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INTRODUCTION

This talk reviews instabilities which may be relevant to the storage rings under con-

struction and in commissioning such as � -factory in Frascati, and the B-factories at SLAC

and KEK. For this reason, I don't consider e�ects speci�c mostly for proton machines.

Beam-beam e�ects are also not included because today these e�ects look like a somewhat

distant future for the �- and B-factories, assumption that may become wrong very quickly.

Personal interest and limited knowledge of the author also de�ned selected topics.

It has been known for more than 30 years that interaction of the beam with envi-

ronment can cause beam instabilities. Until recently, impedances and wake �elds were

associated with resistivity and variations of the beam pipe geometry. In addition, interac-

tion with other(foreign) particles, existing or produced by the beam such as ions, trapped-

or photo-electrons, may become important for multi-bunch beams, causing instabilities

with growth rates substantially higher that these caused by geometric wake �elds. The

main topics of the talk are

1. Impedances

2. Traditional Instabilities: single- and multi-bunch instabilities

3. E�ect of Ions

4. New Instabilities

1 Impedances

The sources of impedances are well understood today and vacuum components of new rings

are carefully designed to minimize the impedance budget. This become possible, �rst of

all, due to dramatic progress with 2D and 3D computer codes available today such as

ABCI, MAFIA, GDFIDL, and others. At the same time, theory provide analytic results

for impedances of small components such as holes or pumping slotsy [1]. and smooth

tapers [2] which are di�cult do deal with in simulations because of large ascpects ratio

typical for such components or/and large number of them in the machines.

Trapped modes, observed before experimentally, have been explained theoretically [3]

as a result of frequency shift of a propagating mode close to the beam pipe cuto� kc = !c=c0
due to perturbed boundary of the beam pipe. These mechanism produces trapped modes

only by enlargements of the beam pipe. The localization of the mode L = 1=q and the

frequency shift �! depends on the volume V of the enlargement

�!

!
=

q2

2k2c
; q = �

k2cV

2S
(1)

where S is the beam pipe cross-section area, and � is ratio of the �eld jH j2 at the enlarge-
ment to the average < jH j2 > over the beam pipe cross-section. Trapped modes may exist

as well at cuto� frequencies of all propagating modes. giving resonance enhancement of

the real part of the impedance [4], see Fig. 1a.

Any slot in the vacuum chamber would cause some leak of the magnetic �eld lines

into the slots and produce trapped modes. These modes may be avoided by squeezing the

beam pipe to make the total variation of the volume equal or less than zero.

It was understood that careful design design of some components such as screens of

the vacuum ports (which can produce trapped modes) and of interaction region (where
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modes may be trapped between masks and crotches) is needed. For a train of bunches with

bunch spacing �b, it was emphasized that e�ect of trapped modes may be enhanced if their

frequencies are multiples of !�b=2�. Strict control of temperature may be required to avoid

these resonances. Similarly, for a periodic array of components the real part of impedance

can be enhanced at resonance frequencies corresponding to propagating constants equal

to multipoles of 2�=d where d is the distance between periodic components.

Small variations of the beam pipe can be taken into account by di�erent forms of

perturbation theory [5].

Impedance of coherent radiation, modi�cation of the resistive impedance for very short

bunches, and impedance of rough surfaces have been discussed recently. For the �- and

B-factories these e�ects can be neglected.

Even when the impedances of all components in the ring are known, there is a ques-

tion whether the total impedance is the sum of the individual impedances of the ring

components. The impedance of a periodic structure, which rolls o� with frequency as

!�3=2 instead of !�1=2 behavior of the impedance of a single cell, clearly indicate that

interference of the EM waves radiated by individual components may be important. How-

ever, in storage rings (SR), with bunches of with rms �, in a beam pipe with cut-o�

frequency kc = !c=c0 << 1=�, the radiation length L, L ' b2=2�, is much less than the

average spacing between vacuum components. Therefore interference is suppressed and

the impedances of components are additive.

Some caution is needed applying these statement to a periodic array of components

where real part of impedance can be enhanced at resonance frequencies corresponding to

propagating constant equal to multipoles of 2�=d where d is the distance between periodic

components.

With all this in mind, we can construct impedance of the ring as the sum of the narrow

and broad band impedances. The �rst is given by the sum of HOMs of rf cavities, similar

contributions may come from HOMs in the BPMs and trapped modes. The broad-band

impedance is the sum of resistive wall impedance and, with proper design, mostly inductive

impedances of the vacuum components. A small contribution may come from the high-

frequency tail of the impedance of rf cavities, which takes into account the di�erence of

the total loss factor of a cavity and the sum of HOM loss factors in the narrow-band

impedances.

The main uncertainty comes from the fact that there are too many vacuum chamber

components to model them precisely. In many cases, the available information gives loss

factors and inductances of individual components. The impedance of all components have

to be constructed with these two parameters. There are two approaches to do this: using

Q = 1 model (ZQ) or describing longitudinal impedance by the generalized inductance

model (ZL):

Z(!) =
Rs

1� i(!=!r � !r=!)
; Z(!) = �iZ0

!L

4�c0(1� i!a=c0)3=2
: (2)

The parameter a, related to the roll-o� frequency, de�nes the loss factor.

Both models have two parameters. The choice of one of them depends, mainly, on

bunch length and character of the impedance of a typical vacuum component. For a

relatively short bunch and a smooth beam pipe, the inductive impedance is preferable in

three aspects: it reproduces much better the character of the wake �eld of components, it
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gives correct roll o� at high frequencies, and, being normalized at a nominal rms, gives the

dependence of the loss factor on � in better agreement with numerical code then Q = 1

model, see Fig.1b.

