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Abstract: The nonorthogonality of coherent states is a
fundamental property which prevents them from being
perfectly and deterministically discriminated. Here, we
present an experimentally feasible protocol for the prob-
abilistic orthogonalisation of a pair of coherent states, in-
dependent of their amplitude and phase. In contrast to
unambiguous state discrimination, a successful operation
of our protocol is heralded without measuring the states.
As such, they remain suitable for further manipulation
and the obtained orthogonal states serve as a discrete-
variable basis. Therefore, our protocol doubles as a simple
continuous-to-discrete variable converter, which may find
application in hybrid continuous-discrete quantum infor-
mation processing protocols.

Keywords: photon statistics, state discrimination,
measurement-induced nonclassicality

1 Introduction

One of the fundamental properties of coherent states is
that they are over complete, i.e. each coherent state shares
some non-zero overlap with every other. In the context of
state discrimination, this non-zero overlap manifests as er-
rors when one wishes to distinguish two such states. One
option to try and discriminate between the two states is
by a direct measurement (DM). However, as the two states
share a finite overlap, we cannot obtain a result with ab-
solute certainty. The limits of the DM approach are deter-
mined by a minimal error, the so-called Helstrom bound
[1-6]. These errors can be overcome using established un-
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ambiguous state discrimination protocols [7]. The origi-
nal proposals considered schemes in which nonorthogo-
nal states were first orthogonalised, and then measured
with a suitable detection scheme [8, 9]. However, for a
valid implementation, these steps must be combined [10-
21], such that orthogonalisation is post-selected on the ap-
propriate measurement outcome, non-destructive [22, 23]
or otherwise. Yet, in some cases it may be necessary to or-
thogonalise the input states without a post-selected mea-
surement.

One application where this is needed is the conversion
of continuous-variable (CV) to discrete-variable (DC) quan-
tum states. In quantum information, hybrid approaches
that utilise methods from both the CV and DV world of-
fer significant advantages compared to pure CV or DV pro-
tocols [24, 25]. From a fundamental perspective, similar
hybrid schemes have also been used to investigate phe-
nomena such as micro-macro entanglement, in which a
path-entangled photon (DV entanglement) is coherently
displaced (a CV operation) [26—28]. By combining the best
of both worlds, hybrid schemes can save on resources in
teleportation, quantum computing and error correction
schemes [29-32] or may reduce the effect of loss on the dis-
tribution of CV entanglement [33]. To obtain a function-
ing scheme, hybrid protocols require a reliable and effi-
cient transfer of information from the continuous to the
discrete part of the protocol [25, 34]. Recently, such a pro-
tocol has been proposed and demonstrated [35]. However,
it relies critically on an entangled resource-state [31] and
utilises a teleportation scheme [30], which leaves the ques-
tion whether a more resource-efficient approach may be
found.

In this paper, we develop a practical scheme
for heralded, non-destructive state orthogonalisation
of continuous-variable states, which doubles as a
continuous-to-discrete-variable qubit converter. Our
protocol describes the probabilistic transformation
of non-orthogonal CV states, namely weak coherent
states of opposite phase, to displaced DV states, i.e.
D (B) (co |0) + c1 |1)), where B, co, c; depend on the inter-
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Figure 1: Photon replacement scheme for state discrimination. A
coherent state from the set {|a) , |-a)} is incident on one input
mode of a beam splitter of predetermined transmissivity T. Incident
on the other input mode is an ancilla photon. For suitably chosen
transmissivity T, dependent on |a|, a projective measurement of a
particular photon number |m) (m| on one output mode transforms
the initial set onto the orthogonal set of {|¥*), |'¥")} on the other
output mode.

action parameters. These interaction parameters can be
specified a priori to ensure that the resulting output states
are orthogonal to one another. That is, the input states
{|Y),|-y)}, where (i |-1p) # O transform to new states
{l¥"),|-¥")}, whereby (" |-%) = 0. Note that this is re-
lated but different to input state orthogonalisers [36-38],
in which the output state is orthogonal to the input state,
i.e. |Y) — |Y') where (Y |p’) = 0.

Contrary to other orthogonalisation schemes, the con-
version is heralded by a predetermined detection event
without destroying the input state. To obtain the desired
orthogonalisation, we utilise quantum-optical catalysis
[39-42], where an ancilla photon interferes with a CV in-
put state on a beam splitter and a predetermined detec-
tion event in one beam splitter output heralds the desired
displaced DV state in the other output. As this procedure
is coherent, it may also be used on single-mode coherent
state superposition (CSS) states |Dg,,) = <|a) +el® |—a>)
that are considered the continuous variable equivalent of
a qubit [43-46]. After transformation with our scheme, the
new basis states of the superposition are orthogonal and
may be mapped onto the basis states of a discrete variable
system. Thus, our orthogonalisation protocol also com-
prises a continuous- to discrete-variable qubit converter.

