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Abstract

The Future Circular Collider (FCC) will deliver unprecedented precision in the measurement of the
properties and parameters of the Standard Model (SM), directly and indirectly probing new physics up
to the 100-TeV scale. Its broad and diverse programme, including very high-luminosity eTe™ collisions
(FCC-ee) and hadronic collisions at the energy frontier (FCC-hh), will offer exceptional opportunities to
advance knowledge of the strong interaction through high-precision measurements across a wide range
of energy scales and scattering processes. Key measurements at the FCC-ee and FCC-hh are reviewed
that will provide a deeper understanding of quantum chromodynamics (QCD) in the perturbative, non-
perturbative and high-density regimes, and advance its theoretical description to a level of precision far
beyond that of current collider experiments. The critical role played by QCD in determining key Stan-
dard Model quantities at FCC-ee is also discussed, highlighting how improved theoretical calculations
and simulations are needed to match the foreseen FCC-ee experimental uncertainties.
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1 QCD physics at FCC-ee

Electron-positron collisions at the Future Circular Collider (FCC-ee) provide unparalleled opportuni-
ties for Higgs, electroweak (EW), top, flavour, and beyond standard model (BSM) physics [1], and also
offer a unique environment to perform the most precise studies of the strong interaction, theoretically
described by Quantum Chromodynamics (QCD). High-energy ete™ collisions provide a clean, con-
trolled, and well-defined setup for QCD studies, avoiding the complications from the coloured initial
states present in proton-proton and heavy-ion collisions. Unlike hadron colliders, where parton distribu-
tion functions (PDFs), multiparton interactions, and “beam remnants” complicate the understanding of
colour dynamics, e*e™ annihilation occurs at a fixed centre-of-mass (CM) energy with precisely known
elementary kinematics and with a colourless initial state. In addition, events typically produce final
states with well-separated jets and a well-defined parton flavour, enabling detailed studies of light-quark,
heavy-quark, and gluon showering and hadronisation in a controlled setting. All such aspects allow pre-
cise experimental measurements, accurate theoretical predictions, and direct tests of perturbative (pQCD)
and nonperturbative (NP) QCD, of impact for the full FCC-ee physics programme, whose indirect BSM
physics reach, up to a 100-TeV energy scale for some operators, relies on searches for tiny deviations
in the data from the SM predictions. Although QCD physics per se is not the primary driving force
for future e™e~ colliders, a precise understanding of the strong interaction is crucial to fully exploit the
broad range of SM measurements and BSM searches to be performed:

— A precise determination of the QCD coupling as(m%) is needed to accurately and precisely predict
all eTe™ cross sections and decay rates which parametrically depend on it.

— Accurate pQCD calculations (both at fixed N"LO and resummed N"LL orders) are fundamental to de-
scribe hadronic final states and jet dynamics, and precisely extract multiple SM quantities from the data.

— Heavy-, light-quark, and gluon separation (through jet-flavour tagging techniques) is key for multiple
SM measurements, such as measuring Higgs Yukawa couplings to quarks and gluons.

— Nonperturbative dynamics, such as hadronisation and colour reconnection, impacts all hadronic final
states, playing a role, e.g., in studies of eTe™ — WHTW ™ tt — jets processes.

The actual fulfilment of the unique Higgs, EW, top, flavour, and BSM programme accessible at FCC-
ee, therefore requires parallel efforts in experimental and theoretical QCD studies. The detectors being
planned for FCC-ee have the specifications (large acceptance, fine granularity, particle identification)
needed to achieve the required experimental precision for EW, QCD, and flavour measurements. The
main theoretical challenges for QCD calculations [2], in order to match the foreseen FCC-ee experimen-
tal precision summarised below, have been the subject of discussions at topical CERN workshops [3,4].

The baseline FCC-ee programme [35, 6] considers eTe™ collisions at four nominal CM energies:
Vs &~ 91,160, 240, 360 GeV with total integrated luminosities covering Liy ~ 200-3 ab~! (four inter-
action points combined, and assuming 1.2 x 107 s/year). The characteristics of these four physics runs,
aiming at probing the properties of the Z, W, H, and top quark with unprecedented precision, are listed in
Table 1. To highlight the impact of QCD aspects, Table 1 also indicates the number of hadronic final-state
(HFS) events expected in the “signal” eTe™ — Z, WW, ZH, tt and “background” ete™ — Z* — qq
processes. The first observation is that the fully hadronic decays of the produced top, W, Z, and H bosons
represent 67—-80% of their inclusive final states, thereby highlighting the importance of precise and ac-
curate QCD predictions for probing their properties (e.g., couplings). The HFS of these “signal” events
will be characterised by the production of 2—-6 partons with maximum jet energies E; ~ 60-125 GeV.
The bottom rows of Table 1 list the eTe™ — Z* — qq cross sections and associated number of events
expected for each of the four runs. The FCC-ee will produce about 5 x 10'2, 8 x 102, 1.5 x 108, 2 x 108
events, with typically two jets produced with maximum energies F; ~ 45-180 GeV, in the Z, WW, ZH,
and tt runs, respectively. Such enormous HFS datasets will allow dedicated multidifferential studies of
many QCD observables with negligible statistical uncertainties, in an extremely clean environment.

