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Abstract. This paper shows how aspects of gauge theory, Hamiltonian mechanics and
quantum mechanics arise naturally in the mathematics of a non-commutative framework for
calculus and differential geometry.

1. Introduction to Non-Commutative Worlds
Calculus was formulated in a commutative framework by Newton and his successors. We are all
familiar with the limit definitions for derivatives and we take for granted that classical mechanics
is formulated in this framework. The advent of quantum mechanics brought with it formulations
of physical theory that are deeply related to non-commutativity. Heisenberg invented a calculus
of quantum quantities that did not commute with one another and obeyed specific identities
such as the famous

QP − PQ = h̄i.

Schrödinger gave a formulation of quantum mechanics using standard partial differential
equations and then discovered that the operators Q = x and P = −ih̄∂/∂x obeyed exactly
Heisenberg’s relations and gave the translation between his work and the Heisenberg viewpoint.
Dirac discovered a key to quantization via the replacement of the Poisson bracket of Hamiltonian
mechanics with the commutators of quantum operators. The curvatures in differential geometry
and general relativity were seen, through the work of Weyl and others to correspond to
measurements in differences in parallel translation and correspondingly, in the commutators
of covariant derivatives. This emphasis on parallel translation led to the generalizations of
differential geometry fundamental to gauge theory. Gauge theory began, with the work of
Hermann Weyl [20] as a generalization of differential geometry where lengths as well as angles
were dependent upon the choice of paths. Weyl saw how to incorporate electromagnetism into
general relativity along these lines. Later the ideas of Weyl were adopted in the context of
quantum mechanics and became the basis for the understanding of nuclear forces. General
relativity and gauge theory have deep relationships beyond Weyl via loop quantum gravity and
the Ashtekar reformulation of general relativity in terms of gauge theory [1]. Throughout all
this development, the underlying calculus remained in the commutative and continuum realms.

In this paper we shall begin by formulating calculus in non-commutative domains. Our
constructions are motivated by discrete calculus. Discrete calculus is naturally embedded in
a non-commutative context, and there can be adjusted so that it satisfies the derivative of a
product in the form of the Leibniz rule D(FG) = D(F )G + FD(G). We explain this point
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in Section 6, an Appencix on discrete calculus. We then show how the approach via non-
commutativity leads to direct connections wtih gauge theory and make a beginning at relativistic
developments related to Weyl [20] and to our previous work [15, 16]. It is our intent to go beyond
the present paper to relationships with loop quantum gravity.

If we take commutators [A,B] = AB−BA in an abstract algebra and define DA = [A, J ] for
a fixed element J , then D acts like a derivative in the sense that D(AB) = D(A)B + AD(B)
(the Leibniz rule). As soon as we have calculus in such a framework, concepts of geometry are
immediately available. For example, if we have two derivatives∇JA = [A, J ] and∇KA = [A,K],
then we can consider the commutator of these derivatives

[∇J ,∇K ]A = ∇J∇KA−∇K∇JA = [[J,K], A].

(The verification of this last inequality is an exercise for the reader.) We can regard RJK = [J,K]
as the curvature associated with ∇J and ∇K . Note that the commutator of the derivations ∇J
and ∇K . is represented by RJK = [J,K] so that when the representatives J and K for two
derivations commute, then the derivations themselves commute and the curvature vanishes.
The non-commutation of derivations corresponds to curvature in geometry. We shall see that
the emergence of curvature in this context is the formal analog of the curvature of a gauge
connection.

Aspects of gauge theory, Hamiltonian mechanics and quantum mechanics arise naturally in
the mathematics of a non-commutative framework for calculus and differential geometry. This
paper consists in 6 sections including the introduction. Section 2 outlines the general properties
of calculus in a non-commutative domain, where derivatives are all represented by commutators.
This includes a special element H such that the total time derivative Ḟ = [F,H] for any F in
the non-commutative domain. We show how the formal analog of Hamilton’s equations arises
naturally in a flat coordinate system, and we show how Schrödinger’s equation arises from the
time derivative made appropriately complex. Section 3 explores the consequences of defining
dynamics in the form

Ẋi = dXi/dt = Gi
where {G1, · · · ,Gd} is a collection of elements of the non-commutative domain N . Write
Gi relative to flat coordinates via Gi = Pi − Ai. This is a definition of Ai with ∂iF =
∂F/∂Xi = [F, Pi]. The formalism of gauge theory appears naturally via the curvature of ∇i
with ∇i(F ) = [F, Pi −Ai] that is given by the formula

Rij = ∂iAj − ∂jAi + [Ai, Aj ].

