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Abstract

The Future Circular Collider (FCC) will deliver unprecedented precision in the measurement of the
properties and parameters of the Standard Model (SM), directly and indirectly probing new physics up
to the 100-TeV scale. Its broad and diverse programme, including very high-luminosity e+e− collisions
(FCC-ee) and hadronic collisions at the energy frontier (FCC-hh), will offer exceptional opportunities to
advance knowledge of the strong interaction through high-precision measurements across a wide range
of energy scales and scattering processes. Key measurements at the FCC-ee and FCC-hh are reviewed
that will provide a deeper understanding of quantum chromodynamics (QCD) in the perturbative, non-
perturbative and high-density regimes, and advance its theoretical description to a level of precision far
beyond that of current collider experiments. The critical role played by QCD in determining key Stan-
dard Model quantities at FCC-ee is also discussed, highlighting how improved theoretical calculations
and simulations are needed to match the foreseen FCC-ee experimental uncertainties.
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1 QCD physics at FCC-ee1

Electron-positron collisions at the Future Circular Collider (FCC-ee) provide unparalleled opportuni-2

ties for Higgs, electroweak (EW), top, flavour, and beyond standard model (BSM) physics [1], and also3

offer a unique environment to perform the most precise studies of the strong interaction, theoretically4

described by Quantum Chromodynamics (QCD). High-energy e+e− collisions provide a clean, con-5

trolled, and well-defined setup for QCD studies, avoiding the complications from the coloured initial6

states present in proton-proton and heavy-ion collisions. Unlike hadron colliders, where parton distribu-7

tion functions (PDFs), multiparton interactions, and “beam remnants” complicate the understanding of8

colour dynamics, e+e− annihilation occurs at a fixed centre-of-mass (CM) energy with precisely known9

elementary kinematics and with a colourless initial state. In addition, events typically produce final10

states with well-separated jets and a well-defined parton flavour, enabling detailed studies of light-quark,11

heavy-quark, and gluon showering and hadronisation in a controlled setting. All such aspects allow pre-12

cise experimental measurements, accurate theoretical predictions, and direct tests of perturbative (pQCD)13

and nonperturbative (NP) QCD, of impact for the full FCC-ee physics programme, whose indirect BSM14

physics reach, up to a 100-TeV energy scale for some operators, relies on searches for tiny deviations15

in the data from the SM predictions. Although QCD physics per se is not the primary driving force16

for future e+e− colliders, a precise understanding of the strong interaction is crucial to fully exploit the17

broad range of SM measurements and BSM searches to be performed:18

– A precise determination of the QCD coupling αS(m
2
Z) is needed to accurately and precisely predict19

all e+e− cross sections and decay rates which parametrically depend on it.20

– Accurate pQCD calculations (both at fixed NnLO and resummed NnLL orders) are fundamental to de-21

scribe hadronic final states and jet dynamics, and precisely extract multiple SM quantities from the data.22

– Heavy-, light-quark, and gluon separation (through jet-flavour tagging techniques) is key for multiple23

SM measurements, such as measuring Higgs Yukawa couplings to quarks and gluons.24

– Nonperturbative dynamics, such as hadronisation and colour reconnection, impacts all hadronic final25

states, playing a role, e.g., in studies of e+e− → W+W−, tt → jets processes.26

The actual fulfilment of the unique Higgs, EW, top, flavour, and BSM programme accessible at FCC-27

ee, therefore requires parallel efforts in experimental and theoretical QCD studies. The detectors being28

planned for FCC-ee have the specifications (large acceptance, fine granularity, particle identification)29

needed to achieve the required experimental precision for EW, QCD, and flavour measurements. The30

main theoretical challenges for QCD calculations [2], in order to match the foreseen FCC-ee experimen-31

tal precision summarised below, have been the subject of discussions at topical CERN workshops [3, 4].32

The baseline FCC-ee programme [5, 6] considers e+e− collisions at four nominal CM energies:33 √
s ≈ 91, 160, 240, 360GeV with total integrated luminosities covering Lint ≈ 200–3 ab−1 (four inter-34

action points combined, and assuming 1.2 × 107 s/year). The characteristics of these four physics runs,35

aiming at probing the properties of the Z, W, H, and top quark with unprecedented precision, are listed in36

Table 1. To highlight the impact of QCD aspects, Table 1 also indicates the number of hadronic final-state37

(HFS) events expected in the “signal” e+e− → Z, WW, ZH, tt and “background” e+e− → Z∗ → qq38

processes. The first observation is that the fully hadronic decays of the produced top, W, Z, and H bosons39

represent 67–80% of their inclusive final states, thereby highlighting the importance of precise and ac-40

curate QCD predictions for probing their properties (e.g., couplings). The HFS of these “signal” events41

will be characterised by the production of 2–6 partons with maximum jet energies Ej ≈ 60–125GeV.42

The bottom rows of Table 1 list the e+e− → Z∗ → qq cross sections and associated number of events43

expected for each of the four runs. The FCC-ee will produce about 5× 1012, 8× 108, 1.5× 108, 2× 10844

events, with typically two jets produced with maximum energies Ej ≈ 45–180GeV, in the Z, WW, ZH,45

and tt runs, respectively. Such enormous HFS datasets will allow dedicated multidifferential studies of46

many QCD observables with negligible statistical uncertainties, in an extremely clean environment.47

Beyond the baseline programme summarised in Table 1, QCD studies at other hadronic invari-48

ant masses
√
shad have been considered. First, it has been suggested to study HFS over the

√
shad ≈49

20–80GeV range by exploiting initial–state radiation (ISR) events during the high-luminosity Z-pole50



Table 1: Characteristics of the physics runs in the baseline FCC-ee programme: CM energy, running
time, integrated luminosity Lint, total number of Z, WW (including all

√
s values from 157.5 GeV up),

ZH, and tt events expected (as well as in hadronic decay modes, indicating the number of partons
produced and their maximum jet energies). The lower rows list the corresponding e+e− → qq cross
section (with ISR) and expected number of HFS events, and the maximum jet energies, for each

√
s.

