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Abstract
Muonhas properties very similar to an electron. For this reason, it is possible to replace one of the
electrons in an atomby amuon to form amuonic atom. Themain purpose of this study is to calculate
the energy eigenvalues and to study the probability density ofmuonic hydrogenwith point like
nucleus. Numerical results have generated usingMatlab software programming language. The
reducedmass ofmuon has been used in order to correct the error incurred by the assumption that the
nucleus ofmuonic hydrogen is point-like which in turn gives it an infinitemass. The energy
eigenvalues for different states have been calculated using the rest and reducedmasses ofmuon, and
the result have been tabulated. According to these results, the relativistic quantumdescription is not
responsible for the lamb shift. The Probability density shows thatmuon ismuchmore likely to be
found near the nucleus of hydrogen atom for the ground state when comparedwith the excited states.

1. Introduction

Themuon is an elementary particle similar to the electron, with an electric charge of−1 in the unit of proton
charge e and a spin of 1/2, butwith the restmass of ( )/@mm 106MeV c 207m .e

2 Themuon, m, and its associated
neutrino mv werefirst discovered in the decays of charged pions: ¯p m + m

- - v [1]. Amuon is a leptonwith
properties very similar to an electron. For this reason, it is possible to replace one of the electrons in an atomby a
muon to form amuonic atom.However, since themass of amuon is 207 times larger than that of an electron, the
radii of themuonic orbits aremuch smaller than those of electrons [2]. Consequently, the overlap between the
muon orbits and the nucleus ismuch larger than in ordinary atoms and the energy levels can be significantly
perturbed by the nuclear charge distribution [3].

Muonic atoms are observed for themost part by themeans of x-ray radiationwhich they emit; this radiation
decays with the half-life characteristics ofmuon. Since themuons approaches the nucleus very closely than
electrons in an electronic atom, they can be used to study the details of nuclear charge distributions, the
distribution of the nuclearmagneticmoment within the nuclear volume and nuclear quadrupole deformation.
The exotic atoms likemuonic atoms can be used for the investigation of atomic nucleus [3, 4].

Sincemuon is heavier than the electron, and found in an atomic bound state, it ismuch closer to the proton
than the electron, so proton size effects are greatlymagnified. Despite themuon’s limited ms2.2 lifetime, it was
anticipated that the larger impact of the proton size on the energy levels would allow a 0.1%measurement of the
proton charge radius. The effective potential that themuon experiences is significantlymodified by the proton
charge distribution. Therefore, ameasurement of the 2P-2S Lamb shift could give a precise value for the proton
charge radius [5].

TheMuon thus cascades down to the lowest energy orbitals where it is in the direct vicinity of the nucleus at a

distance @ma a
1

207
,e smaller than the corresponding Bohr radius of internal electrons. It therefore forms a

hydrogen-like atomof charge Z around the nucleus, unconscious to the presence of other electrons at larger
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distances from the nucleus. For heavy nuclei, the Bohr radius of amuonic atom is of the same order as the
nuclear radius. Themuon therefore penetrates the nucleus, having a 90% probability to be inside the nucleus in
the ground state. Because of this, the study ofmuonic atom spectra gives useful information on the structure of
nuclei, in particular on the charge (i.e. proton) distribution inside the nuclei [6].

Several studies were conducted on the energy correction ofmuonic hydrogen [7, 8]. But they did not
calculate the energy eigenvalue and study the probability density ofmuonic hydrogen atom. Therefore in this
paperwe focus onmodifyingDirac equation, calculation of the energy eigenvalues ofmuonic hydrogenwith
point-like proton for different states andwe performnumerical calculations formuonic hydrogenwith point-
like proton to interpret the probability density ofmuonic hydrogen atom. The reducedmass ofmuon has been
used in order to correct the error incurred by the assumption that the nucleus of amuonic hydrogen is point-like
which is in turn gives it an infinitemass [9].

2. Results and discussion

2.1.Minimal coupling to the electromagneticfield
Dirac equation in an electromagnetic fieldwith scalar potential A0 and vector potential


A is

[ ( ) ] ( )g ¶ - - Y =m
m mi eA m 0 2.1

By using the separation of variables thewave function becomes [10]

⎛
⎝

⎞
⎠

( ) ( ) c
fY = -x t e, 2.2iEt

Where c fand are Pauli spinors. Nowwe assume that the contribution comes from the vector potential

A is

zero ( )

=A 0 . So that theDirac equation becomes the coupled differential equations of Pauli spinors [9]
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Using the following ansatz [11]
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WhereYjlm a two is row spherical spinor and the quantumnumber l and ¢l represents the upper and lower
components of theDirac spinors. From equation (2.5)we have Yc = f jlm and Yf = ¢ig jl m such that
equations (2.3) and (2.4) become
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Weneglect the angular wave functions and replace the partial derivative by ordinary derivative since all terms
only depend on radial wave function. The radial wave equations become

⎛
⎝

⎞
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( ( )) ( )k
+
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- - + =
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g m E V r f
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0 2.8
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Where ( ) =V r eA0 which is the central potential for point like proton, k is the generalized quantumnumber, m
and E are the restmass and total energy ofmoun respectively.
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2.2. Exact solution to the coupled radial dirac equation
The coulombpotential is given by [12]

( ) ( )a
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-
V r

Z

r
2.10

This formof potential leads us tofind thewell-known quantized energy eigenvalue of the form
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Where a = =n
1

137
, the fine structure constant and 1, 2, , the Principal quantum number.