With Ẋi = Gi = Pi − Ai, we let gij = [Xi, Ẋj ] and show that this is a natural choice for a
generalized metric. In particular, we show that for a quadratic Hamiltonian with these metric
coefficients, the formula gij = [Xi, Ẋj ] is a consequence. Furthermore, we show that for any F,

Ḟ =
1

2
(Ẋi∂i(F ) + ∂i(F )Ẋi).

This means that with this choice of Hamiltonian the non-commutative world satisfies a correct
analog to standard time derivative formula in commutative contexts. Higher order constraints of
this sort are considered in [15]. Here we work at the level of this first constraint. We show how
a covariant version of the Levi-Civita connection arises naturally in this commutator calculus.
This connection satisfies the formula

Γkij + Γikj = ∇jgik = ∂jgik + [gik, Aj ].
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and so is exactly a generalization of the connection defined by Hermann Weyl in his original
gauge theory [20]. In the non-commutative world N the metric indeed has a wider variability
than the classical metric and its angular holonomy. Weyl’s idea was to work with such a wider
variability of the metric. The present formalism provides a new context for Weyl’s original
idea. The rest of Section 3 discusses the possibility of using this Levi-Connection to formulate a
corresponding covariant derivative, Einstein tensor and general relativity. A direct formulation
gives a curvature tensor without the usual symmetries (due to the presence of the covariant
derivatives ∇i) and so the corresponding Einstein tensor will not have vanishing divergence. The
same issue arises in the original Weyl theory. Here it becomes a problem for further exploration.
Section 4 recapitulates our constructs of the Levi-Civita connection in an index-free fashion.
Section 5 is an appendix on the structure of the Einstein tensor and how the Bianchi identity
can be seen from the Jacobi idenity in a non-commutative world. Section 6 explains how discrete
calculus embeds in non-commutative calculus.
Remark. In our papers [15, 16] we have examined relationships of non-commutative worlds
with general relativity in relation to higher order constraints. The results of this paper will be
compared and combined with that previous work. Here we have not mentioned the relationships
with the Feynman-Dyson derivation of electromagnetism from commutator calculus [2, 4, 17, 18]
that were the initial impetus for this work [6]. It was that impetus that led to our work on non-
commutative worlds including the following references [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In this
paper we return to this subject in a new way.

2. Calculus in Non-Commutative Worlds
Our constructions are performed in a Lie algebra N . One may take N to be a specific matrix
Lie algebra, an abstract Lie algebra or as an associative algebra closed under the operation of
commutation. That is, if A and B are elements of N , then [A,B] = AB−BA is also an element
of N . If N is taken to be an abstract Lie algebra, then it is convenient to use the universal
enveloping algebra so that the Lie product can be expressed as a commutator.

On N , a variant of calculus is built by defining derivations as commutators (or more generally
as Lie products). For a fixed N in N one defines

∇N : N −→ N

by the formula
∇NF = [F,N ] = FN −NF.

∇N is a derivation satisfying the Leibniz rule.

∇N (FG) = ∇N (F )G+ F∇N (G).

In N there are as many derivations as there are elements of the algebra, and these derivations
behave quite wildly with respect to one another. If one takes. as in the introduction to the
present paper, the concept of curvature as the non-commutation of derivations, then N is a
highly curved world indeed. Within N one can build a tame world of derivations that mimics
the behaviour of flat coordinates in Euclidean space. In order to have flat coordinates, we need
that the derivations for those coordinate directions commute with one another. This, in turn,
is implied by the commuting of the representatives for those derivatons. That is, suppose that
X and Y are coordinates and that PX and PY represent derivatives in thes directions so that
one writes

∂XF = [F, PX ]

and
∂Y F = [F, PY ].
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Then
∂X∂Y = ∂Y ∂X

when [PX , PY ] = 0, as we have seen in the introduction. A flat coordinate system corresponds
to a collection of commutator equations.
We take a collection of special elements X1, X2, · · · , Xd to represent coordinates. With d = 3
these can be the familiar pattern of three dimensional spatial coordinates. With d = 4 we can
take X4 to represent time, if this is desired. There is no a priori restriction on the value of d. As
flat coordinates the Xi satisfy the commutator equations below with the Pj chosen to represent
differentiation with respect to Xj .:

[Xi, Xj ] = 0

[Pi, Pj ] = 0

[Xi, Pj ] = δij .

Derivatives are represented by commutators.

∂iF = ∂F/∂Xi = [F, Pi],

∂̂iF = ∂F/∂Pi = [Xi, F ].

