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Abstract

Deep generative learning cannot only be used for generating new data with statistical
characteristics derived from input data but also for anomaly detection, by separating nominal and
anomalous instances based on their reconstruction quality. In this paper, we explore the
performance of three unsupervised deep generative models—variational autoencoders (VAEs)
with Gaussian, Bernoulli, and Boltzmann priors—in detecting anomalies in multivariate time
series of commercial-flight operations. We created two VAE models with discrete latent variables
(DVAEs), one with a factorized Bernoulli prior and one with a restricted Boltzmann machine
(RBM) with novel positive-phase architecture as prior, because of the demand for discrete-variable
models in machine-learning applications and because the integration of quantum devices based on
two-level quantum systems requires such models. To the best of our knowledge, our work is the
first that applies DVAE models to anomaly-detection tasks in the aerospace field. The DVAE with
RBM prior, using a relatively simple—and classically or quantum-mechanically enhanceable—
sampling technique for the evolution of the RBM’s negative phase, performed better in detecting
anomalies than the Bernoulli DVAE and on par with the Gaussian model, which has a continuous
latent space. The transfer of a model to an unseen dataset with the same anomaly but without
re-tuning of hyperparameters or re-training noticeably impaired anomaly-detection performance,
but performance could be improved by post-training on the new dataset. The RBM model was
robust to change of anomaly type and phase of flight during which the anomaly occurred. Our
studies demonstrate the competitiveness of a discrete deep generative model with its Gaussian
counterpart on anomaly-detection problems. Moreover, the DVAE model with RBM prior can be
easily integrated with quantum sampling by outsourcing its generative process to measurements of
quantum states obtained from a quantum annealer or gate-model device.

1. Introduction

The field of machine learning has experienced an explosion in the development of deep-learning methods at
the beginning of the 21st century, due to the flexibility, scalability, and superior performance of deep learning
in classification, prediction, data generation, anomaly detection, and other applications [1-4]. The
phenomenal success of deep learning, which refers to machine-learning techniques that use
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artificial-neural-network models with many layers, has been enabled by the widespread availability of
specialized graphics processing units (GPUs) to perform computing-intensive linear-algebra operations on
vectors, matrices, and tensors.

One way to characterize the training process of a neural network is to differentiate between supervised
and unsupervised learning [5, 6]. In supervised learning, a ‘teacher’ imposes a set of desired input-output
relationships on the network. For example, the training set might contain an extra column that specifies the
desired output of the network, such as a class label. The class label or other supervisory information is not
available during testing, when the performance of the network is evaluated. In unsupervised learning, no
such oversight is provided, and the network’s response is self-organized and solely relies on the interplay
between external input, intrinsic connectivity, network dynamics, and the value of a cost function that the
network attempts to minimize. Unsupervised learning is computationally more complex than supervised
learning and still a largely unresolved problem in machine learning. It has attracted considerable research
effort [2, 7, 8] because it holds the potential to uncover the statistical structure and hidden correlations of
large unlabeled datasets, which constitute the predominant form of today’s data.

Generative modeling is a widely used machine-learning technique that attempts to estimate the
probability distribution of a dataset and use it to generate new data. Deep generative models such as
generative adversarial networks (GANs) [9], variational autoencoders (VAEs) [10], and deep belief networks
[11] have been extensively applied to machine-learning use cases in science and engineering. GANs do not
explicitly define a density function or approximate likelihood but define the probability density implicitly, by
producing samples from it [9, 12]. GANs are known for generating realistic high-resolution images and have
also been deployed, with increasing popularity, to anomaly-detection tasks [13—15]. However, GANs are
difficult to train due to instability issues, such as non-convergence, posterior-mode collapse, and vanishing
or exploding gradients [12, 16—19]. In the studies reported in this paper, we use VAEs for generative
modeling because of their greater training stability and efficient inference mechanism. VAEs employ the
evidence lower bound (ELBO) as a variational lower bound on the exact log likelihood, incorporate
regularization via a prior, and allow estimation of the log likelihood via importance sampling [10, 20]. The
(negative) ELBO is a well-defined, fully differentiable loss function whose gradients are used to efficiently
optimize network weights through backpropagation, permitting competitive performance in mining large
datasets. Furthermore, the 5-VAE, used in our experiments, allows a weighting of the autoencoding
(reconstruction) and Kullback-Leibler (KL)-divergence terms in the variational ELBO objective [21, 22].