The uncertainty with broad-band components in the ring may a�ect modeling of single

bunch instabilities, but is a minor problem for rings with long trains of relatively weak

bunches, where multi-bunch instabilities are expected to be the main problem.
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Figure 1: a)On the left: Trapped modes at the beam-pipe cut-o�s [4], b) On the right: Loss

factor vs �l for two impedance models. Dots are ABCI results for a smooth collimator.

2 Conventional Instabilities

The �rst instability considered in SR is the Robinson instability due to beam loading of

rf cavities. The growth rate of the lowest revolution side-bands around the rf frequency

depends on the detuning of the cavities, see Fig.2. With proper detuning and direct

feedback loops on the cavities (for PEP-II, that includes comb �lter feedback) the growth

rate of the instability can be reduced to a level where it can be controlled by the bunch-

by-bunch longitudinal feedback.
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Figure 2: Dependence of the growth rate of Robinson instability for betatron sidebands

m=0,-1,-2 around rf on the detuning of rf cavities at PEP-II.

Remaining instabilities are caused by the HOMs of the cavities and all other compo-

nents in the ring. In the zero-th approximation, the longitudinal and transverse dynamics
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can be considered separately. However, this is not always true. For example, transverse

HOMs of misaligned rf cavities can be coupled to the longitudinal motion by a �nite

dispersion giving tune shift [6]

�Qs = �i
Z
?
eIb

2�E
xcDx: (3)

2.1 Single Bunch Instability

At low currents, potential well distortion (PWD) due to the longitudinal wake�eld is

described by Haiisinski steady-state distribution function [7]

�(x; p) =
1

Z
e�H; H(x; p; �) =

p2

2
+ Urf + Uw;

Z
dxdp� = 1; (4)

where p = ��=�0, x = z=�, and � = !st are relative momentum o�set, position of a

particle in respect with bunch centroid, and time in units of zero-current rms �, �0, and

synchrotron frequency !s = !0Qs respectively. Parameter � is momentum compaction

factor, coordinate x > 0 in the head of a bunch, ��0 = !s�=c0. Potential Urf ' x2=2 is rf

potential, and Uw is de�ned by the wake W �(z) of a point-like particle,

dUw

dx
= ���

Z
dx0dp0�(x0; p0)W � [�(x0 � x)]; � =

Nbre

2�R
��20
: (5)

PWD de�nes dependence of the rms bunch length, synchronous phase, synchrotron

frequency shift, and frequency spread on beam current. The energy spread remains in-

dependent of current due to factorized form of Haissinski distribution. Oscillations of a

bunch can be described in terms of eigen-modes obtained from linearized Vlasov equation.

These results are in quite good agreement with experiment at low currents.

At higher currents, the shift of mode frequencies with current leads to degeneracy. De-

generate modes interact strongly and become unstable. This lead to additional turbulent

bunch lengthening. Decay of the unstable modes in single-particle motion leads to heating

of the bunch. These phenomena usually referred to as microwave instability. Haissinski

distribution is not valid above threshold.

Coupling of radial modes of a given azimuthal mode happens usually �rst [8], and only

at higher currents di�erent azimuthal modes become coupled as well. From this point of

view, we can talk about weak and strong microwave instabilities. Oide made a conjecture

that the threshold of the weak microwave instability is given approximately by the current

for which nonlinearity d!s=dJ = 0. Above the threshold of the microwave instability, the

instability is inhibited by modifying energy spread and rms length.

However, in addition to these average e�ects, experiments demonstrate nontrivial dy-

namics above the threshold, where bunch oscillates periodically in relaxation oscillations.

(Similar phenomenon in plasma has been studied before by O'Neil). In the SLAC damping

ring, where this instability has been studied in detail, the rms length changed with time in

a saw-tooth like fashion giving the name of the instability. Fig. 3a presents recent results

obtained by B. Podobedov and R. Siemann in the damping ring.

Several models were suggested to explain this kind of behavior [10] [11] and it was

reproduced in simulation [12] for some set of parameters. Dyachkov and Baartman [10]
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Figure 3: a) Saw-tooth instability in the SLAC NDR. Courtesy of B. Podobedov and R.

Siemann. b) Growth rate of coupled-bunch modes without (upper plot) and with mode

coupling [9]

assumed that PWD is strong enough to make potential with two minima. Initially, par-

ticles �ll only the �rst minima, but di�use later to the second minima due to quantum


uctuations. As a result, the self-consistent potential well changes and two minima merge.

Filamentation and radiation cools the system to original state, and process repeats again

The quasi-linear theory [13] [14], [11] describes e�ect of an unstable mode on the par-

ticle distribution in a self-consistent way. There are two possibilities. In one of them,

the result is a steady-state distribution in the frame rotating with mode frequency, which

corresponds to stationary nonlinear Van-Kampen waves in plasma. Another possibility,

that unstable mode a�ects particles as an external perturbation. It traps particles in a

separatix when amplitude is small, but separatrix shrinks at large amplitudes releasing

particles. Situation here is similar to the situation wich takes place at the crossing of the

nonlinear resonance with detuning.

This picture was supported recently by measurements of the beam transfer function

(BTF) in the SLAC DR and at ALS [15], Fig. 4. The BTF was measured applying

periodic RF phase modulation. The transfer function displayed an amplitude dependent

deep, which was explained as a result of the beam splitting in the phase plane between

two separatrices with cancellation of the net dipole signal. Experiment also allowed to

measure di�usion rate between islands and associate it with Touschek e�ect.

