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Abstract: We propose boson sampling from a system of coupled photons and Bose—Einstein con-
densed atoms placed inside a multi-mode cavity as a simulation process testing the quantum advan-
tage of quantum systems over classical computers. Consider a two-level atomic transition far-detuned
from photon frequency. An atom—photon scattering and interatomic collisions provide interactions
that create quasiparticles and excite atoms and photons into squeezed entangled states, orthogonal to
the atomic condensate and classical field driving the two-level transition, respectively. We find a joint
probability distribution of atom and photon numbers within a quasi-equilibrium model via a hafnian
of an extended covariance matrix. It shows a sampling statistics that is §P-hard for computing, even
if only photon numbers are sampled. Merging cavity-QED and quantum-gas technologies into a
hybrid boson sampling setup has the potential to overcome the limitations of separate, photon or
atom, sampling schemes and reveal quantum advantage.

Keywords: Boson sampling; quantum advantage; NP-hard problem; Bose-Einstein condensation;
ultracold gases; multi-mode cavity

1. Introduction: Overcoming Problems of Separate, Photon or Atom, Boson Sampling by
Merging the Two Systems

Revealing the quantum advantage of many-body quantum systems over classical com-
puters is one of the central themes of modern quantum physics [1-5]. Since fault-tolerant
universal quantum computers equipped with a large-size Hilbert space and quantum
error correcting code are out of reach even in the near future, one has to rely on the
noisy intermediate-scale quantum computers based on the available or starting-to-emerge
technologies [6—12]. Current proposals to reach an intermediate-size asymptotic providing
strong enough evidence for quantum advantage employ sampling problems and special-
ized quantum simulators that would allow for the elimination of major dissipation and
noise limitation factors [4]. The main sampling schemes are based on boson sampling [5,6],
random circuit sampling [7-10], and instantaneous quantum polynomial-time circuits [12].

An experiment on boson sampling yields an ensemble of measurements. Each mea-
sured sample (outcome) comprises a string of numbers of bosons (photons, atoms, etc.)
simultaneously occupying a set of channels (states) preselected for boson sampling. The
ensemble of samples supports a certain joint probability distribution of boson numbers. So,
a boson-sampling setup is a device that generates a string of random numbers obeying a
certain joint probability distribution. The main goal of modern boson-sampling research is
to build a quantum many-body generator of random strings of numbers that would be §P-
hard to implement (simulate) via usual algorithms on classical computers. In plain words,
the time required for generating such random strings by classical computers would scale
exponentially with the dimension of the string, that is, with the number of setup channels
(states) prescribed for boson sampling. For a quantum boson-sampling setup, generation of
the random string of numbers is just a one-time simultaneous multi-channel measurement
of a fixed short duration in time. This time does not scale with the string dimension, not
even as a polynomial. The aforementioned {P-hard joint probability distribution of boson
numbers reflects a highly non-local quantum-mechanical nature of a many-body system
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and cannot be reproduced without non-local quantum correlations, for example by a bunch
of uncorrelated quantum random number generators.

Boson sampling in a linear interferometer fed with photons in specific quantum
(Fock, squeezed, etc.) states by external synchronized lasers is the most widely dis-
cussed example [13-25]. Recently, we suggested [26-28] atomic boson sampling from a non-
condensed fraction of an equilibrium Bose—Einstein condensed gas as an alternative to
photonic boson sampling. It does not require sophisticated external sources of photons in a
prescribed quantum state (due to self-generated squeezing found in [29]) and eliminates the
major limitation factor of boson sampling in a linear interferometer—an exponential growth
of photon losses with increasing number of channels taking place due to an inevitable
increase in the number of intermode couplers (beam splitters, phase shifters, etc.) needed
for coupling each input channel with every output channel. Yet, it requires a multi-detector
system measuring occupation numbers of a set of orthogonal excited atom states with a
single-atom resolution and close-to-100-percent efficiency, which is not available yet.