Run Z WW ZH tt√
s (GeV) 88, 91, 94 157, 163 240 340–350 365

time (years) 4 2 3 1 4
Lint (ab−1) 205 19.2 10.8 0.42 2.70
e+e− → Z, WW, ZH, tt

Nevts (Z, W, H, top) 6× 1012 Z 2.4× 108 WW 2.2× 106 ZH 2× 106 tt

Nevts (HFS decays) 4.2× 1012 1.1× 108 1.2× 106 0.9× 106

Npartons (HFS decays) ≥ 2 ≥ 4 ≥ 4 ≥ 6

Ej (max. jet scale probed) 45GeV 40GeV 45, 65GeV 125GeV

e+e− → Z(∗) → qq

σ 32.5 nb 40 pb 13.5 pb 5.3 pb
Nevts (HFS) 4.2× 1012 7.7× 108 1.5× 108 1.7× 107

Ej (max. jet scale probed) 45GeV 80GeV 120GeV 180GeV

run, and/or in dedicated short (about 1-month-long) e+e− runs at CM energies
√
s ≈ 40GeV and51

60GeV [7]. Data samples with O(109) hadronic events can be collected at those low
√
shad points52

(Table 2, middle columns) that will provide valuable information, in particular, on NP and heavy-quark53

mass effects. In addition, a potential run at the Higgs mass pole,
√
s = 125GeV, has been proposed as a54

means to measure the electron Yukawa coupling [8]. This latter run, if ever realised, would also provide55

an additional O(1010) hadronic events for QCD studies (Table 2, rightmost column).56

Table 2: Characteristics of the HFS samples to be collected in ISR events at the Z pole, in two potential
(1 month long) low-energy runs at

√
s = 40, 60GeV [7], and in a proposed Higgs-mass run at

√
s =

125GeV [8]. For each run, the
√
shad probed, the e+e− → qq cross section, the expected number of

events, and the maximum jet energies reached are listed.

Run Z pole (ISR events) 40-GeV 60-GeV e+e− → H√
s 88, 91, 94GeV 40GeV 60GeV 125GeV

time 4 years 1 month 1 month 3 years
Lint (ab−1) 205 3.5 6.2 ≈100

σ(e+e− → qq) Depending on ISR selection criteria [7] 289 pb 162 pb 104 pb√
shad 20–80GeV 40GeV 60GeV 125GeV

Nevts (HFS) O(109) O(109) O(109) O(1010)
Ej (max. jet scale probed) 10–40GeV 20GeV 30GeV 62GeV

The exceptional number of EW bosons to be collected, as well as the exquisite control of the beam57

energy, and the possibility to run at the tt threshold, allow carrying out measurements of fundamental SM58

quantities with statistical uncertainties improved by factors of 50–1000 compared to their current world59

averages. Table 3 lists the present precision and expected FCC-ee statistical and systematic uncertainties60

for key Z, W, top, and tau observables that can be used to extract fundamental QCD parameters, such as61

αS(m
2
Z), and/or that are affected by QCD effects that need to be much better understood theoretically.62

The detectors specifications needed to achieve experimental systematic uncertainties approaching63

the statistical precision will translate into unprecedented performance for jet flavour identification and64

energy resolution, aiming at precisely measuring the Z, W, H and top quark hadronic decays. Jets are65



Table 3: Key experimental SM measurements with Z, W, top, and tau particles at FCC-ee, where QCD
effects have an impact and/or from which precision QCD observables/quantities can be measured/ex-
tracted. For each observable, their present world-average precision, the foreseen FCC-ee statistical and
systematic uncertainties, the method used in the measurement and leading uncertainty are listed.

Observable present FCC-ee Measurement method(s)
value ± uncert. Stat. Syst. leading uncertainty

mZ (keV) 91 187 600 ± 2000 4 100 Z lineshape scan
Beam energy calibration

ΓZ (keV) 2 495 500 ± 2300 4 12 Z lineshape scan
Beam energy calibration

R
Z
ℓ (×103) 20 767 ± 25 0.05 0.05 Ratio of hadronic to leptonic decays

Acceptance for leptons
σ0

had (×103) (nb) 41 480.2 ± 32.5 0.03 0.8 Peak hadronic cross section
Luminosity measurement

Rb (×106) 216 290 ± 660 0.25 0.30 Ratio of bb to all-hadronic decays
Stat. extrapol. from SLD

A
b,0
FB (×104) 992 ± 16 0.04 0.04 b-quark asymmetry at Z pole

Jet charge determination

mW (MeV) 80 360.2 ± 9.9 0.18 0.16 WW threshold scan and minv in W decays
EW theory uncertainties dominate

ΓW (MeV) 2 085 ± 42 0.27 0.2 WW threshold scan and minv in W decays
EW theory uncertainties dominate

