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Abstract

This bachelor thesis is summarizing the work that has been done on PROPOSAL by
the author. PROPOSAL is a particle transport simulation program designed for the
use in the Monte Carlo chain of the IceCube experiment, but as well applicable to
different contexts.
In order to take account of recent and future low-energy upgrades to IceCube (Deep-
Core and PINGU), the effect of multiple scattering has been reviewed. Thereby, it was
found that the current implementation in PROPOSAL was incorrect. Hence Molière’s
theory of multiple scattering and its Highland approximation are summarized and prac-
tical and easy computation methods are presented.
Finally, both parametrizations are checked against each other and compared with mea-
surement data.
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1 Introduction

This thesis is outlining the work on the software tool PROPOSAL done by the author.
As a result, the multiple scattering algorithms have experienced a total makeover.

In order to point out the context of the thesis, an overview of the IceCube experiment
and its physical relevance is given in this chapter. Eventually, PROPOSAL and the use
of multiple scattering theories is described. In the following chap. 2 , Molière’s theory of
multiple scattering and Highland’s approximation are summarized in detailed and up-
to-date fashion. This is to author modern and practical reference material for further
work on PROPOSAL. An easy and fast method to calculate Molière’s distribution
and draw random numbers out of it was developed. Since a revision revealed that
the implemented multiple scattering algorithm used in MMC and PROPOSAL was
incorrect, a new and easier one based on Highland’s formula was implemented, too.
That is altogether described in chap. 3 . Finally, both parametrizations are checked
and compared in chap. 4 .

1.1 Astroparticle physics

Human kind’s studies of the universe are based on the information it is providing. In
astronomy, the traditional way to explore the surrounding cosmos always was to draw
information from the spectrum of visible light reaching earth.

Starting from the discovery of cosmic rays by Hess in the early 1910s, the set of infor-
mation carriers to be analysed has been enhanced by several (partly new discovered)
particles over the last hundred years. Modern experimental astroparticle physics mostly
focusses on charged cosmic rays like protons, electrons and ions (e.g. the Pierre Auger
Observatory [1]), high-energy γ-rays (e.g. the MAGIC telescope [2]) and neutrinos like
the IceCube experiment [3]. Especially in the latter project, not only the origin, spectra
and propagation through space, but as well particle physical issues are of importance [4].

1.2 Neutrino astronomy

Among the information carrying particles observed by telescopes in astroparticle physics,
neutrinos are yet the most unknown. Still, they are expected to have big potential to
contribute decisively to the answering of central questions in modern astrophysics.

High-energy neutrinos originate from high-energy collisions of charged cosmic rays with
hadrons (matter) [5]. Only interacting through the weak interaction, their extraordi-
nary small cross sections in terms of interactions with matter allow them to escape
optical dense objects [6] (e.g. dust clouds). In contrast to charged cosmic rays, they
are not affected by magnetic or electric fields in between. Thus energy and direction
information about the origin are still preserved when they are detected on earth.
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On the other hand, the low interaction probability makes the detection of neutrinos
technically extremely difficult and leads to the need of detectors of at least cubic kilo-
meter dimensions [5]. This is applied in telescopes such as ANTARES [7], IceCube (see
below) and the future project KM3NeT (Cubic KiloMetre Neutrino Telescope [8]).

1.3 IceCube

The IceCube experiment is located in the Antarctica and currently the world’s largest
neutrino detector. As a follow-on project to the AMANDA experiment (Antarctic
Muon And Neutrino Detector Array [9], operative until 2006), its build-up was com-
pleted in December 2010 [3].

IceCube’s underlying concept is to observe high-energy neutrinos indirectly by detecting
charged secondary particles produced in neutrino interactions. This is possible, since
they and some of the secondary particles they produce in the medium emit Cherenkow
light when traversing matter at a velocity that is greater than the speed of light inside
the medium. Especially interactions producing muons are of interest, since these leave
the longest and best reconstructable tracks inside the detector [10].

Due to the rareness of neutrino interactions with matter, a large volume of an optical
transparent medium is needed to apply this method. Therefore, IceCube is located
between 1450 m and 2450 m depth in the highly transparent ice of the geographic
South Pole. In its current state, it is containing 86 so called strings, each attached with
60 DOMs (Digital Optical Modules contain photomultiplier tubes), that are spread
over a volume of about 1 km3 [3].

A surface air shower array is used to study cosmic rays and identify atmoshperical
muons (IceTop [11]). Additionally, the detector consists of the DeepCore extension.
It was installed in order to lower IceCube’s sensitivity to neutrino energies down to
10 GeV [12]. Another extension named PINGU (Precision IceCube Next Generation
Upgrade) is yet under consideration to lower this threshold even further [13].

IceCube is designed for the study of candidates for being sources of the cosmic-ray
spectrum. Objects considered as such are, for example, supernova remnants (SNRs),
gamma-ray bursts (GRBs) and regions in the vicinity of black holes. Further scientific
goals are the search for dark matter [3] and the examination of neutrino properties (e.g.
neutrino oscillation and mass hierarchy with PINGU [13]).

1.4 PROPOSAL

In order to reconstruct particle tracks properly and make sense of data produced by
the photomultiplier tubes in IceCube and similar detectors (see above), extensive com-
puter simulations are required. The typical Monte Carlo simulation chain used for this
purpose can be structured into three parts: 1. The generator creates cosmic particles
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and propagates them to the detector, along with their secondary particles produced in
interactions with the atmosphere. 2. From there on, the propagator simulates the pas-
sage of the generated particles through the detector medium. 3. Finally, the response
of the detector interacting with the generated Cherenkow photons is computed.

Since background signals are expected to be 3-5 orders of magnitude larger than the
sought neutrino signals, a large amount of simulation data that should be as accurate
as possible is needed for separating signals from the noise properly [6].

For this purpose, the Java-based program Muon Monte Carlo (MMC) is currently used
by the IceCube collaboration to propagate charged leptons through the Antarctic ice
of the detector [14]. It is about to be replaced by its successor, the PRopagator with
Optimal Precision and Optimized Speed for All Leptons, also called PROPOSAL.
Therefore, the implementations of MMC have been translated into an object orien-
tated C++-structure, revised and optimized in terms of computation speed. Hence, it
allows a better integration into the C++-based simulation chains of projects such as
IceCube and ANTARES [6].