Interesting results were obtained recently by Sebek and Limborg at SPEAR. They ob-

served longitudinal saw-tooth oscillations of the amplitude of the upper side-band (around

fundamental frequency).

However, the longitudinal single bunch dynamics is still not fully understood. Prob-

ably, di�erent mechanisms of instability are possible depending on machine parameters,

damping time, and current.

The single bunch transverse stability is de�ned mostly by mode coupling instability

and head-tail e�ect. Both e�ects are not limiting factors for B-factories.

It is worth mentioning that new code TRISIM can be useful for single bunch simula-

tion [16].
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Figure 4: Streak camera observation of the beam split [15]

2.2 Multi-bunch Stability

Results on multi bunch stability in the case of equidistant bunches are well known and

give simple way to predict longitudinal and transverse multi-bunch instabilities [17].

Mode coupling may substantially increase the growth rate of multi-bunch transverse

oscillations above mode coupling threshold [9], see Fig. 3b. This results are especially

important for quadrupole instability which is not cured by the present feedbacks.

2.2.1 Structure of the Eigen Modes

In the linear approximation, a beam is described by a well-known system of linear equation

and stability of the system is an eigen-value problem. However, bunch pattern in the train

in the new machines will not be equidistant. A gap is required to avoid ion trapping. It

is known also that asymmetry in bunch population and/or in bunch spacing can stabilize

beam. Some machines like SR for next linear colliders may use a number of trains of

closely spaced bunches. Experiments at APS, Argonne [18] clearly showed dependence of

the CB longitudinal instability on �ll pattern and on the length of the train. A single rf

HOM was found responsible for instability. It was shown that a single additional bunch

could stabilize or destabilize the beam.

For an arbitrary �ll pattern of bunches, the eigen-modes can be found solving the linear

system. The beam spectrum can be very di�erent from the spectrum of the equidistant

bunches, see Fig. 5.

For a small gap, the structure of eigen modes can be found by perturbation theory,

starting with the solution for equidistant bunches. The formalism is the same as in the

time-independent perturbation theory in quantum mechanics. This cannot be valid for all

modes simply because the number of modes M is smaller than the number of modes for

the case of the equidistant bunches Meq. It means, that for some modes the perturbation
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Figure 5: Spectra for stable (above) and unstable motion (below) of 4 trains with 12

bunches in each train [18]. Harmonic number h = 1296.

theory is not applicable. These modes are degenerate with approximately equal eigen-

values. The number of such modes is small. They can be selected and the system of

equations for the subset of these modes can be solved exactly. The solution gives linear

combinations of the degenerate eigen functions, which have to be used in the perturbation

theory for non-degenerate eigen modes. The problem with di�erent number of modes is

eliminated in this way because the number of degenerate modes is (Meq �M).

For large gaps, the situation can be quite di�erent. In all new machines, HOMs in

rf cavities are damped and have low Q factors of the order of few hundreds. For gaps

with the length Lg = ngsb m, HOM wakes can become exponentially small across the gap

provided Lg=(2�R) > (Q=�)(f0=fHOM ), e.g. for PEP-II for a gap longer than 1% of the

circumference, for 1 GHz HOMwith Q = 200. Criteria when these wakes become negligible

can be obtained on the basis of perturbation theory described above. The frequency shift

of a bunch in the head of the train, due to the wake across the gap, should be compared

to the bunch frequency spread in the beam, which is of the order of the growth rate of CB

instability for equidistant bunches. The last has to be of the same order or larger than

the radiation damping time for unstable CB modes.

At least in some cases the �rst bunch in a train does not see any wake. This is enough

to make the system of equation degenerate and the analysis of CB motion in terms of

eigen-modes is invalid [19]. Consider a simple daisy-chain case where a bunch is coupled

only to the previous neighbor in the train with a constant wake W. For a large gap, it

is simpler to consider the problem in the time domain. The �rst bunch does not see any

wakes and oscillate with unperturbed synchrotron frequency !s. It drives oscillations of
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the second bunch in the train but, because of the wake, the frequency of the second bunch

is shifted by � � �! =W=2!s and there is no resonance. (For the wake which have longer

span, this would be true for all bunches within the span. Hence, situation in the head

of the train is harmless). For the daisy chain, the frequency shift of the third bunch is

the same as for the second bunch, and oscillations of the second bunch with amplitude a2
lead to the resonant linear growth of the amplitude of the third bunch. The main term

describing the motion of the n-th bunch is

yn(t) = a2
(�i�t)n�2

(n � 2)!
ei!s[t+(n�2)sb=c]e�(
d=2)[t+(n�2)sb=c]: (6)

At a given moment t, a bunch number n0 = �t has the maximum amplitude. For this

bunch,

ym0(t) = ia2
1p
2��t

e[��(
d=2)]tei(!st���=2)t: (7)

The beam is damped if � < 
d=2, exactly as in the case of equidistant bunches. However,

the behavior is quite di�erent, see Fig. 6. Bunch number n reaches maximum amplitude

at time tn = 2n=
d, di�erent for di�erent bunches, and then its amplitude exponentially

decays. This transient behavior is a particular case of the so-called convective instabil-

ity [20], contrary to the absolute instability of the closed train of bunches where all bunches

grow in time simultaneously. Excitations of the beam can be driven by any of the bunches,

leading to oscillations of the downstream bunches proportional to the amplitude am of the

driving bunch. Each such an excitation can be considered as an analog to a coupled bunch

mode.