B(W → ℓνℓ) (%) 10.86 ± 0.09 0.001 0.001 W decays
EW theory uncertainties dominate

mtop (MeV) 172 570 ± 290 4.2 4.9 tt threshold scan
pQCD scale uncertainties dominate

Γtop (MeV) 1 420 ± 190 10 6 pQCD scale uncertainties dominate

mτ (MeV) 1 776.93 ± 0.09 0.002 0.02 Z → τ+τ− decays
estimator bias, ISR, FSR

τ lifetime (fs) 290.3 ± 0.5 0.001 0.005 ISR, τ mass
B(τ → µν

µ
ν

τ
) (%) 17.38 ± 0.04 0.00007 0.003 PID, π0 efficiency

reconstructed, in this case, using the Durham algorithm [9] in the exclusive mode, i.e., clustering all66

particles in the event in a predefined number of (decay) jets. Advanced jet flavour taggers have been67

developed, such as ParticleNet (based on a graph neural network) [10,11], and DeepJetTransformer [12]68

and ParticleTransformer [13] (based on transformer neural networks), that assign each jet a probability69

of originating from one of seven particle types: gluon (g), up (u), down (d), strange (s), charm (c),70

bottom (b), or hadronic tau (τh). The taggers use the information of all particle-flow candidates within a71

jet, including kinematics, track impact parameter, and particle identification (cluster-counting and time-72

of-flight) information. Table 4 shows typical working points in the efficiency-mistagging matrix for a73

ParticleTransformer q-tagger, trained on e+e− → Z(νν)H with H → jj events, where ϵqj denotes the74

binary probability to tag a given jet of type j = {b, s, c,u,d, g} as a jet of type q. The tagging efficiency75

is here indicatively fixed to ϵqq = 80%, and the corresponding mistagging probabilities ϵqj for j ̸= q, are76

listed. Realistic jet-flavour analyses will exploit the full ROC tagging information [14]. The achieved77

jet-flavour (mis)tagging efficiencies for heavy quarks are more than ten times better than the current state-78

of-the-art at the LHC. The jet-flavour algorithms will be trained directly on data by exploiting the vast79

Z → qq samples, O(1011) per diquark decay, in events where one jet flavour is tagged with ultrahigh80

purity (but, potentially, very low efficiency) thereby fixing the flavour of the “probe” jet on the away-side.81

In this note, a few key examples that showcase the QCD programme at FCC-ee are discussed82

including αS(m
2
Z) extractions, QCD effects on the mW and mtop measurements, QCD in Higgs hadronic83

decays, and developments needed in the modelling of Monte Carlo (MC) parton showers. Many other84

important QCD studies, such as Z → qq asymmetries [15–17]; production of quarkonia, heavy baryons,85



Table 4: Representative jet-flavour tagging working points, obtained with ParticleTransformer [13] and
realistic FCC-ee detector simulations [14], for a fixed 80% efficiency for any given parton flavour. The
ϵqj symbol indicates the probability to tag a jet of flavour j as a jet of flavour q, with j, q = b, c, s, u, d, g.

Jet flavour tagg. probab. b quark c quark s quark u quark d quark gluon
ϵ
b
j 0.8 1.2× 10−3 1.0× 10−4 1.6× 10−4 1.8× 10−4 5.5× 10−3

ϵ
c
j 0.014 0.8 1.6× 10−3 1.5× 10−3 1.6× 10−3 0.015

ϵ
s
j 2.4× 10−3 4.5× 10−3 0.8 0.21 0.24 0.12

ϵ
u
j 3.0× 10−3 0.029 0.21 0.8 0.67 0.18

ϵ
d
j 3.1× 10−3 0.030 0.24 0.67 0.8 0.18

ϵ
g
j 0.012 0.041 0.12 0.18 0.18 0.8

and multiquark or other rare/exotic states [18–21]; exclusive hadronic decays of the H, Z, W bosons,86

and top quark [22]; running of quark masses [23]; among others, are not covered for lack of space.87

The document ends with a summary of QCD physics opportunities at FCC-hh [24], in particular with88

heavy-ions and far-forward detectors.89

2 Determinations of the strong coupling constant90

The very large FCC-ee integrated luminosities at the Z pole and WW thresholds provide multiple observ-91

ables for precise determinations of the strong coupling constant αS(m
2
Z) [25,26]. An obvious motivation92

for higher precision in αS(m
2
Z) is the associated reduction in parametric uncertainties that it brings in93

theoretical calculations for FCC-ee, of which the error in the QCD coupling often constitutes a source of94

uncertainty (e.g. the e+e− → tt cross section at threshold, or the H → gg partial width). The current95

world average [27] reaches a 0.8% uncertainty, αS(m
2
Z) = 0.1180 ± 0.0009, through a combination of96

several determinations from a range of datasets and observables. Its value and uncertainty are largely97

driven by highly precise extractions from lattice calculations [28], expected to be further improved by a98

factor of two in the next decade [29,30]. At FCC-ee, many observables can be used for precise extractions99

of αS, among which the four highlighted in Table 5 are discussed next.100

Table 5: Foreseen αS extractions from e+e− data at FCC-ee: Present world-average and extraction
method [27], expected FCC-ee statistical and systematic uncertainties (the two bottom categories need
dedicated studies), and theory developments required to match the experimental precision.