Due to recently installed and upcoming low-enery extensions to IceCube (e.g. PINGU)
and other possible fields of application for PROPOSAL, the validity of implemented
algorithms is to be revised for smaller particle energies (∼ 1 GeV). This thesis is
focussing on the effect of multiple scattering that is inversely correlating with the
particle momentum p as it is pointed out in the following chapters.

1.5 Multiple scattering

In particle physics, the term “scattering” is defined as “a change in the direction of
motion of a particle because of a collision with another particle” [15]. For the regarded
case here, that means the interactions of a charged lepton with the particles of an (in
good approximation) stationary atom of the target material.

There is talk of multiple scattering when a large number of single (maybe simultanious)
scatterings is adding up. That applies to passages of particles through sufficiently thick
layers of matter [16].

Several theories have been developed to describe the outcome of multiple scattering of
charged leptons by angular probability distributions (e.g. [17–19]). Among these, the
theory of Gerd Molière (1947) results from a derivation that stays analytical until the
end [16, 20]. Although the whole physics of the elastic scatter is covered by the deter-
mination of only two parameters (χc and B), it is providing relatively good agreement
with measurement data (see chap. 4). Therefore, it is still favored in most modern
transport codes [21].
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At this point it has to be remarked that the parametrization that was referred to
as “Molière scattering” in MMC [14] and subsequently PROPOSAL [6], was actually
employing Highland’s formula, a semianalytical gaussian approximation to Molière’s
distribution [22].

In the transport code of PROPOSAL, multiple scattering is employed to calculate the
displacement of a particle from its incident direction after traversing a particular thick-
ness of a medium.
While propagating particles through a medium, the main interactions - ionization,
bremsstrahlung, photonuclear interaction and pair production - are taking into ac-
count. Since the energies of most interactions are very low, such that effectively only
their sum is important, interactions below a certain absolute (ecut) or relative (vcut)
energy threshold (except bremsstrahlung) are treated continously. This procedure is
crucially reducing the necessary computing time. Interactions above the threshold
appear stochastically. Hence, the particle’s displacement is calculated by assuming
elastical multiple scatterings each time over the distance between two stochastically
treated interactions [6].

Given the dominant role in the IceCube experiment, this thesis concentrates on muons
as scattered particles. The implemented algorithms are as well applicable to elec-
trons [23]. An adaptability to taus is assumed, since experiments on protons and even
heavier ions showed good agreement with Molière’s theory [24,25].

Remark: All modifications described here are to be applied to the version of PRO-
POSAL that is referred to by [6].

4



2 Molière’s theory

In this chapter, Molière’s theory of multiple scattering based on his single scattering law
is summarized. Because of several copying mistakes and misprints in papers quoting
from Molière’s original work [16, 20] and different systems of units (Molière published
in CGS-Gauß units) the occurring formulae have been double-checked and converted
into the SI system of units if needed. Since notations, nomenclatures and definitions
of functions used in older publications were occasionally outdated, listed formulae may
look different from the orignal ones in [16,20], but are resulting in same values.

2.1 Single scattering

Molière bases his theory of multiple scattering on his own theory of the single scat-
tering of fast charged particles in a screened Coulomb field. This adaptation of single
scattering is described in [20].

Since the occurring scattering angles are expected to be sufficiently small (χ < 20◦)
the approximation χ ≈ sinχ is quite accurate.

Molière also states that in the limit of small angles the influence of spins is negligible.
Thus his theory is based on the relativistic Klein-Gordon equation

( ∆ + k(r)2 ) · ψ = 0 . (2.1.1)

Here, the generalized wavenumber k(r) can be approximated by a second order expan-

sion (
√

1− x = 1− x
2 −

x2

8 − · · · ) and the neglection of the summand −V (r)2

2E :

k(r) =
1

~c

√
[E − V (r)]2 −m2c4 (2.1.2)

≈ k0

[
1− V (r)

~k0v
− 1

2

(
V (r)

~k0v

)2

− · · ·

]
(2.1.3)

where k0 = p
~ is the particle’s wavenumber in a vacuum and v its speed.

A ray optical approximation (WKB method) is employed to describe the actual scatter
in the vicinity of the scattering atom. The approximation becomes more and more
accurate for reducing wavelengths λ . Hence, close to the atom (located at the origin)
the trajectory of a scattered particle is described by straight lines and propagated as a
wave from a distance z0 on (see Fig. 1). Here, the potential is effectively V (r ≥ z0) = 0.
Thus an incident plane wave eik0z propagating in z-direction receives a phase shift φ(ρ)
by the elastic scattering on V (r) . Depending on the impact parameter ρ it can be
calculated as

φ(ρ) =

∞∫
−∞

[
k(r =

√
z2 + ρ2)− k0

]
dz (2.1.4)
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Figure 1: Ray optical approach: the trajectory of an incident particle is approximated
by straight lines; ρ impact parameter; χ scattering angle

with k(r) as in (2.1.3) .

In the plane r = z0, the outgoing wave function is known to be

ψ(z0, ρ) = exp (i[k0z0 + φ(ρ)]) (2.1.5)

(z0 ∼ atomic radius a, the exact value is not important). From there on ψ is to be
propagated according to the homogeneous wave equation

∆ψ + k2
0ψ = 0 (2.1.6)

and evaluated at a far distant point ~R whose connection by a straight line (|R| � z0)
to the center of scattering has a small angle χ with the z-axis. Using Green’s second
identity employing the help function

ϕ(~r) =
1

|~R− ~r|
eik0|

~R−~r| (2.1.7)

and after the substraction of the incidental wave’s part, the scattered wave calculates
at ~R as the surface integral

ψscat(~R) =
eik0z0

4π

∮
S(z0)

[
∂ϕ

∂~n
+ ik0ϕ

] [
eiφ(ρ) − 1

]
dS . (2.1.8)
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By reducing the surface to the dominating part (∼atomic size) cylindrical coordinates
(z0, ρ and γ the azimuth angle) can be used for its approximate parametrization. Ex-
ploiting the smallness of χ and neglecting terms of the order 1

R2 the directional deriva-

tive in (2.1.8) becomes ∂ϕ
∂~n ≈ ik0ϕ . Using |~R−~r| ≈ R−z0−ρχcosγ and |~R−~r|−1 ≈ R−1

Eqn. (2.1.8) simplifies to

ψscat(~R) = ik0
eik0R

R

∞∫
0

dρ ρ
[
eiφ(ρ) − 1

] 2π∫
0

dγ
1

2π
e−ik0ρχcosγ . (2.1.9)

The integration over γ gives the Bessel function J0(k0ρχ) .