Because of the widespread applicability of the normal distribution owing to the central limit theorem and
the difficulty of propagating gradients through discrete variables, the majority of VAE and other
generative-model designs reported in the literature use the continuous Gaussian distribution to model the
prior and approximate the posterior distribution of the latent variables given input data. However, many
deep-learning use cases rely on discrete latent variables to represent the required distributions, such as in
applications in supervised and unsupervised learning, attention models, language models, and
reinforcement learning [23-25]. In particular, if the values of latent variables are to be computed by quantum
computers, the latent variables need to be discrete because projective qubit measurements in the
computational basis produce eigenvalues of —1 or +1. See supplementary section S1 for a more in-depth
account of the importance of discrete-variable models.

Discrete VAEs (DVAEs) and quantum VAEs have been used to generate new data from samples from the
VAE’s latent space after the VAE was trained on a dataset such as MNIST or Omniglot, and the quality of data
generation (fit of the VAE’s model distribution to the distribution of the input data) was assessed by
estimating the log likelihood of test data [26—32]. In addition, the application of VAEs to anomaly detection
has become increasingly popular in recent years. An and Cho [33] suggested an anomaly-detection method
in which the anomaly score of a VAE is used as a Monte Carlo estimate of the reconstruction log likelihood
(called ‘reconstruction probability’ in the paper). Haowen Xu et al [34] used a VAE for the detection of
anomalies in univariate time series, preprocessed with sliding time windows, representing seasonal key
performance indicators in web applications. Several studies have incorporated recurrent neural networks
(RNNs) into VAEs by equipping the VAE’s encoder and decoder with long short-term memory (LSTM)
constructs [35-39]. The LSTM-VAE approach was also applied to anomaly detection in telemetry data from
the Soil Moisture Active Passive (SMAP) satellite and the Mars Curiosity rover [40]. However, the training of
a VAE equipped with an RNN architecture on multidimensional time series is computationally costly and
may overlook local temporal dependencies. To remedy these shortcomings, Memarzadeh et al [41] designed
a convolutional VAE (CVAE) to detect anomalies in multivariate time series of commercial flights, a task on
which the model achieved state-of-the-art performance.

VAEs and [3-VAEs have also been applied to other problems in aerospace. For example, Yang et al [42]
used a VAE in an inverse-design-optimization framework to learn the pressure distribution over a
wind-turbine airfoil and then sampled from the VAFE’s latent space to generate highly realistic artificial inputs
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to a feedforward neural network that, in turn, predicted aerodynamic variables and shape parameters of the
airfoil. Kang et al [43] designed [3-VAEs (with various [ values) to produce physically informative latent
spaces, to be used in reduced-order modeling. The higher the value of (3, the greater was the latent space’s
compression, without loss of information, and the two informative latent variables of the model with the
highest 3 value coincided with the causal factors of the training dataset, Mach number and angle of attack.

For the studies reported in this paper, we developed convolutional VAEs with continuous (Gaussian) and
discrete (Bernoulli and Boltzmann) priors to detect anomalies in multivariate time-series data of commercial
flights. The Boltzmann prior is implemented as a restricted Boltzmann machine (RBM) [44]. The VAE with
Gaussian prior and the RBM network of the VAE model with RBM prior are derivations of the CVAE model
presented in [41] and of the DVAE model depicted in [31], respectively. Whereas the CVAE model presented
in [41] employed multiple encoders and decoders and input data of highly correlated features were directed
through separate encoders and decoders, the VAEs used in the studies reported in this paper possess a single
unified encoder and decoder (see appendix G). Also, in the latent-space RBM-prior network used in [31],
positive-phase samples (latent variables of the DVAE) were split into two equally sized parts (‘visible’ and
‘hidden’ units) to calculate positive-phase energies. By contrast, the positive phase of the RBM network used
in the studies reported here contains a true hidden layer that is evolved from the DVAE’s posterior latents by
one-step Gibbs sampling. The contrasting RBM architectures are described in detail in section 3.4 and shown
in figure 2.

