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Dark Energy is the dominant component of the energy density of the Universe. However, it is also very 
elusive since its interaction with the rest of the Universe is primarily gravitational. Since Dark Energy 
is a low energy phenomenon from the perspective of particle physics and field theory, a fundamental 
approach based on fields in curved space is sufficient to understand the current dynamics of Dark 
Energy. The key issue is to understand the gravitational dynamics of Dark Energy and its observational 
consequences. However, finding the observational consequences of Dark Energy dynamics has been a very 
challenging task. For something which is the dominant component of the energy density of the Universe, 
Dark Energy appears to be very distant and reclusive. Here we show that the Dark Energy dynamics 
results in the production of gravitational waves which produce the ellipticity variation in earth’s orbit 
that results in the periodicity of the Ice Ages observed and documented by geologists and climatologists. 
Previously, no observational signature of gravitational waves produced by Dark Energy dynamics has been 
reported. Further, no interpretation of the ellipticity variation of the earth’s orbit due to gravitational 
waves or the linking of such gravitational waves to the Ice Age periodicity has been reported previously. 
We hope that the current work will lead to some fresh insights and some more interesting work.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

An increasing accuracy of astronomical observations has led 
us to an increased precision in the determination of cosmologi-
cal parameters. This, in turn, led us to critically re-examine our 
cosmological models. In particular, the accurate determination of 
the Hubble constant and the independent determination of the 
age of the universe forced us to critically re-examine the simplest 
cosmological model – a flat universe with a zero cosmological con-
stant [1,2]. These observations forced us [3] to consider the idea 
of a small non-vanishing vacuum energy due to fields as playing 
an important role in the Universe. Subsequently, there has been a 
large body of work both on the observational and theoretical side 
that has firmed up our belief in what we now call dark energy. For 
a thorough discussion on Dark Energy and related issues, please 
see the excellent review [4].

Thus, it is important to understand the dynamics of dark energy 
- in particular the gravitational dynamics of dark energy and its 
observational consequences.

Before we start our detailed look at the gravitational dynamics 
of dark energy field configurations we would like to quickly intro-
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duce field theory models of Dark Energy so that all readers can 
readily relate to the discussion that follows.

Discussions of field theory models for dark energy and connec-
tions to particle physics were discussed in detail earlier [3]. It was 
noted in that article that these fields must have very light mass 
scales in order to be cosmologically relevant today. Discussions 
of realistic particle physics models with particles of light masses 
capable of generating interesting cosmological consequences have 
been carried out by several authors [9]. It has been pointed out 
that the most natural class of models in which to realize these 
ideas are models of neutrino masses with Pseudo Nambu Gold-
stone Bosons (PNGB’s). The reason for this is that the mass scales 
associated with such models can be related to the neutrino masses, 
while any tuning that needs to be done is protected from radia-
tive corrections by the symmetry that gave rise to the Nambu-
Goldstone modes [10].

Holman and Singh [11] studied the finite temperature behavior 
of the see-saw model of neutrino masses and found phase tran-
sitions in this model which result in the formation of topological 
defects. In fact, the critical temperature in this model is naturally 
linked to the neutrino masses.

Today we know that Dark Energy is an important component of 
the Universe. Thus it is natural to expect that Dark Energy will play 
an important role in different aspects of the Universe. In previous 
papers, it has been shown that Dark Energy can play an important 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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role in structure formation and the physics of the galaxy [5]. In 
particular, the dynamical length scale associated with the Dark En-
ergy is comparable to the galactic length scale. Also, Dark Energy 
collapse can result in the formation of supermassive black holes 
with masses comparable to the mass of the Black Hole at the cen-
ter of our galaxy.

In our quest for interactions of the Dark Energy with the rest 
of the Universe, our first attempts perhaps justifiably focus on the 
gravitational interactions of the Dark Energy, since it is the domi-
nant interaction of Dark Energy with the rest of the Universe. One 
new signal that one can perhaps hope to measure is the gravita-
tional waves emitted by Dark Energy. Thus, a study was made of 
the gravitational waves emitted by Dark Energy [12]. One of the 
key results obtained in that paper is that the time period of the 
gravitational waves emitted is ∼ 105 years.