Beyond the baseline programme summarised in Table 1, QCD studies at other hadronic invari-
ant masses ,/Snhad have been considered. First, it has been suggested to study HFS over the /spg =~
20-80 GeV range by exploiting initial-state radiation (ISR) events during the high-luminosity Z-pole
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Table 1: Characteristics of the physics runs in the baseline FCC-ee programme: CM energy, running
time, integrated luminosity Ly, total number of Z, WW (including all /s values from 157.5 GeV up),
ZH, and tt events expected (as well as in hadronic decay modes, indicating the number of partons
produced and their maximum jet energies). The lower rows list the corresponding e™e™ — qq cross
section (with ISR) and expected number of HFS events, and the maximum jet energies, for each /s.

Run 7 WW ZH tt

V5 (GeV) 88,91, 94 157,163 240 340-350 365
time (years) 4 2 3 1 4
Line (ab™1) 205 19.2 10.8 0.42 2.70
ete™ =7, WW, ZH, tt

Neys (Z, W, H, top) 6x10127Z 24x10°WW 2.2 x10%ZH 2 x 106 tt
Neyis (HFS decays) 4.2 x 102 1.1 x 108 1.2 x 108 0.9 x 109
Npartons (HES decays) >2 >4 >4 >6

Ej; (max. jet scale probed) 45 GeV 40 GeV 45, 65 GeV 125 GeV
ete” =520 — qq

o 32.5nb 40 pb 13.5 pb 5.3 pb
Nevts (HFS) 4.2 x 1012 7.7 x 108 1.5 x 108 1.7 x 107

Ej; (max. jet scale probed) 45 GeV 80 GeV 120 GeV 180 GeV

run, and/or in dedicated short (about 1-month-long) e*e™ runs at CM energies /s =~ 40GeV and
60 GeV [7]. Data samples with 0(109) hadronic events can be collected at those low /sp,q points
(Table 2, middle columns) that will provide valuable information, in particular, on NP and heavy-quark
mass effects. In addition, a potential run at the Higgs mass pole, /s = 125 GeV, has been proposed as a
means to measure the electron Yukawa coupling [8]. This latter run, if ever realised, would also provide
an additional O(10'%) hadronic events for QCD studies (Table 2, rightmost column).

Table 2: Characteristics of the HFS samples to be collected in ISR events at the Z pole, in two potential
(1 month long) low-energy runs at /s = 40, 60 GeV [7], and in a proposed Higgs-mass run at /s =
125 GeV [8]. For each run, the \/snaq probed, the eTe™ — g cross section, the expected number of
events, and the maximum jet energies reached are listed.

Run Z pole (ISR events) 40-GeV  60-GeV | eTe” — H
Vs 88,91,94 GeV 40GeV  60GeV | 125GeV
time 4 years 1 month 1 month 3 years
Line (ab™1) 205 3.5 6.2 ~100
olete”™ — qq) Depending on ISR selection criteria [7] | 289 pb 162 pb 104 pb
\/Shad 20-80 GeV 40GeV  60GeV | 125GeV
Neyis (HFS) 0(10?) 0(10%)  0(10%) | 0109
E; (max. jet scale probed) 10-40 GeV 20GeV  30GeV | 62GeV

The exceptional number of EW bosons to be collected, as well as the exquisite control of the beam

energy, and the possibility to run at the tt threshold, allow carrying out measurements of fundamental SM
quantities with statistical uncertainties improved by factors of 50—1000 compared to their current world
averages. Table 3 lists the present precision and expected FCC-ee statistical and systematic uncertainties
for key Z, W, top, and tau observables that can be used to extract fundamental QCD parameters, such as
as(m2), and/or that are affected by QCD effects that need to be much better understood theoretically.

The detectors specifications needed to achieve experimental systematic uncertainties approaching
the statistical precision will translate into unprecedented performance for jet flavour identification and
energy resolution, aiming at precisely measuring the Z, W, H and top quark hadronic decays. Jets are
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Table 3: Key experimental SM measurements with Z, W, top, and tau particles at FCC-ee, where QCD
effects have an impact and/or from which precision QCD observables/quantities can be measured/ex-
tracted. For each observable, their present world-average precision, the foreseen FCC-ee statistical and
systematic uncertainties, the method used in the measurement and leading uncertainty are listed.

Observable present FCC-ee Measurement method(s)
value + uncert.  Stat.  Syst. leading uncertainty

my, (keV) 91 187 600 + 2000 4 100 Z lineshape scan
Beam energy calibration

I'z (keV) 2495500 + 2300 4 12 Z lineshape scan
Beam energy calibration

R? (x10%) 20767 £+ 25 0.05 0.05 Ratio of hadronic to leptonic decays
Acceptance for leptons

opg (x10%) (nb) 414802 £+ 325 003 038 Peak hadronic cross section
Luminosity measurement

Ry, (x10°) 216290 + 660 025  0.30 Ratio of bb to all-hadronic decays
Stat. extrapol. from SLD

AIE];O (x10%) 992 £ 16 0.04 0.04 b-quark asymmetry at Z pole
Jet charge determination

mw (MeV) 80360.2 + 99 0.18 0.16 'WW threshold scan and m;,, in W decays
EW theory uncertainties dominate