The contributions and motivations of this work are as follows. We developed DVAE models with a
factorized Bernoulli prior and with an RBM prior with a novel positive-phase architecture of the RBM
network, as described in the preceding paragraph. We devised two alternative ways to compute the
KL-divergence term of the VAE model with Bernoulli prior—a stochastic Monte Carlo estimator and an
analytic form. Whereas previous studies have employed DVAEs primarily for the purpose of generation
[26-28, 30, 32, 45-47], we explore and compare the performance of our Gaussian, Bernoulli, and RBM
models in detecting anomalies in various datasets of aeronautical data’. Moreover, we introduce the tunable
hyperparameter /3 into the ELBO objective, based on concepts described in [21, 22, 41], to optimize
anomaly-detection performance. To the best of our knowledge, the studies described in this paper are the
first to apply VAEs with discrete latent variables to anomaly-detection problems in the realm of aerospace.
We describe the training of our models, including a detailed characterization of the RBM model’s training
process, and report anomaly-detection performance with nonoptimal hyperparameters, in addition to
performance with optimized hyperparameters. We also investigate the ability of our VAE models to transfer
to an unseen dataset and probe the robustness of the DVAE model with RBM prior to changes in anomaly
type and phase of flight. We want to find out if the anomaly-detection performance of a VAE with discrete
latent space is competitive with that of a VAE with Gaussian prior and continuous latent variables, the
standard choice of VAE type. Also, if a classical deep generative model with discrete latent variables exhibits a
performance that is comparable or superior to that of a continuous-variable counterpart, it is worth
exploring if a quantum-enhanced version of the discrete model, which can exploit complex, classically not
accessible, correlations brought about by quantum states, can achieve a performance that exceeds that of the
fully classical discrete model.

We conducted three experimental studies for this paper. The first (‘baseline’) study uses a dataset with a
drop-in-airspeed anomaly during takeoff. It investigates the models’ training behavior and compares the
anomaly-detection performance of the Gaussian, Bernoulli, and RBM models. Our second study investigates
the ability of our trained models to generalize (transfer) to a new dataset containing the same anomaly. The
models employed in this study operate with hyperparameters optimized for the dataset used in the baseline
study. Our final study examines the RBM model’s robustness to changes in anomaly type and phase of flight,
by evaluating the model’s performance on a new dataset with a delay-in-flap-deployment anomaly during
approach to landing. For this study, the model’s hyperparameters were re-tuned and the model was
re-trained on the dataset used.

The structure of the paper is as follows. In section 2, we review causal generative models, that is,
probabilistic models that reconstruct input data from latent variables. We also describe prior distributions
used in generative modeling with continuous and discrete latent variables. Section 3 covers VAEs with
continuous and discrete latent spaces. We describe the 3-VAE, which regulates the trade-off between the
autoencoding and KL terms of the ELBO, and introduce alternative formulations of RBM prior networks in
the VAE’s latent space. In section 4, we describe the methodology we used to evaluate our models’
anomaly-detection performance. In section 5, we present the experimental findings of our three studies,
outlined in the preceding paragraph, and discuss model design and the influence on performance of model

7 For simplicity’s sake, we frequently refer to the VAE models with Gaussian, Bernoulli, and RBM priors as the Gaussian, Bernoulli, and
RBM models, respectively, in this paper; the longer, more correct, expression is used interchangeably with the abbreviated version.
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hyperparameters and of the application of normalizing transformations to anomaly scores. We present our
conclusions in section 6. The appendices and supplementary material contain additional information on
concepts and experiments.

