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Abstract: The nonorthogonality of coherent states is a

fundamental property which prevents them from being

perfectly and deterministically discriminated. Here, we

present an experimentally feasible protocol for the prob-

abilistic orthogonalisation of a pair of coherent states, in-

dependent of their amplitude and phase. In contrast to

unambiguous state discrimination, a successful operation

of our protocol is heralded without measuring the states.

As such, they remain suitable for further manipulation

and the obtained orthogonal states serve as a discrete-

variable basis. Therefore, our protocol doubles as a simple

continuous-to-discrete variable converter, which may �nd

application in hybrid continuous-discrete quantum infor-

mation processing protocols.

Keywords: photon statistics, state discrimination,

measurement-induced nonclassicality

1 Introduction
One of the fundamental properties of coherent states is

that they are over complete, i.e. each coherent state shares

some non-zero overlap with every other. In the context of

state discrimination, this non-zero overlapmanifests as er-

rors when one wishes to distinguish two such states. One

option to try and discriminate between the two states is

by a direct measurement (DM). However, as the two states

share a �nite overlap, we cannot obtain a result with ab-

solute certainty. The limits of the DM approach are deter-

mined by a minimal error, the so-called Helstrom bound

[1–6]. These errors can be overcome using established un-
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ambiguous state discrimination protocols [7]. The origi-

nal proposals considered schemes in which nonorthogo-

nal states were �rst orthogonalised, and then measured

with a suitable detection scheme [8, 9]. However, for a

valid implementation, these steps must be combined [10–

21], such that orthogonalisation is post-selected on the ap-

propriate measurement outcome, non-destructive [22, 23]

or otherwise. Yet, in some cases it may be necessary to or-

thogonalise the input states without a post-selected mea-

surement.

One applicationwhere this is needed is the conversion

of continuous-variable (CV) to discrete-variable (DC) quan-

tum states. In quantum information, hybrid approaches

that utilise methods from both the CV and DV world of-

fer signi�cant advantages compared to pure CV or DV pro-

tocols [24, 25]. From a fundamental perspective, similar

hybrid schemes have also been used to investigate phe-

nomena such as micro-macro entanglement, in which a

path-entangled photon (DV entanglement) is coherently

displaced (a CV operation) [26–28]. By combining the best

of both worlds, hybrid schemes can save on resources in

teleportation, quantum computing and error correction

schemes [29–32] ormay reduce the e�ect of loss on the dis-

tribution of CV entanglement [33]. To obtain a function-

ing scheme, hybrid protocols require a reliable and e�-

cient transfer of information from the continuous to the

discrete part of the protocol [25, 34]. Recently, such a pro-

tocol has been proposed and demonstrated [35]. However,

it relies critically on an entangled resource-state [31] and

utilises a teleportation scheme [30],which leaves the ques-

tion whether a more resource-e�cient approach may be

found.

In this paper, we develop a practical scheme

for heralded, non-destructive state orthogonalisation

of continuous-variable states, which doubles as a

continuous-to-discrete-variable qubit converter. Our

protocol describes the probabilistic transformation

of non-orthogonal CV states, namely weak coherent

states of opposite phase, to displaced DV states, i.e.

ˆD (β) (c0 |0〉 + c1 |1〉), where β, c
0
, c

1
depend on the inter-
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Figure 1: Photon replacement scheme for state discrimination. A
coherent state from the set {|α〉 , |−α〉} is incident on one input
mode of a beam splitter of predetermined transmissivity T. Incident
on the other input mode is an ancilla photon. For suitably chosen
transmissivity T, dependent on |α|, a projective measurement of a
particular photon number |m〉 〈m| on one output mode transforms
the initial set onto the orthogonal set of {|Ψ+〉 , |Ψ−〉} on the other
output mode.

action parameters. These interaction parameters can be

speci�ed a priori to ensure that the resulting output states

are orthogonal to one another. That is, the input states

{|ψ〉 , |−ψ〉}, where 〈ψ |−ψ〉 ≠ 0 transform to new states{
|ψ′〉 , |−ψ′〉

}
, whereby 〈ψ′ |−ψ′〉 = 0. Note that this is re-

lated but di�erent to input state orthogonalisers [36–38],

in which the output state is orthogonal to the input state,

i.e. |ψ〉 → |ψ′〉 where 〈ψ |ψ′〉 = 0.