The time derivative is represented by commutation with a special element H of the algebra:

dF/dt = [F,H].

The element H corresponds to the Hamiltonian in classical physics or the Hamiltonian operator
in quantum physics. In the abstract world we are constructing, it is neither of these, but can be
compared and represented by the classical or quantum Hamiltonians. For quantum mechanics,
we take ih̄dA/dt = [A,H].

These non-commutative coordinates are the simplest flat set of coordinates for description
of temporal phenomena in a non-commutative world. Note that Hamilton’s equations are a
consequence of these definitions. The very short proof of this fact is given below.
Hamilton’s Equations.

dPi/dt = [Pi, H] = −[H,Pi] = −∂H/∂Xi

dXi/dt = [Xi, H] = ∂H/∂Pi.

These are exactly Hamilton’s equations of motion. The pattern of Hamilton’s equations is built
into the system.

3. Dynamics, Gauge Theory and the Weyl Theory.
One can take the general dynamical equation in the form

Ẋi = dXi/dt = Gi

where {G1, · · · ,Gd} is a collection of elements of N . Write Gi relative to the flat coordinates
via Gi = Pi − Ai. This is a definition of Ai and ∂iF = ∂F/∂Xi = [F, Pi]. The formalism of
gauge theory appears naturally. In particular, defining derivations corresponding to the Gi by
the formulas

∇i(F ) = [F,Gi],
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then one has the curvatures (as commutators of derivations)

[∇i,∇j ]F = [[Gi,Gj ], F ]

(by the formula in the introduction to this paper)

= [[Pi −Ai, Pj −Aj ], F ]

= [[Pi, Pj ]− [Pi, Aj ]− [Ai, Pj ] + [Ai, Aj ], F ]

= [∂iAj − ∂jAi + [Ai, Aj ], F ].

Thus the curvature is given by the formula

Rij = ∂iAj − ∂jAi + [Ai, Aj ].

We see that our curvature formula is the well-known formula for the curvature of a gauge
connection when Ai is interpreted or represeented as such a connection. We shall now see that
aspects of geometry arise naturally in this context, including the Levi-Civita connection (which
is seen as a consequence of the Jacobi identity in an appropriate non-commutative world).

With Ẋi = Pi −Ai, the commutator [Xi, Ẋj ] takes the form

gij = [Xi, Ẋj ] = [Xi, Pj −Aj ] = [Xi, Pj ]− [Xi, Aj ] = δij − [Xi, Aj ].

Thus we see that the “gauge field” Aj provides the deviation from the Kronecker delta in this

commutator. We have [Ẋi, Ẋj ] = Rij , so that these commutators represent the curvature.

Before proceeding further it is necessary to explain why gij = [Xi, Ẋj ] is a correct analogue
to the metric in the classical physical situation. In the classical picture we have ds2 = gijdxidxj
representing the metric. Hence ds2/dt2 = gij(dxi/dt)(dxj/dt) = gijpipj and so (with m = 1) the
Hamiltonian is H = 1

2gijpipj . By convention we sum over repeated indices.

For the commutator [Xi, Ẋj ] = gij , this equation is a consequence of the right choice of
Hamiltonian. In a given non-commutative world, we choose an H in the algebra to represent
the total time derivative so that Ḟ = [F,H] for any F. Suppose we have elements gij such that

[gij , Xk] = 0,

[gij , Pk] = 0

and
gij = gji.

We choose

H = (gijPiPj + PiPjgij)/4 =
1

2
gijPiPj .

This is the non-commutative analog of the classical H = 1
2gijpipj . We now show that this choice

of Hamiltonian implies that [Xi, Ẋj ] = gij .
Lemma. Let gij be given such that [gij , Xk] = 0 and gij = gji. Define

H =
1

2
gijPiPj

(where we sum over the repeated indices) and

Ḟ = [F,H].
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Then
[Xi, Ẋj ] = gij .

Proof. Consider
[Xk, gijPiPj ] = gij [Xk, PiPj ]

= gij([Xk, Pi]Pj + Pi[Xk, Pj ])

= gij(δkiPj + Piδkj) = gkjPj + gikPi

= 2gkjPj .

Thus we have shown that
Ẋk = gkjPj .

Then
[Xr, Ẋk] = [Xr, gkjPj ] = gkj [Xr, Pj ] = gkjδrj = gkr = grk.

This completes the proof.
We can further remark that

Lemma. With the same hypotheses as the previous Lemma and with F any element of the
given non-commutative world N , we have the formula

Ḟ =
1

2
(Ẋi∂i(F ) + ∂i(F )Ẋi).