2. Causal generative modeling

The goal of generative modeling is to estimate the probability distribution of the input data, p(x), which is
unknown but assumed to exist. The distribution of synthetic data points, estimated by the model, is called
the marginal distribution, pg(x) (where 8 denotes the model parameters). The goal is to make pg(x) as close
to p(x) as possible. In order to accomplish this objective, representational modeling computationally
analyzes the statistical structure of a dataset and attempts to identify a set of latent (unobserved) variables z
that represent the dominant features of the dataset. Latent variables are also known as ‘causes’ [5]. A
graphical model of a directed generative model with latent variables is depicted in figure 1. Conceptual
details on the generative and recognition models used in causal generative modeling can be found in
appendix A. Generative modeling is well suited for unsupervised learning: lacking supervisory information, a
model’s performance is determined by the ability of its latent variables to represent and reproduce the
statistical structure of the input variables [5].

2.1. Prior distributions

In a directed generative model, the model distribution pg(x, z) is explicitly factored into the generative
distribution pg(x|z), the distribution of the generative model’s output given a latent-space realization, and
the model’s prior distribution pg(z). The simplest generative-model priors are factorized standard normal or
Bernoulli distributions:

Il
Eh

po(z) =N (z;0,1) N(z;0,1),

—_

(1)

po(z®) = B(z%;0.5) = | | B(z%;0.5),

-

1

where the subscript [ indexes a latent variable. Also, we use the symbolic expression z/ to denote a discrete
latent variable (to distinguish it from a continuous latent variable, expressed as z). The posterior
distributions factorize accordingly [29].

Boltzmann machine (BM) priors are more expressive and capable of representing complex multi-modal
probability distributions [29]. Since Boltzmann priors are intractable in models with variable counts
encountered in practical use, it is common to use Markov chain Monte Carlo (MCMC) sampling to estimate
gradients. The efficiency of MCMC sampling is greatly increased [30] by stipulating a bipartite connectivity
between the groups of visible units z¢ and hidden units zZ of the BM, without lateral connections between
the units within either group, i.e. an RBM [44]. The visible and hidden units correspond to the input and
latent variables, respectively, of an undirected generative model and are binary (0 or 1) in the RBMs we
employed in the experiments reported in this paper. An RBM prior is given by [29, 48, 49]:

d . d d d
Peo (Zi,zi) — e Be (ZV’Z")/Zg, Zo = 2 :e*EG(Zth)’
2 2)
d ,d ANTwod A Tod  1.T,.d
Eg(z),2;) = —(z,) Wz, —a z; — bz,

In (2), Eg(z4,2) is the energy function of visible and hidden units and Zg the normalizing constant
(partition function) of prior pg(z¢,z]); W, a, and b are the weight matrix between visible and hidden units
and the visible and hidden bias vectors, respectively. The conditional distributions of the hidden given the
visible units and of the visible given the hidden units are then given by [6]:

L L
po(zi|z)) = [ [ po((@ilzd) = [ [ o (b + Whz),

=1 =1

K K (3)
po(zlzi) = [ [po((@)ilzh) = [ [ o (ar + Wi 2f),

where o denotes the logistic function and WY, is a vector consisting of the transpose of the Ith column of
weight matrix W and W;. a vector consisting of the kth row of W. Because of the absence of lateral
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prior
o, ----=-==-=-===-- > distribution:
' el Po(z)
approximate  /
recognition generative
(posterior) | distribution:
distribution: Po(x|z)
q4(Z[X) \
R marginal
0, \S@ distribution:
Po(X)

Figure 1. Generative models with latent variables, z, can be represented as probabilistic graphical models that depict conditional
relationships among variables. In a directed generative model, the model distribution, pg (x,z) = pg (x|z)pe (), is explicitly
factored into the generative (decoder) distribution, pg (x|z), and the model’s prior distribution over latent variables, pg(z). The
marginal distribution, pg (x), is obtained by marginalizing (integrating or summing) over the latent variables. Since the
computation of the true posterior, pg (z|x), is intractable, variational inference substitutes it with an approximating posterior
(encoder), ¢ (z|x). Black, solid arrows denote the generative model and blue, dashed arrows the variational approximation to the
intractable posterior. In the VAE models used to conduct the experiments described in this paper, the posterior and prior over
latent variables are either continuous Gaussian distributions [posterior: N (z; ut, diag(o?)), prior: N (z;0,1)] or discrete