I'w MeV) 2085 + 42 0.27 0.2  WW threshold scan and m;y,, in W decays
EW theory uncertainties dominate

B(W — tv,) (%) 1086 £  0.09 0.001 0.001 W decays
EW theory uncertainties dominate

Myop (MeV) 172570 + 290 4.2 4.9 tt threshold scan
pQCD scale uncertainties dominate

Ciop (MeV) 1420 + 190 10 6 pQCD scale uncertainties dominate
m, (MeV) 1776.93 + 0.09 0.002 0.02 Z — 77~ decays
estimator bias, ISR, FSR

7 lifetime (fs) 290.3 + 0.5 0.001 0.005 ISR, 7 mass
B(t — nv,v,) (%) 17.38 + 0.04  0.00007 0.003 PID, 7¥ efficiency

reconstructed, in this case, using the Durham algorithm [9] in the exclusive mode, i.e., clustering all
particles in the event in a predefined number of (decay) jets. Advanced jet flavour taggers have been
developed, such as ParticleNet (based on a graph neural network) [10,11], and DeeplJetTransformer [12]
and ParticleTransformer [13] (based on transformer neural networks), that assign each jet a probability
of originating from one of seven particle types: gluon (g), up (u), down (d), strange (s), charm (c),
bottom (b), or hadronic tau (7). The taggers use the information of all particle-flow candidates within a
jet, including kinematics, track impact parameter, and particle identification (cluster-counting and time-
of-flight) information. Table 4 shows typical working points in the efficiency-mistagging matrix for a
ParticleTransformer g-tagger, trained on ete™ — Z(vv)H with H — jj events, where ejg denotes the
binary probability to tag a given jet of type j = {b, s, ¢, u,d, g} as a jet of type q. The tagging efficiency
is here indicatively fixed to ¢ = 80%, and the corresponding mistagging probabilities e? for j # q, are
listed. Realistic jet-flavour analyses will exploit the full ROC tagging information [14]. The achieved
jet-flavour (mis)tagging efficiencies for heavy quarks are more than ten times better than the current state-
of-the-art at the LHC. The jet-flavour algorithms will be trained directly on data by exploiting the vast
7 — qq samples, O(10'!) per diquark decay, in events where one jet flavour is tagged with ultrahigh
purity (but, potentially, very low efficiency) thereby fixing the flavour of the “probe” jet on the away-side.

In this note, a few key examples that showcase the QCD programme at FCC-ee are discussed
including ag (m%) extractions, QCD effects on the mw and my,, measurements, QCD in Higgs hadronic
decays, and developments needed in the modelling of Monte Carlo (MC) parton showers. Many other
important QCD studies, such as Z — qq asymmetries [15—17]; production of quarkonia, heavy baryons,
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Table 4: Representative jet-flavour tagging working points, obtained with ParticleTransformer [13] and
realistic FCC-ee detector simulations [14], for a fixed 80% efficiency for any given parton flavour. The
e? symbol indicates the probability to tag a jet of flavour j as a jet of flavour q, with j,q = b, ¢,s,u,d, g.

Jet flavour tagg. probab. b quark ¢ quark s quark u quark d quark gluon
6}) 0.8 12x107% 1.0x107* 1.6x107* 1.8x107* 55x1073
eJ‘? 0.014 0.8 1.6x107% 1.5x107% 1.6x 1073 0.015
€ 24 x1073 4.5x 1073 0.8 0.21 0.24 0.12
ef‘ 3.0x 1073 0.029 0.21 0.8 0.67 0.18
ef 3.1x1073 0.030 0.24 0.67 0.8 0.18
¢ 0.012 0.041 0.12 0.18 0.18 0.8

and multiquark or other rare/exotic states [18-21]; exclusive hadronic decays of the H, Z, W bosons,
and top quark [22]; running of quark masses [23]; among others, are not covered for lack of space.
The document ends with a summary of QCD physics opportunities at FCC-hh [24], in particular with
heavy-ions and far-forward detectors.

2 Determinations of the strong coupling constant

The very large FCC-ee integrated luminosities at the Z pole and WW thresholds provide multiple observ-

ables for precise determinations of the strong coupling constant ag(m%) [25,26]. An obvious motivation

for higher precision in as(m%) is the associated reduction in parametric uncertainties that it brings in

theoretical calculations for FCC-ee, of which the error in the QCD coupling often constitutes a source of
uncertainty (e.g. the eTe™ — tt cross section at threshold, or the H — gg partial width). The current
world average [27] reaches a 0.8% uncertainty, as(m%) = (0.1180 =4 0.0009, through a combination of
several determinations from a range of datasets and observables. Its value and uncertainty are largely
driven by highly precise extractions from lattice calculations [28], expected to be further improved by a
factor of two in the next decade [29,30]. At FCC-ee, many observables can be used for precise extractions
of ag, among which the four highlighted in Table 5 are discussed next.

Table 5: Foreseen ag extractions from eTe™ data at FCC-ee: Present world-average and extraction
method [27], expected FCC-ee statistical and systematic uncertainties (the two bottom categories need
dedicated studies), and theory developments required to match the experimental precision.

