φ)

dφ
− λ(γ − 2)

2

]

. (3.36)

Considerando que dφ = λd(ln a) y utilizando el cambio de variable, la ecuación anterior
se puede reescribir como

V ′(φ) + λ2V (φ) =

[

X ′(φ)

X(φ)
− λ(γ − 2)

2

]

M

a3γ
X−1(φ). (3.37)

Esta expresión relaciona el potencial de auto interacción con la función de acoplamiento
X(φ). Por tanto, elegida una función de acoplamiento dada, el potencial se obtiene como
solución de (3.37).

Sustituyendo (3.32) y (3.33) en (3.28) se obtiene:

dφ

dt
=

√

2λ2

6 − λ2

[

M exp(−3γ

λ
φ)X−1 + V (φ)

]1/2

. (3.38)

Esta ecuación se puede integrar en cuadraturas:

∫

dφ
√

[

M exp(−3γ
λ
φ)X−1 + V (φ)

]

=

√

2λ2

6 − λ2
(t+ t0) . (3.39)
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Si se introduce el tiempo conforme dτ = exp(−λφ/2)dt = a−λ
2/2dt, estas últimas ecua-

ciones se pueden reescribir de la forma

dφ

dτ
=

√

2λ2

6 − λ2

[

M exp(λφ− 3γ

λ
φ)X−1 + V (φ)

]1/2

(3.40)

∫

dφ
√

[

M exp(λφ− 3γ
λ
φ)X−1 + V (φ) exp(λφ)

]

=

√

2λ2

6 − λ2
(τ + τ0) , (3.41)

respectivamente. Una vez elegida la función de acoplamiento y determinada la forma
del potencial de auto-interacción, utilizando las últimas ecuaciones presentadas, se puede
obtener la expresión del campo escalar y, tomando en cuenta (3.33), se obtiene la expresión
para el factor de escala.

3.2.1 Solución con un Potencial Simple Exponencial.

Los potenciales con simple exponencial presentan algunas dificultades en los modelos con
acoplamiento mı́nimo. La mayoŕıa de estos potenciales no son atractores y esto conlleva
a que necesiten un ajuste fino de sus condiciones iniciales para que puedan reproducir
las observaciones. Otro de los problemas que presentan es que ellos no son capaces de
generar soluciones escalantes, es decir, que en la evolución del parámetro de densidad no
se observa una transición de una época dominada en el pasado por materia a una época
actual dominada por el campo escalar. Además, ellos al igual que los potenciales de doble
exponencial no resuelven el problema de la coincidencia. Por este motivo se estudia este
tipo de potencial, para ver cómo ellos influyen en los modelos donde el acoplamiento es
de forma no mı́nima.

Para poder obtener este tipo de potencial de auto-interacción se hace la siguiente consi-
deración

dX(φ)

dφ
=

[

λ(γ − 2)

2

]

X(φ) , ⇒ X(φ) = X0 exp

(

λ(γ − 2)

2

)

. (3.42)

Al sustituir esta consideración en la ecuación (3.37) se puede obtener la forma de nuestro
potencial de auto interacción

dV (φ)

dφ
+ λV (φ) = 0 ⇒ V (φ) = V0 exp(−λφ). (3.43)

Utilizando este potencial y la función de acoplamiento obtenida (ecuación (3.42)) en la
ecuación (3.40), se puede integrar en cuadraturas
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∫

dz√
z2 + A2

= µ(τ + τ0), (3.44)

donde z = exp
[

−γ(6−λ2)
4λ

φ
]

, A2 = V0X0/M y µ = γ
√

M(λ2 − 6)/8.

Integrando en cuadraturas esta ecuación se puede obtener la expresión para el campo
escalar y por inversión la expresión para el factor de escala

φ(τ) = φ0 + ln {sinh [µ(τ + τ0)]}4λ/(γ(6−λ2)) , (3.45)

a(τ) = a0 {sinh [µ(τ + τ0)]}4/(γ(6−λ2)) . (3.46)

Al igual que en la sección anterior si usamos la ecuación de Friedmann y colocamos el
valor de nuestro potencial, se puede obtener la expresión del parámetro de Hubble en
función del corrimiento al rojo de la forma

H(z) =

{

2V0

6 − λ2

[

1

A2
(1 + z)3γ+λ2(2−γ)/2 + (1 + z)λ

2

]}1/2

. (3.47)

La densidad de materia escrita en función del corrimiento al rojo es

ρm(z) =
M

X0

(1 + z)3γ+λ2(2−γ)/2 = ρ0(1 + z)3γ+λ2(2−γ)/2. (3.48)

Con estas expresiones se puede obtener la expresión para la densidad de materia

Ωm(z) =
(6 − λ2)ρ0A

2

6V0

(1 + z)3γ+γλ2/2

(1 + z)3γ+γλ2/2 + A2
. (3.49)

Considerando que en el inicio de la evolución del universo4, cuando z → ∞, la densidad
de la materia no domina completamente y por tanto que en esa época también existe una
pequeña densidad de quintaesencia, se puede considerar que Ωm(∞) = (1− ε), donde ε es
un número pequeño. Al considerar esto se puede obtener que 1/A2 = [ρ0(6−λ2)]/[6V0(1−
ε)]. Acorde con las observaciones se tiene que Ωm(0) ≈ 1/3. Al combinar estos resultados
se puede obtener que A2 = 2 − 3ε. En consecuencia con esto se pueden rescribir los
parámetros de densidad de materia y de Hubble como

Ωm(z) = (1 − ε)
(1 + z)3γ+γλ2/2

(1 + z)3γ+γλ2/2 + 2 − 3ε
, (3.50)

Otras magnitudes f́ısicas importantes son:

4Este modelo del Universo solamente es válido después del desacople de la materia y radiación.
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Densidad de quintaesencia:

Ωφ = 1 − Ωm. (3.51)

Parámetro de estado de la quintaesencia:

ωφ(z) = −1 +
λ2

3(1 − Ωm(z))
. (3.52)

Parámetro de desaceleración del Universo:

q(z) = −1 +
λ2

2
+

3γ

2
Ωm(z). (3.53)

Al igual que la solución anterior esta solución depende de tres parmetros libres (γ, ε, λ),
donde γ es el ı́ndice barotrópico, λ es la constante de proporcionalidad entre el parámetro
de Hubble y la primera derivada respecto al tiempo del campo escalar y ε es una constante
que f́ısicamente da una medida de la densidad de quintaesencia en el inicio del Universo.
Al considerar que la materia oscura es polvo fijamos el valor de γ a uno. De esta forma
solamente se tienen dos parámetros libres (ε, λ).

De la evolución del párametro de densidad de enerǵıa de materia oscura y del campo
de quintaesencia que se observa en la Figura (3.4) se puede ver que estos parámetros
tienen un comportamiento como el que se plantea en el paradigma cosmológico actual,
es decir se puede ver una transición de una época donde dominó la materia en el pasado
a una época donde domina el campo escalar. La dominación del campo escalar es en el
presente y en el futuro. De estos resultados se puede concluir que cuando el acoplamiento
es no mı́nimo esta clase de potencial además de reproducir las observaciones también
permite que en la evolución cosmológica exista una transición desde una época dominada
por materia oscura, en el pasado, hacia una época donde domina la enerǵıa oscura, en
el presente, a diferencia de los modelos donde el acoplamiento es mı́nimo en donde los
potenciales simples exponensiales reproducen la data observacional pero no permiten la
transición entre dominio de la materia oscura y dominio de la enerǵıa oscura, o sea, en
ellos siempre domina la enerǵıa oscura. Los valores de los parámetros libres tomados son
ε = 0.01 y λ = 0.3. Se puede apreciar que la igualdad de ambas densidades se encuentra
aproximadamente para un corrimiento al rojo de z ≈ 0.3 − 0.4.

La evolución del parámetro de estado del campo escalar para tres valores diferentes de
λ (λ = 0.3 (ĺınea continúa más oscura), λ = 1.41 (ĺınea continúa) y λ = 2.24 (ĺınea
discontinúa)) se muestra en la Figura (3.5). Para los dos valores más pequeños de λ
podemos apreciar que existió una época donde el parámetro de estado fue positivo, esto
quiere decir que hubo una época en el pasado donde la gravedad de la enerǵıa oscura fue
atractiva, lo que es consistente con la desaceleración y con el incremento del parámetro de
desaceleración para altos corrimientos al rojo, y otra época, que es la presente, en donde
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Figura 3.4: En esta figura se puede ver la evolución del parámetro de densidad respecto al
corrimiento al rojo. Los valores de los parámetros libres tomados son ε = 0.01 y λ = 0.3.
Solución obtenida en 3.2.1.

este parámetro tiene valor negativo, en donde la enerǵıa oscura es repulsiva. Mientras que
para el valor mayor de λ la enerǵıa oscura siempre se comporta como atractiva, estando
esto en contra del paradigma cosmólogico actual. Además se puede apreciar que para el
menor valor de λ el parámetro de estado se ajusta al valor que se reporta producto de las
observaciones (ωφ ∼ −1).

La evolución del parámetro de desaceleración para los mismos valores de los parámetros
libres de la figura anterior se puede ver perfectamente en la figura (3.6). De acuerdo con
[35] en la figura se puede ver que cuando λ = 0.3 la fase actual de aceleración es un
fenómeno reciente, teniendo una transición de una fase desacelerada a otra acelerada.

De las gráficas presentadas se puede concluir que para que esta solución pueda reproducir
los valores reportados por las observaciones λ debe tomar valores menores que uno (0 ≤
λ < 1).

3.2.2 Solución con un Potencial Doble Exponencial.

Los potenciales dobles exponenciales reproducen muy bien la data observacional y además
ayudan a suavizar el problema de ajuste fino al producir, la mayoŕıa de ellos, soluciones
atractoras. En esto radica la utilidad práctica de trabajar con esta clase de potenciales.
Precisamente, este tipo de potencial se obtiene si se elige la función de acoplamiento de
la forma:

d

dφ
[lnX(φ)] = cte = α ⇒ X(φ) = X0 exp(αφ). (3.54)
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Figura 3.5: En esta figura se aprecia la evolución del parámetro de densidad respecto al
corrimiento al rojo. Los valores de los parámetros libres tomados son ε = 0.01 y λ = 0.3.
Solución obtenida en 3.2.1.

Efectivamente, sustituyendo (3.69) en (3.64) e integrando, se obtiene el siguiente potencial
de auto interacción:

V (φ) = V0 exp(−λφ) +W0 exp[−(α + 3γ/λ)φ], (3.55)

donde W0 = −2M
X0

[

2α−λ(2−γ)
α+3γ/λ−λ

]

.

Sustituyendo la forma del potencial de auto-interacción obtenida en la expresión (3.40)
se puede escribir de la forma

dφ

dτ
=

√

2λ2

6 − λ2

{[

M

X0

+W0

]

exp [λφ− 3γφ/λ− αφ] + V0

}1/2

, (3.56)

Esta última ecuación se puede escribir en cuadraturas de la siguiente forma

∫

dz√
z2 + b2

=
l

2

√

2λ2V0

6 − λ2
(τ + τ0) , (3.57)

donde z = exp(lφ/2), l = α− λ+ 3γ/λ y b2 = (W0 +M/X0)/V0.

Integrando en cuadraturas se obtiene la expresión para el campo escalar y como el factor de
escala depende del campo escalar (ecuación (3.33)), también se puede obtener la expresión
de éste.

φ(τ) = φ0 + ln {sinh [µ(τ + τ0)]}2/l , (3.58)
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Figura 3.6: En esta figura se puede ver la evolución del parámetro de densidad respecto al
corrimiento al rojo. Los valores de los parámetros libres tomados son ε = 0.01 y λ = 0.3.
Solución obtenida en 3.2.1.

a(τ) = a0 {sinh [µ(τ + τ0)]}2/λl , (3.59)

donde µ = l
√

2λ2V0/(6 − λ2)/2.