Proof. Note from the previous Lemma that Ẋk = gkjPj .

Ḟ = [F,H] = [F,
1

2
gijPiPj ] =

1

2
gij [F, PiPj ]

=
1

2
gij([F, Pi]Pj + Pi[F, Pj ])

=
1

2
gijPi[F, Pj ] + [F, Pi]

1

2
gijPj

=
1

2
(Ẋi∂i(F ) + ∂i(F )Ẋi).

This completes the proof.
With this Lemma we see that the quadratic Hamiltonian not only connects the abstract

metric coefficients gij of the non-commutative world with the metric coefficients in classical
worlds, but also the basic time derivative formula

Ḟ = Ẋi∂i(F )

has its correct (symmetrized) non-commutative counterpart. Elsewhere [15] we have said that
with the quadratic Hamiltonian, the non-commutative world satisfies the First Constraint.

One can consider the consequences of the commutator [Xi, Ẋj ] = gij , deriving that

Ẍr = Gr + FrsẊs + ΓrstẊsẊt,

where Gr is the analogue of a scalar field, Frs is the analogue of a gauge field and Γrst is the
Levi-Civita connection associated with gij . This decompositon of the acceleration is uniquely
determined by the given framework. See [14, 12] for the details of this result. Here we discuss
the Levi-Civita connection.
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A stream of consequences follows by differentiating both sides of the equation

gij = [Xi, Ẋj ].

We show how the form of the Levi-Civita connection appears naturally.
In the following we shall use D as an abbreviation for d/dt.

The Levi-Civita connection

Γkij = (1/2)(∇igjk +∇jgik −∇kgij)

associated with the gij comes up almost at once from the differentiation process described above.
To see how this happens, view the following calculation where

∂̂i∂̂jF = [Xi, [Xj , F ]].

We apply the operator ∂̂i∂̂j to the second time derivative of Xk.

Lemma 3.1 Let Γkij = (1/2)(∇igjk + ∇jgik − ∇kgij) where ∇i(F ) = [F, Ẋi], the covariant

derivative generated by Ẋi = Pi −Ai. Then

Γkij = (1/2)∂̂i∂̂jẌk.

Proof. Note that by the Leibniz rule

D([A,B]) = ˙[A,B] = [Ȧ, B] + [A, Ḃ],

we have

˙gjk = [Ẋj , Ẋk] + [Xj , Ẍk].

Therefore
∂̂i∂̂jẌk = [Xi, [Xj , Ẍk]]

= [Xi, ˙gjk − [Ẋj , Ẋk]]

= [Xi, ˙gjk]− [Xi, [Ẋj , Ẋk]]

(Now use the Jacobi identity [A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0.)

= [Xi, ˙gjk] + [Ẋk, [Xi, Ẋj ]] + [Ẋj , [Ẋk, Xi]]

= −[Ẋi, gjk] + [Ẋk, [Xi, Ẋj ]] + [Ẋj , [Ẋk, Xi]]

= ∇igjk −∇kgij +∇jgik

= 2Γkij .

This completes the proof.
Remark. The upshot of this derivation is that it confirms our interpretation of

gij = [Xi, Ẋj ] = [Xi, Pj ]− [Xi, Aj ] = δij − ∂Aj/∂Pi
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as an abstract form of metric (in the absence of any actual notion of distance in the non-
commutative world). This calls for a re-evaluation and reconstruction of differential geometry
based on non-commutativity and the Jacobi identity. This is differential geometry where the
fundamental concept is no longer parallel translation, but rather a non-commutative version of
a physical trajectory.

Note that given
Γkij = (1/2)(∇igjk +∇jgik −∇kgij),

we have
Γikj = (1/2)(∇kgji +∇jgki −∇igkj).

Hence
Γkij + Γikj = ∇jgik = ∂jgik + [gik, Aj ].

In other words, we see that the Levi-Civita connection that we have derived differs from
the classical Levi-Civita connection via the replacement of the partial derivatives ∂j with the
covariant derivatives ∇j = ∂j + Aj where Aj(F ) = [F,Aj ]. Since Aj is our analog of a gauge
field, this formalism can be compared with the corresponding Levi-Civita connection in Weyl’s
theory combining aspects of general relativity with electromagnetism, and we see that this is
exactly how Weyl did modify the Levi-Civita connection. See [20] Chapter 35, page 290 and
[19] p. 85. By following the non-commutative world formalism we have reproduced the core of
Weyl’s original approach to gauge theory in a new context.