At first, one may be filled with dismay that with the time pe-
riod being ∼ 105 years and the human lifetime being ∼ 102 years, 
the chances of detecting such gravitational waves are slim to none. 
However, nature has been kind to us.

To find a pathway to the detection of these gravitational waves, 
it is perhaps worth recalling that a gravitational wave periodi-
cally turns circles into ellipses and vice versa as it passes through 
a region of space. For an easily accessible discussion, please see 
Gravitational Waves, Sources, and Detectors [15]. Thus, we expect 
a periodic oscillation in the ellipticity of orbits as a signature of 
gravitational waves.

Nature has in fact been kind to us in that it has not only de-
tected these gravitational waves but maintained a record of it for 
us to uncover and interpret.

For this, we turn to a description of Ice Age periodicity, the 
underlying geological data and its interpretation in the terms of 
the periodic oscillations in the ellipticity of earth’s orbit.

It turns out that geologists and climatologists have known for 
about a century that the periodicity in the ice ages can be linked to 
what they call insolation which essentially quantifies the heat re-
ceived from the sun. This insolation has been tied to the variations 
in the Earth’s orbit. It further turns out that the dominant driver 
of this phenomena is the variation in ellipticity on the timescale of 
∼ 105 years. For more details on this please see Variations in the 
Earth’s Orbit: Pacemaker of the Ice Ages [7] and Climate and atmo-
spheric history of the past 420,000 years from the Vostok ice core, 
Antarctica [6] and references therein. These articles bring out the 
role played by periodic variations in the eccentricity of the Earth’s 
orbit on the time scale of ∼ 105 years in driving the periodicity of 
the Ice Ages.

In the following sections of the paper, we show how one can 
do the time evolution of the Dark Energy fields in the presence 
of gravity and extract the gravitational wave signals. Finally, we 
show that the gravitational wave signal produced by the Dark En-
ergy fields can produce the ellipticity variations in the earths orbit 
resulting in the observed periodicity of the Ice Ages.

2. Gravitational dynamics of the dark energy fields

We now quickly re-visit the study of the gravitational dynam-
ics of Dark Energy field configurations. The dynamics of fields 
in cosmological space-times has been extensively discussed else-
where (see e.g. Kolb and Turner [13]). Likewise, gravitational col-
lapse in the context of general relativity has also been extensively 
discussed elsewhere (see e.g. Weinberg [14]). These ideas can be 
pulled together to write down the evolution equations describing 
the coupled dynamics of the field configurations and space-time 
interacting with each other.

We use the 3+1 BSSN formalism to numerically study the time 
evolution of scalar fields in the presence of gravity. The formal-
ism for doing this has been previously described by Balakrishna et 
al. [16]

The action describing a self-gravitating complex scalar field in 
a curved spacetime is:

I =
∫

d4x
√−g

(
1

16π
R − 1

2
[gμν∂μ�∗ ∂ν� + V (|�|2)]

)
(1)

where R is the Ricci scalar, gμν is the metric of the spacetime, 
g is the determinant of the metric, � is the scalar field, V its 
potential. Varying this action leads to equations of motion for the 
entire system. Variation with respect to the scalar field leads to 
the Klein-Gordon equation for the scalar field

�;μ;μ − dV

d|�|2 � = 0. (2)

When the variation of Eq. (1) is made with respect to the metric 
gμν , we get the Einstein’s equations Gμν = 8π Tμν . The resulting 
stress energy tensor is:

Tμν = 1

2
[∂μ�∗∂ν� + ∂μ�∂ν�∗] − 1

2
gμν [�∗,η�,η + V (|�|2))].

(3)

To get numerical solutions it is convenient to use the 3+1 de-
composition of Einstein’s equations, for which the line element can 
be written as

ds2 = −α2dt2 + γi j(dxi + β idt)(dx j + β jdt) (4)

where γi j is the 3-dimensional metric. The latin indices label the 
three spatial coordinates. The functions α and β i in Eq. (4) are 
gauge parameters, known as the lapse function and the shift vec-
tor respectively. The determinant of the 3-metric is γ . The Greek 
indices run from 0 to 3 and the Latin indices run from 1 to 3.