2.2.2 Damping and Saturation of CB Instabilities

There are four main sources of damping: radiation damping, damping due to feedback

systems, incoherent frequency spread (Landau damping), and damping introduced by the

head-tail e�ect:
1

c0�HT
=
eIavbunchjZ?j

E

RQ
?

4
p
2�b

!�

!0

: (8)

Here � is relative chromaticity, and !� = (�=�)!
?
is chromatic frequency.

A reasonable estimate of Landau damping is given by the incoherent spread of frequen-

cies. Frequency spread is introduced by PWD for quadrupole and higher order modes,

and by by amplitude dependence of the tune for dipole transverse oscillations. Additional

tune spread is given by beam-beam interaction and ions.

For example, for PEP-II [21], the second order e�ect of sextupoles give amplitude

dependence of the tune ��x = a�x+ b�y, ��y = b�x+ c�y, with a = �70, b = �871 c = �30
1=m. and emittances �x = 49:2 nm, �y = 1:48 nm, the tune spread is 3:67 10�3 and

42:8 10�3 in x- and y-planes respectively. This can suppress coherent instability with

growth time larger than 21 ms in y-plane, comparable with the SR damping time. In

x-plane, though, it is only 318 ms.

Landau damping was revised recently [22] including tune spread in two transverse

planes simultaneously, which improves stability. It was shown also that Landau damping

is less e�ective for collimated beam with chopped o� tails of the distribution.
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Figure 6: Transients in the train with large gap [19].

When the damping rate 
d is small compared to the growth rate, the amplitude of

oscillations increases but usually saturates at some limit [23], Fig. 7.

For a single bunch and for an impedance dominated by one HOM, the equation for

the amplitude has the following structure:

_A = �
d
2
A+


g

�!s
J1[�!sA]: (9)

In linear approximation, the Bessel function can be replaced by its argument. This gives

the result of the linear theory with growth rate 
g.

For large amplitudes, there is another solution with the amplitude going to a con-

stant [24]

A(1) =
4(
g � 
d)
�
g!s

: (10)

at �
t >> 1. The amplitude at saturation is very large for a single bunch. The situation,

however, can be di�erent for a train of bunches where !HOM can enter instead of !s.

Saturation was observed at ALS in qualitative agreement with theory. It was suggested

by J. Byrd that because instability depends on the slope of the wake �eld at the bunch
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Figure 7: Saturation of coupled-bunch instability [23].

position, large longitudinal oscillations put bunch at locations with opposite slopes of the

wake, averaging out its e�ect.

Experiments have also shown that large longitudinal oscillations can as well stabilize

transverse instabilities. One mechanism is given by the dependence of the transverse

kick �p?t = Nbe
2W

?
(sl � st)xl(sl) on the distance between trailing (t) and leading (l)

particles and works in the same way as for longitudinal motion. It is worth mentioning

that the same reason may give synchro-betatron coupling for transverse motion which can

be comparable with the coupling given by the dispersion in the rf cavities.

Another mechanism of stabilization of transverse motion is given by dependence of

transverse beam spectra on amplitude of coherent longitudinal oscillations due to chro-

maticity. The amplitude of current spectrum of a particle in transverse case is propor-

tional to Jm[(n!0 � !�)As], where chromatic frequency !� = (�=�)!
?
is the ratio of rela-

tive chromaticity � to momentum compaction �, and As is the amplitude of synchrotron

oscillations. For a beam with large amplitude of coherent synchrotron oscillations, satu-

ration can be expected for amplitudes As / �m=j!HOM � !�j, where �m is the �rst root

Jm(�m) = 0.For PEP-II, �Q
?
=� / 104� is comparable with !HOM=!0 = 104 for a typical

HOM frequency 1.5 GHz at the moderate chromaticity of � / 1. It is worth noting that

large chromaticity can reduce, however, the single particle dynamic aperture.

In nonlinear approximation, description of beam behavior in terms of modes may

become meaningless for large machines even for equidistant bunches. The number of

modes increases with number of bunches in the ring (or machine radius) while separation

of mode frequencies depends mostly on the coupling of neighboring bunches and remains

constant for a �xed bunch spacing. Hence, the mode density increases and, at some point,

they may overlap, making beam behavior stochastic.

3 Stu�ng Instabilities

A number of new instabilities has been discovered and studied extensively in the last years.

Contrary to the classical instabilities driven by geometric impedance, these instabilities

are caused by interaction with foreign (A. Chao terminology) particles like ions, dust,

trapped- or photo-electrons. I call them stu�ng instabilities. Actually, e�ect of ions and

dust is hardly new and is well known for many years. The new fast Ion instability (FII)
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is closely related to the two-stream instability and photo-electron instability has common

features with beam induced multipactoring.