Category present αS(m
2
Z) (×104) FCC-ee Extraction method

value ± uncertainty Stat. Syst. Theory developments needed

Z hadronic decays 1 208 ± 28 0.1 1 Combined R
Z
ℓ , ΓZ, σ

0
had fit

O(α5
S), O(α3), O(αS, α

3), O(α2
S, α

2) corrs.
W hadronic decays 1 070 ± 350 2 2 Combined R

W
ℓ , ΓW fit

O(α5
S), O(α2), O(α3), O(αS, α

3), O(α2
S, α

2) corrs.
τ hadronic decays 1 178 ± 19 ≪1 <10 Combined Γτ,had and τ lifetime fit

O(α5
S), hadronisation corrections

Event shapes & jet rates 1 171 ± 31 ≪1 <10 Combination of event shapes and jet rates
O(α4

S), hadronisation corrections

Inclusive hadronic Z and W decays101

The most precise determination at FCC-ee can be achieved from a combined fit of three inclusive pseudo-102

observables at the Z pole: the Z boson total width (ΓZ, dominated by ΓZ,had), the total hadronic cross103

section at the resonance peak (σ0
had), and the ratio of hadronic-to-leptonic branching fractions (RZ

ℓ ).104

These three pseudo-observables will be measured with 10−6–10−5 experimental precision (Table 3), and105

are very suitable to extract αS given their small sensitivity to hadronisation corrections, which scale106



with energy scale
√
shad as (ΛQCD/

√
shad)

6 [31]. With the 6 × 1012 Z bosons produced at FCC-ee,107

the total experimental uncertainty in αS extractions from fits of the above quantities is of the order of108

0.1% [32]. Similar alternative extractions of αS at FCC-ee can be derived from W hadronic decays quan-109

tities (ΓW,had and R
W
ℓ ) [32, 33], whose experimental precision will be also improved by a factor of 100110

compared to their current world averages (Table 3). The status of theory computations for these observ-111

ables includes QCD corrections up to N4LO [34–36], and N3LO for massive bottom quarks in a power112

series in m2
b/shad [37]. The knowledge of EW and mixed QCD-EW corrections is currently available at113

least up to two loops [38–44]. Existing studies on the αS extraction from the decay of EW bosons indicate114

that the calculation of higher-order corrections O(α5
S), O(α3), and O(αS, α

3) or O(α2
S, α

2) for QCD,115

EW, and QCD⊕EW, respectively, will be critical to match the expected experimental precision [32].116

Hadronic τ decays117

The Z-pole run at FCC-ee will provide a data sample of O(4 × 1011) tau leptons from Z → τ+τ− de-118

cays (Table 1), whose properties (mass, lifetime, branching fractions, hadronic spectral functions) will119

be extracted with factors 50–500 improved statistical uncertainty compared to present world averages120

(Table 3). The determination of αS from the tau lepton data relies on measuring the ratio of hadronic121

to leptonic branching fractions, Rτ , and the tau lifetime, and fitting them to theoretical predictions that122

reach today a N4LO perturbative accuracy [34, 36]. In both cases, the theory expressions depend on123

the value of mτ , which introduces a parametric uncertainty that will be also negligible at FCC-ee. The124

Rτ fit procedure involves integrating spectral functions extracted from the tau hadronic decay invariant125

mass distributions and comparing them with theoretical predictions based on Finite Energy Sum Rules,126

which relate moments of the spectral function to the QCD parameters. By fitting the theoretical expres-127

sions to the experimental data, αS(m
2
τ ) is extracted, which can then be evolved to αS(m

2
Z) using the128

Renormalisation Group Equations. The current experimental precision on αS(m
2
τ ) is about 1% [26],129

whose statistical uncertainty will be negligible at FCC-ee. Theoretically [45, 46], open questions remain130

concerning the treatment of NP effects [47–49], as well as the difference between extractions relying on131

contour-improved (CIPT) [50,51] and fixed-order (FOPT) perturbation theory adopted in the fits [52,53].132

Recent investigations indicate that CIPT calculations might require a more robust estimate of NP cor-133

rections [52, 54, 55], with potential ways forward discussed in Refs. [56, 57]. A deeper understanding134

of these aspects, plus computing the next order in the perturbative expansion, O(α5
S), is necessary for135

robust determinations of αS(m
2
Z) from τ decays at FCC-ee, and must be pursued in the coming years.136

Jet rates and event shape observables137

The sensitivity to αS of differential observables measured in HFS, such as event shapes or jet rates,138

makes them suitable for precise extractions of the strong coupling [58–80]. These extractions rely on139

fitting accurate theoretical calculations [37, 61, 65, 66, 81–105] to experimental data [26]. The values of140