For the purpose of doing numerical evolution, the Klein-Gordon 
equation can be written as a first-order system. This is done by 
first splitting the scalar field into the real and imaginary parts 
as: � = φ1 + iφ2, and then defining the following variables in 
terms of combinations of their derivatives: � = π1 + iπ2 and 
ψa = ψ1a + iψ2a . Here π1 = (

√
γ /α)(∂tφ1 −βc∂cφ1) and ψ1a = ∂aφ1

and similarly we can replace the subscript 1 with 2 to get the 
remaining quantities of interest. With this notation the evolution 
equations become

∂tφ1 = α

γ
1
2

π1 + β jψ1 j (5)

∂tψ1a = ∂a(
α

γ
1
2

π1 + β jψ1 j)

∂tπ1 = ∂ j(α
√

γ φ
j

1) − 1

2
α

√
γ

∂V

∂|�|2 φ1

and again, we can replace the subscript 1 with 2 to get the re-
maining quantities of interest. On the other hand, the geometry 
of the spacetime is evolved using the BSSN formulation of the 
3+1 decomposition. According to this formulation, the variables 
to be evolved are 
 = ln(γi jγ

i j)/12, γ̃i j = e−4
γi j , K = γ i j Ki j , 
Ãi j = e−4
(Kij − γi j K/3) and the contracted Christoffel symbols 
�̃i = γ̃ jk�i

jk , instead of the ADM variables γi j and Kij . The equa-
tions for the BSSN variables are described in Refs. [17,18]:

∂t
 = −1

6
αK (6)

∂t γ̃i j = −2α Ãi j (7)
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∂t K = −γ i j Di D jα + α

[
Ãi j Ãi j + 1

3
K 2 + 1

2

(−T t
t + T

)]
(8)

∂t Ãi j = e−4

[−Di D jα + α

(
Rij − Tij

)]T F (9)

+α
(

K Ãi j − 2 Ãil Ãl
j

)
(10)

∂

∂t
�̃i = −2 Ãi jα, j + 2α

(
�̃i

jk Ãkj

−2

3
γ̃ i j K, j − γ̃ i j T jt + 6 Ãi jφ, j

)
− ∂

∂x j

(
βlγ̃

i j
,l − 2γ̃ m( jβ

i)
,m + 2

3
γ̃ i jβl

,l

)
, (11)

where Di is the covariant derivative in the spatial hypersurface, 
T is the trace of the stress-energy tensor (3) and the label T F
denotes the trace-free part of the quantity in brackets.

The above equations are true for any general potential V . One 
can of course write down the corresponding equations for PNGB 
fields. All we need to do is specify the appropriate potential. In 
our case, the field is a real scalar field. The simplest potential one 
can write down for the physically motivated PNGB fields [9] can 
be written in the form:

V = m4
[

K − cos(
�

f
)

]
(12)

As discussed in [9] m is of order the neutrino mass and K is 
of order 1. For the sake of definiteness, in what follows we will 
choose K = 1. We will consider such a potential for studying the 
dynamics in the next section.

Before we turn to a discussion of the gravitational wave sig-
nal and the numerical results obtained, we identify the funda-
mental timescale of the dynamics as per the model described 
here. Of course, both the dynamics of fields and the fundamen-
tal timescale have been extensively studied before. Please see for 
example [24–27] for detailed discussions on this issue. It has been 
noted in these analyses that even in complex non-equilibrium sit-
uations the inverse mass of the field m−1

� plays an important role 
in determining the dynamics of fields. In particular, resonances as-
sociated with this fundamental timescale play an important role in 
the dynamics. We will elaborate on the role of resonances in the 
final section of this article. For now, we focus on arriving at the 
fundamental timescale associated with the dynamics. To do this, 
we note that the mass of the field is determined by the second 
derivative of the field, m2

