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Abstract: We consider a non-abelian leakage-free qudit system that consists of two qubits each
composed of three anyons. For this system, we need to have a non-abelian four dimensional
unitary representation of the braid group B6 to obtain a totally leakage-free braiding. The obtained
representation is denoted by ρ. We first prove that ρ is irreducible. Next, we find the points y ∈ C∗ at
which the representation ρ is equivalent to the tensor product of a one dimensional representation χ(y)
and µ̂6(±i), an irreducible four dimensional representation of the braid group B6. The representation
µ̂6(±i) was constructed by E. Formanek to classify the irreducible representations of the braid group
Bn of low degree. Finally, we prove that the representation χ(y) ⊗ µ̂6(±i) is a unitary relative to a
hermitian positive definite matrix.
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1. Introduction

Due to Artin, the braid group Bn is represented in the group Aut(Fn) of automorphisms of the free
group Fn generated by x1, . . . , xn. The matrix representation of Bn was published by W. Burau in 1936.
This representation was known as a Burau representation. Since then, other matrix representations of
Bn have been constructed. For more details, see [1].

Braid group unitary representations have been essential in topological quantum computations.
To understand the d-dimensional systems in which anyons are exchanged, a lot of work has been made.
The exchange of n anyons inside the qudit system, the d-dimensional analogues of qubits, has been
governed by the braid group Bn which has n− 1 generators τ1, . . . , τn−1. Here, τi exchanges the particle
i with its neighbor, particle i + 1.

When the topological charge of the qudits changes due to the braiding of the anyons from different
qudits, a leakage of some of the information will occur in the computational Hilbert space, the fusion
space of the anyons.

The leakage-free braiding of anyons has been under investigation for a while. To perform universal
quantum computation without any leakage, the requirement would be to consider two-qubit gates.
This would be very restrictive and this property can only be realized for two-qubit systems related to
the Ising-like anyons model [2].

R. Ainsworth and J.K. Slingerland showed that a non-abelian, leakage-free qudit of dimension d
involving n anyons is equivalent to a non-abelian d-dimensional representation of the braid group
Bn. Here, n is the sum of the number of anyons n1 inside the first qudit and the number of anyons n2

inside the second qudit. As for the dimension d of the representation of Bn, it is the product of the
dimensions d1 and d2 of the Hilbert spaces of the individual qudits.

Moreover, it was proved in [2] that the number of anyons per qubit is either 3 or 4. Thus,
there are mainly 3 different types of two-qubit systems and a 4-dimensional representation of the
corresponding braid group is constructed for each. Taking into account E. Formanek’s result that there
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is no d-dimensional representation of Bn with d ≺ n− 2, it was verified in [2] that the only possible type
of two-qubit system is having 2 qubits of which each is composed of 3 anyons.

This system is a non-abelian leakage-free qudit system of dimension 4 involving 6 anyons. It is
equivalent to a non-abelian 4-dimensional representation of the braid group B6. This representation
is denoted by ρ. Since the number of anyons is 6, there are 5 elementary exchanges τ1, . . . , τ5.
The exchanges τ1, τ2, τ4, and τ5 satisfy the following relations:

ρ(τi) = ρ1(τi) ⊗ Id2 (1 ≤ i ≤ n1 − 1)

and
ρ(τi) = Id1 ⊗ ρ2(τi) (n1 + 1 ≤ i ≤ n− 1),

where ρ1 and ρ2 are the d1 and d2- dimensional representations of Bn1 and Bn2 on the Hilbert spaces
of the first and second qudit respectively. Id1 and Id2 are the d1 and d2-dimensional identity matrices
respectively. Here, n1 = n2 = 3 and d1 = d2 = 2.

The matrix ρ(τ3) is constructed by imposing braid group relations. For more details, see [2].
In our work, we consider the unitary representation ρ and the irreducible representation µ̂6(±i)

which is defined by E. Formanek in [3]. Both representations are 4-dimensional representations of the
braid group B6.

First, we prove that the unitary representation ρ : B6 → GL4(C) is irreducible.
As the representation ρ is proved to be irreducible, it follows that it is equivalent to the tensor

product of a one-dimensional representation χ(y) and the irreducible 4-dimensional representation
µ̂6(±i), where y ∈ C∗. For more details, see [3].

We then determine the points y ∈ C∗ at which the two representations ρ and χ(y) ⊗ µ̂6(±i) are
equivalent.

Finally, we show that the representation χ(y) ⊗ µ̂6(±i) is a unitary relative to a hermitian positive
definite matrix.