αS(m
2
Z) obtained in such fits differ among each other by up to a few standard deviations (SDs). Different141

determinations rely on different observables, datasets, perturbative calculations, and modelling of hadro-142

nisation corrections. The latter typically induce O(ΛQCD/
√
shad) effects on the observables used in the143

fit. These cannot be calculated from first principles, and are estimated with either MC models or analytic144

techniques [31, 106–117], with the latter providing a value of αS(m
2
Z) that is up to 4% lower than the145

world average, with a tension that reaches the several-SDs level. This discrepancy is presently the sub-146

ject of active discussions among experts [76, 77, 79, 80], where the main open points concern the precise147

assessment of hadronisation corrections in the theoretical predictions as well as the consistency of ex-148

perimental data entering the fit. Future accurate measurements at FCC-ee will be crucial to shed light on149

this tension. New data collected at different CM energies and analysed with state-of-the-art methodolo-150

gies (Table 2) will be instrumental to scrutinise existing extraction methodologies with full control over151

systematic uncertainties and correlations. Moreover, using the high-precision determination of αS(m
2
Z)152

expected from inclusive Z decays as input parameter, event-shapes data can provide new insight into the153

accurate modelling of parton showers and hadronisation (both through analytic techniques and via MC154



generators), which is essential to the whole QCD programme at FCC-ee, such as in measurements of155

hadronic observables in e+e− → tt, e+e− → W+W−, and e+e− → ZH. In parallel with the mod-156

elling of hadronisation corrections, substantial advancements in high-order perturbative calculations for157

multijet cross sections are required for an optimal exploitation of the FCC-ee experimental programme.158

Alternative approaches to the extraction of αS at lepton colliders contemplate the design of ob-159

servables with reduced sensitivity to hadronisation, e.g. via jet-substructure techniques [118, 119] that160

mitigate the impact of the obstacles discussed above. A detailed study of the effectiveness of these tech-161

niques at FCC-ee energies, as well as the precise estimate of the residual hadronisation corrections are162

highly desirable in the coming years to assess their potential [119, 120].163

3 QCD effects on the measurement of the W-boson mass164

The W boson mass (mW) will be measured at FCC-ee through a threshold scan with dedicated runs at165 √
s = 157 and 163GeV, in which the WW pair is produced (nearly) at rest. The W mass and width166

can be extracted with two methods. The first one uses a fit of the measured σWW vs.
√
s lineshape167

to state-of-the-art theoretical predictions, treating mW and ΓW as free parameters [121]. In this case,168

the fully leptonic final state, e+e− → W+W− → ℓν ℓν, is experimentally preferred as it is subject169

to less backgrounds, and free from hadronic uncertainties. The second method is based on fits to the170

W-decay invariant mass distributions in different exclusive final states, with kinematic constraints [122].171

Combining both methods, and taking into account the currently foreseen integrated luminosity (a factor172

of two larger than that used in Refs. [121, 122]), the final projected experimental precision on mW will173

reach 0.24 MeV, roughly shared between statistical and systematic3 uncertainties (Table 3).174

Reaching the expected experimental precision on mW , as extracted from the σWW vs.
√
s line-175

shape, represents a formidable challenge for the field of precision calculations. Existing estimates [123]176

indicate that a theoretical uncertainty of 0.1% in the total cross section for e+e− → W+W− translates177

into a δmW ≃ 1.5 MeV uncertainty in the W mass. Current state-of-the-art predictions [124, 125]178

reach a δmW ≃ 3–5 MeV precision, whereas achieving an uncertainty δmW < 0.5 MeV will require179

the calculation of the NNLO EW corrections (currently out of reach), as well as the inclusion of mixed180

EW-QCD [126] effects and a refined treatment of QED initial-state radiation [127]. Conversely, the im-181

pact of theoretical uncertainties in the direct mW extraction via the reconstructed invariant mass of W182

boson decay products needs dedicated studies for a precise assessment. Among the leading theoretical183

systematics, NP effects in the hadronic decays of both W bosons are expected to play a role.184

The WW-threshold run can be also exploited to improve the understanding of NP aspects of QCD,185

such as colour reconnection (CR), which accounts for final-state colour flow effects between the two186

hadronic decays of the two W bosons. In the absence of CR, the two W → qq ′ systems should hadro-187

nise independently whereas, if CR occurs, the interaction between partons from different W bosons can188

modify the properties of their HFS distributions. The theoretical description of this phenomenon is done189

via phenomenological models [128, 129] implemented in MC generators. The measurement of key ob-190

servables (where the precise mW extracted from leptonic decays can be used as an input) in lepton+ jets191

and fully hadronic WW decays at FCC-ee will benefit the development and tuning of such CR models.192

4 QCD effects on the measurement of the top-quark mass193

The properties of the top quark, in particular its mass (mtop) and width (Γtop), will be studied at FCC-ee194

in a threshold scan with dedicated runs at
√
s = 340, 345 and 365GeV, in which the tt pair is produced195

(nearly) at rest. The top mass and width are extracted through a fit of the measured σtt vs.
√
s lineshape196

to state-of-the-art theoretical predictions, leaving mtop and Γtop as free-floating parameters. Suitable def-197

initions of short-distance top-mass schemes, unaffected by infrared ambiguities [130–134], must be used198

for the σtt vs.
√
s theoretical prediction. The potential-subtracted (PS) mtop scheme [133] is commonly199

used [135, 136]. Although NNLO and N3LO fixed-order QCD calculations are available [137, 138],200

3The systematic uncertainty is dominated by the centre-of-mass energy determination with resonant depolarisation.



the σtt threshold cross section is dominated by Coulomb interactions between the two quarks described201

within nonrelativistic QCD [139–141], valid in the regime in which the top quark velocity is of order202

αS. Predictions in this framework include QCD effects up to N3LO [142–144] approximate NNLL203

renormalisation-group improved corrections [145], and the inclusion of EW effects within an analo-204

gous EFT framework [146]. The description of the W+W−bb + X final state also requires including205

nonresonant channels without onshell top quarks. These nonresonant channels critically require embed-206

ding the aforementioned nonrelativistic EFT into the unstable particle EFT [147, 148], where current207

predictions reach NNLO accuracy [146]. The above state-of-the-art calculations, incorporated in the208