Category present ag(m3) (x10*) FCC-ee Extraction method
value + uncertainty  Stat. Syst. Theory developments needed

7Z hadronic decays 1208 + 28 0.1 1 Combined Rf, Iz, al?ad fit
O(a3), O(a?), O(asg, a?), O(ad, a?) corrs.

W hadronic decays 1070 £ 350 2 2 Combined RZV, T'w fit
O(ad), O(a?), O(a?), O(as, a®), O(ad, a?) corrs.

7 hadronic decays 1178 £ 19 <1 <10 Combined I'" and r lifetime fit
O(ag), hadronisation corrections

Event shapes & jetrates 1171 £ 31 <1 <10 Combination of event shapes and jet rates

(’)(o/é), hadronisation corrections

Inclusive hadronic Z and W decays

The most precise determination at FCC-ee can be achieved from a combined fit of three inclusive pseudo-
observables at the Z pole: the Z boson total width (I'z, dominated by I'z 1a4), the total hadronic cross
section at the resonance peak (agad), and the ratio of hadronic-to-leptonic branching fractions (R?).
These three pseudo-observables will be measured with 10~-107° experimental precision (Table 3), and
are very suitable to extract ag given their small sensitivity to hadronisation corrections, which scale
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with energy scale \/Spad as (Aqcp/+v/Shad)® [31]. With the 6 x 10'? Z bosons produced at FCC-ee,
the total experimental uncertainty in «g extractions from fits of the above quantities is of the order of
0.1% [32]. Similar alternative extractions of g at FCC-ee can be derived from W hadronic decays quan-
tities (I'w haq and RZV) [32,33], whose experimental precision will be also improved by a factor of 100
compared to their current world averages (Table 3). The status of theory computations for these observ-
ables includes QCD corrections up to N*LO [34-36], and N®LO for massive bottom quarks in a power
series in m% /Shad [37]. The knowledge of EW and mixed QCD-EW corrections is currently available at
least up to two loops [38—44]. Existing studies on the aig extraction from the decay of EW bosons indicate
that the calculation of higher-order corrections O(a?), O(a?), and O(as, o) or O(ad, a?) for QCD,
EW, and QCD @ EW, respectively, will be critical to match the expected experimental precision [32].

Hadronic T decays

The Z-pole run at FCC-ee will provide a data sample of O(4 x 10*!) tau leptons from Z — 77~ de-
cays (Table 1), whose properties (mass, lifetime, branching fractions, hadronic spectral functions) will
be extracted with factors 50-500 improved statistical uncertainty compared to present world averages
(Table 3). The determination of g from the tau lepton data relies on measuring the ratio of hadronic
to leptonic branching fractions, 2, and the tau lifetime, and fitting them to theoretical predictions that
reach today a N*LO perturbative accuracy [34, 36]. In both cases, the theory expressions depend on
the value of m,, which introduces a parametric uncertainty that will be also negligible at FCC-ee. The
R, fit procedure involves integrating spectral functions extracted from the tau hadronic decay invariant
mass distributions and comparing them with theoretical predictions based on Finite Energy Sum Rules,
which relate moments of the spectral function to the QCD parameters. By fitting the theoretical expres-
sions to the experimental data, as(m?2) is extracted, which can then be evolved to ag(m?) using the
Renormalisation Group Equations. The current experimental precision on ag(m?) is about 1% [26],
whose statistical uncertainty will be negligible at FCC-ee. Theoretically [45,46], open questions remain
concerning the treatment of NP effects [47-49], as well as the difference between extractions relying on
contour-improved (CIPT) [50,51] and fixed-order (FOPT) perturbation theory adopted in the fits [52,53].
Recent investigations indicate that CIPT calculations might require a more robust estimate of NP cor-
rections [52, 54, 55], with potential ways forward discussed in Refs. [56,57]. A deeper understanding
of these aspects, plus computing the next order in the perturbative expansion, O (ag), is necessary for
robust determinations of as(m%) from t decays at FCC-ee, and must be pursued in the coming years.

Jet rates and event shape observables

The sensitivity to ag of differential observables measured in HFS, such as event shapes or jet rates,
makes them suitable for precise extractions of the strong coupling [58—80]. These extractions rely on
fitting accurate theoretical calculations [37,61, 65, 66,81-105] to experimental data [26]. The values of
as (m%) obtained in such fits differ among each other by up to a few standard deviations (SDs). Different
determinations rely on different observables, datasets, perturbative calculations, and modelling of hadro-
nisation corrections. The latter typically induce O(Aqcp/+/Shad) effects on the observables used in the
fit. These cannot be calculated from first principles, and are estimated with either MC models or analytic
techniques [31, 106-117], with the latter providing a value of ag(m%) that is up to 4% lower than the
world average, with a tension that reaches the several-SDs level. This discrepancy is presently the sub-
ject of active discussions among experts [76,77,79, 80], where the main open points concern the precise
assessment of hadronisation corrections in the theoretical predictions as well as the consistency of ex-
perimental data entering the fit. Future accurate measurements at FCC-ee will be crucial to shed light on
this tension. New data collected at different CM energies and analysed with state-of-the-art methodolo-
gies (Table 2) will be instrumental to scrutinise existing extraction methodologies with full control over
systematic uncertainties and correlations. Moreover, using the high-precision determination of as(m%)
expected from inclusive Z decays as input parameter, event-shapes data can provide new insight into the
accurate modelling of parton showers and hadronisation (both through analytic techniques and via MC
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generators), which is essential to the whole QCD programme at FCC-ee, such as in measurements of
hadronic observables in ete™ — tt, efe™ — WTW™, and ete™ — ZH. In parallel with the mod-
elling of hadronisation corrections, substantial advancements in high-order perturbative calculations for
multijet cross sections are required for an optimal exploitation of the FCC-ee experimental programme.