This paper consists of three sections. We first present
the scheme and its application in a state discrimination
scenario and find the optimal parameters to discriminate
between the two coherent states. In the second section,
we look in more detail at the resulting states following
this operation. It turns out that these states become ex-
tremely good approximations of discrete-variable super-
position states. In the third section, we exploit the fact that
our states are not destroyed after applying this operation
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to investigate the iterative operation, which can further in-
crease the success probability.

2 Quantum catalysis for heralded
state orthogonalisation

To implement our scheme, we utilise the “quantum catal-
ysis” (or “photon replacement”) technique [39-41], as de-
picted in Fig. 1. An input state from the non-orthogonal set
{]@) , |-a)} is incident on mode a of a beam splitter, simul-
taneously with an ancilla photon in mode b. Dependent on
the amplitude of the coherent states |a|, we pick the trans-
missivity of the beam splitter T (|a|) such that, given a par-
ticular outcome of a photon number measurement |m) (m|
on one output mode of the beam splitter, the input state
is projected on either |¥*) or |¥~), depending on the sign
of the incident coherent state. The transformation coeffi-
cients of an n-photon Fock state for this replacement oper-
ation are then given via

k
¥, = fm!(n+k-m)! ( n ) <k> (-1)
[¥out) n'k! j:ZO m-j/|\j (1)

—m+2j k-2j
VT "INV T e k-m), @ |m),

with, in general, k ancilla and m herald photons for the
success event. The transformation of the incident coher-
ent states can then be calculated with the photon number
basis representation |a) = 37 e”? \/—% [n).

As an example, let us consider the case sketched in
Fig. 1. At the replacement stage, we define a success event
such that one photon is heralded in mode d, i.e. |m) (m| =
|1) (1]. The final output state |¥*) is given by

a1 af? oo /TA
\W)—ﬁexp( T) exp (_aﬁcT)

« (a(1 -1 - VT) 10), @ |1)q

@

where /N is the normalisation after the non-unitary
transformation and the probability of this event happen-
ing is given by N = > cA(repl.) with cn(repl.) =
e ? j—%ﬁn_l[T - n(1 - T)] as the state coefficients in the
photon number basis. A more detailed discussion about
the output states can be found in e.g. [39-41]. Writing the
output state of the replacement stage in this form illus-
trates how the state orthogonalisation is possible with this
protocol. Calculating the overlap | (¥*| ¥~)| and setting it
to zero yields a quadratic equation with (at least) one real
valued solution due to the different signs of a (a closed-
form expression for T (|a|) is given in the Appendix).
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Figure 2: Overlap after the first replacement stage. Figure (a) shows
the overlap after the replacement stage (red) for a fixed amplitude
|a| = 0.5 depending on the beam splitter transmissivity T. In figure
(b) the overlap after replacement (red) is plotted dependent on

|a| for a fixed transmissivity. For comparison the initial overlap

is given in gray. In figure (c), we consider both the coherent state
amplitude |a| and beam splitter transmissivity T as parameters

for the replacement. In green we sketch the line of zero overlap,
indicating the optimal beam splitter transmissivity T(|a|) for each
|a|. Figure (d) depicts the success probability for the first stage of a
state discrimination protocol in red compared to the IDP bound in
black. For details, see text.

This behaviour is shown in Fig. 2 (a). In red, we plot
the overlap

(97| = e DIl
x[(1-T2Tja* -1 -3T)(1 - T)|a? + T]