3.1 E�ect of Ions

Ions produce tune shifts, increase tune spread, can cause transverse blow-up of a beam

and reduce beam life-time. All these e�ects have been observed experimentally [25]. They

are sensitive to vacuum, gap in the train, tune, and beam size. For example, Fig. 8a

shows results for CERN EPA. For a single bunch in the ring, transverse emittances in

both planes are independent on the bunch charge, while both emittances are strongly

blown-up for multi-bunch beam at the same current per bunch. The dependence of the

tune on bunch current d�=dI changes sign from negative for a single bunch to positive

for multi-bunch beam with the slope dependent on number of bunches in the train. The

dependence on the number of bunches is also obvious for the life time. There was no

emittance growth for the positron beam.
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Figure 8: a) On the left: E�ect of ion trapping on transverse emittance [25]. b)Percentage

of stable ions in HER PEP-II vs gap length [26]

Ions are produced in collisions with residual gas at room temperature with the rate

per electron given by

dNi

dt
= 300(

p

nTorr
)
X

gk(
�k

Mbarn
)

1

s
; (11)

where the sum is over species in the ring, � are ionization cross-section of a species, and gk
is percentage of the k-th species. For typical species, H2; CO; CO2, with atomic numbers

A = 2: 28; 44, the cross-sections are � = 3:5; 1:9 ; 3:0 Mbarn, g = 0:75; 0:14; 0:07,

respectively. For high current machines, ionization by synchrotron radiation can give

comparable rate [27].

Trapped ions oscillate in the average beam potential with frequency


2
x;y =

eItZ0

2�Amp�x;y(�x + �y)
: (12)
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For the total current in PEP-II It = 1 A, frequency are 
y=2� = 23:8=
p
A MHz, and


y=2� = 10:6=
p
A MHz.

A train of equidistant bunches with bunch spacing sb traps ions with atomic number

A > Ath if

j cosh(
spsb=c)�

2sb

2c
sp
sinh(
spsb=c)j < 1; (13)

where 
2
sp = (4�rpc

2
0=A)ni describes the space-charge e�ect at the ion density ni.

If the space-charge e�ect can be neglected, ions become unstable at the currents


�b=2 > 1. This gives the lowest atomic number of ions which can be trapped in a

continuous train of bunches, with Nb electrons per bunch:

Ath =
Nbrpsb

2�x�y
: (14)

For a train of equidistant bunches, the ion density increases in time and then satu-

rates. There are several mechanisms of saturation: ion recombination, secondary ioniza-

tion, beam driven di�usion, and two-stream instability. The �rst e�ect is very weak. The

cross-sections of the �rst and secondary ionization are comparable, and this process gives

saturation at the residual gas density ngas = 3:2 (p=nTorr) 107 cm�3 (at room tempera-

ture). Note, that the maximum ion density ni = ngas can be lower than the neutralization

density which is equal to average electron density in the beam nneut = Nb=(2��x�ysb).

For PEP-II, nneut = 1:3 1010 cm�3. Beam driven di�usion can reduce the density at

saturation even further by an order of magnitude.

A gap Tg in the train of bunches makes most ions unstable. Stability is very sensitive

to small variations of the phase advance per turn � = 
T0, and ions remain stable if the

phase is within n� < � < n� + 4=(Tg
) for any integer n. Therefore, the variation of

beam parameters along the ring leads to small zones of stability whose location changes

in time with current and emittance. The distance between zones corresponds to variation

of 
 by �
=
 = �=(
T0). Some stable zones in both transverse planes overlap, giving

zones of 2D stability. They are wider in the quads. Ions can escape from these zones due

to the variation of the beam potential along the ring with variations of the �-functio [28].

Other e�ects leading to longitudinal motion are weaker.

If a stable 2D zone is at the center of a defocusing quad, ions may be stable lon-

gitudinally as well. Fig. 8b shows the percent of stable ions vs gap length for PEP-

II [26]. 3D stable ions are accumulated until their space-charge shifts the ion frequency

by �
=
 / 1=[(
T0)
2(�T=T0)]. To addition to 3D stable ions, there are also ions, which

are cleared in one turn but give, nevertheless, noticeable contribution.

The ion distribution is not Gaussian but Christmas-tree like [29]. This increases tune

shift due to ions.

Attempts were made to reduce ion e�ects by exciting betatron oscillations of the beam

at the ion frequency to drive ions to large amplitudes where their motion becomes stochas-

tic due to nonlinearity of the beam potential. Although this shaking method can suppress

e�ect of ions, it was found di�cult to keep ions in resonance due to detuning at large ion

amplitudes [30]. It should be noted that a gap in a bunch train also creates problems,

exciting transients in rf cavities and making bunches in the head of the train di�erent and

vulnerable to the PACMAN e�ect. Transients are compensated in PEP-II by introducing
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a partially �lled gap also in the positron beam, to match bunch phase modulation in both

rings. At injection, the width of stable zones, which scales as �
?
=
p
It, can be large and ion

e�ects are most dangerous. Filling pattern of the train should be favored which preserve

large gaps as long as possible. As the current decays, ions accumulated in 3D stable zones

can become unstable. This may be the reason for dips in the life-time of decaying beams.

Ions produce a tune shift proportional to their total number in the ring N tot
i :

��y = �
reN

tot
i < �y >

2�
�y(�x + �y)
: (15)

The horizontal tune shift has the same sign but is smaller by a factor �y=�x.

The single-turn ions give tune variation along a bunch train, linearly increasing toward

the tail of the train. This has a positive e�ect by detuning bunches and suppressing

coupled-bunch instabilities, including the fast ion instability.

Ions can also produce coupling between bunches, leading to a two-stream instability [31]

at resonances Qy + 
i=!0 = integer > 0. E�ect was simulated for KEK PF [32]. At

small amplitudes, the instability is very fast: the growth time can be of the order of

a microsecond. In the steady-state, ions are driven to the wall by interaction with the

beam while the beam remains transversely blown-up. An instability due to ion coupling

was observed also in the SLAC electron storage ring [33]. The beam pro�le measured

on the extracted beam was blown up for 2 bunches in the ring compared to a single

bunch operation, (see Fig. 9). There was a large number of self-excited vertical betatron

sidebands with sideband amplitudes oscillating with periodic bursts. The measured beam

transfer function also agrees with coupled-oscillator model.
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Figure 9: Two-stream instability at SLAC DR [33].