. C . . . . d d . .
Bernoulli or Boltzmann distributions [posterior: B(z%;q), prior: B(z%;0.5) or e ~£6 (%:%) / Z51]. We use the symbolic expression
24 to denote a discrete latent variable.

connections between visible units and between hidden units, the conditional probabilities in (3) can be
determined in one fell swoop, using block Gibbs sampling. In block Gibbs sampling, the values of all hidden
units are updated at once by sampling from their conditional distribution given the visible units [top
equation of (3)]. Then, the values of the visible units are updated analogously [bottom equation of (3)]. This
process can be repeated for an arbitrary number of iterations. When Gibbs sampling is performed for an
infinite number of steps, it is guaranteed to converge to the stationary distribution pg(z?,z}) of the RBM
model [50, 51], and computationally efficient techniques to learn the model distribution have been
developed [52-54].

3. Variational autoencoders

VAEs are directed generative models with latent variables that approximate the intractable true posterior
Po(z|x) via variational inference and maximize an ELBO objective £(8, ¢; x) (see figure 1 and appendix B).
The ELBO can be re-written as [10]:

L(0,¢:%) = Eyegy (zlx) l0g po (x|2)] — Dx (99 (2[%)|po(2)). (4)

The first term of (4) is the autoencoding term. Maximizing it maximizes the fidelity of reconstruction
because the greater the autoencoding term, the greater is the similarity between the data distribution p(x)
and the generative distribution pg(x|z) when z is sampled from the approximate posterior distribution
q(2z|x) of the encoder. Conversely, the second term is maximized by minimizing the KL divergence between
the approximate posterior and prior, which corresponds to minimizing the mutual information between x
and z. Consequently, the autoencoding term attempts to maximize the mutual information between data and
latents and the KL term seeks to minimize it [29]. Eventually, the latent-space’s information content will
depend on the trade-off between the two terms, which, in turn, is determined by the flexibility and
expressiveness of the variational approximation g¢(z|x), the structure of the generative model, and the
training method [29, 31].

Given training set D = {x(" }_ consisting of N i.i.d. samples from p(x), the ELBO for a minibatch of
training data is given as the average of the ELBOs of the minibatch instances [10]:

L. 4MO) == 37 £(6.6:%), (5)
xe M)

where the minibatch M) = {x(:")}M_ contains M data points randomly sampled from D with N data
points.

3.1. VAE with factorized Gaussian prior
The ELBO objective given in (4) contains expectations of functions of the latent variables z with regard to the
variational posterior g, (z|x), which can be written as E, 4, (;/x) [f(2)], where f denotes an arbitrary function.
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To train the model with minibatch stochastic gradient descent starting from random initializations of the
model parameters 8 and ¢, we need to calculate gradients of such expectations [29, 55]. Procedures to obtain
unbiased gradients with respect to 8 and ¢ are described in appendix C.

We estimated the Gaussian parameters p and log o2 by means of linear layers at the end of the VAE’s
encoder (see appendix G). The log 0% estimate was then routed through a softplus activation for numerical
stability. As a result of applying rectified-linear-unit (ReLU) activations to each layer of the encoder and
decoder, the mean and log variance of the approximate posterior, p and log o2, are nonlinear functions of
the input data x and the variational parameters ¢ [10].

Moreover, when the VAE prior is given by a factorized Gaussian, the KL-divergence term in the ELBO
objective [(4)] can be expressed in closed form. The ELBO is then estimated as:

N —

S L
1
L(6.¢1x) = ¢ Y logpa(xlz) + 3 > (1 +logo? - uf — o). (©

s=1 =1
where z(9) = p+o® €, el ~ N(0,1), and ! indexes a latent variable [10].