after the replacement stage versus the beam splitter trans-
missivity T. From a transmissivity of T = 0, we start with
an overlap of one, as the beam splitter acts as a mirror
and the ancilla photon exits the replacement stage in each
case. Increasing the transmissivity, we find that the over-
lap decreases drastically, before it reaches zero at T(|a| =
0.5) = 0.13. This situation fulfils the aim of the proto-
col; it is the required beam splitter transmissivity to distin-
guish states |+a) , |-a) for |a| = 0.5. Although the shape of
the overlap curve is quite steep at this point, this does not
pose an insurmountable experimental challenge since the
transmissivity of a beam splitter may be finely controlled.
Going further to T = 1, the overlap increases to the initial
overlap of | (—a| a)| = 0.6 as the initial states are directly
transmitted. In Fig. 2 (b), we consider the overlap after re-
placement for T(ja| = 0.5) = 0.13 in red. Compared to the
initial overlap | (—a| a)| sketched in gray, the overlap of the
replaced state drops off faster for small amplitudes |a|, be-
fore it reaches zero at |a| = 0.5.
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In Fig. 2(c), we consider the full parameter space for
the replacement. We calculate and plot the overlap after
replacement depending on the coherent state amplitude
|a| and the beam splitter transmissivity T. For high am-
plitudes and splitter transmissivities, we find a large re-
gion where the overlap is very small. However, only for
the combination of coherent state amplitudes and trans-
missivities that are represented by the green line the over-
lap becomes zero. Since this is the goal of the state dis-
crimination, this curve defines the appropriate beam split-
ter transmissivity T(|a|) for any given |a| in the protocol.
The sensitivity of the scheme to the control of the trans-
missivity can be seen in the gradient of the colour map in
Fig. 2(c): it is much sharper at low |a|, indicating higher
sensitivity to errors in controlling T. The corresponding
probability of success, i.e. the probability of detecting a de-
sired heralding event is plotted in Fig. 2(d). For each ampli-
tude |a|, we calculated the optimal transmissivity T(|a|),
where | (¥*| W7)| = 0. Further details are provided in the
Appendix. From the photon number coefficients cn(repl.),
we have then determined the success probability shown in
red. Comparing the success probability to the IDP bound
(black) from unambiguous state discrimination for small
|a|, we find that we already operate close to the optimum
predicted for probabilistic discrimination protocols. How-
ever, for larger amplitudes we are still some way from op-
timal operation.

3 Projection on displaced discrete
variable qubit states

It is instructive to ask the nature of the state once it has
undergone a successful discrimination operation. In Fig. 3
we plot the Wigner function of the state [)*) when a = 0.5
and T = 0.13, the parameters required to discriminate the
state from [1p7). This state has a fidelity of >98% with the
state - (]0) - |1)). Similarly, the state [1)~), for which a =
—1/2 for the same T, shares >98% fidelity with the state
% (10) +|1)). Thus the discrimination operation heralds
the generation of a close approximation to the state |a) =
%ﬁ (j0) - ]1)) and |-a) = %ﬁ (|0) +|1)) with reasonable
fidelity.

With these transformations in mind, we consider the
transformations of superpositions of coherent states as in-
puts. The even coherent state superposition (CSS) state
|a) + |-a), with amplitude |a| = 0.5, transforms into the
state [*) + [p7), the Wigner function of which is shown
Fig. 4 (a). Under the conditions for orthogonalised output
states, i.e. T = 0.13, this state has a fidelity of 96% with
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Figure 3: Wigner function of transformed state |*). This state has
a fidelity >98% with the discrete-variable equal superposition state
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Figure 4: Wigner functions of (a) transformed state |a) + |-a) =
[Y*) — |P~) and (b) transformed state |a) — |-a) = [P*) + [P7).
These states have > 99% fidelity to the weakly squeezed vacuum
and single-photon Fock states, respectively.

the vacuum state |0), but >99% fidelity with the squeezed
vacuum state (squeezed by 2.4 dB). Similarly, the odd CSS
state |a) —|—a) transforms to the state [1)*) - [1) ™), shown in
Fig. 4, which exhibits >99.9% fidelity to the single photon
Fock state.

More generally, we can rewrite the state generated
by the successful interaction from Eq. 2 as a displaced
discrete-variable superposition state, i.e.

#) =D (+aVT) [co@[0) +c: @ [1)] )

with the (unnormalised) coefficients given by cq (@) =
VT [1-(1-T)|a*] and ¢; (@) = —(1 - T)a. From this,
one can calculate a value of T (|a|) for which the dis-
placed equal superposition state D (f3) <|O) +el® |1>> is
generated; a full expression is given the appendix for com-
pleteness. Note that this value of T is not the same as
that which discriminates the states, since, in general, dis-
placed superpositions are nonorthogonal.