One-turn ions can give noticeable bunch coupling before ions move to large amplitudes.

This coupling can cause instability for both electron and positron beams [34]. The growth

rate of instability for positron beam is

1

�
=

2�



[(
mp

me

)
NtreA

2�Qy
p
�x�y

]1=2; (16)

where � = ngas�
+c0 is production rate of ions, Nt = NbM is total number of positrons in

the beam, � = �2=� are transverse emittances, and Qy is betatron tune.
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Ions can cause vacuum problems as was discovered at ISR over 20 years ago. Accel-

erated by the beam, they can hit beam pipe wall and release additional molecules which,

when being ionized by the beam, produce run-away increase in pressure provided the

secondary ion yield �i is large:

 tan >
S

2W
;  2 = �i�

+ I
av
beam

e

L

4W
; (17)

where W is pipe vacuum conductance (in litter/s), S pumping speed (litter/s), and �+

is the cross-section of ion production. The yield �i, the number of outgased molecules

per ion, increase with ion mass and energy, decreases with mass of outgased molecules,

crucially depends on material of the wall and wall treatment, and can vary in the range

from �i = 0:01 to � ' 10. The best way to avoid instability is to use glow discharge

treatment of the beam pipe and use titanium coating.

Machines with Al vacuum chambers like HERA and DORIS su�er from dust, macropar-

ticles with atomic number, apparently released by the ion sputter pumps, and ionized and

trapped by the beam. The life time is reduced by the breamsstrahlung. A macroparticle

can have N / 1012 � 1013 atoms and a radius of few microns. Dust causes sudden reduc-

tion of the electron beam lifetime at the threshold of about 10 mA (3 mA) at an energy

12 GeV (26.5 GeV), respectively. The life time shows a hysteresis behavior: it remains

low even when the current is reduced below the threshold. Although replacement of a bad

vacuum section improved situation, the problem remained. For PEP-II estimate [35] gives

a thermal lifetime of trapped macroparticles less than 10 �s.

3.2 Fast Ion Instability

The Fast Ion Instability (FII)described by Raubenheimer and Zimmermann is driven by

ion induced coupling between bunches. Mechanism is quite similar to the two-stream

instability, but is driven by one-turn ions and therefore remains with a gap in the train.

The instability does not have resonance character, although the growth rate depends on

the length of a train. Similar e�ect can take place in positron machines and even in linacs

due to trapping of electrons. The beam works as a noise ampli�er magnifying oscillations

of the �rst bunch along the train, although the last bunch does not necessarily have the

largest transverse amplitude.

In the linear theory [36], the amplitude of the n-th bunch increases with time quasi-

exponentially

an(t) / e
p
t=tc ;

1

c0tc
= �


iL
2

2!
?

; � =
4re

3
sb�x�y

dNi

ds
: (18)

Here dNi=ds = 0:06(p=Torr)Nb 1=cm is the number of ions produced by a bunch with

Nb electrons in one turn per cm, L =Msb is the length of the train, and !
?
= Q

?
!0.

The characteristic time for PEP-II is �c = 5:5 �s for 10 ntorr pressure of CO. Fortu-

nately, spread of ion frequencies around the ring �!i makes situation much better [37].

The dependence on time becomes exponential, an(t) / e�t=te where, for the last bunch in

the train, �e = �c(2�!iL=c0). For PEP-II, �e = 350 �s for 10% ion frequency variation

around the ring and 760 �s for 30%. Variation of the ion frequency within a bunch has a

smaller e�ect.
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The beam has broad spectrum of betatron side-bands with an envelope centered at

the ion frequency with lower sidebands having larger amplitudes than upper sidebands.

The train pro�le is, in zero approximation, triangular with larger bunches at the end of

the train.

The linear theory is not applicable at large amplitudes of oscillations. Numerical

simulations show,(Fig. 10), that exponential growth is replaced by approximately linear

time dependence. In the nonlinear regime, beam and ion centroids are separated by more

than transverse rms d > �y and, for Gaussian bunches, interaction is suppressed. Analysis

shows [38] that, for 
at beam and �y << d << �x the interaction becomes a step-function,

proportional to d=jdj. Such an interaction has a broad spectrum including the betatron

frequency, which drives amplitude of a bunch linearly with time. For the last bunch,

A / �L2�y

4�pf

t

T0
; (19)

where pf = L=(2�R) is the �lling factor. The spectrum of a beam in the nonlinear regime

moves toward lower frequencies due to blow-up of �y.
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Figure 10: Amplitude growth due to FII vs number of turns. The linear growth is clearly

seen in the logarithmic scale (in the left) but is replaced with linear growth later in time

(usual scale, in the right).

In all formulas above, the amplitude of bunches were proportional to the amplitude of

the �rst bunch. Any damping by radiation or feedback damps out oscillations of the �rst

bunch. After that nothing drives oscillations of the following bunches and they vanish due

to damping. With noise, however, it is possible to have a steady-state distribution within

the train [39] [40]. There are several sources of noise: feedback systems, 
uctuations of

number of ions, and interference of perturbations introduced by di�erent bunches. Because

damping reduces the amplitude exponentially a / e�t=�d while amplitude grows only

linearly in time in the nonlinear regime, one can argue that equilibrium can be achieved

only in the linear regime. With this assumption, the beam pro�le in a system with damping

and random noise was found [39] to be dependent on the parameter � = z
p
�d=�c. If

� << 1, the rms amplitude increases along the train as < y2(z) >/ �3. However, for
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Figure 11: a)Above: Yield of the secondary electron emission. b)

Below: Snapshot of the density of electron cloud [49].