QQBAR_THRESHOLD code [142], have theoretical uncertainties from missing higher-order corrections,209

which propagate into O(35) MeV uncertainties on the extracted mPS
top value [149, 150].210

Simulation studies analyse tt threshold data samples (including the expected FCC-ee beam energy211

spread (BES) with a standard deviation of 0.23% per beam) fitted to the QQBAR_THRESHOLD predic-212

tions with mtop and Γtop left free, and with other parameters entering in the calculations constrained using213

Gaussian priors representing external constraints [150]. The value of αS(m
2
Z) will be known within 10−4

214

from the Z pole run (Table 5) [32], while the value of top Yukawa coupling (yt) is constrained within215

3% according the expected HL-LHC precision [151]. The final foreseen experimental precision on mtop216

and Γtop will be of about 7 and 13 MeV, respectively, dominated by statistical uncertainties (Table 3),217

whereas missing higher orders in the theoretical predictions amount to 35 (25) MeV on mtop (Γtop) [150].218

Achieving the theoretical precision to match the experimental uncertainties represents a formidable chal-219

lenge for the field of precision QCD calculations, that goes far beyond the current state of the art. The220

next obstacles to be tackled in the coming years involve the computation of N4LO corrections in the non-221

relativistic EFT framework, as well as the description of QED effects at NNLL both in the collinear limit222

(e.g., ISR [152,153]) and in the soft limit (as discussed in Ref. [154]). Moreover, the optimal exploitation223

of the FCC-ee measurements might also require the N3LO calculation for the nonresonant channels. The224

theoretical description of differential distributions is less accurate than that of the inclusive quantities just225

discussed, and reaches either NLO or NNLO accuracy only for specific observables [155, 156]. Further226

progress is needed in these computations, which are central to controlling precisely the effect of exper-227

imental cuts. Some aspects of these calculations pose considerable theoretical challenges, for instance228

regarding the differential calculations in the nonrelativistic limit, or the assessment of nonfactorisable229

radiative corrections to the decays of the two top quarks [157].230

5 QCD in Higgs boson hadronic decays231

Hadronic final states represent more than 80% of the total Higgs decays (including intermediate H →232

WW∗, ZZ∗ decays), but only the H → bb channel will be probed at the HL-LHC. The clean experi-233

mental conditions at FCC-ee allow the study of hadronic decays of the Higgs boson, hence opening the234

possibility to constrain and measure its couplings to QCD partons. Differential observables measured235

in hadronic Higgs decays, such as event shapes and jet rates, are sensitive to new physics [158–162]236

and to gluon- and quark-Yukawa couplings, whose strength can be constrained both via indirect meth-237

ods [163–165], or direct measurements by means of modern flavour-tagging techniques [11, 12]. A key238

example are recent studies of the extraction of the strange-quark Yukawa coupling by means of machine-239

learning techniques [166, 167], exploiting the significantly improved strange-jet tagging performance at240

FCC-ee (Table 4). Among the foreseen challenges in this measurement, a relevant theory bottleneck is the241

separation of the H → ss decay from the Higgs (QCD- and EW-mediated) Dalitz decays characterised242

by gluon/photon splitting into a pair strange quarks, H → gg → ssg and H → γγ → ssγ. Initial inves-243

tigations [168] indicate that this background can be drastically suppressed by a cut in the invariant mass244

of the pair of jets originating from the fragmentation of the two strange quarks, mj1j2 ≳ 100GeV [169].245

A robust theoretical control of the H → ss signal in this region requires accurate perturbative calcu-246

lations, as well as the resummation of logarithmic corrections stemming from soft-gluon radiation off247

the final-state strange quarks near the Higgs mass threshold, mj1j2 ≈ mH. Together with advancements248

in perturbative calculations, a second essential element is the development of improved hadronisation249

models to distinguish the fragmentation of (strange) quarks from that of gluons. Such models are instru-250



mental for a reliable training of jet taggers (Table 4), and their calibration within future MC generators251

will highly benefit from the vast precise QCD datasets to be collected (Table 1).252

The theoretical precision for the hadronic partial widths currently reach the per-cent level, with a253

parametric uncertainty in αS(m
2
Z) that will be significantly reduced at FCC-ee with the expected 0.1%254

precision achieved from runs at the Z pole. In the case of H → bb, N4LO QCD corrections are known255

in the limit of massless bottom quarks [36, 170, 171], and N4LO QCD corrections to H → gg have been256

computed in the heavy-top limit [36]. Predictions for the differential H → bb decay rate are known up257

to N3LO in the limit of massless b quarks [172] and NNLO (and partially beyond) mass corrections are258

available [173–180]. Similarly, differential QCD predictions for H → gg are now available up to N3LO259

in the large-top-mass limit [181, 182]. Finite quark mass corrections to H → gg are relevant at the level260

of precision foreseen at FCC-ee and could be included up to NNLO in QCD in the near future thanks to261

state-of-the-art calculations [174,183–189]. Precision calculations of hadronic event shapes and jet rates262

in Higgs decays have been recently developed [182,190–196], together with techniques for the treatment263

of quark-mass logarithms in gluonic decays [197–204]. Similarly to the Z boson case, hadronisation264

effects have a sizeable impact on event shapes and jet rates measured in HFS Higgs decays, confirming265

that improved modelling of hadronisation will be very beneficial for the FCC-ee Higgs programme.266