We have already seen how electromagnetism and gauge theories arise in this setting and
indeed the motion of a particle as described by the equation [14, 12]

Ẍr = Gr + FrsẊs + ΓrstẊsẊt

is also the analogue of a particle moving in the Weyl theory where the new Levi-Civita connection
controls its acceleration. Note also that our metric coefficients gij are subject to the curvature
associated with the gauge Ai and so undergo holonomy just as did Weyl’s metric. It is useful
to make these comparisons because the intent of the original Weyl theory was to extend general
relativity to include electromagnetism in terms the holonomy associated with the metric. This
full extension was not developed due to criticisms of the program and also because the gauge
idea related directly to quantum theory in a highly fruitful way where the metric holonomy was
replaced by holonomy for the phase of the wave function. Our present formalism suggests a new
investigation of these connections that is beyonnd the scope of the present paper.

Nevertheless, note that classical general relativity begins with the standard Levi-Civita
connection, and so defining curvature via its interpretation as a parallel displacement. To
this end, recall the formalism of parallel translation. The infinitesimal parallel translate of A is
denoted by A′ = A+ δA where

δAk = −ΓkijA
idXj

where here we are writing in the usual language of vectors and differentials with the Einstein
summation convention for repeated indices. We assume that the Christoffel symbols satisfy the
symmetry condition Γkij = Γkji. The inner product is given by the formula

< A,B >= gijA
iBj

Note that here the bare symbols denote vectors whose coordinates may be indicated by
indices. The requirement that this inner product be invariant under parallel displacement is
the requirement that δ(gijA

iAj) = 0. Calculating, one finds

δ(gijA
iAj) = (∂kgij)A

iAjdXk + gijδ(A
i)Aj + gijA

iδ(Aj)
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= (∂kgij)A
iAjdXk − gijΓirsArdXsAj − gijAiΓjrsArdXs

= (∂kgij)A
iAjdXk − gijΓirsArAjdXs − gijΓjrsAiArdXs

= (∂kgij)A
iAjdXk − gsjΓsikAiAjdXk − gisΓsjkAiAjdXk

Hence

(∂kgij) = gsjΓ
s
ik + gisΓ

s
jk.

From this it follows that

Γijk = gisΓ
s
jk = (1/2)(∂kgij − ∂igjk + ∂jgik).

Certainly these notions of variation can be imported into our abstract context. The question
remains how to interpret the new connection that arises when we replace ∂i with ∇i = ∂i +Ai.
This yields our new Levi-Civita connection (here denoted by the old symbol).

Γijk = gisΓ
s
jk = (1/2)(∇kgij −∇igjk +∇jgik).

One could forge forward and define a new covariant derivative by the formula

∇̂iXj = ∂iX
j + ΓjkiX

k

and then attempt to head toward a generalization of general relativity via its curvature tensors.
The question is how the curvature of this connection interfaces with the gauge potentials that
gave rise to the metric in the first place. The theme of this investigation has the flavor of
gravity theories with a qauge theoretic background. The difficulty is that due to the nature
of the new covariant derivatives there is not known (to this author) a suitable analogue for
the Einstein tensor. The new Riemann tensor will no longer have the many symmetries of the
classical Riemann tensor and a simple copy of the original Einstein tensor will not have vanishing
divergence.

All this said, the above becomes a significant program for further investigation. It would
appear that this program was implicit in Weyl’s original work as well, and examination of his
papers and the book “Space Time Matter” [20] suggests that he did not carry out a full unifi-
cation of his gauge theory with general relativity. Our approach suggests a new start on this
problem.

4. Recapitulation - Curvature, Jacobi Identity and the Levi-Civita Connection
In this section, we go back to basics and examine the context of calculus defined via commutators.
We recapitulate what we have accomplished so far, and set the stage for the next level of
structure. We shall use a partially index-free notation. In this notation, we avoid nested
subscripts by using different variable names and then using these names as subscripts to refer to
the relevant variables. Thus we write X and Y instead of Xi and Xj , and we write gXY instead
of gij . It is assumed that the derivation DX has the form DX = [X, J ] for some J.

The bracket [A,B] is not assumed to be a commutator. It is assumed to satisfy the
Jacobi identity, bilinearity in each variable, and the Leibniz rule for all functions of the form
δK(A) = [A,K]. That is we assume that

δK(AB) = δK(A)B +AδK(B).
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Recall that in classical differential geometry one has the notion of a covariant dervative,
defined by taking a difference quotient using parallel translation via a connection. Covariant
derivatives in different directions do not necessarily commute. The commutator of covariant
derivatives gives rise to the curvature tensor in the form

[∇i,∇j ]Xk = RklijX
l.