Alternative approaches to the extraction of ayg at lepton colliders contemplate the design of ob-
servables with reduced sensitivity to hadronisation, e.g. via jet-substructure techniques [118, 119] that
mitigate the impact of the obstacles discussed above. A detailed study of the effectiveness of these tech-
niques at FCC-ee energies, as well as the precise estimate of the residual hadronisation corrections are
highly desirable in the coming years to assess their potential [119, 120].

3 QCD effects on the measurement of the W-boson mass

The W boson mass (mvy) will be measured at FCC-ee through a threshold scan with dedicated runs at
Vs = 157 and 163 GeV, in which the WW pair is produced (nearly) at rest. The W mass and width
can be extracted with two methods. The first one uses a fit of the measured oww vs. 1/s lineshape
to state-of-the-art theoretical predictions, treating mw and I'w as free parameters [121]. In this case,
the fully leptonic final state, efe™ — WTW™ — /v /v, is experimentally preferred as it is subject
to less backgrounds, and free from hadronic uncertainties. The second method is based on fits to the
W-decay invariant mass distributions in different exclusive final states, with kinematic constraints [122].
Combining both methods, and taking into account the currently foreseen integrated luminosity (a factor
of two larger than that used in Refs. [121, 122]), the final projected experimental precision on my will
reach 0.24 MeV, roughly shared between statistical and systematic® uncertainties (Table 3).

Reaching the expected experimental precision on myy, as extracted from the oww Vvs. /s line-
shape, represents a formidable challenge for the field of precision calculations. Existing estimates [123]
indicate that a theoretical uncertainty of 0.1% in the total cross section for ete™ — WTW ™ translates
into a dmw =~ 1.5 MeV uncertainty in the W mass. Current state-of-the-art predictions [124, 125]
reach a dmw =~ 3-5 MeV precision, whereas achieving an uncertainty dmw < 0.5 MeV will require
the calculation of the NNLO EW corrections (currently out of reach), as well as the inclusion of mixed
EW-QCD [126] effects and a refined treatment of QED initial-state radiation [127]. Conversely, the im-
pact of theoretical uncertainties in the direct mvyy extraction via the reconstructed invariant mass of W
boson decay products needs dedicated studies for a precise assessment. Among the leading theoretical
systematics, NP effects in the hadronic decays of both W bosons are expected to play a role.

The WW-threshold run can be also exploited to improve the understanding of NP aspects of QCD,
such as colour reconnection (CR), which accounts for final-state colour flow effects between the two
hadronic decays of the two W bosons. In the absence of CR, the two W — qq’ systems should hadro-
nise independently whereas, if CR occurs, the interaction between partons from different W bosons can
modify the properties of their HFS distributions. The theoretical description of this phenomenon is done
via phenomenological models [128, 129] implemented in MC generators. The measurement of key ob-
servables (where the precise myy extracted from leptonic decays can be used as an input) in lepton + jets
and fully hadronic WW decays at FCC-ee will benefit the development and tuning of such CR models.

4 QCD effects on the measurement of the top-quark mass

The properties of the top quark, in particular its mass (1) and width (I'yp), will be studied at FCC-ee
in a threshold scan with dedicated runs at /s = 340, 345 and 365 GeV, in which the tt pair is produced
(nearly) at rest. The top mass and width are extracted through a fit of the measured o5 vs. /s lineshape
to state-of-the-art theoretical predictions, leaving myp and Iy as free-floating parameters. Suitable def-
initions of short-distance top-mass schemes, unaffected by infrared ambiguities [130—134], must be used
for the o5 vs. y/s theoretical prediction. The potential-subtracted (PS) mop scheme [133] is commonly

used [135, 136]. Although NNLO and N3LO fixed-order QCD calculations are available [137, 138],

3The systematic uncertainty is dominated by the centre-of-mass energy determination with resonant depolarisation.
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the o threshold cross section is dominated by Coulomb interactions between the two quarks described
within nonrelativistic QCD [139-141], valid in the regime in which the top quark velocity is of order
as. Predictions in this framework include QCD effects up to N3LO [142-144] approximate NNLL
renormalisation-group improved corrections [145], and the inclusion of EW effects within an analo-
gous EFT framework [146]. The description of the WTW ~bb + X final state also requires including
nonresonant channels without onshell top quarks. These nonresonant channels critically require embed-
ding the aforementioned nonrelativistic EFT into the unstable particle EFT [147, 148], where current
predictions reach NNLO accuracy [146]. The above state-of-the-art calculations, incorporated in the
QQBAR_THRESHOLD code [142], have theoretical uncertainties from missing higher-order corrections,

which propagate into O(35) MeV uncertainties on the extracted mg)sp value [149, 150].