6 QCD Parton Showers267

Parton shower event generators [205] are crucial for the FCC-ee physics programme, enabling pre-268

cise QCD and QED simulations for measurements, detector calibration, and training of analysis tools.269

Achieving the FCC-ee experimental precision requires next-generation MC tools with significantly im-270

proved theoretical accuracy. Simulating HFS events in MC generators involves three main stages: the271

hard scattering characterised by a large momentum transfer; the parton shower stage, in which the sys-272

tem evolves by radiating QCD partons towards lower momentum scales; and the NP stage, for the final273

transition of partons into hadrons.274

A first area where substantial improvement is necessary concerns the formulation of parton shower275

algorithms, as current public tools are generally limited to leading logarithmic (LL) accuracy. The preci-276

sion goals of FCC-ee requires at least NNLL accuracy. Recent advances, driven by linking parton show-277

ers with the field of QCD resummations, have achieved NLL accuracy for key observables [206–220],278

including an improved description of quark-mass effects [219]. Beyond NLL, key challenges include279

incorporating higher-order matrix elements [221–226], handling virtual corrections in soft and collinear280

limits [98,226–230], and developing matching schemes that preserve the shower accuracy [231]. Recent281

progress has led to the first NNLL parton-shower algorithms for lepton colliders [232], suggesting fully282

general NNLL showers for FCC-ee applications within reach in the next decade. Standard parton-shower283

algorithms primarily rely on a semiclassical approach to the description of colour flow in the showering284

process, approximating soft quantum interference in parton fragmentation. To overcome this, ongoing285

research focuses on alternative algorithms that evolve the colour flow at the amplitude level [233, 234].286

A second key area for improvement in MC generators is the simulation of hard scattering pro-287

cesses, entailing advanced QCD and EW perturbative calculations, and their integration with parton288

showers via matching techniques. Current matching methods, interface NLO [235–240] or NNLO [241–289

246] QCD calculations with LL showers, but recent progress in shower accuracy necessitates revisiting290

these techniques to preserve the accuracy beyond LL [231]. Additional challenges arise in matching291

schemes for unstable particle production near threshold (e.g., e+e− → W+W−, e+e− → tt), crucial292

for FCC-ee. While resonance-aware matching methods exist [156, 247, 248], incorporating a consistent293

description of the scale hierarchies in nonrelativistic decays remains an open problem.294

A third area requiring advancement in MC generators for FCC-ee is the modelling of NP cor-295

rections, essential for describing light parton and heavy quark fragmentation which, in turn, is instru-296

mental in the calibration of flavour-tagging algorithms. Improvements may come from refining existing297

models [249, 250] with higher-order parton showers or developing improved models based on, e.g.,298

amplitude-evolution showers [251] and machine learning methods [252–254]. Tuning these models299



will benefit greatly from high-purity FCC-ee data samples enriched with specific parton flavours and300

hadronic measurements across various energy scales. Feasibility studies consider the possibility of col-301

lecting O(109) events across the
√
shad = 20–80GeV mass range via dedicated runs or ISR events off302

the Z-pole (Table 2). In addition, improved models of colour reconnection [128, 129], calibrated with303

FCC-ee data, are necessary to further improve the theoretical description of heavy resonance decays.304

7 QCD physics opportunities at FCC-hh305

The FCC-hh will offer unparalleled opportunities for QCD studies at partonic CM energies about ten306

times larger than those probed at the LHC, with vast datasets resulting from a tenfold increase in inte-307

grated luminosity. This will extend the pQCD kinematic reach significantly. Key highlights [5,255,256]308

include probing parton distribution functions (PDFs) at extremely small Bjorken-x, investigating beyond-309

DGLAP dynamics and parton saturation. Additionally, multi-TeV jets will test asymptotic freedom up to310

scales of Q ≈ 30 TeV, and events with large jet multiplicities and vector boson+multijet processes will311

probe hard parton radiation and multiparton scatterings. Finally, large samples of boosted top-quarks, W,312

Z, and H bosons will enable studies of hadronic decays using jet substructure techniques.313

Theoretical efforts will entail the combination of multi-loop QCD and electroweak calculations314

with high-precision PDFs at multi-TeV scales. Advancements in the description of the high-energy limit315

of QCD (e.g. the BFKL regime) will be required for predicting partonic scatterings at x = 10−7. In316

the same regime, electroweak gauge bosons, leptons, and top quarks will be produced abundantly and317

incorporated into the PDFs alongside quarks and gluons providing a rich landscape for phenomenology.318

7.1 Heavy-ion physics at FCC-hh319

If suitable technological choices are made in the design of the FCC and its injectors, the collider will320

allow the study of nucleus-nucleus (AA) and proton-nucleus collisions up to nucleon-nucleon CM en-321

ergies√sNN =
√

Z1Z2
A1A2

√
spp. For a 100-TeV pp collider, this corresponds to√sNN = 39TeV for Pb-Pb322

and 64 TeV for p-Pb collisions. Projected monthly integrated luminosity reach 100 nb−1 for Pb-Pb [5]323

(Table 6). The FCC-hh extends the physics reach of HL-LHC by about one order in magnitude in both324

CM energy and luminosity. Exploratory studies [257,258] have demonstrated that these conditions open325

up quantitatively novel opportunities for the study of the QCD high-temperature phase, the Quark Gluon326