Contrary to other orthogonalisation schemes, the con-

version is heralded by a predetermined detection event

without destroying the input state. To obtain the desired

orthogonalisation, we utilise quantum-optical catalysis

[39–42], where an ancilla photon interferes with a CV in-

put state on a beam splitter and a predetermined detec-

tion event in one beam splitter output heralds the desired

displaced DV state in the other output. As this procedure

is coherent, it may also be used on single-mode coherent

state superposition (CSS) states |Φ
Sup
〉 =

(
|α〉 + eiϕ |−α〉

)
that are considered the continuous variable equivalent of

a qubit [43–46]. After transformationwith our scheme, the

new basis states of the superposition are orthogonal and

may be mapped onto the basis states of a discrete variable

system. Thus, our orthogonalisation protocol also com-

prises a continuous- to discrete-variable qubit converter.

This paper consists of three sections. We �rst present

the scheme and its application in a state discrimination

scenario and �nd the optimal parameters to discriminate

between the two coherent states. In the second section,

we look in more detail at the resulting states following

this operation. It turns out that these states become ex-

tremely good approximations of discrete-variable super-

position states. In the third section,we exploit the fact that

our states are not destroyed after applying this operation

to investigate the iterative operation, which can further in-

crease the success probability.

2 Quantum catalysis for heralded
state orthogonalisation

To implement our scheme, we utilise the “quantum catal-

ysis” (or “photon replacement”) technique [39–41], as de-

picted in Fig. 1. An input state from the non-orthogonal set

{|α〉 , |−α〉} is incident onmode a of a beam splitter, simul-

taneouslywith an ancilla photon inmode b. Dependent on
the amplitude of the coherent states |α|, we pick the trans-

missivity of the beam splitter T (|α|) such that, given a par-

ticular outcome of a photon number measurement |m〉〈m|
on one output mode of the beam splitter, the input state

is projected on either |Ψ+〉 or |Ψ−〉, depending on the sign

of the incident coherent state. The transformation coe�-

cients of an n-photon Fock state for this replacement oper-

ation are then given via

|Ψ
out
〉 =

√
m!(n + k − m)!

n!k!

k∑
j=0

(
n

m − j

)(
k
j

)
(−1)

j

×

√
T
n−m+2j√

1 − T
m+k−2j

|n + k − m〉c ⊗ |m〉d ,

(1)

with, in general, k ancilla and m herald photons for the

success event. The transformation of the incident coher-

ent states can then be calculated with the photon number

basis representation |α〉 =
∑
∞

n=0 e
−

α
2

αn√
n!
|n〉.

As an example, let us consider the case sketched in

Fig. 1. At the replacement stage, we de�ne a success event

such that one photon is heralded in mode d, i.e. |m〉 〈m| =
|1〉 〈1|. The �nal output state |Ψ±〉 is given by

|Ψ±〉 = 1√
N
exp

(
−

|α|2
2

)
exp

(
±α
√
Tĉ†
)

×

(
±α(1 − T)ĉ† −

√
T
)
|0〉c ⊗ |1〉d

(2)

where

√
N is the normalisation after the non-unitary

transformation and the probability of this event happen-

ing is given by N =

∑
∞

n=0 c
2

n(repl.) with cn(repl.) =

e−
α
2

αn√
n!