Por otro lado si se toma la ecuación (3.55) y sustituimos el potencial de auto interacción
que se obtuvo en ella, se obtiene

H2 =
2V0

6 − λ2

{

b2 exp [−(α + 3γ/λ)φ] + exp(−λφ)
}

. (3.60)

Esta ecuación se puede escribir de la forma

H2 =
2V0

6 − λ2

{

b2a−(λα+3γ) + a−λ
2)
}

. (3.61)

El factor de escala se puede escribir en función del corrimiento al rojo de la forma a =
a0/(1 + z), normalizando de tal forma que a0 = 1 y sustituyendo en la ecuación (3.61), se
obtiene

H2 =
2V0

6 − λ2

{

b2(1 + z)−(λα+3γ) + (1 + z)−λ
2)
}

. (3.62)

En esta expresión se puede apreciar la dependencia del parámetro de Hubble del corri-
miento al rojo.

Sustituyendo la función de acoplamiento elegida (ecuación (3.55)) en la ecuación que
determina la evolución de la densidad de materia (ecuación (3.32)) se obtiene



Modelos de Quintaesencia 41

ρm =
M

X0

(1 + z)αλ+3γ = ρ0(1 + z)αλ+3γ , (3.63)

entonces el parámetro de densidad de materia es

Ωm(z) =
(6 − λ2)ρ0

2V0b2
(1 + z)αλ+3γ−λ2

(1 + z)αλ+3γ−λ2 + 1/b2
. (3.64)

Al igual que como explicamos en la solución anterior cuando z → ∞, el parámetro de
densidad de materia no puede ser completamente igual a la unidad por lo que consideramos
que Ωm(∞) = (1 − ε), donde ε es un número pequeño. Utilizando esta suposición se
puede obtener que b2 = ρ0(6 − λ2)/[2V0(1 − ε)]. Acorde con las observaciones se tiene
que Ωm(0) ≈ 1/3. Combinando estos resultados se puede obtener que 1/b2 = 2 − 3ε.
En consecuencia, con esto se puede escribir el parámetro de densidad de materia y el
parámetro de Hubble como:

Ωm(z) = (1 − ε)
(1 + z)αλ+3γ−λ2

(1 + z)αλ+3γ−λ2 + 2 − 3ε
. (3.65)

Conociendo las expresiones anteriores se pueden determinar las expresiones para otras
magnitudes f́ısicas importantes, como:

Parmetro de densidad de enerǵıa de quintaesencia:

Ωφ(z) = 1 − Ωm(z), (3.66)

Parámetro de estado de la quintaesencia:

ωφ = −1 +
λ2

3(1 − Ωm(z))
(3.67)

Parámetro de desaceleración del Universo:

q(z) = −1 +
λ2

2
+

3γ

2
Ωm(z). (3.68)

Esta solución tiene cuatro parámetros libres (γ, ε, λ, α). Los parámetros γ, ε, λ tienen el
mismo significado que en la solución anterior. El parámetro α es una constante de inte-
gración. Para analizar el comportamiento de las magnitudes cosmológicas primeramente
fijamos los valores de γ, ε, λ y estudiamos el comportamiento de dichas magnitudes para
varios valores de α. Consideramos γ = 1 y al seleccionar los valores de ε y λ tomamos en
cuenta su significado f́ısico (explicado en la solución anterior).
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La dependencia del parámetro de estado del campo escalar respecto al corrimiento al rojo
se puede ver en la figura (3.7). En ésta gráfica se muestra como evoluciona este parámetro
para tres valores diferentes del parámetro libre α, (α = 0.1 (ĺınea continúa más oscura),
α = 1 (ĺınea continúa) y α = 5 (ĺınea discontinua)). En todos los casos se dejaron fijos los
valores de ε (ε = 0.01) y λ (λ = 0.3). Podemos apreciar que en una época el parámetro de
estado fue positivo, esto quiere decir que hubo una época en el pasado donde la gravedad
de la enerǵıa oscura fue atractiva, lo que es consistente con la desaceleración y con el
incremento del parámetro de desaceleración para altos corrimientos al rojo. Además
podemos ver que para pequeños valores del corrimiento al rojo el valor del parámetro de
estado para hoy en d́ıa (ωφ(z = 0))es poco sensible del valor del parámetro α.
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Figura 3.7: Grafica de la evolución del parámetro de estado respecto al corrimiento al rojo
para tres valores diferentes del parámetro libre α, (α = 0.1 (ĺınea continúa más oscura),
α = 1 (ĺınea continúa) y α = 5 (ĺınea discontinua)). En todos los casos se dejaron fijos
los valores de ε (ε = 0.01) y λ (λ = 0.3). Solución obtenida en 3.2.2.

En la figura (3.8) se puede apreciar la evolución del parámetro de desaceleración para
los mismos valores de los parámetros libres de la figura (3.7). De acuerdo con [35] la
fase actual de aceleración es un fenómeno reciente, teniendo una transición de una fase
desacelerada a otra acelerada para un corrimiento al rojo cercano a z ≈ 0.55 por lo que
de la figura se puede apreciar que α = 0.1 y α = 1 son los valores que más se acercan a
las observaciones, o sea, los valores del parámetro libre α ≤ 1.

3.2.3 Solución para la Teoŕıa de Brans-Dicke.

La teoŕıa de Brans-Dicke es una de las teoŕıas más sencillas que se conocen dentro de
las complejas teoŕıas de gravitación, siendo un ĺımite de bajas enerǵıas de la teoŕıa de
cuerdas. Cumple de forma satisfactoria todas los pruebas observacionales a escalas del
Sistema Solar, al igual que la teoŕıa de Einstein. De aqúı la importancia de elegir la función
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Figura 3.8: Evolución del parámetro de desaceleración respecto al corrimiento al rojo
para tres valores diferentes del parámetro libre λ, (α = 0.1 (ĺınea continúa más oscura),
α = 1 (ĺınea continúa) y α = 5 (ĺınea discontinua)). En todos los casos se dejaron fijos
los valores de ε (ε = 0.01) y λ (λ = 0.3). Solución obtenida en 3.2.2.

de acoplamiento de tal forma que se pueda obtener potenciales de auto interacción que
reproduzcan la teoŕıa de Brans-Dicke.

Al considerar en la ecuación (3.1) que la función de acoplamiento tiene la forma C(φ) =
exp(−ωφ) se obtiene la teoŕıa de Brans-Dicke en el marco de Jordan.

Las ecuaciones de Brans-Dicke con campo escalar auto interactuante, son:

3H2 + 3Hϕ̇− ω

2
ϕ̇2 = exp(−ϕ)(ρmV ), (3.69)

2Ḣ + 3H2 + ϕ̈+ ϕ̇2 + 2Hϕ̇+
ω

2
ϕ̇2 = exp(−ϕ) [(1 − γ)ρm + V ] , (3.70)

ϕ̈+ ϕ̇2 + 3Hϕ̇ =
exp(−ϕ)

2ω + 3
[(4 − 3γ)ρm + 4V − 2V ′] , (3.71)

donde se ha introducido un nuevo campo escalar ϕ que se relaciona con el original de
la forma φ = exp(ϕ). En estas ecuaciones ω es el parámetro de acoplamiento de Brans-
Dicke, γ es el ı́ndice barotrópico del fluido de la materia ordinaria, V es el potencial de
auto interacción y H = ȧ/a es el parámetro de expansión de Hubble. El punto significa
derivada respecto al tiempo cosmológico mientras que la coma significa derivada respecto
al campo escalar ϕ. La expresión para la densidad de enerǵıa de la materia ordinaria es
ρm = ρ0,γa

−3γ , donde ρ0,γ es una constante de integración obtenida cuando se integra la
ecuación de conservación.

Para resolver las ecuaciones matemáticamente es conveniente realizar una transformación
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conforme de la métrica ḡab = exp(ψ/
√
ξ)gab, donde ξ = ω + 3/2 y por conveniencia

se define el campo escalar como ϕ = ψ/
√
ξ. El elemento de ĺınea transformado es ahora

ds̄2 = −dt̄2+ā2δijdx
idxj, donde el tiempo conforme y el factor de escala están relacionados

con el original (el cual está en el Marco de Jordan, MJ) a través de las expresiones
dt = exp(−ψ/(2

√
ξ))dt̄ y a = exp(−ψ/(2

√
ξ))ā, respectivamente. Con estos cambios se

pueden reescribir las ecuaciones del campo en el Marco de Einstein (ME) de la siguiente
forma (ver Caṕıtulo 2):

3H̄2 = ρ̄m + ρ̄ψ, (3.72)

2 ˙̄H + 3H̄2 = (1 − γ)ρ̄m − P̄ψ, (3.73)

ψ̈ + 3H̄ψ̇ =
4 − 3γ

2
√
ξ
ρ̄m − V̄ ′, (3.74)

donde la densidad de enerǵıa del campo escalar en el ME es ρ̄ψ = ψ̇2/2 + V̄ y su presión
correspondiente P̄ψ = ψ̇2/2−V̄ . La ecuación de conservación después de la transformación
es

˙̄ρm +

(

3γH̄ +

√

2

3
Wψ̇

)

ρ̄m = 0, (3.75)

donde W =
√

3/2(4 − 3γ)/2
√
ξ fue introducida en [36]. Después de la integración de la

ecuación de conservación se obtiene la siguiente expresión ρ̄m = ρ̄0,mā
−3γ exp(−

√

2/3Wψ).

En el proceso de obtener las soluciones de las ecuaciones del campo se realiza el mismo
método propuesto en el eṕıgrafe (3.1).

En esta metodoloǵıa de solución se suman las dos primeras ecuaciones del campo (3.72,3.73)
escritas en el ME y se obtiene

˙̄H + 3H̄2 =
2 − γ

2
ρ̄m + V̄ . (3.76)

Utilizando el mismo procedimiento para obtener las soluciones empleado en los anteriores
eṕıgrafes se propone una relación lineal entre la primera derivada del campo escalar y el
parámetro de Hubble

ψ̇ = λH̄ ⇒ āλ = exp(ψ). (3.77)

Utilizando este cambio de variable en la ecuación (3.74) se obtiene la siguiente expresión

˙̄H + 3H̄2 =
4 − 3γ

2λ
√
ξ
ρ̄m − V̄ ′

λ
. (3.78)
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Al comparar esta ecuación con la ecuación (3.76) se puede apreciar que los miembros
izquierdos de ambas ecuaciones son iguales. Igualando estas ecuaciones se obtiene

V̄ ′ + λV̄ =

[

2

√

2

3
W − (2 − γ)λ

]

ρ̄m
2
. (3.79)

Integrando esta ecuación se obtiene la siguiente expresión para el potencial

V̄ (ψ) = V̄0 exp(−λψ) + W̄0 exp(−δψ), (3.80)

donde δ = 3γ/2 +
√

2/3W , V̄0 es una constante de integración y W̄0 = [
√

2/3W − (2 −
γ)λ/2]ρ̄0,γ/(λ− δ).

En términos del factor de escala el potencial se puede escribir de la siguiente forma

V̄ (a) = V̄0ā
−λ2

+ W̄0ā
−δλ. (3.81)

Este potencial tiene un rasgo interesante y es que dependen del tipo de fluido ordinario
del cual está lleno el Universo.

Sustituyendo la expresión del potencial obtenida, (3.81) en la ecuación (3.72), se obtiene

H̄2 = Aā−δλ +Bā−λ
2

, (3.82)

donde A = γ(λ2 − 6)/(λ2 −
√

2/3Wλ − 3γ) y B = 2V̄0/(6 − λ2). Además considerando
que ρ̄m = ρ̄0,γ ā

−δλ.

Para poder resolver la ecuación obtenida para el parámetro de Hubble se debe considerar
el siguiente tiempo conforme dr = ā−λ

2/2dt̄ y de esta forma se puede integrar la ecuación
en cuadraturas

∫

āλ(δ−λ)/2−1dā
√

A
B

+ āλ(δ−λ)

=
√
B(r + r0), (3.83)

donde r0 es otra constante de integración.