From (2.1.9) the scattering cross section for the angle χ is derived by

Q(χ) = R2 |ψscat(χ)|2 (2.1.10)

= k2
0

∣∣∣∣∣∣
∞∫

0

dρ ρJ0(k0ρχ)
[
eiφ(ρ) − 1

]∣∣∣∣∣∣
2

(2.1.11)

where the potential V (r) enters the equation by the phase shift φ(ρ) .

Here, Molière chooses the Thomas-Fermi parametrization that is basically the Coulomb
potential of a charge ±ze in a field of a positive point charge Ze (=nuleus) multiplied
by a correction factor describing the electronic screening ω(r/a) , the Thomas-Fermi
function:

V (r) =
1

4πε0

±zZe2

r
· ω
(r
a

)
. (2.1.12)

The Thomas-Fermi radius of the atom a =
(

9
128

π2

Z

) 1
3

is also used as a length unit in

the substitution y = ρ
a . Comparing the derived cross section to Rutherford’s scattering

law

QRuth =

(
2α

k0

)2 1

χ4
(2.1.13)

the constants

α = αsfld
zZ

β
, (2.1.14)

with αsfld ≈ 1
137 and β = v

c , and

χ0 =
1

ak0
(2.1.15)
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are used. Molière states that the second factor of the ratio

q(χ) ≡ Q(χ)

QRuth(χ)
= χ4 ·

 1

4α2χ4
0

∣∣∣∣∣∣
∞∫

0

dy yJ0

(
y
χ

χ0

)[
eiφ(ay) − 1

]∣∣∣∣∣∣
2 (2.1.16)

can be approximated such that

q(χ) ≈ χ4

(χ2 + χ2
a)

2
(2.1.17)

which is supposed to be sufficiently accurate for the derivation of his theory of multiple
scattering (see chap. 2.2). Thus the whole single scattering law is reduced to the
determination of only one parameter in (2.1.17): the so called “screening angle” χa .
A calculation formula is derived by Molière by an interpolation:

χ2
a = χ2

0(1.13 + 3.76α2) . (2.1.18)

In his review, Scott shows that the Molière’s resulting multiple-scattering distribution
is insensitive to the exact value of χa [26].

2.2 Multiple scattering

Molière’s approach to describe the multiple scattering of fast charged particles is based
on his theory of the single scattering process (see chap. 2.1). In his second “Mit-
teilung” [16] (engl. message) it is introduced as a summation of incoherent elastic
single scatters (each scattering of a particle with one atom is regarded as to be inde-
pendent of other scatters and atoms).

The probability for a single scattering into the spatial angle element

dω(χ) = 2πsin(χ)dχ ≈ 2πχdχ

(that equals a scattering angle (see Fig. 1) between χ and χ+dχ ) inside of a traversed
thickness t (length) can be written as

W (χ)χdχ ≡ NtQ(χ)2πχdχ =
2χ2

cq(χ)

χ4
χdχ (2.2.1)

for small χ , with q(χ) as in (2.1.17). Here, N is the number of scattering atoms per
volume and χc the “characteristic angular constant”:

χ2
c ≡ 4π

(
α

k0

)2

Nt (2.2.2)
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(formulae used for calculations: see chap. 3). Thus the expected number of single
scatterings (mean) for particles traversing t is to be defined as the summation of every
dω(χ)’s single scattering probability with χ > ε :

Ω0 = lim
ε→0

∞∫
ε

W (χ)χdχ (2.2.3)

(note: (2.2.1) is not an angular distribution). Since it is physically reasonable to as-
sume a fast decaying W (χ) , the upper limit of integration (2.2.3) can be set to ∞ for
simplification.

In the following, the quantity Ω0 is only used for formal purposes and will eventually
drop out of the result. Its physical significance is limited by the incoherent derivation
of W (χ) , which is neglecting overlaps and interactions of different atomic shells in
regions that contribute to small χ .

Based on the ansatz chosen by Wentzel in [17], Molière first determines the contribution
of each n-times scattering process (n = 0, 1, 2, ...) to the overall angular distribution.
According to (2.2.1), the probability for no scatterings with the angle χ to occur is
given by

1−W (χ)χdχ ≈ e−W (χ)χdχ . (2.2.4)

Thus the probability for a particle traversing t to experience no scattering at all is given

by
∞∏
i=1

exp[−W (χi)χidχi] = e−Ω0 employing (2.2.3).

At this point, the relevant part of the unit ball is again approximated by a tangential
plane perpendicular to the incidental direction of the particle (see chap. 2.1). Thus an-
gles θ can be represented by two-dimensional vectors ~θ in the plane and dω(θ) = 2πχdχ
becomes the area element dσθ (see Fig. 2).

Hence the contribution of passages with no scatterings to the overall angular distribu-
tion is

f0(~θ)
dσθ
2π

= e−Ω0δ2(~θ)
dσθ
2π

(2.2.5)

where δ2(~θ) is the two-dimensional Dirac’s δ-distribution (
∫∫

u(~x)δ2(~x)dσx
2π = u(0) ).