� > 1, the growth along the train is exponential < y(z) >/ e�2=2. This behavior can be

seen in simulations and experiments.

Beam spectra and transverse rms averaged over the train and for individual bunches

were measured in experiments studying fast ion instability and carried out at ALS [41],

TRISTAN AR at KEK, and PLS, Pohang [42]. In all cases, see Fig. 12 and 13, blow-up

of the beam has been observed with saturation at 2-3 rms �y. Scaling of the e�ect with

pressure and beam current, dependence on the transverse rms, and beam pro�les were

found to be consistent with theory. In saturation, the amplitude depends on the gain of

the feedback system [43].

In most of the experiments, pressure was increased above nominal to enhance the

e�ect. Additional to that, beam remains stable, and it may be to early to draw conclusion

how detrimental it will be for operation. It may be possible, though, to control FII is by

introduction of short gaps in the bunch train.
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3.3 Electron Driven Instabilities

3.3.1 Beam Multipactoring

The �rst electron related instability was beam induced multipactoring instability at the

ISR [44]. In the positron SR, electrons produced in the beam pipe with initial o�set from

the positron beam y can be accelerated to a velocity v=c0 = 2Nbre=
y and, hitting the

wall, produce secondary, low-energy electrons. The yield �e of the secondary electron

emission varies but can be as high as several units, Fig. 11a. The lowest yield is for Cu

chamber, the highest, �e = 2:5 is for Al at the primary electron energy 400 eV. It goes for

Al below one for electrons with energy less than 50 eV and above 2.6 keV. TiN coating

can reduce the yield to �e ' 1. E�ect depends on beam current, bunch spacing sb, and

the beam pipe radius b.

At the threshold current � = Nb(resb)=b
2 > 1 electrons reach the wall and produce

secondaries before the next bunch arrives. If di�usion and loss of the secondaries to the

wall are small, they will be accelerated by the next positron bunch and, for �e > 1 may

start avalanche. For PEP-II parameters, that may happen only at the currents more then

3A, substantially higher than the nominal current. The same is true for DA�NE.

At lower currents, electron may experience several kicks from the bunches before they

reach the wall. A similar situation takes place in dipoles where electrons spiral around

B-�eld lines and move slowly in the vertical direction. For example, electrons reach the

wall at the moment the second bunch arrives, at a current �[1 + 1=(1� �)] = 2. However,

the space charge e�ect may wipe this resonance out. Resonances at lower currents are

even less probable because the electron trajectories begin to resemble random walk, and

are susceptible to small perturbations.

Multipactoring electrons may also ionize the residual gas what a�ects pressure insta-

bility increasing e�ective production rate of ions. Estimates show that the e�ect is small.

3.3.2 Trapped Electron Instability

An electron related instability was causing a horizontal multi-bunch instability (mainly of

the positron beam) at Cornell. It had a strong nonlinear dependence of the growth rate

on current, and was present only when the distributed ion pumps were powered with dc

voltage. This instability is due to the beam interacting with electrons [45] produced by

synchrotron radiation in the beam pipe. Electrons are trapped by the combined magnetic

�eld of the dipoles and the electrostatic �eld of the DIPs, which leaks into the vacuum

chamber through pumping slots. Electrons are ejected by beam passage and the variation

of the density transfers information on bunch displacement to the following bunches.

Similar e�ects can be produced by electrons trapped in the combined magnetic �eld of

dipoles and the average electric �eld of the beam [46]. At the nominal parameters of the

PEP-II LER, the positron beam can produce a potential well with a depth of the order of

100 eV. Electrons with such energy oscillate vertically, spiraling along magnetic �eld lines

with a very small Larmor radius about 20 �m. Kicks from the bunches make electrons

close to the beam unstable. The maximum density of the electrons is reached at about 1

cm from the beam. Electrons are produced, as in Cornell, by synchrotron radiation and

can be accumulated with time provided the beam does not have a gap.
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3.3.3 Photo Electron Instability

A coupled-bunch instability caused by photo-electrons (PE) was observed in KEK-PF

positron ring [47] and recently studied by IHEP-KEK collaboration in BEPC, Beijing [48].

The main features of the instability is low threshold current (15-20 mA), broad dis-

tribution of betatron sidebands, and dependence of the threshold on bunch spacing. This

instability does not occur in an electron beam. The growth rate of the instability can be

very high. Simulations predict growth times of the order of 0:1 ms for KEK B-factory,

0.3 ms for PEP-II [49], and 0.5 ms at BEPC. In the BEPC experiments, the threshold

of instability was 9.4 mA for 158 positron bunches, where vertical betatron side-bands

were excited. The threshold current in the Beijing experiments depended on vertical

chromaticity, and was increased by a factor of four when bunch spacing was doubled. The

dependence on chromaticity is mostly due to Landau damping due to increasing amplitude

dependence of the tune at large (�y > 8) vertical chromaticity [50].

The photo-electron instability was explained by Ohmi [51]. Photo-electrons (PE) are

produced by photo emission induced in the beam pipe walls by synchrotron radiation.