2. Preliminaries

Definition 1 (See [4]). The braid group on n strings, Bn, is the abstract group with presentation
Bn = {σ1, . . . , σn−1|σiσ j = σ jσi if |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2}.

The Hecke algebra representation of B6 was constructed by V.F.R. Jones in [5]. E. Formanek
obtained a low-degree representation of B6 by conjugating the representation constructed by V.F.R.
Jones by a certain permutation matrix. For more details, see [3].

Definition 2 (See [3]). The representation µ6 : B6 → GL5(Z[t±1]) is given by:

µ6(σ1) =


1 0 0 0 −t
0 −t 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 0 0 −t


, µ6(σ2) =


−t 0 0 0 0
0 1 −t 0 0
0 0 −t 0 0
−1 0 0 1 0
−1 0 0 0 1


,

µ6(σ3) =


1 0 0 −t 0
0 −t 0 0 0
0 −1 1 0 0
0 0 0 −t 0
0 −1 0 0 1


, µ6(σ4) =


−t 0 0 0 0
0 1 0 0 −t
−1 0 1 0 0
−1 0 0 1 0
0 0 0 0 −t


,

and
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µ6(σ5) =


1 0 −t 0 0
0 −t 0 0 0
0 0 −t 0 0
0 −1 0 1 0
0 −1 0 0 1


.

The restriction of µ6 to B5 is denoted by µ5 : B5 → GL5(C). For z ∈ C∗, the complex specializations µ6(z)
and µ5(z) are obtained from µ6 and µ5 respectively by letting t = z.

Definition 3 (See [3]). A representation ρ : Bn → GLr(C) is of Burau type if r ≥ 2 and it is equivalent to an
irreducible representation χ(y) ⊗ βn(z) : Bn → GLn−1(C) or χ(y) ⊗ β̂n(z) : Bn → GLn−2(C) where χ(y) is a
one-dimensional representation, βn(z) is the reduced Burau representation, and β̂n(z) is the composition factor
of the reduced Burau representation.

Definition 4 (See [3]). Let y ∈ C∗. The representation χ(y) : Bn → C∗ is the one-dimensional representation
defined by χ(y)(σi) = y.

Theorem 1 (See [3]). 1. For z ∈ C∗, µ5(z) and µ6(z) are irreducible unless z is a root of (t2 + t+ 1)(t2 + 1);
2. If z is a root of t2 + t + 1, then the composition factors of µ6(z) are χ(−z) and β̂6(z) and the composition

factors of µ5(z) are χ(−z) and β5(z);
3. If z is a root of t2 + 1, then the composition factors of µ6(z) are χ(1) and an irreducible representation

µ̂6(z) : B6 → GL4(C), where µ̂6(z)(σ1) has eigen values 1, 1,−z,−z. The composition factors of µ5(z)
are χ(1) and an irreducible representation µ̂5(z), which is the restriction of µ̂6(z) to B5.

Theorem 2 (See [3]). Let ρ : B6 → GLr(C) be an irreducible representation, where 2 ≤ r ≤ 5. Then one of the
following is true.

1. The representation ρ is of a Burau type;
2. For some y ∈ C∗, ρ is equivalent to χ(y)⊗ µ̂6(±i) : B6 → GL4(C). Distinct pairs (y,±i) give inequivalent

representations;
3. For some y, z ∈ C∗, ρ is equivalent to χ(y) ⊗ µ6(z) : B6 → GL5(C), where z is not a root of

(t2 + t + 1)(t2 + 1).

3. Irreducibility of ρ : B6 → GL4(C)

The construction of a two-qubit system with a minimum amount of leakage has been of great
interest. The only two-qubit system that can be realized without leakage is the system of two 3-anyon
qubits. This system is equivalent to a 4-dimensional representation of the braid group B6. This
representation which was constructed in [2] is denoted by ρ.

In this section, we prove that ρ : B6 → GL4(C) is irreducible. We denote τi, the exchange of the ith

and (i + 1)th anyon, by σi where 1 ≤ i ≤ 5.

Definition 5 (See [2]). The representation ρ : B6 → GL4(C)is defined as follows:

ρ(σ1) =


a 0 0 0
0 a 0 0
0 0 ā 0
0 0 0 ā

 , ρ(σ2) =


1

a−a3 0 c 0
0 1

a−a3 0 c
−c 0 1

ā−ā3 0
0 −c 0 1

ā−ā3

 ,
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ρ(σ3) =


x 0 0 0
0 x̄ 0 0
0 0 x̄ 0
0 0 0 x

 , ρ(σ4) =



1
f− f 3 e 0 0

−e 1
f̄− f̄ 3 0 0

0 0 1
f− f 3 e

0 0 −e 1
f̄− f̄ 3

 ,

and

ρ(σ5) =


f 0 0 0
0 f̄ 0 0
0 0 f 0
0 0 0 f̄

 .