Similarly, the output state after acting on a even and
odd CSS states is the coherent superposition of the indi-
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vidual output states in Eq. 3, i.e.
) + |-a) —D (m/T) [0 [0) + c1 (a) |1)]
+D (—aﬁ) [co [0) + c1 (~a) |1)]
~co [1‘) (aﬁ) +D (-aﬁ)} 0)
tor (@) [D (a\/T) ) (—aﬁ)} 1)

(4)

where the coefficients ¢y and c; () are as before, and we
use c1 (—a) = —c; (a). This state is a hybrid CV-DV state; the
coherent superposition of positive and negative displace-
ments (a non-Gaussian CV operation) act on the superpo-
sition of the single-rail DV qubit state cq |0) + c1 |1), with
co,1 determined by the interaction parameters. Indeed,
this can be seen as the single-rail analogue of the entan-
gled state produced by Ulanov et al. in Ref. [35]. Of course,
this state requires CSS states as an input, the generation
of which remains challenging, notwithstanding substan-
tial experimental progress in both the optical [47-50] and
superconducting circuit [51] domains.

4 lterative operation

In contrast to conventional protocols, we have the advan-
tage that our protocol does not destroy the input state,
even in case of failure. We can therefore further operate
on the state to try to obtain the desired states. With the in-
formation we gain from the heralding event, we can feed
forward to subsequent stages to try and recover the desired
states. However, due to the large number of possible de-
tection events (|0) (0|, |1) (1], |2) (2]...) the output states
that condition the adaptation of the protocol span a large
space. Here, we consider optimising iterative operation of
the protocol to target orthogonal states; we restrict our-
selves to a few specific examples of failure modes and will
not exhaust the full parameter space of cascading multiple
stages with multiple failure modes.

In particular as sketched in Fig. 5(a), we only con-
sider two detection events as valid and discard the rest.
Let us start with a known |a| at the first replacement stage.
Here, we consider heralding on one photon as success and
measuring vacuum as failure. Other events, such as de-
tecting 2, 3 or more photons are consequently discarded
and the protocol aborted. The failure state from heralding
on vacuum is known and we can already prepare the sec-
ond stage to reattempt to obtain orthogonal states. That
is, we can determine the success and failure event of the
second stage and adjust the splitter transmissivity accord-
ingly. Going one step further, we then also know the state
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Figure 5: Cascading of replacement stages. Figure (a) shows the
cascading strategy. We consider only one success and one failure
heralding event. In any other case, we abort the protocol. In figure
(b), we depict the probability of success for three different cascad-
ing protocols with |a| = 1.0. The unadapted protocol (lilac) con-
siders just repeating the first stage with modified transmissivity.
The only considered failure mode is vacuum. In grey, we show the
success probabilities for a protocol with adapted success events. In
this case, only the vacuum is considered as failure mode. The prob-
abilities presented in green are calculated from a protocol that both
adapts the success and failure mode to the most likely event at
each stage. In all cases, detection outcomes apart from the success
and selected failure mode are discarded.

after the second failure event and can adjust the third stage
etc.

In Fig. 5 (b), we consider three of these cascading pro-
tocols to optimise the success probability for a given am-
plitude |a] = 1.0. A simple example is the repetition of
the first replacement stage, i.e. using one photon as an an-
cilla and heralding on one photon for success. As the sin-
gle failure event, we consider measuring vacuum in mode
d. However, this simple protocol does not give the high-
est success probability. We can improve it by adapting the
success event to the stage number such that we herald on
increasing photon number. This means, in stage one we
herald on |1) (1|, in stage two on |2) (2] and so on. This ap-
proach conserves the photon number between initial and
output state if we consider measuring vacuum as the sin-
gle failure mode . While this protocol gives higher success
probability as sketched in gray, it is still possible to im-
prove. In green, we have sketched the success probabilities
when also adapting the failure mode from vacuum to mea-
suring one photon less than required for the success event.
This is the most likely failure event at any given stage of the
protocol. As the success probabilities for the higher stage
numbers scale with the failure probabilities in the previ-

1 Strictly speaking, the mean photon number of the input state is
changed by the non-unitary operation. However, this approach con-
serves photon number with respect to the total number of input an-
cilla photons and output (heralding) measured photons.
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Figure 6: Overlap of the photon-replaced states when detecting a
failure event. In both figures we have plotted the initial overlap be-
tween the two stages in grey. Figure (a) shows the overlap after the
first stage for the two most likely failure events, i.e. detecting vac-
uum in purple and heralding on two photons in red. After a vacuum
event in the first stage, we also consider the overlap for different
failure modes in the second stage in figure (b). For details, see text.

ous ones, choosing a more likely failure event will increase
the overall success efficiency.