3.2. 3-VAE

Higgins et al [21] modified the VAE objective to reduce the entanglement between latent variables. Each
latent variable z is to represent a meaningful domain-specific attribute that varies along a continuum when
z; is varied. In order to promote this disentangling property in the latent variables z ~ g4 (z|x), the authors
introduce a constraint over the posterior qg(z|x) from which they are derived, making it more similar to a
prior pg(z). This condition restrains latent-space capacity and stimulates statistical independence between
individual latent-space variables. The ELBO objective [(4)] of a 5-VAE is given as (see appendix D for
derivation):

L(0,0:x, ) = Epyy (zx) [l0g po (x]2)] — B Dxr(q¢(2x)|pe(z)). (7)

The parameter 3 is used to balance the trade-off between the fit of the reconstructed data, X, to the input
data, x, imposed by the autoencoding (reconstruction) term (low (), and the fit of the posterior, g4 (z|x), to
the prior, pg(z), via the KL term (high ). If 8 = 0, the 8-VAE model is identical to an autoencoder, and if
B =1, the model corresponds to a regular VAE. We would like to note that we do not use 5 to explicitly
disentangle the latent space but employ it as a regularization hyperparameter that requires tuning, an
approach pioneered in [41].

3.3. VAE with discrete latent space
Several approaches have been developed to circumvent the non-differentiability problem affecting models
with discrete latent units [56-59]. In VAE models, the reparameterization trick has been extended by either
the incorporation of smoothing functions [26] or the relaxation of discrete latent variables into continuous
ones [24, 30, 60]. In this work, we employ the Gumbel-softmax trick, which relaxes a discrete categorical
distribution into a continuous concrete (or Gumbel-softmax) distribution [24, 60]. Appendix E describes the
reparameterization trick and the obtention of unbiased gradients with respect to the variational parameters
of a VAE with a discrete latent space. We estimated the log odds of the relaxed Bernoulli approximate
posterior probabilities, log a9, by means of a linear layer at the end of the VAE’s encoder (see appendix G).
Discrete VAEs can be implemented with Bernoulli [bottom equation in (1)] or RBM [(2)] priors. The KL
term of the ELBO of a VAE with a Bernoulli prior can be expressed as:

%(Z"lX)}

Dxr(94(271%)|Ipe(27)) = Etnge @) {log po(z?)

L

=Eu8(q) [Z(Zf log i+ (1 —2)log(1 — q1) (8)

=1

—2'10g 0.5 — (1 —2)log(1 — 0.5))] )

where ¢; stands for the parameter of the latent Bernoulli variable z/ ~ B(g;) and 0.5 is the parameter of the
Bernoulli prior distribution, B(p; = 0.5). A more detailed derivation of the above expression and
implementation details as well as an analytic expression for the KL term in the ELBO objective [(4)] of a VAE
with Bernoulli prior are given in appendix F.
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Unbiased gradients of the KL term of the ELBO of a VAE with an RBM prior with respect to the
generative and variational parameters can be obtained as:

Vo,6Dx1(q4(z%)||pe(2)) = Vo o {E prr(0,1) 108 49 (2(@, p)[X)] + Ef14(0,1) [Eo (2(@, p))] — Bz 34) [Eo @},
9

where the gradients of the log prior probability are given, as usual, as the difference between a positive and
negative phase. The symbolic expression z? denotes ‘fantasy states, i.e. values of the latent variables produced
by the RBM model (prior) distribution, which remain discrete and are not relaxed during training [30, 31].
In the expression above, we have highlighted the fact that the positive-phase energy [Eg(z(¢, p))] and the
negative-phase energy [Eg (id)] are calculated [according to the bottom equation of (2)] using relaxed
posterior samples (z) and discrete model samples (fantasy states z?), respectively. The training objective is to
make the model distribution, pg(z?), as similar as possible to the posterior distribution, g, (z|x). See
appendix F for details on the KL-divergence term in the ELBO of a DVAE/RBM model and its gradients. We
used the persistent-contrastive-divergence (PCD) algorithm [53] to evolve the conditional distributions of
the ‘visible’ and ‘hidden’ layers of fantasy states of the negative phase by means of Gibbs sampling, starting
from initialization to zero. In PCD, the chains of the fantasy states’ values are persistent and continue to
evolve over cycles of training (minibatches), without re-initialization at the beginning of the cycle. The PCD
algorithm is characterized by short mixing times (fast convergence to the stationary distribution) because the
weight updates repel the persistent chains from their current states by raising the energies of the states [50]. It
should be noted that this form of training does not require knowledge of the (intractable) partition function
Zg. Hence, our VAE model with RBM prior is an energy-based model whose training is based on
(unnormalized) prior energies rather than (normalized) prior probabilities.