Integrando la ecuación anterior se obtiene

āλ(δ−λ)/2 =

√

A

B
sinh [µ(r + r0)] , (3.84)

donde µ =
√

B/ξλ(δ− λ)/2. Para el campo escalar reescalado de Brans Dicke se obtiene

exp(ψ) =

{

√

A

B
sinh [µ(r + r0)]

}2/(δ−λ)

. (3.85)
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En consecuencia con esto la densidad de materia es

Ω̄m =
ρ̄0,γ

3A

āλ(λ−δ)

āλ(λ−δ) + A/B
. (3.86)

La densidad del campo escalar es

Ω̄ψ = 1 − Ω̄m. (3.87)

Es de interés observacional poder reescribir estas ecuaciones en función del corrimiento al
rojo. En el MJ se tiene a(z) = a(0)/(z + 1). Si escogemos la normalización a(0) = 1 →
ā(0) = 1 entonces a = exp(−ψ/(2

√
ξ))ā = ān lo que implica que ā = (1 + z)−1/n, donde

n se define como n = (2
√
ξ − λ)/(2

√
ξ).

Después de realizar estas consideraciones se puede obtener la siguiente expresión para la
densidad de materia

Ω̄m =
ρ̄0,γ

3A

(1 + z)−λ(λ−δ)/n

(1 + z)λ(λ−δ)/n +B/A
. (3.88)

La expresión para el parámetro de Hubble es

H̄(z) =
√
A

√

(1 + z)λδ/n +
B

A
(1 + z)λ2/n. (3.89)

Otras magnitudes de interés observacional son el parámetro de estado del campo escalar
y el parámetro de desaceleración del Universo

ω̄ψ = −1 +
λ2

3(1 − Ω̄m)
y q̄ = −1 +

λ2

2
+

3γ

2
Ω̄m. (3.90)

Es útil dar las principales magnitudes f́ısicas de interés observacional en el Marco de
Jordan (MJ), estas magnitudes deben relacionarse con las ya obtenidas en el Marco de
Einstein (ME). Para esto se debe recordar que dt = exp(−ψ/(2

√
ξ))dt̄ = ā−λ/(2

√
ξ)dt̄,

a = exp(−ψ/(2
√
ξ))ā y ρm = exp(−2ψ/

√
ξ)ρ̄m = ā2λ/

√
ξρ̄m. Otra importante relación es

H = n exp(ψ/(2
√
ξ))H̄ = nāλ/(2

√
ξ)H̄.

Utilizando estas relaciones podemos obtener que los parámetros de densidad de materia
se relacionan de la siguiente forma

Ωm =
1

n2
Ω̄m, (3.91)

También se puede obtener como se relacionan otras magnitudes de interés astrof́ısico con
el parámetro de densidad de materia en el ME:
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La densidad del campo escalar

Ωψ = 1 − 1

n2
Ω̄m. (3.92)

El parámetro de estado para el campo escalar

ωψ = −1 + λ
(n/3)(λ− 1/

√
ξ) − γΩ̄m/(2

√
ξ)

n2 − Ω̄m

. (3.93)

La relación entre el parámetro de desaceleración en el ME y el del MJ se puede escribir
de la siguiente forma

q =
1

n

[

q̄ + (1 − n)(1 − λ2/2) − nλ/(2
√

ξ)
]

. (3.94)

Como las soluciones dependen (en principio) de cinco parámetros (λ, ξ, ρ̄0, V̄0, γ) debemos
reducir el espacio de parámetros seleccionando una normalización del parámetro de Hubble
y algunos hechos observacionales. En las ecuaciones de Friedmann del ME y del MJ se
puede apreciar que la densidad de materia siempre es menor que uno, en el caso de que
sea igual a uno la solución no es estable. Empleando la misma consideración que los
eṕıgrafes anteriores cuando z → ∞, la densidad de materia cumple con Ωm(∞) = (1− ε),
donde ε es un número pequeño. Esto equivale a decir que Ω̄m(∞) = (1 − ε)n2. Al
considerar esto se puede obtener ρ̄0,γ = 3n2A(1−ε). Acorde con las observaciones se tiene
que Ωm(0) = (1/n2)Ω̄m(0) ≈ 1/3. Esta última igualdad implica que ρ̄0,γ = n2(A + B).
Combinando lo dicho en este párrafo se puede obtener que B/A = 2−3ε. En consecuencia
con esto se puede reescribir la densidad de materia y el parámetro de Hubble como

Ω̄m(z) = n2(1 − ε)
(1 + z)−λ(λ−δ)/n

(1 + z)−λ(λ−δ)/n + 2 − 3ε
, (3.95)

H̄(z) =

√
ρ̄0,γ

n

√

(1 + z)λδ/n + (2 − 3ε)(z + 1)λ2/n

3(1 − ε)
. (3.96)

Los parámetros libres de las soluciones se pueden reducir si seleccionamos la normalización
en la cual H(0) = 1 ⇒ H̄(0) = 1/n y ρ̄0,γ = 1. En este caso nuestras soluciones sólo
dependen de tres parámetros (γ, ε, λ).

La evolución de las distintas magnitudes f́ısicas en ambos marcos es muy similar, por lo
que solamente en este trabajo se muestran las gráficas en el Marco de Einstein.

La gráfica (3.9) muestra la evolución del parámetro de estado del campo escalar con
respecto al corrimiento al rojo para tres valores diferentes del parámetro libre λ, (λ = 0.3
(ĺınea continúa más oscura), λ = 1.41 (ĺınea continúa) y λ = 2.24 (ĺınea discontinua))
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y el mismo valor de ε (ε = 0.01). Al igual que para soluciones anteriores aqui se puede
apreciar que solamente el valor pequeño de λ se ajusta al paradigma cosmológico actual.
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Figura 3.9: Grafica de la evolución del parámetro de estado respecto al corrimiento al rojo
para tres valores diferentes del parámetro libre λ, (λ = 0.3 (ĺınea continúa más oscura),
λ = 1.41 (ĺınea continúa) y λ = 2.24 (ĺınea discontinua)). En todos los casos se escogió
(ε = 0.01).

En la Figura (3.10) en donde se gráfica la evolución del parámetro de desaceleración
respecto al corrimiento al rojo se puede apreciar que al igual que en la figura anterior,
solamente cuando el valor de λ es 0.3 se puede reproducir los datos observacionales que
se tienen hoy en dia [35].

3.3 Conclusiones Parciales

En este caṕıtulo se han obtenido soluciones exactas en modelos con acoplamiento mı́nimo
y no mı́nimo entre el campo escalar y el fluido de fondo al imponer una dinámica de
evolución del Universo. En las soluciones encontradas las magnitudes de mayor interés
astrof́ısico dependen de algunos parámetros libres. Seleccionando adecuadamente el valor
de estos parámetros se puede apreciar que las familias de soluciones que se obtuveiron a las
ecuaciones del campo describen la evolución del Universo acorde con la data observacional.

En todos los casos estudiados los potenciales utilizados son simple exponencial o doble
exponencial y nuestros resultados estuvieron de acuerdo con el paradigma cosmológico
actual. Cuando se emplean estos potenciales se puede apreciar que la mayoŕıa de los
modelos que lo utilizan ajustan bastante bien con la data observacional especialmente
los de doble exponencial que además son potenciales atractores que ayudan a suavizar
el problema del ajuste fino. Además se pudo ver que en modelos con acoplamiento no
mı́nimo los potenciales simples exponenciales permiten que en la evolución cósmica exista
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Figura 3.10: Evolución del parámetro de desaceleración respecto al corrimiento al rojo
para tres valores diferentes del parámetro libre λ, (λ = 0.3 (ĺınea continúa más oscura),
λ = 1.41 (ĺınea continúa) y λ = 2.24 (ĺınea discontinua)). En todos los casos se escogió
(ε = 0.01).

una transición entre una época de dominio de materia oscura, en el pasado, y una época
de dominio de enerǵıa oscura, en el presente.



Caṕıtulo 4

ANÁLISIS DE ESTABILIDAD DE

LAS SOLUCIONES.

Los sistemas de ecuaciones que se analizan en el caṕıtulo precedente conducen a leyes
dinámicas que, generalmente, se agrupan bajo el nombre de ecuaciones diferenciales no
lineales.

La no linealidad de las ecuaciones diferenciales es la responsable de que, por regla general,
la búsqueda de soluciones explicitas para dichas ecuaciones sea más bien un deseo y no
una realidad. En estos casos el uso de métodos anaĺıticos mediante los cuales se pueden
inferir propiedades cualitativas de las soluciones (análisis cualitativo) es especialmente
útil.

Un concepto de gran importancia en la teoŕıa cualitativa de los sistemas de ecuaciones
diferénciales ordinarias, es el concepto de la estabilidad de las soluciones. A finales del siglo
XIX, el matemático Alexander Mijailovich Lyapunov en su tesis doctoral “El Problema
General de la Estabilidad del Movimiento”presentada en 1892, ofreció el primer intento
de una teoŕıa completa de la estabilidad.

Actualmente se cuenta con un método que permite estudiar la estabilidad de las solu-
ciones de los sistemas de ecuaciones diferenciales ordinarias a través de las propiedades
de una cierta función llamada Función de Lyapunov. El problema de estabilidad queda
completamente resuelto cuando se encuentra una de tales funciones de Lyapunov. Desafor-
tunadamente, no existe un procedimiento general para encontrar funciones de Lyapunov.

Después de los trabajos de Lyapunov vino una etapa de modificaciones, extensiones, refor-
mulaciones y generalizaciones de sus teoremas de estabilidad e inestabilidad. También se
realizaron investigaciones sobre los correspondientes teoremas inversos y las cuestiones re-
lativas a la obtención de funciones de Lyapunov, donde matemáticos como N. A. Chetaev,
V. I. Subov, A. Barbashin, N. N. Krasovskii, W. Hahn, L. S. Pontriaguin, G. D. Birkhoff y
R. Belman han hecho aportes a esta teoŕıa de la que Liapunov es considerado el iniciador.

En la cosmoloǵıa la técnica de sistemas dinámicos es utilizada para realizar análisis cuali-

50
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tativos, especialmente en modelos cosmológicos que sean espacialmente homogéneos cuya
evolución este gobernada por un sistema de ecuaciones diferenciales ordinarias [37]. Esta
técnica es una poderosa herramienta para estudiar los comportamientos intermedios en
diferentes épocas en la evolución del Universo, la época inflacionaria, la de dominio de la
radiación, la de dominio de la materia y en la presente.

4.1 Análisis de la estabilidad por la primera aproxi-

mación.

Para sistemas no lineales y/o sistemas variantes en el tiempo, el análisis de estabilidad
puede ser extremadamente dif́ıcil o imposible [35]. El análisis de estabilidad de Lyapunov
es uno de los métodos que puede ser aplicado para solucionar cuestiones de estabilidad
para sistemas no lineales.

Aunque el análisis de estabilidad según Lyapunov es muy útil y poderoso para tratar
problemas que involucran sistemas no lineales, determinar la estabilidad de muchos de
estos sistemas no es nada trivial. Ingenio y experiencia en la solución de problemas no
lineales son muy importantes.

Para el análisis de la estabilidad del punto de reposo xi ≡ 0 (i = 1, 2, ..., n) del sistema de
ecuaciones diferenciales

dxi
dt

= fi(t, x1, x2, ..., xn) (i = 1, 2, ..., n), (4.1)

donde fi es una función derivable en un entorno del origen de coordenadas, se aplica con
frecuencia el siguiente método: como la función fi(t, x1, x2, ..., xn) es derivable, el sistema
(4.1) en un entorno del origen de coordenadas xi ≡ 0 puede representarse en la forma

dxi
dt

=
n
∑

j=1

aij(t)xj +Ri(t, x1, x2, ..., xn) (i = 1, 2, ..., n). (4.2)

donde los Ri son infinitesimos de orden mayor que uno con respecto a
√

∑n
j=1 x

2
i ; luego

de esto, en lugar de investigar la estabilidad del punto de reposo xi ≡ 0 del sistema (4.2),
se analiza la estabilidad de este mismo punto del sistema lineal

dxi
dt

=
n
∑

j=1

aij(t)xj (i = 1, 2, ..., n). (4.3)
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llamado sistema de ecuaciones de primera aproximación respecto al sistema (4.2) . Las
condiciones de aplicabilidad de este método, utilizado durante mucho tiempo sin ninguna
base, fueron analizadas detalladamente por A. M. Lyapunov, y posteriormente genera-
lizadas por muchos otros matemáticos.