Simulation studies analyse tt threshold data samples (including the expected FCC-ee beam energy
spread (BES) with a standard deviation of 0.23% per beam) fitted to the QQBAR_THRESHOLD predic-
tions with myp and 'y, left free, and with other parameters entering in the calculations constrained using
Gaussian priors representing external constraints [150]. The value of as(m%) will be known within 10~
from the Z pole run (Table 5) [32], while the value of top Yukawa coupling (y) is constrained within
3% according the expected HL-LHC precision [151]. The final foreseen experimental precision on myop
and D', will be of about 7 and 13 MeV, respectively, dominated by statistical uncertainties (Table 3),
whereas missing higher orders in the theoretical predictions amount to 35 (25) MeV on mp (I'tp) [150].
Achieving the theoretical precision to match the experimental uncertainties represents a formidable chal-
lenge for the field of precision QCD calculations, that goes far beyond the current state of the art. The
next obstacles to be tackled in the coming years involve the computation of N4LO corrections in the non-
relativistic EFT framework, as well as the description of QED effects at NNLL both in the collinear limit
(e.g., ISR [152,153]) and in the soft limit (as discussed in Ref. [154]). Moreover, the optimal exploitation
of the FCC-ee measurements might also require the N3LO calculation for the nonresonant channels. The
theoretical description of differential distributions is less accurate than that of the inclusive quantities just
discussed, and reaches either NLO or NNLO accuracy only for specific observables [155, 156]. Further
progress is needed in these computations, which are central to controlling precisely the effect of exper-
imental cuts. Some aspects of these calculations pose considerable theoretical challenges, for instance
regarding the differential calculations in the nonrelativistic limit, or the assessment of nonfactorisable
radiative corrections to the decays of the two top quarks [157].

5 QCD in Higgs boson hadronic decays

Hadronic final states represent more than 80% of the total Higgs decays (including intermediate H —
WW*, ZZ* decays), but only the H — bb channel will be probed at the HL-LHC. The clean experi-
mental conditions at FCC-ee allow the study of hadronic decays of the Higgs boson, hence opening the
possibility to constrain and measure its couplings to QCD partons. Differential observables measured
in hadronic Higgs decays, such as event shapes and jet rates, are sensitive to new physics [158—162]
and to gluon- and quark-Yukawa couplings, whose strength can be constrained both via indirect meth-
ods [163—165], or direct measurements by means of modern flavour-tagging techniques [11,12]. A key
example are recent studies of the extraction of the strange-quark Yukawa coupling by means of machine-
learning techniques [166, 167], exploiting the significantly improved strange-jet tagging performance at
FCC-ee (Table 4). Among the foreseen challenges in this measurement, a relevant theory bottleneck is the
separation of the H — s5 decay from the Higgs (QCD- and EW-mediated) Dalitz decays characterised
by gluon/photon splitting into a pair strange quarks, H — gg — ssg and H — y+ — s5~. Initial inves-
tigations [168] indicate that this background can be drastically suppressed by a cut in the invariant mass
of the pair of jets originating from the fragmentation of the two strange quarks, m;,j, 2 100 GeV [169].
A robust theoretical control of the H — sS signal in this region requires accurate perturbative calcu-
lations, as well as the resummation of logarithmic corrections stemming from soft-gluon radiation off
the final-state strange quarks near the Higgs mass threshold, mj,;, ~ my. Together with advancements
in perturbative calculations, a second essential element is the development of improved hadronisation
models to distinguish the fragmentation of (strange) quarks from that of gluons. Such models are instru-
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mental for a reliable training of jet taggers (Table 4), and their calibration within future MC generators
will highly benefit from the vast precise QCD datasets to be collected (Table 1).

The theoretical precision for the hadronic partial widths currently reach the per-cent level, with a
parametric uncertainty in as(m%) that will be significantly reduced at FCC-ee with the expected 0.1%

precision achieved from runs at the Z pole. In the case of H — bb, N*LO QCD corrections are known
in the limit of massless bottom quarks [36,170,171], and N4LO QCD corrections to H — gg have been
computed in the heavy-top limit [36]. Predictions for the differential H — bb decay rate are known up
to N3LO in the limit of massless b quarks [172] and NNLO (and partially beyond) mass corrections are
available [173-180]. Similarly, differential QCD predictions for H — gg are now available up to N3LO
in the large-top-mass limit [181, 182]. Finite quark mass corrections to H — gg are relevant at the level
of precision foreseen at FCC-ee and could be included up to NNLO in QCD in the near future thanks to
state-of-the-art calculations [174,183-189]. Precision calculations of hadronic event shapes and jet rates
in Higgs decays have been recently developed [182,190-196], together with techniques for the treatment
of quark-mass logarithms in gluonic decays [197-204]. Similarly to the Z boson case, hadronisation
effects have a sizeable impact on event shapes and jet rates measured in HFS Higgs decays, confirming
that improved modelling of hadronisation will be very beneficial for the FCC-ee Higgs programme.