The aforementioned and some other problems of the separate photon and atom sam-
plings precluded reaching large-size asymptotics and enough clearness in boson sampling
experiments for a definitive demonstration of quantum advantage. However, the results of
recent experiments on the Gaussian boson sampling of photons in the 216- and 144-mode
interferometers [16,17] and ultracold atoms in a tunnel-coupled optical lattice [6], though
insufficient to prove quantum advantage, are truly remarkable in achieving an extraordi-
nary suppression of classical noise and revealing non-trivial features of very complicated
and fragile quantum statistics of joint probability distribution of boson numbers.

Here, we propose hybrid boson sampling from a coupled atom—photon many-body
system combining the advantages of two state-of-the-art quantum-gas and cavity-QED
technologies. It allows one to eliminate sophisticated sources of squeezed photons and
exponentially scale photon losses in the linear interferometer as well as simultaneously
solve the problem of multi-detector atom number measurement using well-developed
photon detectors. Measuring the numbers of photons alone is already enough for revealing
quantum advantage. Yet, with the emergence of detectors for atom numbers, the combina-
tion of the BEC-gas and QED-cavity sampling setups could become an ultimate stage for
studying quantum advantage.

The system consists of a Bose-Einstein-condensed, quasi-equilibrium weakly-interacting
gas of N two-level atoms placed inside a multi-mode cavity and pumped by a coherent
classical laser field. The frequencies of all optical fields are far-detuned from the two-level
atomic transition. So, the atom-photon scattering is elastic and does not destroy Bose—
Einstein condensate (BEC) by an excessive heating through spontaneous emission, since
the upper-level population is negligibly small.

Such setups were successfully implemented experimentally back in 2007 in Berkeley [30],
Zirich [31], Tiibingen [32], and Paris [33]. However, since then, the studies of such systems
(see reviews [34-37] and references therein) were mainly focused on modelling various
condensed-matter Hamiltonians (Bose-Hubbard, Ising, Heisenberg, Dicke, etc.) and corre-
sponding phase transitions, associated with mean-field restructuring of the system to Mott
insulator, quasi-crystal, super-radiant and alike phases, as well as on other applications
such as the laser cooling of quantum gases [37,38] or their non-demolition measurements.
The analysis of quantum fluctuations around the mean-field values was usually restricted
to studies of just second-order correlations. So, analysis of the §P-hard computational com-
plexity of quantum many-body statistics of such systems, which require a full evaluation of
a joint probability distribution of various quantum quantities, i.e., moments or cumulants
of all higher orders, has been missing until now.

In essence, the idea is to employ a quantum BEC gas as a non-linear optical element
inside a multi-mode cavity for producing squeezed entangled states of atoms, photons.
The interacting BEC gas not only replaces the lossy intermode couplers and sophisticated
external photon sources based on the on-demand parametric oscillators, but also introduces,
in addition to quantum two-level (qubit) internal atomic degrees of freedom, the quantum
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atomic degrees of freedom associated with the translational motion of atoms. As a result,
one obtains a versatile fine-tunable profoundly quantum-interacting many-body system
perfectly suitable for examining quantum advantage.

We calculate (within a quasi-equilibrium model) the characteristic function and joint
probability distribution of atom numbers (for any set of bare-atom excited states) and
photon numbers (for any preselected set of modes) via the covariance matrix. This de-
pends on the interaction and pump laser parameters, geometry of the system, and unitary
transformations between the basis of excited atom states and photon modes chosen for
sampling and the bases of atom—photon quasiparticles and eigen-squeeze modes. As a
result, in virtue of the hafnian master theorem [39] and the fact that computing the hafnian
in a general case is fP-complete [40], the statistics of such a mixed (atom-photon) boson
sampling turns out to be §P-hard for computing. This fact implies that quantum advantage
manifestations should be observed.

2. Multi-Mode Cavity QED for BEC Gas of Two-Level Atoms Coupled to Photons

Let us consider Bose-Einstein condensation and related low-temperature/energy
cavity-QED phenomena in a dilute weakly interacting gas of spinless Bose atoms with an
optical transition of a frequency w, and dipole moments d,. Within the second-quantization
representation of the non-relativistic quantum field theory [41], such a many-body system
of identical particles is described by two annihilation field operators i1 (r), {» (r) acting in
a symmetrized Hilbert space. They describe the quantum behaviour of two-level atoms,
occupying the 1-st (lower) or 2-nd (upper) levels, respectively, in regard to the position r in
space, that is, the translational degree of freedom.