In [2], it was shown that the multiplicities among the eigen values of the generators of the braid
group result in the formation of topological charges during the fusion of the anyons in the system.
As the system considered in our work is leakage-free, the eigen values of the generators σi of the

representation ρ should be the same. Thus, f = a or f = ā and e = c =
√

1− 1
2−a2−ā2 .

By simple computations, the relation ρ(σ2)ρ(σ3)ρ(σ2) = ρ(σ3)ρ(σ2)ρ(σ3) yields the equation
a2 = −ā2. But, a = eiθ. Therefore, e2iθ = −e−2iθ. This implies that e4iθ = −1. Consequently, e8iθ = 1.

That is, a must be a primitive eighth root of unity. Furthermore, c =
√

1− 1
2−a2−ā2 =

√
1− 1

2 = 1
√

2
.

Note that since a is a primitive eighth root of unity, a8 = 1 and a2 , 1. Then, a3 , a. Consequently,
ā3 , ā, f , f 3, and f̄ , f̄ 3. This emphasizes that the defined matrices ρ(σi), 1 ≤ i ≤ 5, are well-defined.

Now we study the irreducibility of ρ. For simplicity, we denote ρ(σi) by σi for 1 ≤ i ≤ 5.

Lemma 1. The representation ρ : B6 → GL4(C) has no non trivial proper invariant subspaces of dimension 1.

Proof. Let S be a proper invariant subspace of dimension 1. We consider all the possible cases.

Case 1: S = 〈ei〉, i = 1, 2, 3, 4.

For simplicity, we take i = 1. Since S is invariant, it follows that σ2(e1) =


1

a−a3

0
−c
0

 ∈ S.

This implies that c = 0, a contradiction.

Case 2: S =
〈
ei + uei+1

〉
, i = 1, 3 ,u ∈ C∗.

For simplicity, we take i = 1. Since S is invariant, it follows that σ2(e1 + ue2) =


1

a−a3
u

a−a3

−c
−cu

 ∈ S.

This implies that c = 0, a contradiction.

Thus, there are no non trivial proper invariant subspaces of dimension 1. �

Lemma 2. The representation ρ : B6 → GL4(C) has no non trivial proper invariant subspace of dimension 2.

Proof. Let S be a proper invariant subspaces of dimension 2. We consider all the possible cases.

Case 1: S =
〈
ei, ei+1

〉
, i = 1, 3.
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For simplicity, we take i = 1. Since S is invariant, it follows that σ2(e1) =


1

a−a3

0
−c
0

 ∈ S.

This implies that c = 0, a contradiction.

Case 2: S =
〈
ei, e j

〉
, i = 1, 2 , j = 3, 4.

For simplicity, we take i = 1. Since S is invariant, it follows that σ4(e1) =


1

f− f 3

−e
0
0

 ∈ S.

This implies that e = 0. But, e = c. Thus, c = 0, a contradiction.

Case 3: S = 〈ei, e1 + ue2〉, i = 3, 4 ,u ∈ C∗.

For simplicity, we take i = 3. Since S is invariant, it follows that σ4(e3) =


0
0
1

f− f 3

−e

 ∈ S.

This implies that e = 0. But, e = c. Thus, c = 0, a contradiction.

Case 4: S = 〈ei, e3 + ve4〉, i = 1, 2 ,u ∈ C∗.

For simplicity, we take i = 1. Since S is invariant, it follows that σ4(e1) =


1

f− f 3

−e
0
0

 ∈ S.

This implies that e = 0. But, e = c. Thus, c = 0, a contradiction.

Case 5: S = 〈e1 + ue2, e3 + ve4〉, u, v ∈ C∗.

Since S is invariant, it follows that σ3(e1 + ue2) =


x

x̄u
0
0

 ∈ S. This implies that a = ā. That is, a2
− ā2 = 0.

But, from the equationσ2σ3σ2 = σ3σ2σ3, we have a2 + ā2 = 0. Thus, 2a2 = 0 which gives a contradiction.

Thus, there are no non trivial proper invariant subspaces of dimension 2. �

Now, we state the theorem of irreducibility.

Theorem 3. The representation ρ : B6 → GL4(C) is irreducible.