El análisis de estabilidad del sistema de ecuaciones de primera aproximación, claro esta,
es un problema mucho más fácil que el estudio del sistema original, en general no lineal,
sin embargo, aún la investigación del sistema lineal (4.3) con coeficientes aij(t) variables
es un problema muy complejo. Si, en cambio, todas las aij(t) son constantes, es decir, si
el sistema es estacionario en primera aproximación, la investigación de la estabilidad del
sistema lineal (4.3) no posee dificultades principales.

Teorema: Si el sistema de ecuaciones (4.2) es estacionario en primera aproximación, si en
todos los términos Ri, en un entorno suficientemente pequeño del origen de coordenadas,

cuando t0 ≤ T ≤ t, satisfacen las desigualdades |Ri| ≤ N (
∑n

i=1 x
2
i )

1/2+α
, donde N y α

son constantes y α > 0 (o sea, si las Ri no dependen de t, entonces su orden es mayor que
uno con respecto a

√
∑n

i=1 x
2
i ) y si todas las ráıces de la ecuación caracteŕıstica

∣

∣

∣

∣

∣

∣

∣

∣

a11 − k a12 ... a1n

a12 a22 − k ... a2n

.... .... .... ....
an1 an2 ... ann − k

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (4.4)

tienen partes reales negativas, entonces las soluciones triviales xi ≡ 0 del sistema (4.2)
y del sistema (4.3) son asintóticamente estables; por lo tanto, en este caso es posible el
análisis de la estabilidad por la primera aproximación.

Teorema: Si el sistema de ecuaciones (4.2) es estacionario en primera aproximación, si
todas las funciones Ri satisfacen las condiciones del teorema anterior y si por lo menos
una ráız de la ecuación caracteŕıstica (4.4) tiene parte real positiva, entonces los puntos
de reposo xi ≡ 0 del sistema (4.2) son inestables. En consecuencia, en este caso también
es posible investigar la estabilidad en primera aproximación.

Los teoremas anteriores desde el punto de vista de las limitaciones que imponen a las
ráıces de la ecuación caracteŕıstica, no abarcan solamente el llamado caso cŕıtico, o sea,
cuando todas las partes reales de las ráıces de la ecuación caracteŕıstica no son positivas,
y además la parte real de por lo menos una ráız es igual a cero.

En el caso cŕıtico los términos no lineales Ri comienzan a influir sobre la estabilidad de
la solución trivial del sistema (4.2) y la investigación de la estabilidad por la primera
aproximación, en general, no es posible.
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4.2 Espacio de fase y puntos cŕıticos.

En la cosmoloǵıa los modelos del universo son una sucesión de diferentes épocas las cuales
se caracterizan por el término fuente del fluido dominante. Una t́ıpica secuencia de épocas
es la siguiente

1. Inflación, en donde domina el campo escalar.

2. Dominación de la Radiación (p = ρ/3).

3. Dominación de la Materia (p = 0).

4. Época donde el universo se encuentra en una fase de expansión acelerada, dominado
por enerǵıa oscura.

Cada uno de estos términos fuentes tiene asociados un parámetro de densidad de enerǵıa
normalizada con el parámetro de Hubble (Ωφ,Ωr,Ωm). Cada época es definida de forma
tal que durante ese periodo de tiempo domina determinado parámetro de densidad de
enerǵıa. De forma general en los modelos del universo se asume la presencia de uno o dos
términos fuentes y se investiga los regimenes asintóticos (están definidos por los ĺımites
t → −∞ y t → ∞), los cuales matemáticamente se describen por un pasado atractor y
un futuro atractor del sistema dinámico. Por ejemplo, el pasado el régimen asintótico de
la era en que domina la radiación pudiera coincidir con el final de la época inflacionaria y
el futuro asintótico pudiese coincidir con el comienzo de la era en que domina la materia.

En las ecuaciones del campo de Einstein se debe normalizar las variables debido a que
cerca de la singularidad f́ısica inicial las variables t́ıpicamente divergen y los tiempos
futuros tienden a cero. Una de las razones para normalizar con el parámetro de Hubble
es que se puede describir la evolución del modelo cosmológico cerca de una singularidad
inicial donde hay un atractor en el pasado y aparece otro en el futuro. Al realizar esta
normalización en presencia de un Universo que se expande (k = 0) se logra que el espacio
de fase sea compacto, es decir que todos los puntos de la frontera estén dentro del espacio.
De esta forma se garantiza que aparezcan dos conjuntos ĺımites, uno en el pasado y otro en
el futuro, donde las trayectorias dentro del espacio de fase convergen hacia estos conjuntos,
es decir siempre hay un punto del cual se salga y otro al cual se llegue.

Con el objetivo de realizar un estudio cualitativo sobre la estabilidad de las soluciones
alrededor de estos puntos cŕıticos, es necesario obtener una aproximación lineal al sistema
bajo consideración [38] lo que tiene sentido hacerse porque la configuración de un sistema
no lineal en la cercańıa de un punto de equilibrio, es, en general, la misma que en el
sistema lineal propuesto en [39].

Para esta tarea se buscan los valores propios de la matriz Jacobiana del sistema después
de ser evaluada en el punto cŕıtico bajo estudio y se analiza el comportamiento del signo
de las partes reales de los vectores propios de dicha matriz.
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Para realizar el estudio de estabilidad de la forma más general posible, en este eṕıgrafe
no se especifica un determinado modelo de enerǵıa oscura, solamente se exige que el
parámetro de estado de la enerǵıa oscura sea menor que −1/3, de esta forma se garantiza
la expansión acelerada del universo.

Las ecuaciones cosmológicas son, la ecuación de Friedmann (se incluye la situaión más
general en donde se considera curvatura (k 6= 0))

3H2 + 3
k

a2
= ρm + ρφ, (4.5)

la ecuación de Raychaudhuri

2Ḣ − 2
k

a2
= −(pm + ρm + pφ + ρφ). (4.6)

donde el sufijo (φ) lo utilizamos para representar la enerǵıa oscura y el sufijo (m) para
indicar materia oscura.

Las ecuaciones de continuidad para la materia oscura y la enerǵıa oscura son:

ρ̇m + 3H(ρm + pm) = Q, (4.7)

ρ̇φ + 3H(ρφ + pφ) = −Q, (4.8)

donde el punto es la derivada respecto al tiempo cósmico y Q es el termino de interacción
entre la materia oscura y la enerǵıa oscura.

Para el estudio de estabilidad se introducen las siguientes variables adimensionales

x ≡ Ωφ , y ≡ Ωφ + Ωm, (4.9)

Al introducir estas variables la ecuación de Friedmann se rescribe de la forma

y = 1 +
k

a2H2
. (4.10)

Si consideramos que el fluido de fondo es polvo (γ = 1) el sistema que conforman las
ecuaciones (4.5-4.8) puede reescribirse como
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x′ = − Q
3H3 + x[y − 1 + 3ωφ(x− 1)]

y′ = (y − 1)(y + 3ωφx)
(4.11)

La prima en este caṕıtulo representa la derivada respecto a la nueva variable N = ln a,
que esta relacionada con el tiempo cósmico por la relación dN = Hdt. Este sistema de
dos ecuaciones representa un sistema autonomo si Q y ωφ no dependen de forma explicita
de N .

Al considerar que el Universo es plano (k = 0) el sistema (4.11) se complementa con una
condición que permite restringir el espacio de fase. Esta ecuación es

0 ≤ y − x ≤ 1. (4.12)

que es obtenida al requerir que el parámetro de densidad de enerǵıa de la materia sea
positivo y menor que uno.

El primer paso para estudiar la dinámica del sistema (4.11) es encontrar los puntos cŕıticos
(x′, y′) = (0, 0).

Posteriormente uno puede investigar la estabilidad al expandir el sistema (4.11) en una
vecindad de los puntos cŕıticos (x = xc + u y y = yc + v). Al considerar que u y v son
perturbaciones lineales se obtiene que:

(

u′

v′

)

= Λ

(

u
v

)

(4.13)

donde Λ es la matriz de los coeficientes en la expansión. La solución general para la
evolución de las perturbaciones lineales puede ser escrita como

u = u1 exp(λ1N) + u2 exp(λ1N)
v = v1 exp(λ1N) + v2 exp(λ1N)

(4.14)

donde λ1 y λ2 son los autovalores de la matriz Λ. En dependencia de como sean los
autovalores, correspondientes a cada punto cŕıtico, se puede estudiar la estabilidad de
dicho punto cŕıtico.

4.2.1 Modelos con Acoplamiento Mı́nimo.

Cuando estamos en presencia de acoplamiento mı́nimo el término de interacción es cero
Q = 0. El modelo que analizaremos en este caso es el estudiado en el eṕıgrafe (3.1).
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x y Existencia Estabilidad

1 1 Siempre nodo estable si k > 1/
√

2, inestable si 0 < k < 1/
√

3;
de lo contrario es una silla

1
3k2 1 k ≥ 1/

√
3 nodo inestable

1
2k2

1
2k2 siempre nodo estable si 0 < k < 1/

√
2; de lo contrario es una silla

Tabla 4.1: Propiedades de los puntos cŕıticos para la solucion determinada en el eṕıgrafe
(3.1).

Punto λ1 λ2

(1, 1) 1/k2 − 3 1/k2 − 2
( 1

3k2 , 1) 1 3 − 1/k2

( 1
2k2 ,

1
2k2 ) −1 2 − 1/k2

Tabla 4.2: Autovalores para la solucion determinada en el eṕıgrafe (3.1).

En este caso el sistema de ecuaciones (4.11) se puede reescribir como:

x′ = x[y − 1 + 3ωφ(x− 1)]
y′ = (y − 1)(y + 3ωφx)

(4.15)

Para analizar la existencia y la estabilidad de cada uno los puntos cŕıticos del sistema
anterior, es decir los puntos que saisfacen que (x′, y′) = (0, 0), se analiza lo siguiente:

• Para que los puntos existan debe cumplir con 0 ≤ y − x ≤ 1

• En el estudio de estabilidad se determinan los autovalores de cada punto cŕıtico
y se ve que condiciones debe cumplir estos autovalores para que todos sean reales
menores que cero (nodo estable), reales mayores que cero (nodo inestable) y reales
y que uno sea mayor que cero y el otro menor que cero y viceversa (punto silla).

En las tablas (4.1 y 4.2) se puede ver la estabilidad y existencia de los puntos cŕıticos y
los autovalores correspondientes.

El primer punto cŕıtico (1, 1) es un nodo estable para k > 1/
√

2, valores que son fa-
vorecidos por la data observacional (como se explicó en el caṕıtulo anterior). El segundo
punto cŕıtico siempre es inestable, mientras que el tercer punto cŕıtico, para los valors del
parámetro libre k que favorece la data observacional, es un punto silla. El Universo en este
caso se encuentra evolucionando hacia una solución que es dominada por enerǵıa oscura
completamente (primer punto cŕıtico). Debido a que el segundo punto cŕıtico (solución
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x y Existencia Estabilidad

nodo estable si 0 < λ <
√

2 y 0 < α < 3−λ2

λ
;

1 1 siempre punto silla silla si (0 < λ <
√

2

y α < 3−λ2

λ
) ó (

√
2 < λ <

√
3 y

0 < α < 3−λ2

λ
); nodo inestable en otro caso

λ
3
(λ+ α) 1 0 < λ <

√
3 punto silla si 0 < λ <

√
2 y 1

λ
< α < 3−λ2

λ
;

y 0 < α ≤ 3−λ2

λ
nodo inestable en otro caso

nodo estable si
λ2

2
λ2

2
siempre λ >

√
2 y 0 < α < 1

λ
; nodo inestable si 0 < λ <

√
2

y α > 1
λ
; punto silla en otro caso

Tabla 4.5: Propiedades de los puntos cŕıticos para la solucion determinada en el eṕıgrafe
(3.2.2).