The gas is kept inside a multi-mode cavity by a classical, say, magneto-optical trapping
potential Vey¢(r) and is driven by a laser with a classical coherent electrical field of a complex
amplitude Ey(r), polarization vector eg, and frequency wy. The energy of its interaction
with an atom is described by Rabi frequency Qg (r) = d,eoEo/%. The cavity supports a set
of Mph high-Q modes with an electrical field of complex amplitude e, E, (r),v =1,..., Mpy,
polarization vector e,, and frequency w,. The cavity QED of these Bose modes employs
their annihilation operators {b, } acting in the Fock space.

The frequencies of all fields are far detuned from the atomic transition frequency
Ay = wg — wp, wy — wy > 7y, where vy = T, 1is the decay rate of the atomic dipole. In this
limit, the upper-level population is negligibly small and the upper-level field operator 1 (r)
can be adiabatically eliminated from the Heisenberg equations, so that the many-body
system of N trapped atoms interacting with M, modes in the high-finesse optical cavity is
described by a well-known Hamiltonian [34].

A =Y nA b, + / Pt [+ Blaa + By dud®,
v

. h? hOQo(r) 2 o
H, = _%Vz + Vext(r) + |+5(1)|’ H; o= %1}’;%, o
N h A N
Hop = 1 L [0 (0Q0(x)8 + (1) ()b,
a vy
h i s
+a Y (1)Q, (1)bib,.
v!

It is written in the frame rotating with the frequency of the classical driving field. So,
the first term, representing the energies of the bare cavity modes, fiw, 4y, involves detunings
Ay = wy — wp. The operator §, = E,Jf by, gives the number of quanta in a bare cavity mode v.
A, is an effective single-atom Hamiltonian accounting for two trap potentials: the external
one, Vext (1), and the one created by the far-off-resonance classical field, |Q)(r)|?/A,. The
term Ha, a is responsible for the interatomic interaction determined by the s-wave scattering
length a, via the parameter g, = 47a,h* /m, where m is an atom mass. The last term I:Ia,ph
describes the atom—photon interaction via the (i) creation or annihilation of a photon in the
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v-th cavity mode due to scattering on atoms from or into the classical driving mode and
(ii) photon exchange between the v-th and v'-th modes mediated by scattering on atoms.
Hereinafter, the lower-level atom field operator is denoted as ), = §1(r) = ¥ ¢;(r)4;. The
factor O, (r) = d,e,E, /1 is the single-photon Rabi frequency determined by the electrical
field e E,(r) of the v-th mode. The field profile is normalized in such a way that the
electromagnetic energy density integrated over the volume occupied by the cavity mode is
equal to the energy of a single photon, [ |E,|?d®r/(27) = hw,.

If a weak relaxation and dissipation of both photon and atom bosons described by
annihilation operators {¢;} = {{4;}, {b,}} is important, it can be accounted for in a Born-
Markov-RWA approximation by the Lindblad equation for the atom-light density operator
via decay rates 2x;,

J )

Here, 71; is a thermal population of a bath’s mode resonantly coupled to a partial boson
mode j. For simplicity’s sake, it is written in the case of independently decaying modes,
without cross-mode coupling €j€;f, via a bath [42].

Importantly, an interaction (scattering) between atoms and photons is strongly enhanced
for the specially designed high-Q modes since the photons, before leaking the cavity, traverse
the atom cloud a huge number of times, Q >> 1, as reflected by cavity mirrors. For low-Q
modes, an interaction between atoms and photons is greatly suppressed and their population
is negligible. As a result, the low-Q modes are excluded from Equations (1) and (2).

In general, the above system is an open, dissipative driven system that, after placing
an equilibrium (at temperature Tj) BEC gas inside an initially empty (no photons) optical
cavity, evolves towards some steady state with non-zero photon occupations in virtue
of the pump laser light scattering on atoms. In some cases [34,43—45], this state may
be approximated as a quasi-equilibrium state with some effective temperature T which
accommodates the effects of the initial gas temperature T, leakage of atoms from the trap
(in particular, due to three-body collisions, trap’s imperfectness), duration, intensity and
noise of the laser pump, cavity-loss-induced noise, etc.