However, in each of the depicted protocols in Fig. 5 we
do not reach the IDP bound in black. Extrapolating the suc-
cess probabilities, we assume that the considered cases do
not reach the optimal success probability of state discrimi-
nation, even in the limit of many stages. However, we have
not considered the possibility of other failure modes due
to the large parameter space. When considering those, we
are likely to improve the overall success probability, how-
ever it remains to be seen whether a generalisation of this
particular protocol indeed reaches the appropriate bound
[8].

We also note some interesting behaviour of the overlap
between the output states behaves in the cases where we
detect a failure event. In general, when a state discrimina-
tion protocol fails, the overlap after the failure event will
be higher than before [7, 52]. In the case of optimal suc-
cess probability (IDP), a failure will project the two initial
states onto the same output state and consequently pro-
hibit any further attempts to distinguish [8, 9]. In our case,
we have more than one failure mode for which we may
consider the overlap after replacement. In Fig. 6, we plot
the overlap for different failure events in the first and sec-
ond stage compared to the initial overlap. Let us consider
the overlap after the first stage in Fig. 6(a). For compari-
son, the initial overlap (grey) between the states (—a| a) is
depicted dependent on |a|. In case of measuring vacuum
(shown in purple), the overlap after the replacement in-
creases as expected. Especially in the case of low coherent
state amplitudes |a| < 0.2, where the success probabil-
ity is close to the IDP limit, the overlap after the transfor-
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mation approaches unity. This behaviour prohibits further
distinguishing of the states, as expected.

The interesting case occurs when we detect more pho-
tons than necessary for the success event, i.e. more than
one in the first stage. Then, for small coherent state ampli-
tudes the overlap decreases compared to the initial states.
This is atypical for state discrimination protocols and we
attribute this effect to the presence of many failure modes
where the overlap after failure can be “distributed” among
them. To verify that this is not only true for this special
case in the first stage, we also compare the overlap after
the second replacement stage in Fig. 6(b). In this case,
both the vacuum case (pink) and single photon herald
case (purple) show an increase in overlap compared to
the initial state (grey). However, when detecting a higher
photon number than required for the success event (here:
three photons (red)) the protocol behaves atypically and
the overlap decreases.

5 Conclusion

In conclusion, we have proposed and discussed a scheme
for practical heralded state discrimination. We have
shown that for each coherent state amplitude |a| we
can find a beam splitter transmissivity T(|a|) such that
{|a) , |-a)} is probabilistically mapped onto an orthogonal
set {|¥*), |¥")}. We have discussed the success probabil-
ity of such a scheme for cascaded replacement stages and
have observed that the overlap after replacement behaves
differently to USD for certain failure modes. The success
probability is closest to optimal at low |a|, when the co-
herent states share large overlap initially. At larger coher-
ent state amplitudes, interaction parameters can still be
found to orthogonalise the states, however there is already
minimal initial overlap in this regime, and the amount of
failure modes increases since there are more photons in-
volved in the interaction, resulting in a reduced proba-
bility from the optimal case. From these transformations,
we have shown that one can construct a heralded coher-
ent converter from continuous-variable coherent states to
discrete-variable superposition states, and from coherent
state superpositions to eigenstates of the photon number
basis with reasonably high fidelities. This makes this op-
eration an interesting and potentially useful tool in hybrid
quantum information processing.
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A Appendix

A.1 Analytical results for first replacement stage

In the main text, we have claimed that we find at least one real valued solution for the beam splitter transmissivity to set
the overlap in equation (3) to zero. While for our case we find three real valued solutions only one is bounded between
zero and one. This is the branch that we consider to implement the physical transmissivities

1
12|al*

4(=2)"7]al*(6 + |a|*)

4la*(3 +2|al?) - 73
[|a|6[27 =2|al2(9 + |a|M)] + 3\@\/—|a\12{5 +4)a|2(9 + |a|2 + |a|*)}

T(a) =

+ 2027 [[l*[27 - 21029 + )] + 3v/3y/[a[12{5 + 4] + [af? + ]} 1/3) '

Furthermore, we give a formula to calculate the success probability for the first replacement stage

Pauccess = € T [7(@) + (1 - T(@)(1 - 3T (@)l + (1 - T@P T@)al*] .

A.2 Generating displaced discrete-variable superposition states

In equation 3, we write the output state of the protocol as the superposition of the vacuum and single photon Fock
states, displaced by an amount a+/T. One solution for equal amplitudes of the two coefficients is achieved when

241342 (a* - 4a® - 2)
b

1

1@ = giar

<4a2—2+ +22/3b)

where

b= [3\@\/3+4a2+20a4—4a6+ (7—20{2 [3—6a2+a4}>}1/3 .
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