Punto (x, y) λ1 λ2

(1, 1) λ2 − 2 λ2 + λα− 3
(λ(λ+ α)/3, 1) 3 − λ2 − λα 1 − λα

(λ
2

2
, λ

2

2
) λα− 1 2 − λ2

Tabla 4.6: Autovalores para la solucion determinada en el eṕıgrafe (3.2.2).

En la tabla (4.3) se muestran las propiedades de los puntos cŕıticos (incluyendo existencia
y estabilidad) para la solucion determinada en el eṕıgrafe (3.2.1), mientras que en la tabla
(4.4) se presentan los correspondientes autovalores. En este caso χ = χ0 exp(−λφ/2). El
primer punto cŕıtico (1, 1) es un atractor estable dominado por enerǵıa oscura (Ωde = 1),
mientras que la solución escalante (Ωm/Ωφ = 6/λ2 − 1) que se obtiene para el segundo
punto cŕıtico (λ2/6, 1) es siempre inestable. En la figura (4.1) el espacio de fase es
mostrado. En esta gráfica todas las trayectorias en el plano de fase (x, y), divergen desde
un punto inestable (solución escalante dominada por materia) hasta converger hacia una
solución atractora dominada por enerǵıa oscura. Las propiedades de los puntos cŕıticos
y su correspondientes autovalores para la solución que se obtuvo en el eṕıgrafe (3.2.2),
donde χ = χ0 exp(αφ), son presentadas en las tablas (4.5) y (4.6) respectivamente. Se
puede apreciar que cuando los párametros libres se encuentran en el rango (0 ≤ λ < 1) y
(0 < α < 3/λ−λ), la solución dominada por la enerǵıa oscura (primer punto cŕıtico (1, 1))
es siempre un nodo estable. La solución escalante (segundo punto cŕıtico (λ(λ+α)/3), 1)
pudiera ser una silla si (1/λ < α < 3/λ − λ) de lo contrario seŕıa un nodo inestable.
En el diagrama de fase para este caso es mostrado en la figura (4.2) para los valores de
(λ = 0.3 y α = 5.7). Aqui se aprecia que todas las trayectorias en esta diagrama de
fase divergen desde un nodo inestable (tercer punto cŕıtico (λ2/2, λ2/2) el cual es una
solución dominada por enerǵıa oscura con curvatura) y convergen hacia una solución
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x y Existencia Estabilidad

1 1 Siempre nodo estable si 0 < λ <
√

2; silla si
√

2 < λ <
√

6;
de lo contrario nodo inestable

λ2

6
1 0 < λ ≤

√
6 nodo inestable

λ2

2
λ2

2
siempre punto silla si 0 < λ <

√
2; nodo estable si λ >

√
2

Tabla 4.3: Propiedades de los puntos cŕıticos para la solucion determinada en el eṕıgrafe
(3.2.1).

Punto (x, y) λ1 λ2

(1, 1) λ2−6
2

λ2 − 2

(λ
2

6
, 1) 3 − λ2

2
λ2+2

2

(λ
2

2
, λ

2

2
) −λ2+2

2
2 − λ2

Tabla 4.4: Autovalores para la solucion determinada en el eṕıgrafe (3.2.1).

escalante dominada por enerǵıa oscura) es un punto silla, en la epoca actual nuestro Uni-
verso solo estará un determinado tiempo en la evolución cósmica, por lo que el problema
de la coincidencia solamente se logra suavizar.

4.2.2 Modelos con Acoplamiento No Mı́nimo.

En los Modelos en donde existe acoplamiento no mı́nimo entre la materia oscura y la
enerǵıa oscura el término de interacción entre estos componentes es diferente de cero
(Q 6= 0).

En los Modelos con Quintaesencia se estudiaron las soluciones para tres formas diferentes
del término de interacción (Q).

Modelos con Quintaesencia. Simple y Doble Potencial Exponencial.

En este sección se considera que el sistema es autonomo, para esto seleccionamos el término
de interacción como Q = −(lnχ)′ρm. Esta selección del término de interacción contempla
muchas situaciones, entre ellas las soluciones que se encontraron en los eṕıgrafes (3.2.1 y
3.2.2) y además permite reescribir el sistema de ecuaciones (4.11) como

x′ = (y − x)(lnχ)′ + x[y − 1 + 3ωφ(x− 1)]
y′ = (y − 1)(y + 3ωφx)

(4.16)
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Figura 4.1: Diagrama de fase para la solucion determinada en el eṕıgrafe (3.2.1)(γ = 1,
λ = 0.3). El punto cŕıtico (1, 1) es estable. El régimen escalante (punto (0.015, 1)) es un
nodo inestable. El punto silla esta localizado en (0.045, 0.045).
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Figura 4.2: Diagrama de fase para la solucion determinada en el eṕıgrafe (γ = 1, λ = 0.3).
Diagrama de fase para la solucion determinada en el eṕıgrafe (3.2.2)((γ = 1, λ = 0.3 y
α = 5.7). El punto cŕıtico (1, 1) es estable. El régimen escalante (punto (0.6, 1)) es una
silla, mientras que el punto (0.045, 0.045) es un nodo inestable.

estable atractora dominada por enerǵıa oscura (primer punto cŕıtico) y son repelidas por
un punto silla (segundo punto cŕıtico, solución escalante dominada por materia).
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x y Existencia Estabilidad

nodo estable si 0 < λ <
√

2 y

1 1 siempre W > (3 + λ2)/(
√

6λ); nodo inestable si

λ >
√

2 y W < (3 + λ2)/(
√

6λ)
punto silla en otro caso

λ
9
(3λ−

√
6W ) 1 si se cumple que nodo inestable

3λ2−9√
6λ

≤ W ≤
√

2
3
λ

nodo estable si
λ2

2
λ2

2
siempre λ >

√
2 y W > −

√

3
2
/λ;

punto silla en otro caso

Tabla 4.7: Propiedades de los puntos cŕıticos para la solucion determinada en el eṕıgrafe
(3.2.3).

Punto (x, y) λ1 λ2

(1, 1) λ2 − 2 λ2 + λW
√

2
3
− 3

(λ
9
(3λ−

√
6W ), 1) 3 − λ2 + λW

√

2
3

1 + λW
√

2
3

(λ
2

2
, λ

2

2
) λW

√

2
3
− 1 2 − λ2

Tabla 4.8: Autovalores para la solucion determinada en el eṕıgrafe (3.2.3).

Estos resultados, que es de forma génerica para ambas soluciones, muestran como la
solución escalante (dominada por enerǵıa oscura) con 0 < Ωm/Ωφ ≤ 1 no siempre es un
punto cŕıtico del sistema autonomo (4.11), por lo que el problema de la coinicidencia no
se puede eliminar.

Modelos con Quintaesencia. Solución para la Teoŕıa de Brans-Dicke.

En el eṕıgrafe 3.2.3 se estudio esta solución. En este caso se tiene que Q/(3H3) =
√

2/3Wλ.

Un estudio de existencia y estabilidad se puede apreciar en las Tabla (4.7), mientras que
los autovalores se pressentan en la Tabla (4.8). De el estudio presentado en estas tablas se
puede apreciar que al igual que en los soluciones anteriores la solcuión escalante dominada
por eneŕıa oscura (segundo punto cŕıtico (λ

9
[3λ −

√
6W ], 1)) es un nodo inestable por lo

que tampoco se puede eliminar el Problema de la Coincidencia.



Análisis de Estabilidad de las Soluciones 61

4.3 Problema de la Coincidencia

El problema de la Coincidencia se puede resumir en la siguiente pregunta ¿Por qué las
densidades de enerǵıa de la materia oscura y de la enerǵıa oscura son del mismo orden
precisamente en el presente? Para poder resolver este problema es recomendable estudiar
la dinámica de la siguiente variable[25]

r =
ρm
ρφ

=
Ωm

Ωφ

, (4.17)

respecto al tiempo conforme N ≡ ln a, que como se dijo antes esta relacionado con el
tiempo cósmico t a través de dN = Hdt.

La ecuación general que da la evolución para la variable adimensional r se puede escribir
como

r′ = f(r), (4.18)

donde la prima es derivada respecto a la variable N y f es una función arbitraria (al
menos de clase C1) de r.

La función f(r) de forma general, utilizando las ecuaciones (4.5-4.8) se puede escribbir
como

r′ =
Q

ρφH
(r + 1) + 3r(ωφ − ωm). (4.19)

Para estudiar los puntos de equilibrio de 4.18 (f(req) = 0) se debe expandir f(r) en la
vecindad de cada uno de estos puntos; (r = req + εi), tal que si consideramos los términos
lineales de la perturbación εi se tiene que f(r) = (df/dr)req

εi + O(εi) y esto implica que
ε′i = (df/dr)req

εi. Esta última ecuación puede ser integrada y obtener como evoluciona la
perturbación

εi = ε0i exp
[

(df/dr)req
N
]

, (4.20)

donde ε0i es una constante de integración arbitraria. De la expresión anterior (4.20) se
puede apreciar que solamente las perturbaciones que cumplen con

(df/dr)req
< 0, (4.21)

decrecen respecto a N y por tanto el correspondiente punto de equilibrio es estable. El
problema de coincidencia se puede evitar si se logra que el punto de equilibrio que cumpla
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con ρm/ρφ = req ≤ 1 (punto de equilibrio que representa una solución escalante dominada
por enerǵıa oscura) es estable.

Para el modelo donde existe un mı́nimo acoplamiento entre la materia oscura y la enerǵıa
fŕıa (solución obtenida en el eṕıgrafe 3.1) la función f tiene la forma

r′ = 3rωφ. (4.22)

En este caso se obtiene que solamente existe un punto cŕıtico que es para r = 0 y siempre
va a ser estable ya que el parámetro de estado para la enerǵıa oscura siemrpre es negativo.
En este modelo no se obtiene una solución escalante dominada por enerǵıa oscura, es decir
el Problema de Coincidencia no se puede evitar.

En las soluciones que se obtuviero en el eṕıgrafe (3.2.1) y (3.2.2) el parámetro de estado
de la enerǵıa oscura se puede escribir en función de la variable r de la forma ωφ =
−1 + λ2(r + 1)/3 y con este y la forma del término de interacción se puede obtener que
la función f tiene la siguiente forma

f(r) = r[(λ2 − δ)(r + 1) − 3], (4.23)

donde δ = (lnX)′ = nλ. Para el caso de la solución del eṕıgrafe (3.2.1) δ = −λ2/2,
mientras que para la solución del eṕıgrafe (3.2.2) δ = λα. Es fácil obtener, que en ambos
casos solamente el punto de equilibrio estable es req0 = 0, por lo que la solución que es
dominada por enerǵıa oscura no va a ser estable. Esto quiere decir que en ambos casos el
problema de la coincidencia no se puede evitar.

En las solución obtenida en la Teoŕıa de Brans-Dicke (eṕıgrafe 3.2.3) la función f toma
la forma

f(r) = r
[

√

2/3Wλ(r + 1) − 3 + λ2(r + 1)
]

. (4.24)

En este modelo se obtiene los mismos resultados que para los casos explicados anterior-
mente, es decir el punto estable no es la solución escalante dominada por enerǵıa oscura,
esta solućıon es inestable por lo que tampoco se puede resolver el Problema de la Coinci-
dencia.

4.4 Conclusiones Parciales

El modelo que se pronone del Universo en donde existe un acoplamiento mı́nimo entre la
enerǵıa oscura y la materia oscura no resuelve el Problema de la Coincidencia, lo que esta
acorde con lo planteado en la bibliograf́ıa [25, 26].