3. Eigen-Squeeze Modes and Quasiparticles vs. Excited Bare Atoms and Photons

The aforementioned quasi-equilibrium state is favoured once the atom-photon scat-
tering is strong but the losses of photons and atoms are very low, so that the system
evolves longer than a characteristic scattering time, which is estimated [34,46] as 75 ~

NIA2/ (A O3 w,); wy = 2}‘1;:(:52 is the recoil frequency. In this case, atoms and pho-
tons, which constitute super-mode polaritons [34], form hybrid atom—photon quasipar-
ticles and have enough time to equilibrate. In particular, the cavity photons cool or heat
atoms [37,38,46] towards a thermal state with temperature T ~ hx, if |A,| > w;,. Short-
range collisions between atoms also benefit a thermal steady state [47].

Let us model a system state by using a density operator § = e~ Hest/ Ty Tr{e’Heff / T}
(see [34,43-45]) which represents possible quasi-equilibrium quantum statistics of the rele-
vant atom and photon modes via an effective quadratic Hamiltonian . In general, such
a Gaussian state is more classical and mixed than other, more pure quantum states. So, if its
boson-sampling statistic is §P-hard for computing, then boson sampling in other dynamical
non-equilibrium or steady quantum states is even more prone to §P-hardness. Such states
will be discussed elsewhere. Here, we just note that squeezing required for the §P-hardness
is generated via non-equilibrium processes both in the photon and atom modes [46].

In the limit of very weak losses, the coupled atoms and photons, both obeying the
Bose statistics, tend to form some kind of a Bose-Einstein-condensed gas. If the cavity
supports the BEC of photons (like in photon BEC [48,49], when photon reabsorption via
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rovibrational dye manifold in an intracavity reservoir/bath dominates over photon losses),
then, even after switching off the pump laser, quasi-equilibrium macroscopic condensates
for both atom and photon components could be formed. In any case, we skip discussion of
the atom and photon condensates, described by equations similar to the Gross-Pitaevskii
one, and denote the related classical fields as ¢p(r) and Qp(r).

One can think of the optical driving field, Ey(r), or its Rabi frequency, (y(r), as a kind
of photon condensate if a coherent scattering of the drive on the atom condensate (due
to terms in Equation (1) whose form is linear in photon operators BI, b,) is set aside [42].
Both the photon condensate and drive laser field are macroscopic coherent fields scattering
which (or, in the words adopted in BEC physics, quantum depletion of which) populate
the non-condensed high-Q cavity modes with photons, on top of the aforementioned
coherent component if any. One can infer from Equation (1) a model Hamiltonian A,
describing the statistical operator p of the quasi-equilibrium, BEC-like phase of the hybrid
atom—photon quasiparticles.

Following the Bogoliubov—Popov approach [50], we replace the operator-annihilating
photon in the mode Eg(r) by a c-number, by ~ /90, assuming that a mean number of quanta
(photons) is large, go >> 1. So, the photon field operator is ph (1) = £o(r) /g0 + Ly-£0 &, ()b,
where £, = E, (r)/[[ |Ev[?d®1]'/2. Similarly, we approximate the atom field operator by a
sum of its classical part and small quantum excitations, 5 (r) = ¢o(r)v/No + X2 ¢4 (r)dy,
where Nj is a mean number of condensed atoms and 4;,! # 0, is an operator annihilating
an atom in a bare-atom excited state ¢; orthogonal to ¢p. All wave functions are normalized
to unity, [ |¢;|2d*r = 1. Keeping in (1) only terms quadratic in operators 4;, b,, we obtain
an effective Hamiltonian of Bogoliubov-Popov type