√
Tn−1[T − n(1 − T)] as the state coe�cients in the

photon number basis. A more detailed discussion about

the output states can be found in e.g. [39–41]. Writing the

output state of the replacement stage in this form illus-

trates how the state orthogonalisation is possible with this

protocol. Calculating the overlap | 〈Ψ+|Ψ−〉| and setting it

to zero yields a quadratic equation with (at least) one real

valued solution due to the di�erent signs of α (a closed-

form expression for T (|α|) is given in the Appendix).
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Figure 2: Overlap after the �rst replacement stage. Figure (a) shows
the overlap after the replacement stage (red) for a �xed amplitude
|α| = 0.5 depending on the beam splitter transmissivity T. In �gure
(b) the overlap after replacement (red) is plotted dependent on
|α| for a �xed transmissivity. For comparison the initial overlap
is given in gray. In �gure (c), we consider both the coherent state
amplitude |α| and beam splitter transmissivity T as parameters
for the replacement. In green we sketch the line of zero overlap,
indicating the optimal beam splitter transmissivity T(|α|) for each
|α|. Figure (d) depicts the success probability for the �rst stage of a
state discrimination protocol in red compared to the IDP bound in
black. For details, see text.

This behaviour is shown in Fig. 2 (a). In red, we plot

the overlap

| 〈Ψ+|Ψ−〉| = e−(T+1)|α|
2

×

[
(1 − T)2T|α|4 − (1 − 3T)(1 − T)|α|2 + T

]
after the replacement stage versus the beam splitter trans-

missivity T. From a transmissivity of T = 0, we start with

an overlap of one, as the beam splitter acts as a mirror

and the ancilla photon exits the replacement stage in each

case. Increasing the transmissivity, we �nd that the over-

lap decreases drastically, before it reaches zero at T(|α| =
0.5) = 0.13. This situation ful�ls the aim of the proto-

col; it is the required beam splitter transmissivity to distin-

guish states |+α〉 , |−α〉 for |α| = 0.5. Although the shape of

the overlap curve is quite steep at this point, this does not

pose an insurmountable experimental challenge since the

transmissivity of a beam splitter may be �nely controlled.

Going further to T = 1, the overlap increases to the initial

overlap of | 〈−α| α〉| = 0.6 as the initial states are directly

transmitted. In Fig. 2 (b), we consider the overlap after re-

placement for T(|α| = 0.5) = 0.13 in red. Compared to the

initial overlap | 〈−α| α〉| sketched in gray, the overlap of the

replaced state drops o� faster for small amplitudes |α|, be-
fore it reaches zero at |α| = 0.5.

In Fig. 2(c), we consider the full parameter space for

the replacement. We calculate and plot the overlap after

replacement depending on the coherent state amplitude

|α| and the beam splitter transmissivity T. For high am-

plitudes and splitter transmissivities, we �nd a large re-

gion where the overlap is very small. However, only for

the combination of coherent state amplitudes and trans-

missivities that are represented by the green line the over-

lap becomes zero. Since this is the goal of the state dis-

crimination, this curve de�nes the appropriate beam split-

ter transmissivity T(|α|) for any given |α| in the protocol.

The sensitivity of the scheme to the control of the trans-

missivity can be seen in the gradient of the colour map in

Fig. 2(c): it is much sharper at low |α|, indicating higher

sensitivity to errors in controlling T. The corresponding

probability of success, i.e. the probability of detecting a de-

sired heralding event is plotted in Fig. 2(d). For each ampli-

tude |α|, we calculated the optimal transmissivity T(|α|),
where | 〈Ψ+|Ψ−〉| = 0. Further details are provided in the

Appendix. From the photon number coe�cients cn(repl.),
we have then determined the success probability shown in

red. Comparing the success probability to the IDP bound

(black) from unambiguous state discrimination for small

|α|, we �nd that we already operate close to the optimum

predicted for probabilistic discrimination protocols. How-

ever, for larger amplitudes we are still some way from op-

timal operation.

3 Projection on displaced discrete
variable qubit states

It is instructive to ask the nature of the state once it has

undergone a successful discrimination operation. In Fig. 3

we plot theWigner function of the state |ψ+〉when α = 0.5

and T = 0.13, the parameters required to discriminate the

state from |ψ−〉. This state has a �delity of >98% with the

state

1√
2

(|0〉 − |1〉). Similarly, the state |ψ−〉, for which α =
−1/2 for the same T, shares >98% �delity with the state

1√
2

(|0〉 + |1〉). Thus the discrimination operation heralds

the generation of a close approximation to the state |α〉 ⇒
1√
2

(|0〉 − |1〉) and |−α〉 ⇒ 1√
2

(|0〉 + |1〉) with reasonable

�delity.