� � V ′′(�). The fundamental timescale of 
the dynamics is then given by t � m−1

� .
For our potential given above, taking the second derivative gives 

us: m2
� � m4/ f 2. Thus, the fundamental timescale of the dynamics 

is given by t � f /m2.
To convert into physical units, we note the following.
The scale f is the high energy symmetry breaking scale in 

PNGB models. In the see-saw model of neutrino masses [3] this 
corresponds to the heavy scale of symmetry breaking. While f
has a range of possible values, the typical value of f in the see-
saw model of neutrino masses is f ∼ 1013 GeV. The typical value 
of m is given by m ∼ 10−3 eV. It should also be noted that so 
far we have been working in the Particle Physics and Cosmol-
ogy units in which h̄ = c = k = 1. It is straightforward to convert 
from these units into more familiar units using standard conver-
sion factors [13]. Thus, 1 GeV−1 = 1.98 ×10−14 cm and 1 GeV−1 =
6.58 × 10−25 sec.

Using these conversion factors we see that the fundamental 
time scale of the Dark Energy dynamics corresponding to f

m2 is 
∼ 105 years. As we shall see this fundamental timescale plays a 
key role in the production of gravitational waves due to dark en-
ergy dynamics. To complete this discussion we now turn to the 
discussion of gravitational waves.

3. Gravitational wave signal

We are interested in the gravitational wave signal produced by 
the dynamics of the dark energy field whose time evolution we 
have described in the previous section. This can be extracted nu-
merically and we have used the publicly available Einstein Toolkit 
for this purpose.

Here we show how to extract the gauge-invariant, odd and 
even perturbations. Background material on this can be found in 
Refs. [20–22].

The gravitational waves can be considered as a perturbation to 
a fixed background and we can write

gμν = g0
μν + hμν , (13)

where g0
μν is the fixed background metric and hμν its pertur-

bation. The background metric g0
μν is usually assumed to be of 

Minkowski or Schwarzschild form, which we can write as

ds2 = −Ndt2 + Adr2 + r2(dθ2 + sin2 θdφ2) . (14)

We can split the spacetime into timelike, radial and angular 
parts which in turn will help us in decomposing the metric per-
turbation hμν into odd and even multipoles, i.e., we can write

hμν =
∑
�m

[(
h�m
μν

)(o) +
(

h�m
μν

)(e)
]

. (15)

It is also possible to expand these components in their vector 
and tensor spherical harmonics.

The solutions formed by odd-even parity perturbations are 
given by the Regge-Wheeler-Moncrief and the Zerilli-Moncrief 
master functions, respectively. The odd-parity Regge-Wheeler-
Moncrief function reads

Q ×
�m ≡

√
2(� + 1)!
(� − 2)!

1

r

(
1 − 2M

r

)
[
(h�m

1 )(o) + r2

2
∂r

(
(h�m

2 )(o)

r2

)]
, (16)

and the even-parity Zerilli-Moncrief function reads

Q +
�m ≡

√
2(� + 1)!
(� − 2)!

rq�m
1

� [r (� − 2) + 6M]
, (17)

where � = �(� + 1), and where

q�m
1 ≡ r�κ�m

1 + 4r

A2
κ�m

2 , (18)

with

κ�m
1 ≡ K �m + 1

A

(
r∂r G�m − 2

r
(h�m

1 )(e)

)
, (19)

κ�m
2 ≡ 1

2

[
AH�m

2 − √
A∂r

(
r
√

AK �m
)]

. (20)

These master functions depend entirely on the spherical part of 
the metric given by the coefficients N and A, and the perturba-
tion coefficients for the individual metric perturbation components 
(h�m

1 )(o) , (h�m
2 )(o) , (h�m

1 )(e) , (h�m
2 )(e) , H�m

0 , H�m
1 , H�m

2 , K �m , and G�m

which can be obtained from any numerical spacetime by projecting 



4 A. Singh / Physics Letters B 802 (2020) 135226
out the Schwarzschild or Minkowski background [23]. For example, 
the coefficient H�m

2 can be obtained via

H�m
2 = 1

A

∫
(grr − A)Y�m d�, (21)

where grr is the radial component of the numerical metric rep-
resented in the spherical-polar coordinate basis, Y�m are spherical 
harmonics, and d� is the surface line element of the S2 extraction 
sphere. The coefficient A represents the spherical part of the back-
ground metric and can be obtained by projection of the numerical 
metric component grr on Y00 over the extraction sphere

A = 1

4π

∫
grrd�. (22)

Similar expressions hold for the remaining perturbation coeffi-
cients.