. 1/eN\" ret X e+x
). L

e, O .
€= {O eph} , €ph = diag{hwy},

)
€a = (/ qbl* [Hﬂ —H + Zgu(N0|4)0|2 —+ nex):|¢l/ d3r>,

_ 0 Xa—ph o _ | Xa—a  Xa—ph
X - 7 X — ~ 0 .
Xph-a Xph-ph Xph-a

Itis a quadratic form in the creation, & = {{a'}, {6*}17, and annihilation, ¢ = {{;}, {b,}}7,
2-block column vector operators combining the atom and photon operators. The superscript
T denotes a transpose of a vector or matrix. The form’s (2 x 2)-block 2M x 2M matrix H is
built of diagonal (x, X) and off-diagonal (e + x, € + x*) square blocks of size M x M, where
M = M, + My, with M, and My, being, respectively, the numbers of bare-atom excited
states {¢y|l = 1,..., M, } and high-Q cavity modes {E,|v = 1,..., M, } which notably con-
tribute to the state of the atom-photon system. The star * denotes a complex conjugate,  is a
chemical potential, and #1ex (1) is a mean density of the non-condensate. The block € itself is a
(2 x 2)-block matrix—a diagonal matrix built off the M, x M, matrix €, and Mph X Mph ma-
trix ep, which originate from the single-atom, H,, and single-mode, fiw, b} by, energy contri-
butions in Equation (1), respectively. The blocks x, ¥ themselves are also (2 x 2)-block matri-
ces. They constitute an analogue of the matrix of Bogoliubov couplings between bare-atom
excited states and high-Q photon modes and cross-couplings: ¥o—a = (gaNo | ¢} ¢} ¢% d°1),

Xph—ph = (hiio fﬂiﬂww’o\zd:}’r), Xph-a = (h@fgiﬂofm@é d3r), Xa—ph = X;hfa’

Fona = (B2 [ Q500140 x), Rapn = Ky

The principal part in the quantum advantage and fP-hardness of the above many-
body system is played by the matrix §, which bears the counter-rotating (cf. non-RWA,
beyond the rotation wave approximation) atom-atom ({s—s) ,llfz;rfz;r, and photon-atom

( ;zph,a)v,,iam;, couplings. (An off-resonance optical response of two-level atoms in the
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ground state does not include appreciable photon-photon counter-rotating terms.) The
matrix x bears the usual co-rotating (cf. RWA) atom-photon (), ph) lv/ﬁ;rﬁv/, photon-atom
( )(ph,ﬂ)vpl;]ﬁ[zl/, and photon—photon ( Xph,ph)wrl;i b, couplings. The atom-atom coupling
block X4—4 is a square M, x M, matrix, while a photon-photon coupling block xpnph is a
square My, X Mpp matrix. The photon-atom and atom-photon blocks xph—a, Xa—ph, and
Xph—as Xa—ph are Hermitian conjugated rectangular My, x M, and M, X My, matrices.

With the help of the effective Hamiltonian (3) derived above, we can solve the problem
in quantum statistics of the mixed atom-photon sampling by generalizing the method that
was developed in [26-28] for pure atom sampling from BEC gas. The crucial point of this
method is finding the coupled atom—photon eigen-squeeze modes along with the eigen-
energy quasiparticles. Note that the eigen-squeeze modes are uniquely defined for the
many-body interacting system and are as important for its quantum many-body statistics
as the quasiparticles for the mean-field, thermodynamic characteristics. In particular, an
existence of the eigen-squeeze modes with relatively large eigenvalues (i.e., single-mode
squeezing parameters) is required for the emergence of the computational §P-hardness and
quantum advantage.

We find the solution via the irreducible Bloch-Messiah reduction [51-54] of Bogoliubov
transformation R from the bare operators to quasiparticle operators ¢', €. It is

At at *
< L X o ¢ (e < Ve 0
Ru — W* 0| 5 _ [cosh A, sinh A,
W=l o o wlr T sinh A, cosh A,

It follows from a singular value decomposition of the blocks of the Bogoliubov trans-
formation matrix (for a concise derivation, see the Appendix in [51]):

~ A*  —B*

R = [—B A };A:WcoshArV, B = —Wsinh A, V*. (5)
The M x M unitary matrix V describes a transformation between operators annihilat-

ing excitations in the bare states, {¢;}, and in the eigen-squeeze modes, {B;}. It is equivalent

to a basis rotation in the single-particle Hilbert space from the bare basis of atom and photon

excited, non-condensate states {¢;[j = 1,..., My} U{$p; = &;_p,lj = Ma+1,..., M} to

the basis of coupled atom-photon eigen-squeeze modes {¢;,j = 1,..., M}, that is,

Bi= ) Vit 9= X Vipdy, Pex(r) = }_ 9;(1)B;. (6)
=1 = =

A field operator ex(r) in Equation (6) combines partial, bare atom, and photon
field operators §,(r) and (). It annihilates a quantum of the coupled atom-photon
excitations in the eigen-squeeze modes (not quasiparticles).