Proof. By Lemma 1 and Lemma 2, there are no proper invariant subspaces of dimensions 1 and 2.
Clearly, the representation ρ is unitary, that is σiσ

∗

i = I4 for 1 ≤ i ≤ 5.
We note that if the representation is unitary, then the orthogonal complement of a proper invariant

subspace is again a proper invariant subspace. As there is no proper invariant subspace of dimension 1,
there is no proper invariant subspace of dimension 3.

As a result, all the possible proper subspaces are not invariant. Consequently, ρ is irreducible. �

4. The Representations ρ and χ(y) ⊗ µ̂6(±i) Are Equivalent

By Theorem 3, the representation ρ is irreducible. The eigen values of ρ(σi) for 1 ≤ i ≤ 5 are
different from those of β̂4(z), the composition factor of the reduced Burau representation. Therefore,
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the representation ρ is not equivalent to the tensor product of a one dimensional representation χ(y)
and β̂4(z). That is, ρ is not of a Burau type.

Moreover, ρ is a 4-dimensional representation. Consequently, Theorem 2 implies that the
representation ρ is equivalent to the representation χ(y) ⊗ µ̂6(±i) for some y ∈ C∗.

Note that, by Theorem 1, the representation µ̂6(z) is irreducible for z = ±i since the roots of the
polynomial t2 + 1 are clearly ±i.

In this section, we determine the points y ∈ C∗ at which the representations ρ and χ(y) ⊗ µ̂6(±i)
are equivalent.

Since the two representations are equivalent, the determinants of the matrices (χ(y) ⊗ µ̂6(±i))(σi)

and ρ(σi) are equal for 1 ≤ i ≤ 5.
By simple computations, the determinant Det[(χ(y) ⊗ µ̂6(±i))(σi)] = −y4 and Det[ρ(σi)] = 1 for

all i = 1, 2, 3, 4, 5. Thus, −y4 = 1. This implies that y = ±
√
( ± i).

As a result, the two considered representations are equivalent at the following points: y1 =
√

i,
y2 =

√
−i, y3 = −

√
i, and y4 = −

√
−i, where i is the complex number such that i2 = −1.

5. Unitarity of χ(y) ⊗ µ̂6(±i) : B6 → GL4(C)

As the representation ρ is proved to be unitary and equivalent to the representation χ(y) ⊗ µ̂6(±i)
for some y ∈ C∗, the representation χ(y) ⊗ µ̂6(±i) is a unitary relative to a matrix M.

In this section, we find the matrix M and we prove that M is a hermitian and positive definite.

Definition 6 (See [3]). The representation µ̂6(±i) : B6 → GL4(C) is defined as follows:

σ1 7→


±i 0 0 0
−1 1 0 0
0 0 ±i 0
0 0 −1 1

 , σ2 7→


1 ±i 0 0
0 ±i 0 0
0 0 1 ±i
0 0 0 ±i

 ,

σ3 7→


1 0 0 0
1 ±i 0 0
0 0 ±i 0
0 0 −1 1

 , σ4 7→ (1/2)


1± i 0 −1± i 0

0 1± i 0 −1± i
−1± i 0 1± i 0

0 −1± i 0 1± i

 ,

and σ5 7→


1 0 0 0
0 1 0 0
0 0 ±i 0
0 0 0 ±i

 .

Now, we state the following theorem:

Theorem 4. The images of the generators of B6 under µ̂6(±i) are unitary relative to a hermitian positive definite
matrix M.

Proof. Let,

M =


2 1− i 0 0

1 + i 2 0 0
0 0 2 1− i
0 0 1 + i 2

 .

Here, i is the complex number such that i2 = −1 and M is an invertible matrix whose determinant
equals 4.

For simplicity, we denote (µ̂6(±i))(σi) by σi for 1 ≤ i ≤ 5.
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By direct computations, σ1Mσ∗1 = σ2Mσ∗2 = σ3Mσ∗3 = σ4Mσ∗4 = σ5Mσ∗5 = M, where σ∗i is the
complex conjugate transpose of σi for 1 ≤ i ≤ 5. Therefore, the representation µ̂6(±i) is a unitary
relative to the matrix M.

Let M∗ be the complex conjugate transpose of M. Clearly, M∗ = M. This implies that the invertible
matrix M is hermitian.

By computations, the eigen values of the matrix M are 2 +
√

2 and 2−
√

2. Clearly, both values
are positive. Consequently, M is a positive definite matrix.

As a result, the representation µ̂6(±i) is a unitary relative to an invertible hermitian positive
definite matrix M. �

Note that the unitarity of the representation µ̂6(±i) relative to the matrix M clearly implies that
the representation χ(y) ⊗ µ̂6(±i) is also a unitary relative to the same matrix M.
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