With these transformations in mind, we consider the

transformations of superpositions of coherent states as in-

puts. The even coherent state superposition (CSS) state

|α〉 + |−α〉, with amplitude |α| = 0.5, transforms into the

state |ψ+〉 + |ψ−〉, the Wigner function of which is shown

Fig. 4 (a). Under the conditions for orthogonalised output

states, i.e. T = 0.13, this state has a �delity of 96% with
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Figure 3: Wigner function of transformed state |ψ+〉. This state has
a �delity >98% with the discrete-variable equal superposition state
1√
2

(|0〉 − |1〉)

Figure 4: Wigner functions of (a) transformed state |α〉 + |−α〉 ⇒
|ψ+〉 − |ψ−〉 and (b) transformed state |α〉 − |−α〉 ⇒ |ψ+〉 + |ψ−〉.
These states have > 99% �delity to the weakly squeezed vacuum
and single-photon Fock states, respectively.

the vacuum state |0〉, but >99% �delity with the squeezed

vacuum state (squeezed by 2.4 dB). Similarly, the odd CSS

state |α〉−|−α〉 transforms to the state |ψ+〉−|ψ−〉, shown in

Fig. 4, which exhibits >99.9% �delity to the single photon

Fock state.

More generally, we can rewrite the state generated

by the successful interaction from Eq. 2 as a displaced

discrete-variable superposition state, i.e.

|Ψ±〉 = ˆD
(
±α
√
T
)
[c0 (α) |0〉 + c1 (α) |1〉] (3)

with the (unnormalised) coe�cients given by c
0 (
α) =√

T
[
1 − (1 − T) |α|2

]
and c

1 (
α) = − (1 − T) α. From this,

one can calculate a value of T (|α|) for which the dis-

placed equal superposition state D (β)
(
|0〉 + eiϕ |1〉

)
is

generated; a full expression is given the appendix for com-

pleteness. Note that this value of T is not the same as

that which discriminates the states, since, in general, dis-

placed superpositions are nonorthogonal.

Similarly, the output state after acting on a even and

odd CSS states is the coherent superposition of the indi-

vidual output states in Eq. 3, i.e.

|α〉 ± |−α〉 →ˆD
(
α
√
T
)
[c0 |0〉 + c1 (α) |1〉]

±
ˆD
(
−α
√
T
)
[c0 |0〉 + c1 (−α) |1〉]

=c
0

[
ˆD
(
α
√
T
)
±
ˆD
(
−α
√
T
)]
|0〉

+ c
1 (
α)
[
ˆD
(
α
√
T
)
∓ ˆD

(
−α
√
T
)]
|1〉

(4)

where the coe�cients c
0
and c

1 (
α) are as before, and we

use c
1 (
−α) = −c1 (α). This state is a hybrid CV-DV state; the

coherent superposition of positive and negative displace-

ments (a non-Gaussian CV operation) act on the superpo-

sition of the single-rail DV qubit state c
0
|0〉 + c

1
|1〉, with

c
0,1

determined by the interaction parameters. Indeed,

this can be seen as the single-rail analogue of the entan-

gled state produced by Ulanov et al. in Ref. [35]. Of course,

this state requires CSS states as an input, the generation

of which remains challenging, notwithstanding substan-

tial experimental progress in both the optical [47–50] and

superconducting circuit [51] domains.

4 Iterative operation
In contrast to conventional protocols, we have the advan-

tage that our protocol does not destroy the input state,

even in case of failure. We can therefore further operate

on the state to try to obtain the desired states. With the in-

formation we gain from the heralding event, we can feed

forward to subsequent stages to try and recover the desired

states. However, due to the large number of possible de-

tection events (|0〉 〈0| , |1〉 〈1| , |2〉 〈2|...) the output states

that condition the adaptation of the protocol span a large

space. Here, we consider optimising iterative operation of

the protocol to target orthogonal states; we restrict our-

selves to a few speci�c examples of failure modes and will

not exhaust the full parameter space of cascadingmultiple

stages with multiple failure modes.