If derivatives do not commute then we regard their commutator as expressing a curvature. In
our non-commutative context this means that curvature arises prior to any notion of covariant
derivatives since even the basic derivatives do not commute.

We shall consider derivatives in the form

∇X(A) = [A,ΛX ].

Examine the following computation:

∇X∇Y F = [[F,ΛY ],ΛX ] = −[[ΛX , F ],ΛY ]− [[ΛY ,ΛX ], F ]

= [[F,ΛX ],ΛY ] + [[ΛX ,ΛY ], F ]

= ∇Y∇XF + [[ΛX ,ΛY ], F ].

Thus
[∇X ,∇Y ]F = RXY F

where
RXY F = [[ΛX ,ΛY ], F ].

We can regard RXY as a curvature operator.
The analog in this context of flat space is abstract quantum mechanics! That is, we assume

position variables (operators) X, Y , · · · and momentum variables (operators) PX , PY , · · ·
satisfying the equations below.

[X,Y ] = 0

[PX , PY ] = 0

[X,PY ] = δXY

where δXY is equal to one if X equals Y and is zero otherwise. We define

∂XF = [F, PX ]

and
∂PX

F = [X,F ].

In the context of the above commutation relations, note that these derivatives behave correctly
in that

∂X(Y ) = δXY

and
∂PX

(PY ) = δXY

∂PX
(Y ) = 0 = ∂X(PY )

with the last equations valid even if X = Y. Note also that iterated partial derivatives such
as ∂X∂Y commute. Hence the curvature RXY is equal to zero. We shall regard these position
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and momentum operators and the corresponding partial derivatives as an abstract algebraic
substitute for flat space.

With this reference point of (algebraic, quantum) flat space we can define

P̂X = PX −AX

for an arbitrary algebra-valued function of the variable X. In indices this would read

P̂i = Pi −Ai,

and with respect to this deformed momentum we have the covariant derivative

∇XF = [F, P̂Y ] = [F, PY +AY ] = ∂Y F + [F,AY ].

The curvature for this covariant derivative is given by the formula

RXY F = [∇X ,∇Y ]F = [[λX , λY ], F ]

where λX = PX −AX . Hence

RXY = [PX −AX , PY −AY ] = −[PX , AY ]− [AX , PY ] + [AX , AY ]

= ∂XAY − ∂YAX + [AX , AY ].

With indices this reads
Rij = ∂iAj − ∂jAi + [Ai, Aj ].

and the reader will note that this has the abstract form of the curvature of a Yang-Mills gauge
field, and specifically the form of the electromagnetic field when the potentials Ai and Aj
commute with one another.

Continuing with this example, we compute

[X, P̂Y ] = [X,PY −AY ] = δXY − [X,AY ].

Let
gXY = δXY − [X,AY ]

so that
[X, P̂Y ] = gXY .

We will shortly consider the form of this general case, but first it is useful to restrict to the
case where [X,AY ] = 0 so that gXY = δXY (for the space coordinates). In order to enter this
domain, we set

Ẋ = DX = P̂X = PX −AX .

We then have

[Xi, Xj ] = 0

[Xi, Ẋj ] = δij

and

Rij = [Ẋi, Ẋj ] = ∂iAj − ∂jAi + [Ai, Aj ].
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Generalizing, we wish to examine the structure of the following special axioms for a bracket.

[X,DY ] = gXY

[X,Y ] = 0

[Z, gXY ] = 0

[gXY , gZW ] = 0

Note that
DgY Z = D[Y,DZ] = [DY,DZ] + [Y,D2Z].

and that D[X, gXY ] = 0 implies that

[gXY , DZ] = [Z,DgXY ].

Define two types of derivations as follows

∇X(F ) = [F,DX]

and
∇DX(F ) = [X,F ].

These are dual with respect to gXY and will act like partials with respect to these variables in
the special case when gXY is a Kronecker delta, δXY . If the form gXY is invertible, then we can
rewrite these derivations by contracting the inverse of g to obtain standard formal partials.

∇DX∇DYD2Z = [X, [Y,D2Z]]

= [X,DgY Z − [DY,DZ]] = [X,DgY Z ]− [X, [DY,DZ]]

= [gY Z , DX]− [X, [DY,DZ]]

= ∇X(gY Z)− [X, [DY,DZ]].