El estudio de estabilidad de los modelos que se presentan con acoplamiento no mı́nimo
dio como resultado que no se pueda resolver el Problema de Coincidencia.
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Sin embargo, para el caso de aquellos modelos que tenga una forma adecuada la función
de acoplamiento entre los componentes de enerǵıa oscura y de materia oscura, es posible
resolver dicho problema. La función de acoplamiento debe permitir que la función f(r)
tenga un punto de equilibrio req = ρm/ρφ ≤ 1 (el cual representa la solución escalante
dominada por enerǵıa oscura) el cual sea un punto estable. Los modelos del Universo que
cumplan con dicha condición esatarán libres del Porblema de la Coincidencia, debido a
que al sistema dinámico, que representan las ecuaciones del campo cosmológicas, siempre
evoluciona hacia la solución estable y permanecera en está un largo peŕıodo de tiempo en
la evolución cósmica.



Caṕıtulo 5

MODELOS DE ENERGÍA

FANTASMA.

En los estudios recientes donde se combinan las observaciones astrof́ısicas (de las Su-
pernovas tipo Ia y el fluido de fondo cósmico de microonda) se ha favorecido la exis-
tencia de un componente de enerǵıa oscura con un parámetro de estado supernegativo,
ωφ = pφ/ρφ < −1 [12, 13]. Las fuentes de enerǵıa que tienen esta caracteŕıstica violan la
condición de enerǵıa nula dominante (CEND). Esta bien establecido que las fuentes de
enerǵıa que violan la CEND tienen el parámetro de estado menor que menos uno [40].
Estas fuentes de enerǵıa están siendo investigadas como posibles candidatos de la enerǵıa
oscura y son llamadas componentes “fantasmas”[41, 42]1. Debido a que la CEND pre-
supone inestabilidades en el vaćıo los modelos fantasmas son intŕınsecamente inestables2.
Sin embargo, si consideramos a los campos fantasmas como una teoŕıa efectiva, o sea,
el limite de bajas enerǵıas de una teoŕıa fundamental, por ejemplo, la teoŕıa de cuerdas,
estos modelos podŕıa ser fenológicamente viables [40].

El argumento más usado para considerar la materia fantasma a un nivel clásico es unirla
con la idea de que ha grandes distancias la teoŕıa del campo de la part́ıculas fantasmas es
una teoŕıa efectiva[45].

Algunos autores han encontrado que las bajas enerǵıas efectivas fantasmas pudieran ori-
ginarse desde una nueva f́ısica más alla de la escala de TeV3. Una posibilidad, también
vista en [45], es que las excitaciones masivas de los campos fantasma pudieran venir
de un sector de poca enerǵıa que esta oculto totalmente del modelo estándar de las
part́ıculas, a excepción de un acoplamiento gravitacional. En nuestra opinión los mundos
branas, en particular los escenarios de Randall-Sundrum tipo 2, pudiera ser la fuente

1Que las fuentes que violan la CEND puedan existir se ha discutido décadas atras, por ejemplo ver
en la referencia [43].

2Otra caracteŕıstica muy extraña de los universos con enerǵıa fantasmas es que su entroṕıa es
negativa[44].

3La teoŕıa de cuerda, en particular, no es recomendable como una fuente posible para los fantasmas[45].

64



Modelos de Enerǵıa Fantasma 65

de las enerǵıas fantasmas que se requieren para llevar a cabo la hipótesis de la enerǵıa
fantasma. Además, la naturaleza fantasma de la enerǵıa oscura se puede reinterpretar
como que sale del apantallamiento dinámico de la constante cosmológica de las branas
en los modelos de mundos branas de Dvali-Gabadadze-Porrati en donde se considera una
constante cosmológica estándar en la brana[46]. Sin embargo, como no existe ningún
consenso sobre este tema, en este caṕıtulo, como en la mayoŕıa de los trabajos sobre
campos fantasmas, la motivación para investigar un modelo con fluido fantasma como
enerǵıa oscura es debida, básicamente, por la data observacional.

Al número de caracteŕısticas indeseadas de un componente fantasma, como el parámetro
de estado “supernegativo”, se agrega el hecho de que su densidad de la enerǵıa aumenta
hasta el infinito en un tiempo finito en el futuro en un universo que se expande4. Esta car-
acteŕıstica conduce a una singularidad catastrófica en el futuro, denominada Big Rip[48],
la cual esta caracterizada por divergencias del factor de escala, el parámetro de Hubble
y la derivada respecto del tiempo del parámetro de Hubble[49]. Aunque otros tipos de
singularidad pueden ocurrir en escenarios con enerǵıa fantasma, en este caṕıtulo estamos
interesados solamente en la singularidad del tipo Big Rip5. Esta singularidad está deter-
minada porque en un tiempo finito en el futuro, es decir un tiempo el cual se alcanza,
la enerǵıa fantasma separara todas las estructuras existentes, incluyendo las moléculas,
los átomos y los núcleos. Para evitar este acontecimiento catastrófico se han propuestos
algunos modelos. En [51], por ejemplo, se ha demostrado que esta singularidad en el
futuro de la evolución cósmica puede ser evitada o, por lo menos, ser hecha más suave si
los efectos cuánticos se toman en consideración.

Otra manera de evitar la singularidad de Big Rip es tener en cuenta una interacción con-
veniente entre la enerǵıa fantasma y el fluido de fondo[55, 56]. Si existe transferencia de la
enerǵıa del componente fantasma al fluido de fondo, es posible acomodar los parámetros
libres del modelo, de una manera tal que las densidades de la enerǵıa de ambos compo-
nentes disminuyan con el tiempo y de esta forma se pueda evitar el Big-Rip[55]. Modelos
con interacción entre el componente fantasma y el componente de materia del fluido de
fondo también tienen presente el problema de la coincidencia[55, 56, 58].

Aunque las pruebas experimentales en el Sistema Solar han impuesto severas restricciones
ante la posibilidad de un acoplamiento no mı́nimo entre la enerǵıa oscura y los fluidos
de materia ordinaria [59], debido a la naturaleza desconocida de la materia oscura, la
cual forma parte mayoritaria del fluido de fondo, es posible tener interacciones (no grav-
itacionales) adicionales entre el componente de enerǵıa oscura y la materia oscura, sin
conflicto con los datos experimentales. Sin embargo, la idea de fijar una interacción no
mı́nima entre el materia oscura y la enerǵıa oscura se debe tomar con precaución.

En este caṕıtulo se estudian modelos con interacción entre enerǵıa fantasma, como compo-

4Varios modelos alternativos con enerǵıa fantasmas para explicar este parámetro de estado superneg-
ativo se han considerado también. Vea, por ejemplo, las referencias[47].

5Un estudio detallado de los tipos de singularidad que pueden ocurrir en escenarios con enerǵıa fan-
tasma ha sido estudiado en la referencia[50].
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nente de la enerǵıa oscura, y los componentes del fluido de fondo, en este caso se considera
materia oscura fŕıa. Diferente al acercamiento fenomenológico que se sigue en otros ca-
sos para especificar el término de la interacción (véase las referencias [55, 56]), nosotros
comenzaremos con una forma general para la interacción, la cual es inspirada en la Teoŕıa
Escalar-Tensorial de la gravedad.

Se considera el elemento de ĺınea de Friedmann-Robertson-Walker (ver 1.2) y un Univer-
so que contiene una mezcla de dos fluidos que interactuan entre śı: el fluido de fondo
(principalmente materia oscura) con una ecuación lineal para el parámetro de estado
pm = ωmρm (ωm constante) y el fluido fantasma con una ecuación para el parámetro de
estado ωφ = pφ/ρφ < −1.

Adicionalmente en este caṕıtulo se utiliza la variable adimensional r que se define como
la razón entre las densidades de enerǵıa de la materia oscura y la enerǵıa oscura

r = ρm/ρφ = Ωm/Ωφ. (5.1)

Esto es una parametrización util y además se asume que r se puede escribir en función
del factor de escala.

La acción escogida en este caṕıtulo, basada en la Teoria Escala-Tensorial, tiene la forma

S =

∫

d4x
√

|g|
{

R

2
− 1

2
(∇φ)2 + χ−2(φ)Lm(µ,∇µ, χ−1gab)

}

(5.2)

donde χ−2(φ) es la función de acoplamiento, Lm es el lagrangeano de la materia y µ es
un nombre colectivo para los grados de libertad materiales. De esta acción y utilizando
el elemento de ĺınea se pueden derivar la ecuación de Friedmann:

3H2 + 3
k

a2
= ρm + ρφ, (5.3)

y la ecuación de Raychaudhuri:

2Ḣ − 2
k

a2
= − (pm + ρm + pφ + ρφ) . (5.4)

Debido a que existe un intercambio de enerǵıa entre la enerǵıa fantasma y el fluido de
fondo, la enerǵıa no se conserva por separado para cada uno de estos componentes. Esto
se aprecia en las ecuaciones de continuidad para cada uno de estos componentes:

ρ̇m + 3H(ρm + pm) = Q, (5.5)

ρ̇φ + 3H(ρφ + pφ) = −Q, (5.6)

donde el punto representa la derivada respecto al tiempo cósmico y Q es el término de
interacción. Note que la densidad total de enerǵıa ρT = ρm + ρφ (pT = pm + pφ) se
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conserva:ρ̇T + 3H(ρT + pT ) = 0. La forma general del término de interacción puede ser
escrita en la siguiente forma

Q = ρmH

[

a
d(ln χ̄)

da

]

, (5.7)

aqúı hemos introducido la siguiente notación χ̄(a) ≡ χ(a)(3ωm−1)/2 y se asume que el
acoplamiento se puede escribir como función del factor de escala6.

Si comparamos este término de interacción con otros que aparecen en la bibliograf́ıa, uno
puede obtener la forma funcional de la función de acoplamiento χ̄ en cada caso. En
[55], por ejemplo, Q = 3Hc2(ρm + ρφ) = 3c2Hρm(r + 1)/r, donde c2 es la velocidad de
transferencia. Si se compara esta expresión con 5.7 se obtiene la siguiente función de
acoplamiento:

χ̄(a) = χ̄0 exp

[

3

∫

da

a

(

r + 1

r

)

c2
]

, (5.8)

donde χ̄0 es una constante de integración. Si c2 = c20 = cte. y r = r0 = cte. entonces
χ̄ = χ̄0a

3c2
0
(r0+1)/r0 .

Otro ejemplo que se encuentra en la bibliograf́ıa del término de interacción es el empleado
en [56]: Q = δHρm, donde δ es una función de acoplamiento adimensional. Este término
de interacción se relaciona con la función de acoplamiento (5.7) de la siguiente forma:

χ̄(a) = χ̄0 exp

[
∫

da

a
δ

]

, (5.9)

y para δ = δ0 = cte. se tiene que χ̄ = χ̄0a
δ0 .

Al sustituir la ecuación (5.7) en (5.5) entonces esta última ecuación puede ser integrada
y se obtiene:

ρm = ρm,0a
−3(ωm+1)χ̄, (5.10)

donde ρm,0 es una constante de integración.

Si se considera la expresión (5.1) entonces la ecuación (5.6) se puede reescribir como
ρ̇φ/ρφ + 3(ωφ − 1)H = (3ωm − 1)rH

[

a d
(

lnχ−1/2
)

/da
]

y al integrarla se obtiene que:

ρφ = ρφ,0 exp

{

−
∫

da

a

[

1 + 3ωφ + ra
d(ln χ̄)

da

]}

, (5.11)

donde ρφ,0 es otra constate de integración. Usando las ecuaciones (5.10), (5.1) y (5.11) se
obtiene una ecuación que relaciona la función de acoplamiento χ̄, el parámetro de estado
para la enerǵıa fantasma ωφ y la variable r:

χ̄(a) = χ̄0

(

r

r + 1

)

exp

[

−3

∫

da

a

(

ωφ − ωm
r + 1

)]

, (5.12)

6Para campos escalares fantasma ha sido estudiada en [68]
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donde, como antes, χ̄0 es una constante de integración.