The odd- and even-parity master functions Eq. (16) and Eq. (17)
can be straight-forwardly related to the gravitational-wave strain 
and are given by

h+ − ih× = 1√
2r

∑
�,m

⎛
⎝Q +

�m − i

t∫
−∞

Q ×
�m(t′)dt′

⎞
⎠

−2Y �m(θ,φ) +O
(

1

r2

)
, (23)

where −2Y �m(θ, φ) are the spin-weight s = −2 spherical harmon-
ics.

4. Gravitational waves from dark energy dynamics and ice age 
periodicity

We have used the 3+1 BSSN formalism for doing the numerical 
evolution. The equations we described earlier were solved numeri-
cally using the publicly available Einstein Toolkit [19]. In particular, 
we extracted the gravitational wave signals emitted as a result of 
the dynamics of dark energy field configurations. While a detailed 
discussion of the gravitational waves produced by Dark Energy dy-
namics has been given by us previously [12], here we focus on 
how these gravitational waves can explain the Ice Age periodicity.

In order to do this, we look both at the frequency and the am-
plitude of the gravitational waves produced. First, let us look at 
the frequency of the gravitational waves produced. We note, that 
the time period of the gravitational waves produced is compara-
ble to the timescale of the Dark Energy dynamics. This can be 
confirmed by examining the results and plots shown also in our 
earlier work [12]. It should also be noted that f

m2 is the fundamen-
tal timescale of the dynamics as determined by the Dark Energy 
evolution equations and this is also determines the time period of 
the gravitational waves.

As already noted earlier, the fundamental time scale of the Dark 
Energy dynamics corresponds to f

m2 is ∼ 105 years and this is also 
the time period of the gravitational waves produced by the Dark 
Energy fields.

We now note that the gravitational waves with a time period of 
∼ 105 years will produce periodic variations in the eccentricity of 
Earth’s orbit with a time period of ∼ 105 years. This in turn affects 
the amount of heat captured by the earth from the sun which will 
show the periodicity with the time period of ∼ 105 years result-
ing in the observed periodicity of the Ice Ages as described and 
documented in [6,7] and references therein.

Moreover, we see that the amplitude of the gravitational waves 
produced by dark energy dynamics is sufficient to produce the pe-
riodic ellipticity variations in earth’s orbit required to explain the 
Ice Age periodicity. In order to do this, we first draw your atten-
tion to the data on the amplitude required [8]. This analysis shows 
that the ellipticity change is ∼ 10−2 and hence the required gravi-
tational wave amplitude h ∼ 10−2. It turns out that this amplitude 
can be easily achieved through the Dark Energy dynamics. This 
can be inferred from the amplitude of the gravitational waves pro-
duced by dark energy dynamics obtained by us and reported in 
[12].

While the numerical results described above demonstrate that 
the frequency and amplitude of the gravitational waves produced 
by dark energy dynamics can produce the periodic ellipticity vari-
ations in earth’s orbit required to explain the Ice Age periodicity, 
we wish to elucidate these ideas further.

In previous work on the dynamics of fields it has been 
noted [24–27] that resonance phenomena play a very important 
role in the dynamics of fields.

To translate this into the current context and gain further in-
sight into the underlying physics being discussed here we use the 
equation of motion of the gravitational wave field hμν and note 
that the primary mechanism for the transfer of energy from the 
Dark Energy field to the gravitational wave field is the resonance 
phenomenon. This will enable us to arrive at both the frequency 
and amplitude of the gravitational wave field as described and dis-
cussed below.