The contribution of a single scattering with a deviation of ~θ in dσθ is

f1(~θ)
dσθ
2π

= e−Ω0W (~θ)
dσθ
2π

(2.2.6)
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Figure 2: Small θ can be replaced by vectors ~θ in the plane approximating the domi-
nating angular range (grey); the plane element dσθ replaces the spatial angle
intervall dω(θ)

which leads to a recursion formula for

fn(~θ) =
1

n

∫∫
R2

fn−1(~θ − ~χ)W (~χ)
dσθ
2π

. (2.2.7)

The 1
n -factor ensures that each possible combination of n single scatters accumulating

to ~θ is only counted once regardless of their order.

Now these functions are to be represented by Hankel transformations (two-dimensional
Fourier transformations of radial symmetric functions with Bessel functions as the
basis). Their properties allow one to perform a convolution on the Hankel integrals u1

and u2

u1/2(~c) =

∞∫
0

v1/2(y)J0(xy)ydy

such that

∫∫
R2

u1(~x− ~w)u2(~w)
dσw
2π

=

∞∫
0

v1(y)v2(y)J0(xy)ydy . (2.2.8)
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Thus, using

p(χ)χdχ ≡ χdχ

∞∫
0

Ω(y)J0(χy)ydy , (2.2.9)

δ2(~x) =

∞∫
0

J0(xy)ydy (2.2.10)

and a successive elimination of fn−1 , fn−2 etc., Eqn. (2.2.7) transforms into

fn(θ) = e−Ω0

∞∫
0

Ω(y)n

n!
J0(θy)ydy . (2.2.11)

With the new introduced function Ω(y), that is obtained by conversion of (2.2.9):

Ω(y) =

∞∫
0

J0(χy)W (χ)χdχ , (2.2.12)

the overall angular distribution is the sum of all contributing fn(θ):

f(θ)θdθ = θdθ

∞∫
0

eΩ(y)−Ω0J0(ωy)ydy . (2.2.13)

In chap. 2.1 , an approximate expression for the ratio q(χ) was derived (see (2.1.17)).

Hence the mean number of scatterings as defined in (2.2.3) results in Ω0 = χ2
c
χ2
a

. Thus

(2.2.12) can be written as

Ω(y) = 2Ω0

∞∫
0

J0 (ξyχa)

(1 + ξ2)2 ξdξ (2.2.14)

with ξ = χ
χa

. Here, the integral is to be expanded as a power series and the substitution

y′ ≡ yχc is used such that the exponent in (2.2.13) can be approximated by

Ω(y′)− Ω0 =

(
y′

2

)2

ln

(
e2C−1

Ω0

(
y′

2

)2
)

+
1

2Ω0

(
y′

2

)4

ln

(
e2C−2.5

Ω0

(
y′

2

)2
)

+ · · ·

(2.2.15)

≈ y′2

4

(
ln
y′2

4
− b
)

(2.2.16)

(C = 0.5772... : Euler–Mascheroni constant). Here, the neglection of terms of second or-
der and higher is justified for large Ω0 as it is expected in the case of multiple scattering.
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To simplify later series expansions, the parameter b is substituted by introducing the
quantity B, for which holds true for

b = 1− 2C + ln
χ2
c

χ2
a

≡ B − lnB . (2.2.17)

Using the approximation (2.2.16) and applying the substitution y = y′
√
B distribution

(2.2.13) transforms into

f(θ)θdθ =
θdθ

χ2
cB

∞∫
0

dy yJ0

(
θ

χc
√
B
y

)
e−

y2

4 · exp

[
1

B

y2

4
ln
y2

4

]
. (2.2.18)

Since for the current issue a projected scattering angle φ is required, distribution
(2.2.18) is to be transformed. Therefore, an integration of (2.2.18) over ψ - an angle
in in a plane perpendicular to the projection plane of φ - from −∞ to ∞ is performed.
This gives

f(φ)dφ =
dφ

πχc
√
B

∞∫
0

dy cos

(
φ

χc
√
B
y

)
e−

y2

4 · exp

[
1

B

y2

4
ln
y2

4

]
(2.2.19)

which is already normalized such that
∞∫
−∞

f(φ)dφ = 1 .

Expanding the second exponential function in (2.2.19) as a Taylor series the distribution
becomes

f(ϕ)dϕ =
dϕ√
π

[
e−ϕ

2
+

1

B
f (1)(ϕ) +

1

B2
f (2)(ϕ) + · · ·

]
(2.2.20)

with

f (n)(ϕ) =
1

n!
√
π

∞∫
0

dy cos(ϕy)e−
y2

4 ·
[
y2

4
ln
y2

4

]n
(2.2.21)

using a reduced angle variable

ϕ =
φ

χc
√
B
.

Since
∞∫
−∞

f (n)(ϕ)dϕ = 0 for n ≥ 1 , the norm is conserved in (2.2.20) and the normal-

ization equals the one of the gaussian term in zeroth order.

From here on, only the gaussian, first and second order term of the expansion in (2.2.20)
are considered. These are sketched in Fig. 3 . In chap. 3 all parameters necessary for
the actual evaluation of the distribution function are summarized and the particular
implementation is described. Furthermore, power series and asymptotic formulae for
the calculation of f (1)(ϕ) and f (2)(ϕ) are given.
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Figure 3: Sequence members of Molière’s series expansion for the scattering angle dis-
tribution f (n)(ϕ) up to the second order.

2.3 Highland’s approximation

Since the dominating contribution to Molière’s distribution is gaussian-like (see Eqn.
(2.2.20)), it is straightforward to propose a gaussian approximation to it.

In 1941, Rossi and Greisen derived a small angle multiple elastic scattering law [27] from
Rutherford’s single scattering law for singly charged projectile particles. Assuming a
gaussian distribution, they integrated the mean square angle of a scattering process
according to (2.1.13) over the thickness t and obtained the standard deviation

θRossi =
10.6 MeV

βcp

√
ρt

X0
(2.3.1)

(p : momentum of the scattered particle, X0 : radiation length, see 3) for the projected
angle distribution. Starting from here on, Highland semi-analytically modified formula
(2.3.1) by introducing a correction term and deriving constants from a data fit [28].
Because its predictions were only in good agreement with measurements for atoms with
Z ≈ 47 (silver) and since there was an incorrect modification employed in the theory,
Highland’s formula was later revised by Lynch and Dahl [22]. Fits of gaussians to the
central 98% of Molière’s distribution lead to a better result for all Z .