Debido a que las ecuaciones anteriores (5.11) y (5.12) dependen de ωφ = ωφ(a) y r =
r(a), si se conocen la forma que poseen dichos parámetros entonces se puede describir
la dinámica del modelo en estudio. Es decir que conociendo estas magnitudes se puede,
mediante integración, obtener de la ecuación (5.12), la función de acoplamiento χ̄(a) y
seguidamente la densidad de enerǵıa de la materia (ρm) de la ecuación (5.10). La densidad
de enerǵıa del campo fantasma se puede obtener a partir de las ecuaciones (5.1) y (5.11).

La ecuación de Friedmann (5.3) puede ser reescrita de la siguiente forma:

3H2 = ρφ(1 + r) = ρm

(

r + 1

r

)

, (5.13)

por lo que el parámetro de Hubble (H = H(a)) también se puede determinar.

De la ecuación (5.13) se obtine que el parámetro adimensional de densidad de enerǵıa
Ωi = ρi/3H

2 se puede escribir solamente en función de r

Ωφ =
1

1 + r
, Ωm =

r

1 + r
. (5.14)

Es útil reescribir la ecuación (5.12) en términos de Ωφ y de ωφ:

χ̄(a) = χ̄0(1 − Ωφ) exp

[

−3

∫

da

a
(ωφ − ωm) Ωφ

]

, (5.15)

Otro parámetro cosmológico importante es el parámetro de desaceleración (q = −(1 +
Ḣ/H2)) el cual se esta dado por la expresión:

q = −1 +
3

2

[

ωφ + 1 + (ωm + 1)r

1 + r

]

, (5.16)

ó en términos de Ωφ y de ωφ:

q =
1

2
[1 + 3ωm + (ωφ − ωm)Ωφ] . (5.17)

5.1 Modelos Libres del Problema de Coincidencia.

En esta sección se estudiaran modelos con una apropiada función de acoplamiento χ̄ que
hacen posible resolver el Problema de la Coincidencia. Se estudiaran separadamente dos
casos: En uno el parámetro de estado es constante y en el otro el parámetro de estado es
dinámico. Estos modelos fueron publicados en [57]

Como se explico en el caṕıtulo anterior para resolver el Problema de Coincidencia debemos
determinar la función f(r) y lograr que el punto de equilibrio (requilibrio) (menor o próximo
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a uno, es decir que represente una solución escalante, o sea, que exista una razón entre
las densidades de enerǵıa de la materia oscura y la enerǵıa oscura) sea un punto estable.

Esta función f(r) para los modelos con enerǵıa fantasma que se proponen en este caṕıtulo,
tiene la forma:

f(r) = r
[

(lnχ)′ (r + 1) + 3 (ωφ − ωm)
]

. (5.18)

5.1.1 Modelo con el Parámetro de Estado Constante.

En este modelo se considera que la ecuación del parámetro de estado tiene la forma
ωφ = ωφ,0 = −(1 + ξ2), donde ξ2 pertenece a los reales positivo.

En aras de tener un modelo donde los parámetros adimensionales de densidad de enerǵıa
de materia (Ωm) y de enerǵıa fantasma (Ωφ) no se anulen durante un largo peŕıodo de
tiempo cosmológico (no existe el problema de la coincidencia) y que al mismo tiempo
sea consistente con la evidencia observacional, donde en un pasado reciente hubo una
época dominada por materia oscura con expansión desacelerada (corrimientos al rojo
z ∼ 0.39[13]), se selecciona el siguiente parámetro adimensional de densidad de enerǵıa
de la enerǵıa fantasma:

Ωφ =
m

B

(

am

am + C

)

, (5.19)

donde m, B y C son parámetros constantes arbitrarios.

El parámetro adimensional de la densidad de enerǵıa de la enerǵıa fantasma puede ser
ajustado a la data observacional debido a una selección adecuada de los parámetrosm, B y
C. El parámetro m controla la curvatura de la curva de Ωφ(z), mientras que el parámetro
C controla el punto en el cual Ωφ(zeq) = Ωm(zeq). En este sentido este modelo pudiera
ser un modelo que reproduce bien la data observacional si se seleccionan adecuadamente
los parámetros libres.

Si la expresión (5.19) se sustituye en (5.15) se tiene que:

χ̄(a) = χ̄0

(

1 − m
B

)

am + C

(am + C)1−3(ωm−ωφ,0)/B
. (5.20)

En términos de r la función (ln χ̄)′ se puede escribir como

(ln χ̄)′ =
B −m

r
− nB

r + 1
, (5.21)

está expresión es útil cuando estudiamos el Problema de la Coincidencia.

Con las ecuaciones (5.1) y (5.10) se pueden determinar las expresiones para las densidades
de enerǵıa de la materia oscura y la enerǵıa fantasma, respectivamente:

ρm = ρ̄m,0a
−3

(

1 − m
B

)

am + C

(am + C)1−3(ωm−ωφ,0)/B
, (5.22)
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donde ρ̄m,0 ≡ ρm,0χ̄0/B y

ρφ = ρ̄φ,0a
m−3(am + C)1−3(ωm−ωφ,0)/B, (5.23)

donde ρ̄φ,0 ≡ mρφ,0χ̄0/B.

Al analizar las expresiones para la densidades de enerǵıa de materia oscura y de enerǵıa
fantasma se puede ver que si se cumple que: ωm − B/m ≤ ωφ,0 < −1, no existe la
singularidad del Big Rip en el futuro de la evolución cósmica. Para grandes valores del
factor de escala, en un Universo que se expande (a >> 1), se tiene lo siguiente

ρφ ∝ rρm ∝ a−3(1−m(ωm−ωφ,0)/B), (5.24)

es decir que la densidad de enerǵıa del componente fantasma esta acotada hacia el futuro.
En particular la densidad de enerǵıa de la enerǵıa fantasma es una función decreciente
del factor de escala. Notemos que el valor del parámetro r = ωm/ωφ se acerca a un valor
constante (B/m) − 1, tal que ωm y ωφ son simultaneamente no despreciables.

Para mostrar que una solución con r = r0 = (B/m) − 1 . 1 es estable, es útil escribir
expĺıcitamente la función f(r) (ver ecuación 5.18) para este caso. La función f(r) en este
modelo es:

f(r) = m

(

B −m

m
− r

)

. (5.25)

La ecuación (4.18) tiene solamente un punto de equilibrio: req = (B/m)− 1. La derivada
de f(r) respecto a r, evaluada en el punto de equilibrio req, es igual a −m. Siempre que
el parámetro libre m sea positivo (como se requiere por la evidencia observacional) este
punto de equilibrio es estable y nuestro modelo esta libre del Problema de Coincidencia
(como se explico en el Caṕıtulo anterior).

En la Figura (5.1) se muestra el comportamiento del parámetro adimensional de densidad
de enerǵıa de la materia oscura y la enerǵıa fantasma aśı como la función r como función
del corrimiento al rojo. Se emplearon los siguientes valores de los parámetros libres:
m = 12, ωφ,0 = −1.1, C = 0.02 y para que el parámetro adimensional de densidad
de enerǵıa de la enerǵıa fantasma en el presente tenga el valor de Ωφ(z = 0) = 0.7 se
selecciono una expresión para el parámetro libre B, tal que B = 1.25[m/(1 + C)]. En
consecuencia para los valores seleccionados de m, B y C, tal que B/m = 1.22, los valores
del parámetro de estado que sean mayores que −1.22 (como ωφ,0 = −1.1) implicaran que
el modelo esta libre de la singularidad del Big Rip(ver la condición obtenida anteriormente
de −B/m ≤ ωφ,0 en la ecuación 5.24).

En la Figura (5.2) se plotea el parámetro de desaceleración q contra el corrimiento al rojo
para tres valores diferentes del parámetro de estado (ωφ,0 = −1.1,−1.5,−3 respectiva-
mente). Un resultado interesante es que la solución sin Big Rip (ĺınea continua gruesa) es
preferida por la evidencia observacional, debido a que un análisis de la data proveniente de
las Supernovas Tipo Ia [69] que es independiente del modelo, el valor medio del presente
valor del parámetro de desaceleración es < q(z = 0) >≈ −0.76.
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Figura 5.1: Gráfica del parámetro adimensional de densidad de enerǵıa de la materia
oscura (ĺınea discontinua) y de enerǵıa fantasma (ĺınea continua fina) y la variable r
(ĺınea continua gruesa) respecto al corrimiento al rojo. Los valores de los parámetros
libres seleccionados son m = 12, ωφ,0 = −1.1, C = 0.02 y B = 14.07. Se puede ver como
la variable r se acerca a un valor constante para valores negativos de z (tiempo futuro),
lo que significa que el sistema se encuentra en un estado escalante un largo peŕıodo de
tiempo. Para z ∼ 0.33 los dos parámetros adimensionales de densidades se igualan y
desde entonces domina el componente de enerǵıa fantasma.

La forma de como evitar el Problema de la Coincidencia también se puede ver en la
Figura (5.1). La razón entre el parámetro adimensional de enerǵıa de la materia oscura y
la enerǵıa fantasma se acerca a un valor constante (r0 = 0.23) para valores negativos del
corrimiento al rojo.

5.1.2 Modelo con el Parámetro de Estado Dinámico.

En esta sección se considerará un parámetro de estado dinámico (ωφ = ωφ(a)) y además se
escogen las funciones de entrada (Ωφ y ωφ). En este caso se sigue el mismo procedimiento
que se explico en el epigrafe anterior para obtener la dinámica del modelo, es decir obtener
las distintas magnitudes cosmológicas. Para garantizar que se evite el problema de la
coinicdencia se escoge que el parámetro adimensional de densidad de enerǵıa de la enerǵıa
fantasma sea de la forma:

Ωφ(a) =
αam

am + β
, (5.26)

donde m, α y β son parámetros libres no negativos. Para seleccionar la función ωφ(a)
se toma en consideración los siguientes aspectos: 1) para altos corrimientos al rojo y
hasta recientemente (z ' 0.39 ± 0.03[13]) la expansión del Universo fue desacelerada
(el parámetro q es positivo) y desde entonces la expansión es acelerada (q tiene valores
negativos), 2) para corrimientos al rojo negativos el parámetro de estado se acerca a un



Modelos de Enerǵıa Fantasma 72

0 0.2 0.4 0.6 0.8 1
Corrimiento al Rojo

-2

-1.5

-1

-0.5

0

0.5

1

P
a
r
a
m
e
t
r
o
d
e

d
e
s
a
c
e
l
e
r
a
c
i
o
n

Figura 5.2: El parámetro de desaceleración es ploteado como función del corrimiento al
rojo para tres valores diferentes del parámetro de estado (ωφ,0 = −1.1 (ĺınea continua
gruesa),ωφ,0 = −1.5(ĺınea continua fina),ωφ,0 = −3(ĺınea discontinua)).

valor constante menor que menos uno (ωφ,0 = −(1 + ξ2), donde ξ2 pertenece a los reales
positivos). Se considera adicionalemente que el producto (ωφ − ωm)Ωφ no debe ser una
función compleja para que la integral en la ecuación (5.15) pueda ser obtenida de forma
anaĺıtica. Una función que cumpla con estos requisitos tiene la forma:

ωφ(a) = ωm + ωφ,0
(am + β)(am − δ)

a2m + δ
, (5.27)

donde δ es otro parámetro libre. El parmetro m controla la curvatura de la función
del parámetro adimensional de desnidad de enerǵıa (Ωφ(z)), mientras que δ controla el
punto donde se igualan los parámetros adimensionales de densidad de enerǵıa de los dos
componentes que tenemos en nuestro modelo.

Al seleccionar estas funcionas y repitiendo el mismo procedimiento que se explico en la
sección anterior se puede obtener que la función de acoplamiento tiene la forma:

χ̄(a) = χ̄0(1 − Ωφ)
(

a2m + δ
)−3αωφ,0/(2m)

exp

[

3α
√
δ

m
arctan

(

am√
δ

)

]

. (5.28)

Las densidades de enerǵıa para los componentes de materia oscura y de enerǵıa fantasma
son:

ρm(a) = ρm,0

[

(1 − α)am + β

(am + β)a3(ωm+1)

]

(a2m + δ)−
3αωφ,0

2m exp

[

3α
√
δ

m
arctan

(

am√
δ

)

]

, (5.29)

ρφ(a) = ρφ,0

[

am−3(ωm+1)

am + β

]

(a2m + δ)−
3αωφ,0

2m exp

[

3α
√
δ

m
arctan

(

am√
δ

)

]

, (5.30)
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donde ρφ,0 = αρm,0.