Now use the Jacobi identity on the second term and obtain

∇DX∇DYD2Z = ∇X(gY Z) + [DZ, [X,DY ]] + [DY, [DZ,X]]

= ∇X(gY Z)−∇Z(gXY ) +∇Y (gXZ).

This is the formal Levi-Civita connection.
At this stage we face once again the mystery of the appearance of the Levi-Civita connection.

We have seen in this section that it is quite natural for curvature in the form of the non-
commutativity of derivations to appear at the outset in a non-commutative formalism. We
have also see that this curvature and connection can be understood as a measurement of the
deviation of the theory from the flat commutation relations of ordinary quantum mechanics.
Electromagnetism and Yang-Mills theory can be seen as the theory of the curvature introduced
by such a deviation. On the other hand, from the point of view of metric differential geometry,
the Levi-Civita connection is the unique connection that preserves the inner product defined by
the metric under the parallel translation defined by the connection.
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5. Appendix – Einstein’s Equations and the Bianchi Identity
The purpose of this section is to show how the Bianchi identity (see below for its definition)
appears in the context of non-commutative worlds. The Bianchi identity is a crucial
mathematical ingredient in general relativity. We shall begin with a quick review of the
mathematical structure of general relativity (see for example [3]) and then turn to the context
of non-commutative worlds.

The basic tensor in Einstein’s theory of general relativity is

Gab = Rab − 1

2
Rgab

where Rab is the Ricci tensor and R the scalar curvature. The Ricci tensor and the scalar
curvature are both obtained by contraction from the Riemann curvature tensor Rabcd with
Rab = Rcabc, R

ab = gaigbjRij , and R = gijRij . Because the Einstein tensor Gab has vanishing
divergence, it is a prime candidate to be proportional to the energy momentum tensor Tµν . The
Einstein field equations are

Rµν − 1

2
Rgµν = κTµν .

The reader may wish to recall that the Riemann tensor is obtained from the commutator of
a covariant derivative ∇k, associated with the Levi-Civita connection Γijk = (Γk)

i
j (built from

the space-time metric gij). One has

λa:b = ∇bλa = ∂bλa − Γdabλd

or
λ:b = ∇bλ = ∂bλ− Γbλ

for a vector field λ. With

Rij = [∇i,∇j ] = ∂jΓi − ∂iΓj + [Γi,Γj ],

one has
Rabcd = (Rcd)

a
b .

(Here Rcd is not the Ricci tensor. It is the Riemann tensor with two internal indices hidden
from sight.)

One has explicitly that [3]

Rµνρσ =
1

2
(gµσ,νρ − gνσ,µρ − gµρ,νσ + gνρ,µσ) + ΓβµσΓβνρ + ΓβµρΓ

β
νρ.

Many symmetries of the Riemann tensor follow from this formula. If the derivatives in this
formula are replaced by covariant derivatives, the symmetries do not all survive and the story
we are about to tell about the divergence of the Einstein tensor will have to be modified. That
is a project for future work.

One way to understand the mathematical source of the Einstein tensor, and the vanishing of
its divergence, is to see it as a contraction of the Bianchi identity for the Riemann tensor. The
Bianchi identity states

Rabcd:e +Rabde:c +Rabec:d = 0

where the index after the colon indicates the covariant derivative. Note also that this can be
written in the form

(Rcd:e)
a
b + (Rde:c)

a
b + (Rec:d)

a
b = 0.
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The Bianchi identity is a consequence of local properties of the Levi-Civita connection and
consequent symmetries of the Riemann tensor. One relevant symmetry of the Riemann tensor
is the equation Rabcd = −Rabdc.

We will not give a classical derivation of the Bianchi identity here, but it is instructive to
see how its contraction leads to the Einstein tensor. To this end, note that we can contract the
Bianchi identity to

Rabca:e +Rabae:c +Rabec:a = 0

which, in the light of the above definition of the Ricci tensor and the symmetries of the Riemann
tensor is the same as

Rbc:e −Rbe:c +Rabec:a = 0.

Contract this tensor equation once more to obtain

Rbc:b −Rbb:c +Rabbc:a = 0,

and raise indices
Rbc:b −R:c +Rabbc:a = 0.

Further symmetry gives
Rabbc:a = Rbacb:a = Rac:a = Rbc:b.