In particular as sketched in Fig. 5(a), we only con-

sider two detection events as valid and discard the rest.

Let us start with a known |α| at the �rst replacement stage.

Here, we consider heralding on one photon as success and

measuring vacuum as failure. Other events, such as de-

tecting 2, 3 or more photons are consequently discarded

and the protocol aborted. The failure state from heralding

on vacuum is known and we can already prepare the sec-

ond stage to reattempt to obtain orthogonal states. That

is, we can determine the success and failure event of the

second stage and adjust the splitter transmissivity accord-

ingly. Going one step further, we then also know the state
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Figure 5: Cascading of replacement stages. Figure (a) shows the
cascading strategy. We consider only one success and one failure
heralding event. In any other case, we abort the protocol. In �gure
(b), we depict the probability of success for three di�erent cascad-
ing protocols with |α| = 1.0. The unadapted protocol (lilac) con-
siders just repeating the �rst stage with modi�ed transmissivity.
The only considered failure mode is vacuum. In grey, we show the
success probabilities for a protocol with adapted success events. In
this case, only the vacuum is considered as failure mode. The prob-
abilities presented in green are calculated from a protocol that both
adapts the success and failure mode to the most likely event at
each stage. In all cases, detection outcomes apart from the success
and selected failure mode are discarded.

after the second failure event and canadjust the third stage

etc.

In Fig. 5 (b), we consider three of these cascading pro-

tocols to optimise the success probability for a given am-

plitude |α| = 1.0. A simple example is the repetition of

the �rst replacement stage, i.e. using one photon as an an-

cilla and heralding on one photon for success. As the sin-

gle failure event, we consider measuring vacuum in mode

d. However, this simple protocol does not give the high-

est success probability. We can improve it by adapting the

success event to the stage number such that we herald on

increasing photon number. This means, in stage one we

herald on |1〉 〈1|, in stage two on |2〉 〈2| and so on. This ap-

proach conserves the photon number between initial and

output state if we consider measuring vacuum as the sin-

gle failuremode ¹. While this protocol gives higher success

probability as sketched in gray, it is still possible to im-

prove. In green,wehave sketched the success probabilities

when also adapting the failuremode from vacuum tomea-

suring one photon less than required for the success event.

This is themost likely failure event at any given stage of the

protocol. As the success probabilities for the higher stage

numbers scale with the failure probabilities in the previ-

1 Strictly speaking, the mean photon number of the input state is

changed by the non-unitary operation. However, this approach con-

serves photon number with respect to the total number of input an-

cilla photons and output (heralding) measured photons.
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Figure 6: Overlap of the photon-replaced states when detecting a
failure event. In both �gures we have plotted the initial overlap be-
tween the two stages in grey. Figure (a) shows the overlap after the
�rst stage for the two most likely failure events, i.e. detecting vac-
uum in purple and heralding on two photons in red. After a vacuum
event in the �rst stage, we also consider the overlap for di�erent
failure modes in the second stage in �gure (b). For details, see text.

ous ones, choosing amore likely failure eventwill increase

the overall success e�ciency.

However, in each of the depicted protocols in Fig. 5 we

donot reach the IDPbound inblack. Extrapolating the suc-

cess probabilities, we assume that the considered cases do

not reach the optimal success probability of state discrimi-

nation, even in the limit of many stages. However, we have

not considered the possibility of other failure modes due

to the large parameter space. When considering those, we

are likely to improve the overall success probability, how-

ever it remains to be seen whether a generalisation of this

particular protocol indeed reaches the appropriate bound

[8].

Wealsonote some interestingbehaviour of the overlap

between the output states behaves in the cases where we

detect a failure event. In general, when a state discrimina-

tion protocol fails, the overlap after the failure event will

be higher than before [7, 52]. In the case of optimal suc-

cess probability (IDP), a failure will project the two initial

states onto the same output state and consequently pro-

hibit any further attempts to distinguish [8, 9]. In our case,

we have more than one failure mode for which we may

consider the overlap after replacement. In Fig. 6, we plot

the overlap for di�erent failure events in the �rst and sec-

ond stage compared to the initial overlap. Let us consider

the overlap after the �rst stage in Fig. 6(a). For compari-

son, the initial overlap (grey) between the states 〈−α| α〉 is
depicted dependent on |α|. In case of measuring vacuum

(shown in purple), the overlap after the replacement in-

creases as expected. Especially in the case of low coherent

state amplitudes |α| . 0.2, where the success probabil-

ity is close to the IDP limit, the overlap after the transfor-
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mation approaches unity. This behaviour prohibits further

distinguishing of the states, as expected.