We convert this quantized energy eigenvalue of point like proton intoMatlab source code to generate
numerical results. By usingMatlab software, we can tabulate the energy eigenvalue for different states ofmuonic
hydrogen as shown in table 1. In the calculations, we used the restmass ofmuon =m 105.6583755 MeV and

=the reduced mass of muon 94.96447137 MeV, thefine structure constant /a = 1 137 and the atomic
number =Z 1.

Lamb shift is a difference in energy between two energy eigenvalue of /S2 1 2 and /P2 1 2 states of the hydrogen
atom. From the table, the lamb shift is zero. Thatmeans relativistic quantumdescription does not responsible
for lamb shift. Therefore, it is quantum electrodynamics that can provide Lamb shift.

The explicit formof the radial wave functions in equations (2.8) and (2.9) is [7]
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Table 1.The energy eigenvalues ofmuonic hydrogenwith point-like proton for different states.

Principal quant-

umnumbers

Orbital quantum

numbers

Total angular

quantumnumbers Shell

Energy eigenvalues for rest

mass ofmuon in (MeV)

Energy eigenvalues for

reducedmass ofmuon

in (MeV)

=n 1 =l 0 /=j 1 2 /s1 1 2 105.655560758 94.961941514

=n 2 =l 0 /=j 1 2 /s2 1 2 105.657671813 94.963838904

=l 1 /=j 1 2 /p2 1 2 105.657671813 94.963838904

/=j 3 2 /p2 3 2 105.657671831 94.963838912

=n 3 =l 0 /=j 1 3 /s3 1 2 105.658063750 94.964190275

=l 1 /=j 1 2 /p3 1 2 105.658063750 94.964190275

/=j 3 2 /p3 3 2 105.658063753 94.964190277
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2.3. The probability density
Thewave function in blockmatrix is given by

Y

Y
⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )
( ) ( )

y
c
f

q f
q f

= =
¢

f r

ig r

,

,
jlm

jl m

The probability density can be
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The conjugate transpose becomes
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Then the probability density can be rewritten as
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WhereYjlm is spin angular function in two component formgiven by [13]
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The complex conjugate transpose of the above spin angular functions become
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The probability density nowwritten as
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We interested in the probability density that depends on the radial coordinate. Therefore, integrating overall
direction, we have
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Since the term that carry the angular term is only spherical harmonics Y ,l
m the integration explicitly written as
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The orthonormalization condition is given by [14]
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By using the above orthonormalization relation equation (2.17) becomes
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2.3.1.The numerical results of probability density formuonic hydrogen atom
The probability density in equation (2.20) can be converted intoMatlab source code to produce numerical

result.We have usedMATLAB software to generate the graph of probability density for different states of
muonic hydrogen atom. The probability density is obtained up to somenormalization constant. Themass used
in the calculation is inmega electron volt ( )MeV ,which is the reducedmass ofmoun=94.96447137 MeV.

Figure 1 illustrates the probability density for /s1 1 2 (red line), /s2 1 2 (green line) and /s3 1 2 (blue line) energy
levels ofmuonic hydrogen atomwith point like proton. The graph shows that as the radial distance increase the
probability density appear to decrease.Whenwe compare with excited state, the ground statemoun ismuch
more likely to be found near the nucleus than the excited states.

Figure 2 depicts the probability density for / /p2 and 3p1 2 1 2states are zero at the origin, and start to increase

with the radial distance, attainingmaximumat = -r 2.9MeV 1 and = -r 2.5 MeV ,1 subsequently decreasing

Figure 1.Probability density as a function of radial distance for / / /s s s1 , 2 and 31 2 1 2 1 2 states ofMuonic hydrogen atom.
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as the radial distance increases. It is evident from the results that the probability of finding amuon in /p2 1 2 and

/p3 1 2 excited states near the nulcues is almost zero. But they are highly likely to be found above -2 MeV 1 and

below -3MeV 1 away from the nucleus.
Infigure 3, the result shows that: (1) these states equally have the vanishing probability to be found near the

origin; (2) as the radial distance increases up to -2MeV ,1 the probability density of /p2 3 2 shows a rapid increment

slightly followed by /p3 3 2 while /d3 3 2 having no significant change; (3) above /
- p2 MeV , 21

3 2 and /p3 3 2 attain

maximumand begin to decrease while /d3 3 2 shows slight increase attainingmaximumat -8.13MeV 1where it
dominates both /p2 3 2 and /p3 3 2 states.

3. Conclusion

Wehave presented the numerical results by usingMatlab programming language to generate the energy
eigenvalues for point like nucleus. But it has proven that it is possible tofind the energy eigenvalue and
probability density forfinite size nucleus. Our calculations have considered the reducedmass ofmuon in order
to correct the error incurred by the assumption that the nucleus of amuonic hydrogen is point-like which in
turn gives it an infinitemass. Fromour calculation, the difference in energy eigenvalues between /s2 1 2 and /p2 1 2

cannot provide us the lamb shift. And also, we conclude thatmuon has greater chance to be found near the

Figure 2.Probability density as a function of radial distance for / /p p2 and 31 2 1 2 states ofMuonic hydrogen atom.

Figure 3.Probability density as a function of radial distance for / / /p p d2 , 3 and 33 2 3 2 3 2 states ofMuonic hydrogen.
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nucleus of hydrogen atom for ground state and less chance to be found near the nucleuswhen themuon is in
excited states.
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