Thus, the RMS angle (in rad)

θ0 =
13.6 MeV

βcp

√
ρt

X0

[
1 + 0.088 · log10

(
ρt

X0

)]
(2.3.2)
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Figure 4: Comparison of Molière’s angular distribution (

√
χ2
cB
2 = 0.433 mrad) for

muons with pµ = 100 GeV after traversing 1 m “Fréjus rock” (see [6]) with
its Highland approximation (θ0 = 0.452 mrad). The random angles are gen-
erated as described in chap. 3.3 .

characterizes the probability distribution of the projected angle θ :

f(θ)dθ =
1√

2πθ0

e
− θ2

2θ2
0 dθ. (2.3.3)

Highland’s approximation in comparison with Molière’s distribution is pictured in Fig.
4 .
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3 Calculation and implementation

In the following, the actual formulae used for computing the distribution functions
and their implementation for PROPOSAL are described. Furthermore, methods are
pointed out that can be used when dealing with not just one-atomic materials, but
compounds and mixtures.

Since the use of different conventions of units can cause a lot of confusion while read-
ing various literature and performing actual calculations, dimensions of quantaties are
explicitly presented. In general, the SI system of units is used. Some values of constant
factors have been roughly calculated as well. The results have been doublechecked for
validity.

3.1 Molière

As stated in chap. 2.1 , Molière’s single scattering law can be reduced to the determi-
nation of the screening angle χa . Using the angular constant

χ0 =
1

ak0
= αsfld

(
128

9π2
Z

) 1
3 mec

p
≈ 4.212 · 10−3 Z1/3

p[MeV/c]
rad (3.1.1)

(me : rest mass of an electron, p momentum of the scattered particle) it is calculated
as given in (2.1.18). Here and in the following, the velocity

β =
v

c
=

1√
1 + m2c2

p2

(3.1.2)

entering α = αsfld
zZ
β is the only parameter differentiating between different leptonic

generations by the rest mass m of the scattered particle.

To describe the multiple scattering law, only the characteristic angular constant χc is
additionally required.
Often a modification proposed by Bethe in [23] is applied to (2.2.2) by employing the
correction factor Z+1

Z to take into account the scatterings by atomic electrons. Scott [26]
and Butkevich et al [21] already argued that this is not appropiate for “heavy particles”
like muons. Comparisons to measurement data by Attwood et al [29] show a better
agreement for elements with small Z with Molière’s distribution using Z2 rather than
Z(Z + 1) in χ2

c . For higher Z both distributions become almost indistinguishable.
Hence Bethe’s modification is to be chosen here only for electrons. For other particles,
χc is evaluated according to

χ2
c = 4π~2α2

sfldNA ·
Z2ρ

A

t

β2p2
. (3.1.3)
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in rad2 . Here the number of atoms per volume N in (2.2.2) has been replaced by NAρ
A

where ρ is the density in g/cm3 , A the molar mass in g/mol and NA Avogadro’s num-
ber in mol−1 . Inserting t in cm and p in MeV/c the constant factor results in ∼ 0.1569 .

Having calculated χa and χc , the parameter B can be derived by solving Eqn. (2.2.17).
Since there is no analytical solution to it, this is done by means of a Newton-Raphson
method with an inital guess B0 = 15 (this is stable, because lnB − B has only one
minimum at B = 1 where it is 0). In [16] Molière gives a lower limit for the validity
of his theory at B ≈ 4.5 (→ Ω0 = χ2

c/χ
2
a ≈ 23 ). Since this only occurs for very

small densities ρ or flight distances t (maybe in combination with a very high Z), it is
practical and reasonable to set f(φ)dφ = δ(φ)dφ (Dirac’s δ →no deviation) in that case.

In his original paper [16], Molière gives power series expansions for the expansion terms
f (1)(ϕ) and f (2)(ϕ) in (2.2.20):

f (1)(ϕ) =

∞∑
p=0

(−1)p

p!

(
p+

1

2

)
ψ(p+

3

2
) · ϕ2p , (3.1.4)

≈ 0.018245− 1.0547ϕ2 + 1.3789ϕ4 − · · · ,

f (2)(ϕ) =
∞∑
p=0

(−1)p

p!

(
p+ 3

2

2

)[
ψ2(p+

5

2
) + ψ1(p+

5

2
)

]
· ϕ2p , (3.1.5)

≈ 0.36830− 2.9012ϕ2 + 4.7637ϕ4 − · · ·

where ψ(z) is the digamma function. For the evaluation of the trigamma function
ψ1(z) , the algorithm of Schneider [30] was implemented and modified to obtain a higher
precision. The generalized binomial coefficient in (3.1.5) (also valid for noninteger
arguments) is supposed to be computed as(

x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
(3.1.6)

with the gamma function Γ(z) .
Since both power series are slowly convergent, their first 70 coefficients have been
tabulated, so that the polynominals can be evaluated by use of Horner’s scheme.

To avoid numerical errors in the case of larger ϕ , the asymptotic formula

f (1)(ϕ) ≈
√
π

2

∞∑
p=1

p

2p−1
(2p− 1)!! ·

∣∣∣ϕ−(2p+1)
∣∣∣ (3.1.7)

≈
√
π

2

1

|ϕ3|
(
1− 9

2ϕ
−2
) 2

3

(3.1.8)
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(with the double factorial k!! = k(k − 2)(k − 4) ...) is only applied for ϕ2 > 12 . It is

derived by expanding the e−
y2

4 in (2.2.21). Following the relation

I(p) =

∞∫
0

dy cos(ϕy)

(
y2

4

)p
=
√
π

Γ(p+ 1
2)

Γ(−p)
· ϕ−(2p+1) (3.1.9)

given in [16] using the differentiations with respect to p

dn

dpn
I(p) =

∞∫
0

dy cos(ϕy)

(
y2

4

)p(
ln
y2

4

)n
(3.1.10)

this leads to series expansions for f (1)(ϕ) and f (2)(ϕ) . The first one results in the
same solution that Molière summarized to (3.1.8). For the second expansion series, the
obtained outcome

f (2)(ϕ) ≈
√
π

2

∞∑
p=2

p(p− 1)
(2p− 1)!!