The equation of motion of the gravitational waves in vacuum 
is:

�hμν = 0 (24)

which follows from the Einstein Equation:

Rμν − 1

2
gμν R = κTμν (25)

with the source term zero i.e. when Tμν = 0. See for example [28]
for an excellent discussion on this and related topics.

When the source term is not zero, the equation for the gravita-
tional wave components hμν is given by:

�hμν = Sμν (26)

The non-zero source term Sμν is present for example if you 
have non-trivial scalar field configurations present.

For a scalar field source with the scalar field having a natural 
frequency ω (related to the mass m of the scalar field), the source 
term can be expressed as:

Sμν = S(0)
μνeiωt (27)

Putting this into the equation for the gravitational wave com-
ponenets we get:

�hμν = S(0)
μνeiωt (28)

This has the form of a driven harmonic oscillator which can be 
seen much more explicitly by going into Fourier space.

As is well known from the solution of the driven harmonic os-
cillator, this implies two things:

(1) The resonance picks out some special frequencies and en-
hances their amplitude. This is the reason that the time period of 
the Gravitational Waves matches the time period of scalar field dy-
namics as already observed.

(2) The amplitude at resonance can grow to be large.
Looking at the equation for the gravitational wave components 

in Fourier space, we get:

d2hμν

2
+ k2hμν = S(0)

μνeiωt (29)

dt
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The well known solution to the driven harmonic oscillator im-
plies that as long as the energetics permit, the gravity wave am-
plitude can grow to very large values given by:

h(0)
μν = S(0)

μν

(k2 − ω2)
(30)

showing the typical large value at resonance as k → ω. Thus the 
mode at resonance can grow to very large values. Energetics will 
prevent the amplitude from going to infinite values and will limit 
to large but finite values. This is consistent with our numerical 
results which show that large but finite values of the gravity wave 
amplitude can be produced by the dark energy dynamics.

To summarize the resonance production of gravitational waves, 
in particular from scalar field dynamics gives us 2 key features of 
the gravitational waves observed by us:

(1) Because of resonance the time period of gravitational waves 
matches the time period of scalar field dynamics.

(2) The amplitude of the gravity waves can reach large values 
due to the phenomenon of resonance.

We now want to push these ideas one step further by using the 
energetics to arrive at an estimate of the amplitude of the gravi-
tational waves produced by dark energy dynamics. In order to do 
this, we first note that the system of interest for us here consists 
of 2 important sub-components: namely dark energy and gravita-
tional waves. These two sub-components can exchange energy as 
they interact dynamically. Initially, when the gravity wave ampli-
tudes are very small, the direction of transfer of energy will be 
from the dark energy field to the gravitational wave field. How-
ever, as the gravitational wave amplitude grows as a result of the 
resonance phenomenon, it will also start dynamically transferring 
some energy back to the dark energy field. Since at this point there 
is a significant flow of energy in both directions (from and towards 
the dark energy field) the long term state of the system of inter-
est will be dynamically driven towards the point where the energy 
density in gravitational waves ρg w is equal to the energy density 
in the dark energy field ρD E . Thus we can use the condition (which 
we henceforth refer to as the equipartition condition):

ρg w � ρD E (31)

to determine the amplitude of the gravitational waves at long 
times. One can arrive at the equipartition condition from a Sta-
tistical Mechanics perspective. In order to do this, we have to note 
from the equation of motion for the gravitational wave field hμν in 
Fourier space, that for a given momentum, the gravitational wave 
field is essentially a harmonic oscillator coupled to the Dark Energy 
field. Thus, we are essentially dealing with a system of oscillators 
for which one can construct a canonical ensemble and use stan-
dard statistical mechanics techniques to arrive at the equipartition 
of energy - please see for example [29] and references therein for 
additional details on this and related issues.

We now translate this into an estimate for the amplitude of the 
gravitational waves produced.