En un Universo que se expande cuando el factor de escala es mucho mayor que uno la
densidad de enerǵıa de la enerǵıa fantasma es proporcional al término a−3(ωm+1+αωφ,0).
Esto significa que siempre que se cumpla que −(1 + ωm)/α ≤ ωφ,0(< −1) la densidad de
enerǵıa para el componente fantasma esta limitida en el futuro y por tanto en el tiempo
futuro de la evolución cósmica no existe la singularidad del Big Rip para este modelo.

En la Figura 5.3 se plotea la densidad de enerǵıa de la materia oscura (gráfica supe-
rior), la densidad de enerǵıa del componente fantasma (gráfica intermedia) y el parámetro
de Hubble (grfica inferior) contra el corrimiento al rojo. Estas gráficas son para tres
valores diferentes del parámetro de estado (ωφ,0 : −1.1(ĺınea contiua gruesa),−1.5(ĺınea
continua),−3(ĺınea discontinua)). Los valores de los parámetros libres seleccionados son:
m = 12, β = 0.03 y δ = 3 × 10−4. Si se asume que Ωm(z = 0) = 0.3[70] se puede
encontrar la siguiente relación α = 0.7(β + 1). Para que nuestro modelo este libre de la
singularidad del Big Rip se debe cumplir que ωφ,0 ≥ −1/α = −1.387, de aqui se puede
apreciar que para los valores seleccionados solamente cuando ωφ,0 = −1.1 (gráfica con
ĺıneas continuas gruesas) se evita el Big Rip. Para los mismos valores de los parámetros
libres, que anteriormente se seleccionaron, se puede apreciar que el término de interacción
es negativo en un peŕıodo de tiempo en el pasado (ver Figura (5.4)) lo que significa
que la materia oscura le trasfiere enerǵıa al componente de enerǵıa oscura. Para altos
corrimientos al rojo la evolución se realiza sin interacción. Se puede notar que solamente
el caso libre de Big Rip (ωφ,0 = −1.1) el término de interacción esta limitado en el futuro.

En este modelo la transición desde una época de expansión desacelerada, en el pasado,
hacia una época de expansión acelerada, en el presente, ocurre para z ∼ 0.4 (ver Figura
5.5). En el presente el valor del parámetro de desaceleración se aproxima a (q(z = 0) ≈
0.8), por lo tanto acorde con la data observacional [69](q(z = 0) ≈ −0.76) y al igual que
en el modelo anterior, en donde el parámetro de estado era constante, en este modelo se
favorece a la solución que no presenta Big Rip (curva de ĺıne continua gruesa), es decir
cuando el parámetro de estado en el presente vale (ωφ,0 = −1.1). En la parte inferior de
la Figura 5.5 es interesante notar que el componente de enerǵıa oscura se comporta como
polvo (ωφ = 0), para tiempos tempranos de la evolución cósmica (altos corrimientos al
rojo), comportándose como un fluido “ordinario”con gravedad atractiva y recientemente
(z ' 0.45) es que se convierte en un componente de enerǵıa fantasma. En el presente el
Universo esta caracterizado por un valor constante del parámetro de estado (ωφ,0 ∼ −1.1).

Para analizar como este modelo evade el Problema de Coincidencia se determina la función
f(r). A partir de la ecuacion 5.18 se puede obtener que para este modelo se tiene que:

f(r) = [α(r + 1) − 1]
{

[2mδ + 3αβδ(1 − ωφ,0)r −mαδ(r + 1)] (r + 1) − m

α
(β2 + δ)

}

(5.31)

Si se iguala esta función a cero se obtienen tres raices; una real y las otras dos imaginarias.
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La raiz real de la ecuación (4.18) corresponde a (req = (1 − α)/α). Para que este punto
de equilibrio sea estable debe cumplirse que

δ <
mβ

(1 − α)(1 − ωφ,0)
. (5.32)

Los valores que fueron seleccionados para los parámetros libres para que el modelo en
estudio reprodusca la data observacional cumplen con esta inecuación. Esto significa
que la solución escalante dominada por enerǵıa fantasma, es decir la solución en donde
r0 = (1−α)/α, es estable al hacer pequeñas perturbaciones lineales en su vencidad y por
lo tanto el Problema de la Coincidencia desaparece.

5.2 Conclusiones Parciales.

En este caṕıtulo se han investigado modelos con una interacción adicional (no gravitatoria)
entre la materia oscura y la enerǵıa fantasma. Este tipo de interacción es justificada si
los componentes que interactúan son de naturaleza desconocida, como es el caso de la
materia oscura y la enerǵıa fantasma.

Diferente al acercamiento fenomenológico que se sigue en otros casos (ver [55, 56]), en este
caṕıtulo se comienza con una forma general del término de interacción que es inspirado
en la Teoŕıa Escalar-Tensorial de gravitación. Se considera un modelo general de enerǵıa
fantasma.

Se han estudiado dos modelos diferentes: uno en donde el parámetro de estado es constante
y otro en donde este parámetro es dinámico. En ambos modelos se logra eliminar el
Problema de la Coincidencia y además se obtiene que la data observacional favorece a
modelos que sean libres del Big Rip.

En ambos modelos se selecciono una función de interacción de tal forma que los parámetros
libres se pueden ajustar de tal forma que los modelos puedan reproducir la data observa-
cional.
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Figura 5.3: Gráficas de la densidad de enerǵıa de la materia oscura (MO) (gráfica superi-
or), la densidad de enerǵıa fantasma (EO) (gráfica del medio) y el parámetro de Hubble
respecto al corrimiento al rojo. Se seleccionaron los siguientes valores de los paramet-
ros libres: m = 12, α = 0.72, β = 0.03 y δ = 3 × 10−4. Estas gráficas son para tres
valores diferentes del parámetro de estado (ωφ,0 : −1.1(ĺınea contiua gruesa),−1.5(ĺınea
continua),−3(ĺınea discontinua)).
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Figura 5.4: Evolución del Término de Interacción en función del corrimiento al rojo, para
los mismos valores de los parámetros de la gráfica anterior.



Modelos de Enerǵıa Fantasma 77

0 0.2 0.4 0.6 0.8
Corrimiento al Rojo

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

P
a
r
a
m
e
t
r
o
d
e

d
e
s
a
c
e
l
e
r
a
c
i
o
n

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Corrimiento al Rojo

-4

-3

-2

-1

0

P
a
r
a
m
e
t
r
o

d
e
E
s
t
a
d
o

Figura 5.5: Evolución del parámetro de desaceleración (gráfica superior) y el parámetro
de estado (gráfica inferior) en función del corrimiento al rojo, para los mismos valores de
los parámetros de las gráficas anteriores.



CONCLUSIONES.

En esta Tesis se estudian modelos del Universo con inclusión de la enerǵıa oscura, tan-
to del tipo quintaesencia como enerǵıa fantasma, en donde se considera interacción (no
gravitatoria) entre la enerǵıa oscura y el fluido de fondo (básicamente materia oscura).
Estos modelos son basados en una Teoŕıa Escalar-Tensorial de gravitación.

En los modelos de quintaesencia se encontraron nuevas familias de soluciones exactas a
las ecuaciones del campo, para los casos donde se considera que existe tanto acoplamiento
mı́nimo como no mı́nimo entre la materia oscura y la enerǵıa oscura. Para encontrar
las soluciones exactas se asume una relación lineal entre la primera derivada del campo
escalar respecto al tiempo cosmológico y el parámetro de Hubble. Esta consideración
permite obtener el potencial de auto interacción del campo escalar a partir de una ecuación
diferencial lineal (en el caso con acoplamiento no mı́nimo, se debe especificar, además, la
función de acoplamiento). La relación lineal entre la ráız cuadrada de la enerǵıa cinética
del campo escalar y el parámetro de Hubble es una de las v́ıas más simples y naturales
de poder resolver las ecuaciones del campo, siempre que no se tenga otra información,
debido a que el parámetro de Hubble se puede considerar como una escala del tiempo
cosmológico.

En los modelos, donde el acoplamiento es no mı́nimo, se estudian funciones de acoplamien-
to en forma de exponenciales, la Teoŕıa de Brans-Dicke es un caso de este tipo de funciones
de acoplamiento. Este tipo de acoplamiento puede conducir a potenciales de auto interac-
ción que tienen la forma de simple exponencial y de una combinación de dos exponeciales
simples.

En el estudio de estabilidad y existencia a las soluciones de estos modelos se aplica un
método general en donde no se especifica el tipo de modelo de enerǵıa oscura. En todos
los casos se obtienen tres puntos cŕıticos. Para los valores de los parámetros libres que son
favorecidos por la data observacional se tiene que la solución donde domina la enerǵıa os-
cura (quintaesencia) es siempre un nodo estable, mientras que la solución escalante puede
ser un nodo inestable o un punto silla. Se observa que no se puede resolver el Problema de
la Coincidencia, debido a que las soluciones donde se cumple que ρm/ρφ =constante∼ 1
no son estables.

Del estudio realizado a los modelos de quintaesencia se puede concluir que los modelos
con acoplamiento mı́nimo y no mı́nimo, que de forma general son complicados de resolver
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matemáticamente, solo se pueden resolver de forma sencilla si se selecciona una adecuada
dinámica de expansión del Universo, aunque a veces esto significa que las soluciones que
se obtienen preservan el Problema de la Coincidencia.

En los Modelos con Enerǵıa Fantasma se investiga como una posible interacción adicional
no gravitatoria entre la Materia Oscura y la Enerǵıa Oscura, modifica el Problema de la
Coincidencia y, además, permite evadir el evento del Big-Rip, evento catastrófico t́ıpico
de cosmoloǵıas fantasmas. En estos estudios no se tiene en cuenta un modelo de enerǵıa
fantasma en especifico. Se proponen dos modelos, en uno el parámetro de estado de la
eneŕıa oscura se mantine siempre constante y en el otro este parámetro es dinámico.

Al seleccionar, en estos modelos, el término de interacción de tal forma que se transfiera
enerǵıa del componente fantasma hacia el componente de materia oscura se puede lograr
que los parámetros libres se puedan escoger de manera tal que las densidades de enerǵıa del
componente fantasma y la del componente de materia oscura decrezcan con el transcurso
de la evolución cósmica, por lo que se puede obtener soluciones que eviten la singularidad
del Big Rip. Desde un punto de vista observacional se obtuvo que los modelos sin Big
Rip son favorecidos.

Estos modelos interactuantes de enerǵıa fantasma son útiles para explicar el Problema
de la Coincidencia. Esto se debe a que las soluciones escalntes dominadas por enerǵıa
oscura (r0 = Ωm/Ωφ . 1) son estables. Esto significa que una vez que el Universo alcance
esta solución se mantiene en ella durante un peŕıodo largo de tiempo cosmológico (en un
Universo que se expande eternamente). Por lo que se pudiera decir que no es coincidencia
que la densidad de enerǵıa de la materia ocura y la enerǵıa oscura sean del mismo orden
precisamente hoy en d́ıa, sino que nuestro Universo se encuentra evolucionando hacia
esta solución (solución escalante dominada por enerǵıa oscura) y debe permanecer en ella
durante un largo tiempo.



RECOMENDACIONES

Luego de realizar un estudio de modelos del Universo con inclusión de la enerǵıa oscura,
tanto del tipo quintaesencia como enerǵıa fantasma, en donde se considera interacción (no
gravitatoria) entre la enerǵıa oscura y el fluido de fondo (básicamente materia oscura) se
realizan las siguiente recomendaciones:

• Refinar los métodos de obtener soluciones exactas en los modelos con Quintaesencia
para que estos no presente el Problema de la Coincidencia.

• Realizar un estudio de la evolución de las perturbaciones de la densidad de enerǵıa
en los modelos estudiados.
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