Plasma (QGP). The increase in√sNN leads to a QGP phase that starts at significantly higher initial tem-327

peratures, lives significantly longer, and extends over a wider spatial region — with all three parameters328

being central for a detailed characterisation of essentially all partonic collective phenomena.329

In AA collisions at FCC, the charm-quark will have thermal production rates and thus behave as an330

active degree of freedom of the plasma, thus changing bulk properties of the QGP. Thermally produced331

cc pairs are expected to lead to an enhancement of the total charm hadron yield by up to 50%, compared332

to scaling from pp collisions: the measurement of this enhancement can provide a unique new sensitivity333

to the initial temperature of the QGP, which may reach 1GeV [257]. Abundantly produced electroweak334

gauge bosons and top quarks can be used to dope the QGP in novel, experimentally controlled ways,335

and numerous other opportunities for the study of hard probes have been identified. The reconstruction336

of the full decay topologies of high-momentum top-antitop events can provide, for the first time, a way337

to study the time-dependence of the QGP opacity to hard partons. Indeed, in the boosted decay chain338

t → bW and W → qq, the latter decay quarks interact with the QGP with a time delay of up to a few339

fm/c, increasing with the momentum of the top quark [259]. The heavy-ion programme at the FCC-hh340

also offers synergies with a wide range of other neighbouring physics fields, including unique opportuni-341

ties for hadron spectroscopy, ultraperipheral collisions, and proton-nucleus collisions. For example, the342

measurement of top-antitop production in p-Pb collisions is expected to provide strong constraints on the343

gluon PDF in nuclei for Q = mtop in a wide x range, up to x = 0.7 [260].344

In the history of collider experiments with nuclear beams, all significant increases in CM energy345

have led to discoveries not anticipated before. Examples include the discovery of perfect fluidity at RHIC,346



Table 6: Beam and machine parameters for heavy-ion operation in the baseline and ultimate scenarios,
differing in the optical function β∗ at the interaction point and bunch spacing [5].

Unit Baseline Ultimate
Collision mode – Pb-Pb p-Pb Pb-Pb p-Pb
Number of Pb bunches – 2760 5400
Bunch spacing [ns] 100 50
Peak luminosity (1 experiment) [1027cm−2s−1] 80 13300 320 55500
Integrated luminosity (1 experiment, 1 month) [nb−1] 35 8000 110 29000

and of small-system parton collectivity at the LHC. For instance, the larger magnetic fields present in AA347

collisions at FCC will enable searches for manifestations of anomalous QCD hydrodynamics, such as348

manifestations of the chiral magnetic effect, with much higher sensitivity. Finally, the LHC discovery of349

small-system collectivity stresses the fundamental physics interest in extending the programme to cover350

p-A collisions. Beyond these scientific opportunities, the LHC provides an example of how the addition351

of a nuclear-beams programme to a hadron collider project can significantly increase the user base of the352

latter, and how it leads to R&D synergies in detectors and data analysis. The reasons above highlight353

the importance of designing FCC-hh and its injector chain such that it can serve the widemost scientific354

user community. Experiments at FCC should be in a position to address the broadest range of scientific355

questions that may come into experimental reach in the second part of the 21st century.356

7.2 A forward-physics facility (FPF) at FCC-hh357

The FCC-hh offers additional unique opportunities in QCD physics studies through the exploitation358

of the high-intensity beams of energetic particles, including neutrinos, produced in the forward region359

by pp collisions. A forward-physics facility (FPF) has been proposed at FCC-hh [261] following the360

LHC experience with the far-forward experiments FASER(ν) [262–265], SND@LHC [266, 267], and361

the proposed FPF [268, 269]. The enormous samples of multi-TeV neutrinos available at FPF@FCC362

will provide high-resolution deep-inelastic (DIS) probes of the unpolarised and polarised structure of363

protons and nuclei. First, high-energy neutrino DIS structure functions [270, 271] provide a precise364

quark/antiquark flavour separation at large x, which in turn reduces the theoretical uncertainties entering365

high-mass searches at FCC-hh. Second, neutrino DIS on a polarised target [272, 273] resolves the spin366

structure of the proton [274,275] providing complementary information to measurements at the Electron-367

Ion Collider [276]. Third, detecting neutrinos originating from p-Pb collisions provides information on368

nuclear structure [277–279] down to x ≈ 10−9, where nuclear PDFs are unconstrained and novel QCD369

regimes, such as gluon saturation, are expected to dominate. This kinematic region is also of prime370

importance for astroparticle physics experiments.371

8 Conclusions372

The exceptional capabilities of FCC will provide unique opportunities to probe the fine structure of the373

strong interaction and refine its theoretical description. Through its multifaceted physics programme, the374

FCC will shed new light on the behaviour of QCD in kinematic regimes that remain poorly understood,375

and significantly enhance the precision of theoretical predictions beyond the current state of the art. Such376

an unprecedented theoretical control will be pivotal for fully leveraging the vast amounts of data collected377

at FCC and achieving the anticipated precision in most critical measurements. While it will be years378

before the necessary QCD accuracy and precision goals are attained, the efforts initiated during the FCC379

feasibility study have begun defining a clear roadmap. The approval of the FCC project will catalyse the380

engagement of the strong-interaction theory community, fostering collaborative and synergistic efforts381

to achieve these objectives. The ongoing success in enhancing the precision of LHC predictions, beyond382

any previous expectation, gives confidence in the feasibility of these ambitious goals.383
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