In order to do this we consider the observational data. We need 
to start with the Dark Energy density. We now know that the Dark 
Energy density is the dominant component of the energy density 
of the Universe. For estimating the gravitational wave amplitude 
inside our galaxy we need to start with the energy density within 
our galaxy. This can be estimated fairly robustly from available 
data (see for example [30]). We can summarize this data here by 
noting that a mass ∼ 1012M
 is confined to a volume with lin-
ear dimensions ∼ 10 kpc. From this data we can estimate that on 
galaxy length scales (within our galaxy) the dark energy density is 
ρD E ∼ 10−1 erg/cm3.
We now turn to considering the energy density in gravitational 
waves and using the equipartition condition to determining the 
gravitational wave amplitude.

For a gravitational wave with amplitude h0 and angular fre-
quency ω, the energy density in gravitational waves ρg w is given 
by (See for example [28] for an excellent discussion on this and 
related topics.):

ρg w � c2ω2h2
0

(32πG)
(32)

We note that the angular frequency is related to the time 
period T by ω = 2π/T . Both from the resonance condition as 
well as the observational data on the time period T we get that 
T ∼ 105 years. Inserting this into the equation for the gravitational 
wave energy density and using the equipartition condition we get 
h0 ∼ 10−2 as the amplitude for the gravitational waves produced 
by the dark energy dynamics.

It is worth pointing out at this juncture that the value of the 
gravitational wave amplitude as calculated above is of the correct 
magnitude to explain the data on the periodic eccentricity vari-
ation of earth’s orbit as documented by Hinnov in the Ann. Rev. 
Earth Planet. Sci. (2000) [8].

Thus, we see that the resonance analysis helps us not only to 
intuitively understand and gain insights into the basic underlying 
physics, but also helps us to quantitatively arrive at the correct 
magnitude for both frequency and amplitude of the gravitational 
waves produced by the dark energy dynamics which matches the 
observational data on the Ice Age periodicity as given for example 
by Hinnov [8].

In summary, we see that the gravitational waves produced by 
dark energy dynamics can produce the periodic variations in the 
Earth’s orbital eccentricity resulting in the Ice Age periodicity.

In the current work, we have described how gravitational 
waves with an amplitude h0 ∼ 10−2 and with a time period 
T ∼ 105 years which corresponds to a frequency of ∼ 10−13 Hz 
can arise out of dark energy dynamics. The value of h0 ∼ 10−2 at 
the low frequencies of ∼ 10−13 Hz is compatible with other con-
straints on gravitational waves – please see for example [31] for 
a thorough discussion on existing constraints. While it is reason-
able to expect the background of gravitational waves as a result 
of the dark energy dynamics, it is fair to say that the observation 
of such waves (other than through the variation of earth’s orbit 
leading to the ice age periodicity) will be very challenging. The 
primary reason this will be challenging is because of the low fre-
quency ∼ 10−13 Hz. It should be noted that this corresponds to a 
time period T ∼ 105 years which is larger than a human lifetime 
by a factor of 1000.

There has been a significant amount of interesting work done 
on dark energy and gravitational waves - please see for example 
[32] and references therein. It should be pointed out that none 
of the other works on dark energy and gravitational waves has 
predicted gravitational waves with the correct frequency and am-
plitude to help explain the ice age periodicity arising from the 
ellipticity variations of earth’s orbit. While the other approaches 
to dark energy introduce many new ideas worth exploring, it is 
perhaps fair to note that none of them so far have attempted 
to incorporate the full field theory implications of known parti-
cle physics species - of these the most relevant at the current 
energy density of the universe would be the incorporation of neu-
trino physics. The approach we have taken to dark energy [3,5,12]
incorporates the see-saw model of neutrino masses and its obser-
vational implications. This in turn through the resonance effects 
as described in the current work leads to the production of grav-
itational waves with the correct frequency and amplitude to help 
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explain the ice age periodicity arising from the ellipticity variations 
of earth’s orbit.

Finally, we note that dark energy is connected to many fun-
damental aspects of physics. Further, it has observational conse-
quences, some of which have already been established and others 
which may be within our reach in our lifetimes. Because of the 
many connections to fundamental physics and observational con-
sequences, dark energy is one of our best bets to uncover deep 
secrets of nature and push the frontiers of human knowledge. We 
hope that the current work will help stimulate further thought and 
work that may help uncover even deeper secrets of nature.
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