The interesting case occurs when we detect more pho-

tons than necessary for the success event, i.e. more than

one in the �rst stage. Then, for small coherent state ampli-

tudes the overlap decreases compared to the initial states.

This is atypical for state discrimination protocols and we

attribute this e�ect to the presence of many failure modes

where the overlap after failure can be “distributed” among

them. To verify that this is not only true for this special

case in the �rst stage, we also compare the overlap after

the second replacement stage in Fig. 6(b). In this case,

both the vacuum case (pink) and single photon herald

case (purple) show an increase in overlap compared to

the initial state (grey). However, when detecting a higher

photon number than required for the success event (here:

three photons (red)) the protocol behaves atypically and

the overlap decreases.

5 Conclusion
In conclusion, we have proposed and discussed a scheme

for practical heralded state discrimination. We have

shown that for each coherent state amplitude |α| we

can �nd a beam splitter transmissivity T(|α|) such that

{|α〉 , |−α〉} is probabilisticallymapped onto an orthogonal

set {|Ψ+〉 , |Ψ−〉}. We have discussed the success probabil-

ity of such a scheme for cascaded replacement stages and

have observed that the overlap after replacement behaves

di�erently to USD for certain failure modes. The success

probability is closest to optimal at low |α|, when the co-

herent states share large overlap initially. At larger coher-

ent state amplitudes, interaction parameters can still be

found to orthogonalise the states, however there is already

minimal initial overlap in this regime, and the amount of

failure modes increases since there are more photons in-

volved in the interaction, resulting in a reduced proba-

bility from the optimal case. From these transformations,

we have shown that one can construct a heralded coher-

ent converter from continuous-variable coherent states to

discrete-variable superposition states, and from coherent

state superpositions to eigenstates of the photon number

basis with reasonably high �delities. This makes this op-

eration an interesting and potentially useful tool in hybrid

quantum information processing.
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A Appendix

A.1 Analytical results for �rst replacement stage

In themain text, we have claimed that we �nd at least one real valued solution for the beam splitter transmissivity to set

the overlap in equation (3) to zero. While for our case we �nd three real valued solutions only one is bounded between

zero and one. This is the branch that we consider to implement the physical transmissivities

T(α) = 1

12|α|4

4|α|2(3 + 2|α|2) − 4(−2)

1/3|α|4(6 + |α|4)[
|α|6[27 − 2|α|2(9 + |α|4)] + 3

√
3

√
−|α|12{5 + 4|α|2(9 + |α|2 + |α|4)}

]
1/3

+ 2(−2)

2/3

[
|α|6[27 − 2|α|2(9 + |α|4)] + 3

√
3

√
−|α|12{5 + 4|α|2(9 + |α|2 + |α|4)}

]
1/3

)
.

Furthermore, we give a formula to calculate the success probability for the �rst replacement stage

P
success

= e−(1−T(α))|α|
2

[
T(α) + (1 − T(α))(1 − 3T(α))|α|2 + (1 − T(α))2T(α)|α|4

]
.

A.2 Generating displaced discrete-variable superposition states

In equation 3, we write the output state of the protocol as the superposition of the vacuum and single photon Fock

states, displaced by an amount α
√
T. One solution for equal amplitudes of the two coe�cients is achieved when

T (α) =
1

6|α|2
(
4α2 − 2 +

2

4/3α2
(
α4 − 4α2 − 2

)
b + 2

2/3b
)

where

b =
[
3

√
3

√
3 + 4α2 + 20α4 − 4α6 +

(
7 − 2α2

[
3 − 6α2 + α4

])]
1/3

.
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