6 QCD Parton Showers

Parton shower event generators [205] are crucial for the FCC-ee physics programme, enabling pre-
cise QCD and QED simulations for measurements, detector calibration, and training of analysis tools.
Achieving the FCC-ee experimental precision requires next-generation MC tools with significantly im-
proved theoretical accuracy. Simulating HFS events in MC generators involves three main stages: the
hard scattering characterised by a large momentum transfer; the parton shower stage, in which the sys-
tem evolves by radiating QCD partons towards lower momentum scales; and the NP stage, for the final
transition of partons into hadrons.

A first area where substantial improvement is necessary concerns the formulation of parton shower
algorithms, as current public tools are generally limited to leading logarithmic (LL) accuracy. The preci-
sion goals of FCC-ee requires at least NNLL accuracy. Recent advances, driven by linking parton show-
ers with the field of QCD resummations, have achieved NLL accuracy for key observables [206-220],
including an improved description of quark-mass effects [219]. Beyond NLL, key challenges include
incorporating higher-order matrix elements [221-226], handling virtual corrections in soft and collinear
limits [98,226-230], and developing matching schemes that preserve the shower accuracy [231]. Recent
progress has led to the first NNLL parton-shower algorithms for lepton colliders [232], suggesting fully
general NNLL showers for FCC-ee applications within reach in the next decade. Standard parton-shower
algorithms primarily rely on a semiclassical approach to the description of colour flow in the showering
process, approximating soft quantum interference in parton fragmentation. To overcome this, ongoing
research focuses on alternative algorithms that evolve the colour flow at the amplitude level [233,234].

A second key area for improvement in MC generators is the simulation of hard scattering pro-
cesses, entailing advanced QCD and EW perturbative calculations, and their integration with parton
showers via matching techniques. Current matching methods, interface NLO [235-240] or NNLO [241-
246] QCD calculations with LL showers, but recent progress in shower accuracy necessitates revisiting
these techniques to preserve the accuracy beyond LL [231]. Additional challenges arise in matching
schemes for unstable particle production near threshold (e.g., ete™ — WTW ™, eTe™ — tt), crucial
for FCC-ee. While resonance-aware matching methods exist [156,247,248], incorporating a consistent
description of the scale hierarchies in nonrelativistic decays remains an open problem.

A third area requiring advancement in MC generators for FCC-ee is the modelling of NP cor-
rections, essential for describing light parton and heavy quark fragmentation which, in turn, is instru-
mental in the calibration of flavour-tagging algorithms. Improvements may come from refining existing
models [249, 250] with higher-order parton showers or developing improved models based on, e.g.,
amplitude-evolution showers [251] and machine learning methods [252-254]. Tuning these models
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will benefit greatly from high-purity FCC-ee data samples enriched with specific parton flavours and
hadronic measurements across various energy scales. Feasibility studies consider the possibility of col-
lecting O(10%) events across the V/Shad = 20-80 GeV mass range via dedicated runs or ISR events off
the Z-pole (Table 2). In addition, improved models of colour reconnection [128, 129], calibrated with
FCC-ee data, are necessary to further improve the theoretical description of heavy resonance decays.

7 QCD physics opportunities at FCC-hh

The FCC-hh will offer unparalleled opportunities for QCD studies at partonic CM energies about ten
times larger than those probed at the LHC, with vast datasets resulting from a tenfold increase in inte-
grated luminosity. This will extend the pQCD kinematic reach significantly. Key highlights [5,255,256]
include probing parton distribution functions (PDFs) at extremely small Bjorken-z, investigating beyond-
DGLAP dynamics and parton saturation. Additionally, multi-TeV jets will test asymptotic freedom up to
scales of ) =~ 30 TeV, and events with large jet multiplicities and vector boson 4 multijet processes will
probe hard parton radiation and multiparton scatterings. Finally, large samples of boosted top-quarks, W,
Z, and H bosons will enable studies of hadronic decays using jet substructure techniques.

Theoretical efforts will entail the combination of multi-loop QCD and electroweak calculations
with high-precision PDFs at multi-TeV scales. Advancements in the description of the high-energy limit
of QCD (e.g. the BFKL regime) will be required for predicting partonic scatterings at z = 10~". In
the same regime, electroweak gauge bosons, leptons, and top quarks will be produced abundantly and
incorporated into the PDFs alongside quarks and gluons providing a rich landscape for phenomenology.

7.1 Heavy-ion physics at FCC-hh

If suitable technological choices are made in the design of the FCC and its injectors, the collider will
allow the study of nucleus-nucleus (AA) and proton-nucleus collisions up to nucleon-nucleon CM en-

ergies | /S = ii 5122 \/Epp. For a 100-TeV pp collider, this corresponds to /5, = 39 TeV for Pb-Pb

and 64 TeV for p-Pb collisions. Projected monthly integrated luminosity reach 100nb~! for Pb-Pb [5]
(Table 6). The FCC-hh extends the physics reach of HL-LHC by about one order in magnitude in both
CM energy and luminosity. Exploratory studies [257,258] have demonstrated that these conditions open
up quantitatively novel opportunities for the study of the QCD high-temperature phase, the Quark Gluon
Plasma (QGP). The increase in /sy, leads to a QGP phase that starts at significantly higher initial tem-
peratures, lives significantly longer, and extends over a wider spatial region — with all three parameters
being central for a detailed characterisation of essentially all partonic collective phenomena.