2p−2

(
C

2
+ ln(2|ϕ|)−

p−1∑
k=0

1

2k + 1

)
·
∣∣∣ϕ−(2p+1)

∣∣∣
(3.1.11)

is not equivalent to Molière’s result. Unfortunately, in his original paper [16] the calcu-
lations were not discussed in detail. Given its consistency, with results from (3.1.4), se-
ries (3.1.11) is regarded as to be correct and used from ϕ = ±4.25 on with p = 2, 3, ...12 .

In case of a compound medium with n components, the characteristic angle χc (cf.
(3.1.3)) is calculated with an average A and Z2 . Using the mass fraction

wi =
kiAi
n∑
j=1

kjAj

(3.1.12)

(ki : number of atoms of the ith component per compound unit cell/molecule) it is
given by

χ2
c = 4π~2α2

sfld ·
ρt

β2p2
·

 n∑
i=1

wiZ
2
i

/
n∑
j=1

wjAj

 . (3.1.13)

Thus the parameter B is computed (as in (2.2.17)) for each component with the respec-
tive χa . As also suggested in [21], the resulting angular distribution is to be defined
as the arithmetic mean of the distributions for each component fi(ϕi = φ/χc

√
Bi)dϕi

weighted by wiZ
2
i :

f(ϕ)dϕ =

n∑
i=1

wiZ
2
i fi(ϕi)dϕi

n∑
j=1

wjZ2
j

. (3.1.14)
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3.2 Highland

While calculating the decisive θ0 after (2.3.3), again the only parameter distinguishing
different projectile particles is the velocity factor β (cf. (3.1.2)). All information about
the scattering medium are contained in its radiation length X0 ( [X0] = 1 g/cm2 ).
It is defined as the mean distance one electron passes within the medium until it has
emitted all but e−1 of its initial energy by bremsstrahlung. As described in [31], it is
to be computed using Tsai’s formula [32]

1

X0
=

4αsfldr
2
eNA

A

(
Z2[Lrad − f(Z)] + ZL′rad

)
. (3.2.1)

In (3.2.1), with the classical electron radius re = 2.82 · 10−13 cm , the constants can be
summarized to 4αsfldr

2
eNA ≈ 1, 396 · 103 cm2/mol .

For elements up to uranium (Z = 92), the Coulomb correction can be approximated
by

f(Z) = a2
[
(1 + a2)−1 + 0.20206− 0.0369a2 + 0.0083a4 − 0.002a6

]
(3.2.2)

(a ≡ αsfldZ) with good accuracy [33]. The radiation logarithms Lrad and L′rad are
tabulated in Tab. 1 .

Table 1: Best estimates for the radiation logarithms Lrad and L′rad by Tsai [32].

Element Z Lrad L′rad

H 1 5.31 6.114
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

others ≥5 ln(184.15 · Z−
1
3 ) ln(1194 · Z−

2
3 )

If a medium contains more than one element, the overall radiation length is approxi-
mated by a weighted sum

1

X0
=

n∑
i=1

wi
X0,i

=

∑
i
kiAi/X0,i∑
j
kjAj

(3.2.3)

over all single atomic components i that appear ki times per molecule/unit cell (wi : mass
fraction).
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An implementation following exactly the scattering parameter formulae described above
has replaced the current implementation in PROPOSAL. The older implementation was
unnecessarily complicated. Furthermore, an incorrect derivation of the radiation length
X0 lead to distinctly inaccurate results for θ0 for all particles, but electrons (values
about a factor ∼ 103 to small for muons, compare Fig. 9 and 10). To take into account
(smaller) particle momenta for muons around ∼ 1 GeV/c (cf. mµ ≈ 0.1 GeV/c2) the
velocity β had to be introduced. It was set to 1 in the former implementation of Eqn.
(2.3.3).

3.3 Generating random numbers

Scattering angles following the gaussian Highland distribution were generated by PRO-
POSAL using the method StandardNormal [6]. StandardNormal is transforming uni-
formly distributed random numbers using several integration methods. Thus, it is eas-
ier and faster to generate random angles θ by comparing uniformly distributed random
variables X ∈ (−0.5, 0.5) to the indefinite integral of (2.3.3)

F (θ) =
1√

2πθ0

∫
e
− θ2

2θ2
0 dθ =

1

2
erf

(
θ2

√
2θ0

)
(3.3.1)

(cf. Fig. 5), where erf(x) is the error function. The angle θ that satisfies X = F (θ) is
given by the inversion of (3.3.1)

θ = (
√

2θ0) · erf−1(2X) (3.3.2)

making use of the inverse error function erf−1(x) . The advantage of this method in
terms of computation speed is shown in chap. 4.3 .

Molière distributed angles are supposed to be produced in a similar way (see Fig. 5).
Since Molière’s function is not a mere gaussian, its indefinite integral F (φ) can not be
inversed as easily as the one of Highland’s function.

Hence, the respective angle φ where X = F (φ) is to be evaluated using the Newton-
Raphson method

φn+1 = φn −
F (φn)−X
f(φn)

. (3.3.3)

The iteration is to be performed until φn+1 is exact to at least four decimals. To fasten
the computation speed, the inverse error function is used for estimating the initial value
φ0 = (χc

√
B)·erf−1(2X) . A result of the described method is shown in Fig. 4 .
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Figure 5: Generating random angles φ in compliance with Highland’s or Molière’s dis-
tribution from uniformly distributed X : determine the point of intersection
of X and the integral F (φ) .

Therefore, distribution (2.2.20) is to be integrated:

F (ϕ) =

∫
f(ϕ)dϕ =

1√
π

[√
π

2
erf(ϕ) +

1

B
F (1)(ϕ) +

1

B2
F (2)(ϕ)

]
. (3.3.4)

The indefinite integrals of the expansion terms

F (n)(ϕ) =

∫
f (n)(ϕ)dϕ , n = 1, 2 (3.3.5)

are computed as integrals of the respective series representations for smaller reduced
angles ϕ (see Eqn. (3.1.4) & (3.1.5))

F (1)(ϕ) =
∞∑
p=0

(−1)p

(2p+ 1)p!