They produce bunch-to-bunch coupling. Two basic mechanisms of coupling are possible:

due to primary PEs and due to electron cloud build-up in the vacuum chamber in a

steady-state operation.

The photons come to the wall at about the same time when the parent bunch passes

by. The delay �l ' b
p
b=2� is small compared to the bunch length. If the re
ectivity of

the wall is low, the primary PE are produced between the distances smin, de�ned by the

wall work function, and smax, de�ned by the length of dipoles and the bend radius. The

energy of primary photo-electrons is low, of the order of 5 to 10 eV, but emitted electrons

see the electric �eld of the parent bunch and can be accelerated to 100-200 eV depending

on the beam current and beam pipe geometry. Electrons emitted by photons from the

head of the bunch get the largest kick, while those due to radiation from the tail remain

at the wall. Because the electric �eld lines are normal to the wall, photoelectrons are

accelerated in the horizontal plane, making a strip with the length increasing in time to

�x at the moment when the next bunch arrives. The density of the strip depends on the

bunch current, the yield �e
 of electron emission, and the geometry of the beam pipe. The

PEP-II ante-chamber, with the vertical opening hg = 1:5 cm, substantially reduces this

density. At 3A total current and for �e
 = 0:1, the density in the strip is of the order of

ne
 = 3:6 105 cm�3.

The strip has vertical o�set equal to the o�set yl of the parent bunch, and, hence, a

kick to the incoming bunch from the strip depends on this o�set as well. Retaining only

the term proportional to yc, the beam motion is described by the equation [52]

y00 + k2�y = ��yl; � = 8��
�e

Nbreb


smaxh2g�x
ln
smax

smin
; (20)

where �
 = 4 10�3. Oscillations of the �rst bunch are ampli�ed by the following bunches.

For PEP-II parameters, the amplitude of the second bunch grows and becomes equal to

the amplitude of the driving bunch in 0.7 ms.

This simple mechanism works in the straight sections. Generally, it competes with

more complicated processes of building up an electron cloud, Fig. 11b, with interaction of

bunches through excitation of the cloud in a way very similar to the Cornell instability.
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In this case, the situation is very similar to the multipactoring situation below the single-

bunch threshold. Note that the interaction with the electron cloud gives a kick to an

o�set bunch even if all bunches ahead are not displaced. This self-induced kick gives a

tune shift which depends on the density of electron cloud. For a train of bunches with a

large gap, this mechanism can lead to detuning of bunches along the train stabilizing the

beam. The equilibrium density of the cloud depends on many factors such as yield �e of

the secondary electron emission, wall re
ectivity, and shape and roughness of the beam

pipe. The electrons of the cloud kicked by the beam to the energy 2:6 keV > Ee > 50 eV ,

can go to the walls and produce secondary electrons. The 
ux of the secondary electrons

is added to the 
ux of primary PE and is balanced by losses of low energy electrons and

the space charge e�ect of the cloud. Multipactoring can become a problem, especially in

dipoles, where spiraling electron have larger �e due to small incident angle. A short gap

in the train Lg > b
q
mc2=2E� leave only electrons with energy below E� = 50 eV which

can not produce secondaries.

Consider a steady-state, where the average total potential of the beam and of electron

cloud is at the level needed to stop secondary electrons with energy Ee ' 5 eV from

entering the beam pipe. Such a consideration gives a density of the cloud of the same

order as neutralization density nn = Nb=(�b
2sb), nn ' 107 cm�3. The actual density

is much lower and is de�ned by the dynamic equilibrium. Electrons which are at the

distance r from the beam get a kick and can reach the wall before the next bunch arrives

provided r=b < �(1=2)[1+
p
1 + 2Nbresb=b2]. For currents Nbresb=b

2 > 1 this means that

all electrons in the cloud hit the wall. For PEP-II, this parameters is 0:36 at 3A total

current. The equilibrium is reached when the 
ux of electrons to the wall is equal to the


ux of PEs Qe
 = �e
NbdN
=ds, where dN
=ds is number of photons producing PEs per

unit length. For a beam pipe with ante-chamber, it is de�ned in [52]. If, however, the

secondary yield �e > 1 as for an uncoated Al chamber, the density of the cloud increases

until it is stopped by space-charge e�ect.

Information on the bunch o�set can be transfered to the following bunches due to a

di�erence in the number of electrons in the cloud on both sides of the beam, and due to

energy dependence of the yield �e.

All these processes, experimental data on parameters, and realistic geometry are in-

cluded today in simulations by K. Ohmi, M. Furman, and F. Zimmermann.

A relatively slow instability is expected at PEP-II, and the transverse feedback will

be enough to cure it. TiN coating of the beam pipe (PEP-II), and a solenoidal magnetic

�eld of 30 Gauss (KEKB) were suggested. Solenoidal �eld could add problems, because

con�ned electrons may couple bunches as at Cornell, even if their density is hollow at the

beam axis. Short gaps can prevent the equilibrium density to build up.

The study of the instability is still in progress. For example, an additional problem

was pointed out recently [53] that due to vertical oscillations of a beam, a beam pipe wall

would be irradiated which was not under synchrotron radiation of a quiet beam. This can

enhance electron emission and induce transverse instability. The PEI today is maybe one

of the main concern for beam stability in positron rings.
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4 Conclusion

The new generation of machines push parameters of storage rings to a level never achieved

before. A careful study of classical and new instabilities is necessary to reach the design

goals. This is a challenging and exciting enterprise.
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Figure 12: First results on FII [41].
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Figure 13: Beam pro�le in FII [43].
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