In AA collisions at FCC, the charm-quark will have thermal production rates and thus behave as an
active degree of freedom of the plasma, thus changing bulk properties of the QGP. Thermally produced
cc pairs are expected to lead to an enhancement of the total charm hadron yield by up to 50%, compared
to scaling from pp collisions: the measurement of this enhancement can provide a unique new sensitivity
to the initial temperature of the QGP, which may reach 1 GeV [257]. Abundantly produced electroweak
gauge bosons and top quarks can be used to dope the QGP in novel, experimentally controlled ways,
and numerous other opportunities for the study of hard probes have been identified. The reconstruction
of the full decay topologies of high-momentum top-antitop events can provide, for the first time, a way
to study the time-dependence of the QGP opacity to hard partons. Indeed, in the boosted decay chain
t — bW and W — q, the latter decay quarks interact with the QGP with a time delay of up to a few
fm/c, increasing with the momentum of the top quark [259]. The heavy-ion programme at the FCC-hh
also offers synergies with a wide range of other neighbouring physics fields, including unique opportuni-
ties for hadron spectroscopy, ultraperipheral collisions, and proton-nucleus collisions. For example, the
measurement of top-antitop production in p-Pb collisions is expected to provide strong constraints on the
gluon PDF in nuclei for ) = myqp in a wide x range, up to = 0.7 [260].

In the history of collider experiments with nuclear beams, all significant increases in CM energy
have led to discoveries not anticipated before. Examples include the discovery of perfect fluidity at RHIC,
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Table 6: Beam and machine parameters for heavy-ion operation in the baseline and ultimate scenarios,
differing in the optical function 8* at the interaction point and bunch spacing [5].

Unit Baseline Ultimate
Collision mode - Pb-Pb p-Pb | Pb-Pb  p-Pb
Number of Pb bunches - 2760 5400
Bunch spacing [ns] 100 50
Peak luminosity (1 experiment) [10%"cm™2s71] | 80 13300 | 320 55500
Integrated luminosity (1 experiment, 1 month) [nb~!] 35 8000 110 29000

and of small-system parton collectivity at the LHC. For instance, the larger magnetic fields present in AA
collisions at FCC will enable searches for manifestations of anomalous QCD hydrodynamics, such as
manifestations of the chiral magnetic effect, with much higher sensitivity. Finally, the LHC discovery of
small-system collectivity stresses the fundamental physics interest in extending the programme to cover
p-A collisions. Beyond these scientific opportunities, the LHC provides an example of how the addition
of a nuclear-beams programme to a hadron collider project can significantly increase the user base of the
latter, and how it leads to R&D synergies in detectors and data analysis. The reasons above highlight
the importance of designing FCC-hh and its injector chain such that it can serve the widemost scientific
user community. Experiments at FCC should be in a position to address the broadest range of scientific
questions that may come into experimental reach in the second part of the 21st century.

7.2 A forward-physics facility (FPF) at FCC-hh

The FCC-hh offers additional unique opportunities in QCD physics studies through the exploitation
of the high-intensity beams of energetic particles, including neutrinos, produced in the forward region
by pp collisions. A forward-physics facility (FPF) has been proposed at FCC-hh [261] following the
LHC experience with the far-forward experiments FASER(v) [262-265], SND@LHC [266, 267], and
the proposed FPF [268,269]. The enormous samples of multi-TeV neutrinos available at FPF@FCC
will provide high-resolution deep-inelastic (DIS) probes of the unpolarised and polarised structure of
protons and nuclei. First, high-energy neutrino DIS structure functions [270,271] provide a precise
quark/antiquark flavour separation at large x, which in turn reduces the theoretical uncertainties entering
high-mass searches at FCC-hh. Second, neutrino DIS on a polarised target [272,273] resolves the spin
structure of the proton [274,275] providing complementary information to measurements at the Electron-
Ion Collider [276]. Third, detecting neutrinos originating from p-Pb collisions provides information on
nuclear structure [277-279] down to z ~ 10~?, where nuclear PDFs are unconstrained and novel QCD
regimes, such as gluon saturation, are expected to dominate. This kinematic region is also of prime
importance for astroparticle physics experiments.

8 Conclusions

The exceptional capabilities of FCC will provide unique opportunities to probe the fine structure of the
strong interaction and refine its theoretical description. Through its multifaceted physics programme, the
FCC will shed new light on the behaviour of QCD in kinematic regimes that remain poorly understood,
and significantly enhance the precision of theoretical predictions beyond the current state of the art. Such
an unprecedented theoretical control will be pivotal for fully leveraging the vast amounts of data collected
at FCC and achieving the anticipated precision in most critical measurements. While it will be years
before the necessary QCD accuracy and precision goals are attained, the efforts initiated during the FCC
feasibility study have begun defining a clear roadmap. The approval of the FCC project will catalyse the
engagement of the strong-interaction theory community, fostering collaborative and synergistic efforts
to achieve these objectives. The ongoing success in enhancing the precision of LHC predictions, beyond
any previous expectation, gives confidence in the feasibility of these ambitious goals.
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