(
p+

1

2

)
ψ(p+

3

2
) · ϕ2p+1 , (3.3.6)

F (2)(ϕ) =

∞∑
p=0

(−1)p

(2p+ 1)p!

(
p+ 3

2

2

)[
ψ2(p+

5

2
) + ψ1(p+

5

2
)

]
· ϕ2p+1 (3.3.7)
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employing Horner’s scheme (p up to 69) and larger ϕ (see Eqn. (3.1.7) & (3.1.5))

F (1)(ϕ ≥ ϕ(1)) = −sgn(ϕ)

√
π

2

∞∑
p=1

(2p− 1)!!

2p
· ϕ−2p , (3.3.8)

F (2)(ϕ ≥ ϕ(2)) = −sgn(ϕ)

√
π

2

∞∑
p=2

(p− 1)
(2p− 1)!!

2p−1

·

(
C

2
+ ln(2|ϕ|) +

1

2p
−

p−1∑
k=0

1

2k + 1

)
· ϕ−2p . (3.3.9)

Here, again the summation is performed up to p = 12 . The boundary angles ϕ2
(1) = 12

and ϕ2
(2) = 18 have been chosen in a way such that the junctions of both parametriza-

tions are close to the points where (3.3.6) and (3.3.7) become numerical instable (start
to diverge). In order to keep it continuous, the crossover for F (2)(ϕ) was slightly
smoothed by a parabola.
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4 Validation

4.1 Comparison with measurement data

In order to examine the validity of theories and algorithms described in former chapters,
their outcome is to be checked against measurement data (see Fig. 7). Therefore, data of
Akimenko et al [34] is used who measured the deviation of 7.3 GeV/c muons traversing
1.44 cm (≈ 1 rad. length) of copper.

Figure 6: Background deviation distribution caused by the measurement setup of Aki-
menko et al [34] (14484 muons, pµ = 7.3 GeV/c). Approximation by a
Molière’s function.

Due to properties of the experimental set up, the measured distribution is affected by
“background deviations” coming scatterings outside of the copper target and errors
of the track reconstruction. Hence, measurements without the target were performed
that lead to the distribution displayed in Fig. 6 . A Molière’s function f(θb) with
χ2
c = 8.7562 · 10−8 rad2 , B = 21.435 and a mean at −0.07 mrad is used for generating

background events, since it is approximating the distribution’s shape decently, which is
considerably referable to multiple scatterings inside of a scintillation detector in front
of the target.
In this way, a Monte Carlo simulation combines random scattering angles θ and random
background angles θb to the resulting total scattering angle θt . Thus obtained data is
shown in Fig. 7 . Here, the RMS angle of Highland’s approximation is θ0 = 1.863 mrad
(cf.

√
χ2
cB/2 = 1.888 mrad).

The deviation plot Fig. 8 shows that Molière’s theory is in good agreement with the
measured data up to ca. 4.5 · θ0 , whereas Highland’s formula is only applicable up
to less than 2 · θ0 . As already shown in [29], Molière’s distribution is overestimating
the probability for larger angles, but still allows a satisfactory description, since less
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Figure 7: Measurement data of 31125 scattered muons compared with Monte Carlo
simulations employing Molière’s scattering law and Highland’s formula as
implemented for PROPOSAL.

than 0.5% of the simulated angles were in the region |θ| > 4.5 · θ0 . In contrast to
that, Highland’s approximation is crucially underestimating the occurrence of larger
angles: The number of measured events with |θ| > 3.2 · θ0 is 2.1 times greater than
predicted. From here on the background (see Fig. 6) is the dominant contribution in the
Monte Carlo simulation employing Highland’s formula (Fig. 7). A similiar comparison
between both prediction gives a factor of 2.6 .

Figure 8: Deviation of the Monte Carlo data from the measurement in terms of the
measuring error σN .
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4.2 Comparison of both parametrizations

In chap. 4.1 , Molière’s distribution gave a good describtion for about 99.5% of the mea-
surement data for 7.3 GeV/c muons. Considering a gaussian distribution, 99.5% equals
a radius of ∼ 2.807 · θ0 . Examining the ratios of the radii of the Molière and Highland
parametrization containing 99.5% of the area under the curves, it can be seen that it
is almost independent of the particle’s momentum, but fastly converging to the values
presented in Tab. 2 (the difference of the ratio for p = 106 MeV/c and the asymptotic
ratio is smaller than +0.06). It is obvious that the ratio is decreasing, but still signifi-

Table 2: Radii of Molière’s distribution containing 99.5% of the area under the curve
divided by the corresponding radii of Highland’s approximation covering the
same area for different travel distances t and media (as in [6]).

1 cm 10 cm 1 m 10 m 100 m 1 km

water 1.58 1.46 1.36 1.28 1.22 1.16
ice 1.58 1.46 1.37 1.29 1.22 1.16
standard rock 1.52 1.41 1.33 1.25 1.19 1.14
salt (NaCl) 1.59 1.47 1.38 1.31 1.24 1.19
copper 1.54 1.44 1.36 1.29 1.23 1.18
lead 1.63 1.53 1.45 1.38 1.32 1.27
uranium 1.63 1.53 1.45 1.38 1.33 1.28

cant, for longer travel distances. The main difference between both multiple scattering
parametrizations is that the gaussian approximation is virtually not producing angles
in the region dominated by the Molière tail (f (1)(ϕ)/B+ f (2)(ϕ)/B2 in Eqn. (2.2.20)).
Thus it is suppressing the generation of larger angles. This can become noticable since
large amounts of data are necessary for Monte Carlo chains of experiments like IceCube.