The central part, R,, of the Bloch-Messiah reduction is not an identity matrix due to
the counter-rotating terms. It upgrades the atom—photon field operator to the form

M
Pex = ) (ujc; + v}*é}*),u} = gjcoshr;,vj" = —g;sinhr;, (7)
=1

mixing annihilation and creation operators of the eigen-squeeze modes, 6; = Bj coshr; +
,@;r sinh7;. It sets a two-component functional space with a basis { u} (r), U;.* (r)} defining two-
component eigen-squeeze excitations characterized by a single-mode squeezing parameter
rj > 0. They are the eigenvalues of a multimode squeeze matrix r = WA, WT and constitute
the matrix A, = diag{r;}.
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The M x M unitary W converts operators of the two-component eigen—squeeze excita-

tions into polariton operators 5j diagonalizing the Hamiltonian: Heg = Y E] i ] c],

M
Z 7€y Wex(r) = ) (u;(0)§ + v} (1)E]); 8)
ji'=1 j=1
=Yy ]],q)]/coshr/ vi = — Ly Wjj gy sinhrj.

4. Quantum Statistics of Hybrid Photon-Atom Sampling via Hafnian Master Theorem

Once the matrix of Bogoliubov transformation is calculated, we find the 2M x 2M
covariance matrix of the atom-atom, photon—photon and atom—photon correlators:

R[Q O}R“l 9)

where Q = diag{coth %U =1,...,M}and R = R~

Finally, applying the method of the characteristic function developed in [26-28] and
the hafnian master theorem [39], we find the joint probability distribution of atom and
photon numbers {{Nj|l = 1,..., Mg}, {qv[v = 1,..., Mpn }} sampled by a simultaneous
multi-detector measurement over a set of M, excited atom states and M, cavity modes
selected from the non-condensate ones:

_ CH{{N} {qv}})
o({{Ni}, {qv}}) = et O (L N Lol (10)

This is given by the hafnian of the (21 x 2n) extended covariance-related matrix C,
where n = Y ; N; + ), g, is the total number of counts in a sample for all detector channels,
including all excited-atom states {¢; } and photon modes {&, } chosen for sampling. The
matrix C is a certain extension of a covariance-related matrix C = PG(1+ G)~!. Namely,
the C’s I-th and (M + I)-th rows are replaced with N; copies of the I-th and (M + I)-th
rows, accordingly. Then, I-th and (M + I)-th columns are replaced with N; copies of the
I-th and (M + I)-th columns. Finally, a similar replacement is performed with (M, + v)-th
and (M + M, + v)-th rows, as well as with (M, + v)-th and (M + M, + v)-th columns
using g, their copies. The matrix P permutes the off-diagonal and diagonal blocks of the
(2 x 2)-block matrix G(1+ G)~!

5. Multi-Detector Measurements for Sampling Photon and Atom Numbers

The challenge of photon-atom sampling experiments is in the simultaneous measure-
ment of photon numbers {g,|v = 1,..., My, } and atom numbers {N;[l = 1,..., M, } in the
non-condensate optical cavity modes and atom-excited states with a single-photon/atom
resolution. Moreover, parameters of the BEC-gas & QED-cavity setup, including the num-
ber of trapped atoms, temperature, BEC trap and multi-mode cavity geometries, their
mutual alignment, parameters of the pump laser and so on, should be precisely controlled
and identified, or post-selected.

Such measurements could be based on the non-destructive multi-detector imaging
of atoms in each of the M, excited states and a non-demolishing monitoring of photon
numbers in high-Q cavity modes via detecting photons escaping each of the M, modes. A
destructive measurement, say, by quenching the BEC trap potential and making transparent
the optical cavity, is another possibility.

