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Abstract

Muon has properties very similar to an electron. For this reason, it is possible to replace one of the
electrons in an atom by a muon to form a muonic atom. The main purpose of this study is to calculate
the energy eigenvalues and to study the probability density of muonic hydrogen with point like
nucleus. Numerical results have generated using Matlab software programming language. The
reduced mass of muon has been used in order to correct the error incurred by the assumption that the
nucleus of muonic hydrogen is point-like which in turn gives it an infinite mass. The energy
eigenvalues for different states have been calculated using the rest and reduced masses of muon, and
the result have been tabulated. According to these results, the relativistic quantum description is not
responsible for the lamb shift. The Probability density shows that muon is much more likely to be
found near the nucleus of hydrogen atom for the ground state when compared with the excited states.

1. Introduction

The muon is an elementary particle similar to the electron, with an electric charge of —1 in the unit of proton
charge eand a spin of 1,/2, but with the rest mass of 1, = 106MeV /c*(207m,). The muon, 1, and its associated
neutrino v, were first discovered in the decays of charged pions: 7~ — p~ + #, [1]. Amuon s alepton with
properties very similar to an electron. For this reason, it is possible to replace one of the electrons in an atom by a
muon to form a muonic atom. However, since the mass of a muon is 207 times larger than that of an electron, the
radii of the muonic orbits are much smaller than those of electrons [2]. Consequently, the overlap between the
muon orbits and the nucleus is much larger than in ordinary atoms and the energy levels can be significantly
perturbed by the nuclear charge distribution [3].

Muonic atoms are observed for the most part by the means of x-ray radiation which they emit; this radiation
decays with the half-life characteristics of muon. Since the muons approaches the nucleus very closely than
electrons in an electronic atom, they can be used to study the details of nuclear charge distributions, the
distribution of the nuclear magnetic moment within the nuclear volume and nuclear quadrupole deformation.
The exotic atoms like muonic atoms can be used for the investigation of atomic nucleus [3, 4].

Since muon is heavier than the electron, and found in an atomic bound state, it is much closer to the proton
than the electron, so proton size effects are greatly magnified. Despite the muon’s limited 2.2 us lifetime, it was
anticipated that the larger impact of the proton size on the energy levels would allow a 0.1% measurement of the
proton charge radius. The effective potential that the muon experiences is significantly modified by the proton
charge distribution. Therefore, a measurement of the 2P-2S Lamb shift could give a precise value for the proton
charge radius [5].

The Muon thus cascades down to the lowest energy orbitals where it is in the direct vicinity of the nucleus ata

. 1 . . .
distance a,, = ﬁae, smaller than the corresponding Bohr radius of internal electrons. It therefore forms a

hydrogen-like atom of charge Z around the nucleus, unconscious to the presence of other electrons at larger
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distances from the nucleus. For heavy nuclei, the Bohr radius of a muonic atom is of the same order as the
nuclear radius. The muon therefore penetrates the nucleus, having a 90% probability to be inside the nucleus in
the ground state. Because of this, the study of muonic atom spectra gives useful information on the structure of
nuclei, in particular on the charge (i.e. proton) distribution inside the nuclei [6].

Several studies were conducted on the energy correction of muonic hydrogen [7, 8]. But they did not
calculate the energy eigenvalue and study the probability density of muonic hydrogen atom. Therefore in this
paper we focus on modifying Dirac equation, calculation of the energy eigenvalues of muonic hydrogen with
point-like proton for different states and we perform numerical calculations for muonic hydrogen with point-
like proton to interpret the probability density of muonic hydrogen atom. The reduced mass of muon has been
used in order to correct the error incurred by the assumption that the nucleus of a muonic hydrogen is point-like
which is in turn gives it an infinite mass [9].

2. Results and discussion

2.1. Minimal coupling to the electromagnetic field
Dirac equation in an electromagnetic field with scalar potential A, and vector potential A is

[(v"(i0, — eAy) — ml¥ =0 2.1
By using the separation of variables the wave function becomes [10]
U(X, t) = ( ;:)e_”ft (2.2)

Where y and ¢ are Pauli spinors. Now we assume that the contribution comes from the vector potential Alis
zero (A = 0). So that the Dirac equation becomes the coupled differential equations of Pauli spinors [9]

(E—m—eAO)x=16'7[—irﬁ+ia--E]¢ (2.3)
ror or
15 - ?[ .0 q]
(E+m—eAy)p =— —ir— 4116 - L |x (2.4)
ror or
Using the following ansatz [11]
X fF O Y0, @)
_ 2.5
(¢>) (ig(r)@ﬂfmw, ¢>) 22