In [6] a plot is presented that shows the deviation of 10 TeV/c muons traversing 5 km
of ice (see Fig. 9). This plot has been reconstructed using the two newly implemented
multiple scattering algorithms (see Fig. 10). Since both plots are based on the same
uniformly distributed randomnumbers, the characterisitical differences between both
algorithms become obvious:
By comparison, the Highland parametrization leads to larger deviations for trajectories
that are mostly affected by medium-angle scatterings. The tail of Molière’s function
reduces the occurence of scatterings in the medium-angle region in favor of small and
large scatterings (cf. Fig. 4). Hence, the larger deviations, which result mainly from
one large-angle scatter, are distinctly more prominent. To take into account the over-
estimation of the probabilities for large-angle events by the Molière-based algorithm,
it might be handy to introduce a cut-off angle. It should be chosen regarding the
respective experiment’s properties and measurement accuracy.
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Figure 9: Deviation of 100 muons with p = 10 TeV/c traversing 5 km of ice computed
by the old version of PROPOSAL [6].

Figure 10: 100 muons (p = 10 TeV/c) were propagated with PROPOSAL employing the
newly introduced multiple scattering parametrizations. Note that the y-axis
is now scaled in meters when comparing to the old incorrect implementation
presented in Fig. 9 .
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4.3 Computation speed

In order to compare the computation speeds of different algorithms, 105 scatters have
been performed with each of them while measuring the computation time. A Highland-
based algorithm using the old StandardNormal function is to be compared with one
applying the new method of random number generation (see 3.3) and the new Molière
algorithm. The means of 100 of this measuring cycles for three different media are
presented in Tab. 3 .

Table 3: Computation time T in seconds required by different algorithms for the com-
putation of multiple scatterings of 105 muons with p = 10 TeV/c that traversed
10 m of Fréjus rock, ice or ANTARES water (see [6]).

T/105 muons in s Fréjus rock ice ANTARES water

Highl. StdNormal 8.186± 0.001 8.185± 0.001 8.1879± 0.0009
Highland new 0.2004± 0.0004 0.2007± 0.0004 0.2019± 0.0004
Molière 2.2746± 0.0007 4.2728± 0.0007 17.651± 0.001

Computations and time measuring have been performed on a laptop computer em-
ploying an Intel R© Centrino R© 2 vProTM CPU. The values in Tab. 3 are obviously not
generalizable, since test runs on a faster computer system configuration lead to crucially
smaller computation times for the algorithm using StandardNormal, so that it is even
slightly faster than the Molière algorithm for scatterings in ice. The Highland method
applying the new random generator, however, was still by far the fastest algorithm.

Yet it is obvious that the Highland algorithms are almost equally fast for all differ-
ent media, whereas the Molière parametrization is extremely sensitive to a medium’s
number of components. In PROPOSAL the medium “Fréjus rock” is treated as a
one-atomic medium with an averaged density, atomic mass and nuclear charged [6].
“ANTARES water” again is containing eight components. Thus, the method of aver-
aging the radiation lengths in the case of multi-component media (cf. chap. 3.2) turns
out to be extremely timesaving. In contrast to that, the Molière algorithm is basically
performing a full scattering calculation for each component, since it is averaging χ2

c ,
f(ϕ) and F (ϕ) (see chap. 3.1 and 3.3). Thus, a scattering computation in “ANTARES
water” is lasting almost eight times the computation time of a scattering in “Fréjus
rock” for it is involving eight times as many components.

Comparing both Highland algorithms, the new random number method is clearly the
one to favor. It is much faster (cf. Tab. 3) and turns out to be even more stable for
inserted uniformly distributed random numbers that are very close to 0 or 1 . Apart
from these boundaries, both algorithms give the same return values.
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5 Conclusion and prospect

5.1 Conclusion

The revision of the multiple scattering algorithm in PROPOSAL resulted in a reimple-
mentation of a simplified and corrected new Highland parametrization and the intro-
duction of a new alternative algorithm derived from Molière’s multiple scattering law
(chap. 3).

The introduction of a new random number transformation method leads to a crucial
reduction of the required computation time for the Highland approximation (see chap.
4.3). An easy and fast way to compute multiple scatterings following Molière’s theory
has been developed, showing a better agreement with measurement data than the
current algorithm. Especially the occurence of large-angle scatters is better described
by the new algorithm 4.1 .

It is strongly advised to take into account multiple scattering in future muon simu-
lations involving PROPOSAL for it could be shown in chap. 4.2 that the resulting
displacements from the shower axis are distinctly larger than expected by [6,14] . The
Molière-based algorithm should be used in order to increase the simulation’s accuracy,
but provided high requirements are imposed on the computation time, the new High-
land code grants comparatively big timesavings (about ∼ 20 times faster than the
Molière code for scatterings in ice, see chap. 4.3).
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5.2 Prospect

The developed methods described here are now ready to be used when working with
PROPOSAL. Future work on the multiple scattering algorithms could concentrate
on the overestimation of the probability of large scattering angles. A reasonable
parametrization would need to be found, if a cut-off angle was to be introduced (cf.
chap. 4.1).

A considerably higher calculation precision could be achieved by employing higher
terms of Molière’s sequence (2.2.21) in the series expansion of Molière’s probability
density (2.2.20) as shown by [35]. Therefore, the integrals (2.2.21) could be numeri-
cally calculated in order to tabulate sampling points for interpolation methods. Maybe
a correspondingly modified random angle generator could even lead to a reduced com-
putation time.

Furthermore, modifications to Molière’s theory could be applied (e.g. Fano (1954) [36]).
It might be worth trying to introduce a finite nuclear size, a more accurate screened
potential, or try to give up the assumption of incoherent scatterings (cf. chap. 2.2 and
2.1), but all these modifications are likely to destroy the simplicity of Molière’s theory
and thus might vitally compromise the computations speed.

A sophisticated and extensive verifying and benchmarking of the implemented algo-
rithms is compromised by the lack of extensive modern research in the field of muon
multiple scattering. Most of the theoretical work has been done more than 60 years
ago. There is simply no data to be found covering several energy intervals or a variety
of scattering media in an up-to-date measurement accuracy. Dedicated experiments to
fill that gap would be very helpful and valuable, and certainly much appreciated.
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