Hence we have
2Rbc:b −R:c = 0,

which is equivalent to the equation

(Rbc −
1

2
Rδbc):b = Gbc:b = 0.

From this we conclude that Gbc:b = 0. The Einstein tensor has appeared on the stage with
vanishing divergence, courtesy of the Bianchi identity!
Bianchi Identity and Jacobi Identity. Now lets turn to the context of non-commutative
worlds. We have infinitely many possible convariant derivatives, all of the form

F:a = ∇aF = [F,Na]

for some Na elements in the non-commutative world. Choose any such covariant derivative.
Then, as in the introduction to this paper, we have the curvature

Rij = [Ni, Nj ]

that represents the commutator of the covariant derivative with itself in the sense that
[∇i,∇j ]F = [[Ni, Nj ], F ]. Note that Rij is not a Ricci tensor, but rather the indication of
the external structure of the curvature without any particular choice of linear representation (as
is given in the classical case as described above). We then have the Jacobi identity

[[Na, Nb], Nc] + [[Nc, Na], Nb] + [[Nb, Nc], Na] = 0.

Writing the Jacobi identity in terms of curvature and covariant differention we have

Rab:c +Rca:b +Rbc:a.

Thus in a non-commutative world, every covariant derivative satisfies its own Bianchi identity.
This gives an impetus to study general relativity in non-commutative worlds by looking for
covariant derivatives that satisfy the symmetries of the Riemann tensor and link with a metric
in an appropriate way. We have only begun this aspect of the investigation. The point of this
section has been to show the intimate relationship between the Bianchi idenity and the Jacobi
identity that is revealed in the context of non-commutative worlds.
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6. Appendix - Discrete Calculus Reformulated with Commutators
There are many motivations for replacing derivatives by commutators. If f(x) denotes (say) a
function of a real variable x, and f̃(x) = f(x + h) for a fixed increment h, define the discrete
derivative Df by the formula Df = (f̃ − f)/h, and find that the Leibniz rule is not satisfied.
One has the basic formula for the discrete derivative of a product:

D(fg) = D(f)g + f̃D(g).

Correct this deviation from the Leibniz rule by introducing a new non-commutative operator J
with the property that

fJ = Jf̃ .

Define a new discrete derivative in an extended non-commutative algebra by the formula

∇(f) = JD(f).

It follows at once that

∇(fg) = JD(f)g + Jf̃D(g) = JD(f)g + fJD(g) = ∇(f)g + f∇(g).

Note that
∇(f) = (Jf̃ − Jf)/h = (fJ − Jf)/h = [f, J/h].

In the extended algebra, discrete derivatives are represented by commutators, and satisfy the
Leibniz rule. One can regard discrete calculus as a subset of non-commutative calculus based
on commutators.
Discrete Measurement. Consider a time series {X,X ′, X ′′, · · ·} with commuting scalar values.
Let

Ẋ = ∇X = JDX = J(X ′ −X)/τ

where τ is an elementary time step (If X denotes a times series value at time t, then X ′ denotes
the value of the series at time t+ τ.). The shift operator J is defined by the equation XJ = JX ′

where this refers to any point in the time series so that X(n)J = JX(n+1) for any non-negative
integer n. Moving J across a variable from left to right, corresponds to one tick of the clock.
This discrete, non-commutative time derivative satisfies the Leibniz rule.

This derivative ∇ also fits a significant pattern of discrete observation. Consider the act of
observing X at a given time and the act of observing (or obtaining) DX at a given time. Since
X and X ′ are ingredients in computing (X ′ −X)/τ, the numerical value associated with DX,
it is necessary to let the clock tick once, Thus, if one first observe X and then obtains DX, the
result is different (for the X measurement) if one first obtains DX, and then observes X. In the
second case, one finds the value X ′ instead of the value X, due to the tick of the clock.

(i) Let ẊX denote the sequence: observe X, then obtain Ẋ.

(ii) Let XẊ denote the sequence: obtain Ẋ, then observe X.

The commutator [X, Ẋ] expresses the difference between these two orders of discrete
measurement. In the simplest case, where the elements of the time series are commuting scalars,
one has

[X, Ẋ] = XẊ − ẊX = J(X ′ −X)2/τ.

Thus one can interpret the equation
[X, Ẋ] = Jk

(k a constant scalar) as
(X ′ −X)2/τ = k.
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This means that the process is a walk with spatial step

∆ = ±
√
kτ

where k is a constant. In other words, one has the equation

k = ∆2/τ.

This is the diffusion constant for a Brownian walk. A walk with spatial step size ∆ and time
step τ will satisfy the commutator equation above exactly when the square of the spatial step
divided by the time step remains constant. This shows that the diffusion constant of a Brownian
process is a structural property of that process, independent of considerations of probability and
continuum limits.
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