Where %, atwo is row spherical spinor and the quantum number / and /" represents the upper and lower
components of the Dirac spinors. From equation (2.5) we have x = f%},,, and ¢ = ig%,, such that
equations (2.3) and (2.4) become

(E —m — V() f WYy = 1.7 [—irﬁ + id - f]igJ firm (2.6)
ror or
) 1¢-7] .0 |, .. »
E+m—V(@)ig¥y, = ———| —ir— + id - L | f %y, (2.7)
ror or

We neglect the angular wave functions and replace the partial derivative by ordinary derivative since all terms
only depend on radial wave function. The radial wave equations become

(442 )g— - B+ vons=o 9
dr r
(%+1+H)f—(m+E—V(r))g:O (2.9)

Where V (r) = eAo which is the central potential for point like proton, « is the generalized quantum number, m
and E are the rest mass and total energy of moun respectively.
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Table 1. The energy eigenvalues of muonic hydrogen with point-like proton for different states.

Energy eigenvalues for

Principal quant- Orbital quantum Total angular Energy eigenvalues for rest reduced mass of muon
um numbers numbers quantum numbers  Shell mass of muon in (MeV) in (MeV)
n=1 I=0 j=1/2 1s1/2 105.655560758 94961941514
n=2 I=0 j=1/2 2512 105.657671813 94.963838904
I=1 j=1/2 2py ), 105.657671813 94.963838904
j=23/2 2p5 )y 105.657671831 94.963838912
n=3 I=0 j=1/3 3s1/2 105.658063750 94.964190275
I=1 j=1/2 3p1/2 105.658063750 94.964190275
j=23/2 3ps), 105.658063753 94.964190277

2.2. Exact solution to the coupled radial dirac equation
The coulomb potential is given by [12]

Vi) = —22 (2.10)
r
This form of potential leads us to find the well-known quantized energy eigenvalue of the form
E, = m (2.11)
(Za)?

1+

1 1)? ’
[n—j—5+\/(j+5) —(Za)z)

1 .
Where o = E, the fine structure constant and n = 1, 2,---, the Principal quantum number.

We convert this quantized energy eigenvalue of point like proton into Matlab source code to generate
numerical results. By using Matlab software, we can tabulate the energy eigenvalue for different states of muonic
hydrogen as shown in table 1. In the calculations, we used the rest mass of muon m = 105.6583755 MeV and

the reduced mass of muon = 94.96447137 MeV, the fine structure constant o« = 1,/137 and the atomic
number Z = 1.

Lamb shift is a difference in energy between two energy eigenvalue of 25, /, and 2P , states of the hydrogen
atom. From the table, the lamb shift is zero. That means relativistic quantum description does not responsible
for lamb shift. Therefore, it is quantum electrodynamics that can provide Lamb shift.

The explicit form of the radial wave functions in equations (2.8) and (2.9) is [7]

1 I
f= ENe’ipS*I[M(s -7 2s+1, p)—LM(G—v+1, 2s+1, p)

—Ap5M(=s—7, =25+ 1,p) — A L p EZM(—s—~v+1, =25+ 1, p)] (2.12)

1 P
g§= ENCe’pr[M(s —% 25+ 1, p) + LM -+ 1, 25+ 1, p)

A p*M(=s — 7, =25+ 1, p)

+ AL pEM(—s—y+1, =25+ 1, p)] (2.13)
Where
F(l — 5 — ﬂi)
Ai:FF(_2$+1) ? L= S_i”V/; _E
( 25+1)F(5+5_5i) k — v/E m
And
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2.3. The probability density
The wave function in block matrix is given by

1/} - ( X) o f(r)@jlm(ei (b)
\2) g0, ¢)

p(7) = [V =y (2.14)

The probability density can be

The conjugate transpose becomes
Y= 1" = (')
Then the probability density can be rewritten as
p(F) = U = x'x + ¢'¢ (2.15)
But from block matrix given earlier we have
X' = f*@;lm , ¢ =— ig*@;l’m
Equation (2.15) becomes

p(@) = Y 3 D + &Yy Pim

jI'm
Since f and g are real valued functions of r we obtain
2\ — f2 2
p() = U Wi + &y, Y

Where %, is spin angular function in two component form given by [13]

+L.Y, 2 Lrly" 2
i + . + Ly
lem _ @{mlil/Z - N ) 1 , @l]/mlil/Z - N/ ) )
L Ym+i L, Ym+§
F1 sy
Where
1 1
N=— N=—
V2141 V22U +1
And

1
! —_—
L [EmEa Fm 2
- ad+1 A+ 1
The complex conjugate transpose of the above spin angular functions become

5 m—-L m+-L m— L m+ L
Y, = N*ELEY, LYy, 29, 9%, = N¥(£LLY, ¥ LY, %)
Now we have

1

m—
J?/;lm@ﬂm = NZ(Lﬂzc Y, Y,

And

1 1
- 2 M= 5 M= 2yt oMty
@}pm%/m =N*LYY, Y, *+L7Y, »Y, ?)