A required technique for multi-mode photon counting is already available in quantum
optics. Measuring and sampling atom number fluctuations in the non-condensed fraction
of a BEC gas is close to becoming realised, as evident from promising works related to
this problem [6,55-70]. A successful experiment on measuring fluctuations in the total
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number of non-condensed atoms was reported in [56,57]. Thus, the main difficulty of
such measurements—a differentiation of the non-condensate from much more populated
condensate [71]—has been resolved.

A striking series of time of flight experiments on recording atom numbers in various
momentum states of a BEC gas based on the position of atom impacts on a detector array
after a free fall of the atom cloud due to gravity were performed in [58,59]. Their detectors
showed a single-atom resolution. A boson sampling machine with atoms was shown
in [60] by revealing the Hong-Ou-Mandel interference of two Bose atoms in a 4-mode
interferometer.

Importantly, the results in Equations (9) and (10) show that for unveiling manifesta-
tions of §P-hardness and quantum advantage, it is enough to detect just photon numbers.
A cavity-QED technique for such sampling is readily available and could be similar to
the photon BEC technique [48,49]. So, even using BEC gas alone as a non-linear optical
element producing squeezed states, that is, not including atom number detector channels in
a sampling ensemble (M, = 0), we still obtain a very general form of the covariance matrix
G, generating the extended covariance matrix G, the hafnian of which in Equation (10)
is fP-hard for computing. The point is that the photon-atom coupling (3) results in the
atom-photon entanglement and generates the squeezing and complexity of photon states
of the high-Q cavity modes (super-mode polaritons [34]) due to the symplectic Bogoliubov
transform (4), (5), similar to that happening for the pure atomic boson sampling due to
atom-atom coupling in a BEC gas alone [26-28].

In fact, the result in Equations (4) and (5) means that the BEC gas in QED cavity
possesses two intrinsic, naturally built-in interferometers linked to the unitaries V and
W. In the case of just photon sampling (Mpy, # 0, M, = 0), they are Mpy, X Mpp, matrices
whose M}%h entries could be arbitrarily varied due to a functional freedom in choosing (a)
the sampling modes selected for detecting and (b) the trapping potential. Obviously, this
is equivalent to having a random Gaussian unitary inside the matrix G under the hafnian
in Equation (10), with ~ Mlzoh independently variable parameters and no degeneracy.
(Equation (9) just adds an extra mixing.) So, the §P-hardness of sampling statistics follows
from the fP-completeness of computing the hafnian of a random Gaussian matrix [5,21].

6. Conclusions. Unveiling fP-Hardness of Hybrid Boson Sampling Statistics

We show that the proposed experiments on photon-atom sampling from the BEC
gas of atoms and photons trapped in a multi-mode cavity have the potential to reveal the
gP-hardness of sampling statistics. This is suggested by the explicit result in Equation (10).
In particular, one can tune to a vicinity of a confocal or concentric degeneracy point of a
cavity, where there are hundreds of modes with close frequencies. Such experiments are
feasible within the existing quantum-gas and cavity-QED technologies.

Yet, they are more challenging than recent experiments [34-37] on phase transitions in
similar systems targeting mean-field and correlation properties rather than a full quantum
many-body statistic and quantum advantage.

The hybrid boson sampler is not a quantum simulator of some input signal or con-
trolled process. The BEC gas in the QED cavity equipped with photon/atom detectors is
just a quantum generator of random strings of photon and excited atom numbers based
on a natural process of persistent quasi-equilibrium fluctuations. As is described by the
statistical operator, it intrinsically involves §P-hard properties for computing. Importantly,
there is no need for any controllable unitary evolution processes (typical for quantum-
computing experiments) or total suppression of relaxation and decoherence. For pioneering
experiments, one should not target the control of squeezing and unitary mixing (like in
Equations (4) and (5)) in a full-range aiming for the appearance of a truly random Gaus-
sian block in the covariance matrix. A proof-of-principal observation of a-few-mode or
two-mode squeezing and interference in the sampling statistics, showing a hafnian-like
behaviour as in (10) and [28], would be a major leap.
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