The probability density now written as

1 _1 1 1 _ 1 _1 1 1
p(P) = NF2AL2Y, 2y 2 4 L2y 2y ) 4 N2 Py, kY2 4 L2y, Ry 2) (2u6)

We interested in the probability density that depends on the radial coordinate. Therefore, integrating overall
direction, we have
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Figure 1. Probability density as a function of radial distance for 1s, /5, 25/, and 3s; /, states of Muonic hydrogen atom.

p(r) = [dQp(r, 0, ¢), d2 = sin 0d6de
[ U & L 1
= [dQUfNAL2Y)" Y 2 L2y 2y
m—tm—1 mrl mil
+ gzN’z(Lle, 2y, 2+ LJ/FZ Y, *Y, 2)]
Since the term that carry the angular term is only spherical harmonics Y;”, the integration explicitly written as

m—-L m-1 mtoL mil
p(r) :szZ[LifdQ v, 2y 2 L2 [aay)" 2y, +2]
2 m—-1 m—1 2 meL m+1
+gIN?| LY [dQy, Y, >+ L7 [dQy, **Y, 2 (2.17)
The orthonormalization condition is given by [14]
f d Ylm*er’n/ = 61,1’6m,m’ (2.18)

By using the above orthonormalization relation equation (2.17) becomes

p(r) = fAN?[LI + L2] + ¢2N"?[L + L]

1 o 1 2
= + 2.19
21+ lf 21 + lg ( )
Where
L24+12=1, N2 =—L  No2=_ !
e 241 A+ 1
Interms of the total angular momentum probability density becomes
1{ . i, . 1
— 4+ ——g*|, forj=1+ =
%(f j+1g]f T
=1 1 X (2.20)
[ 2 + ]— 2 s or P l —_ =
2 +2 (f L A

2.3.1.The numerical results of probability density for muonic hydrogen atom

The probability density in equation (2.20) can be converted into Matlab source code to produce numerical
result. We have used MATLAB software to generate the graph of probability density for different states of
muonic hydrogen atom. The probability density is obtained up to some normalization constant. The mass used
in the calculation is in mega electron volt (MeV), which is the reduced mass of moun =94.96447137 MeV.

Figure 1 illustrates the probability density for s, /, (red line), 25, /, (green line) and 3s, /, (blue line) energy
levels of muonic hydrogen atom with point like proton. The graph shows that as the radial distance increase the
probability density appear to decrease. When we compare with excited state, the ground state moun is much
more likely to be found near the nucleus than the excited states.

Figure 2 depicts the probability density for 2p, ,, and 3p, ,states are zero at the origin, and start to increase
with the radial distance, attaining maximumatr = 2.9MeV 'andr = 2.5 MeV !, subsequently decreasing
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Figure 2. Probability density as a function of radial distance for 2p, ,, and 3p, /, states of Muonic hydrogen atom.
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Figure 3. Probability density as a function of radial distance for 2p; ,, 3p; ,, and 3d;, states of Muonic hydrogen.

as the radial distance increases. It is evident from the results that the probability of findinga muon in 2p, ,, and
3p, ), excited states near the nulcues is almost zero. But they are highly likely to be found above 2 MeV-!and
below 3MeV~! away from the nucleus.

In figure 3, the result shows that: (1) these states equally have the vanishing probability to be found near the
origin; (2) as the radial distance increases up to 2MeV ™, the probability density of 2p, /, shows arapid increment
slightly followed by 3p, ,, while 3d; /, having no significant change; (3) above 2 MeV~', 2p, ,, and 3p, , attain
maximum and begin to decrease while 3d; /, shows slight increase attaining maximum at 8.13MeV~! where it
dominates both 2p, ,, and 3p; , states.

3. Conclusion

We have presented the numerical results by using Matlab programming language to generate the energy
eigenvalues for point like nucleus. But it has proven that it is possible to find the energy eigenvalue and
probability density for finite size nucleus. Our calculations have considered the reduced mass of muon in order
to correct the error incurred by the assumption that the nucleus of a muonic hydrogen is point-like which in
turn gives itan infinite mass. From our calculation, the difference in energy eigenvalues between 2s; , and 2p, ,,
cannot provide us the lamb shift. And also, we conclude that muon has greater chance to be found near the
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nucleus of hydrogen atom for ground state and less chance to be found near the nucleus when the muon isin
excited states.
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