3.4. Latent Boltzmann networks

In a VAE with an RBM prior, the RBM network is located in the latent space; there are no visible RBM units
corresponding to input data as in a standalone RBM. Also, by necessity, the latent variables z of the positive
phase are continuous (because they are sampled from the approximate posterior distribution, which is
relaxed via the Gumbel-softmax procedure described above and in appendix E during training in order to
make the ELBO differentiable). On the other hand, the RBM model samples (fantasy states) z? remain
discrete variables, as indicated by the superscript, and are not relaxed during training.

Rolfe [26] first developed a DVAE with RBM prior. The model applied the spike-and-exponential
transformation to the posterior latents to make them differentiable. Khoshaman and Amin [30] then
modified the DVAE/RBM model by using the Gumbel-softmax trick to bring about the continuous
relaxation of the DVAFE’s latent variables; the authors termed their DVAE model with RBM prior and
Gumbel-softmax relaxation ‘GumBolt. Vinci et al [31] introduced a quantum version of the GumBolt
model, based on Amin et al [61] and Khoshaman et al [29]. These authors split up the posterior latent units z
into two portions of equal size (denoted as z; and z, in figure 2) to implement between them the positive
phase of the RBM model according to (9) and the energy function given in (2). A corresponding approach is
taken for the fantasy states z¢ of the negative phase. We designate an RBM model with such variables a
‘bipartite latent-space RBM.” In such an RBM model, there is no difference in kind between the ‘visible’ and
‘hidden’ units (for example, z; and z,, respectively, in the positive phase). The fantasy states are evolved via
PCD Gibbs sampling whereas the posterior latent states remain ‘clamped’ to their original values (VAE
encoder output) and are not subjected to Gibbs sampling.

In the studies conducted for this paper, we have adopted a slightly different approach. We consider the
posterior latent variables z to be inputs of the positive phase of the latent-space RBM (z,) and add an equal
number of hidden units (ZZ) to the model. The values of the hidden units of the positive phase are
determined by one-step Gibbs sampling, given the values of the visible units [see top equation of (3) for the
hidden units’ distribution]®. The values of the ‘visible’ and ‘hidden’ units of the negative phase (z¢ and z{,
respectively) are evolved by PCD Gibbs sampling, as in the bipartite latent-space model. We call a model with

8 During training, the visible units of the positive phase z, which correspond to the VAE’s latent variables, are continuous because they are
Bernoulli variables relaxed via the Gumbel-softmax trick to make the objective function differentiable. The fantasy states of the negative
phase 7%, by contrast, remain discrete variables and are not relaxed during training. However, the variable type (continuous or discrete)
of the hidden units of the positive phase is not obvious. The values of the positive phase’s visible and hidden units are used to compute the
positive phase’s energy Eg (z,, z}@ ), which does not depend on the variational parameters ¢ [see bottom equation of (2)]. We evaluated
all applicable combinations of continuous and discrete units in the formula for the energy of the positive phase (continuous visible and
continuous hidden, continuous visible and discrete hidden, and discrete visible and discrete hidden). The combination of continuous
visible units and discrete hidden units produced the best performance, and we chose this combination, based on this empirical observation,
as indicated in figure 2. We will address this question more rigorously in future research.
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Figure 2. Contrasting architectures of RBM prior models. (a) Prior model in which an RBM is implemented between two
subdivisions of the VAE’s latent space, obtained by dividing the latent units z and ¢, sampled from, respectively, the approximate
posterior ¢ (z|x) and model prior pg (), into two equally sized parts each (here termed ‘bipartite latent-space RBM’) [26,
29-31]. (b) RBM prior model in which a true hidden layer is added to the layer of posterior latents, which constitute the ‘visible’
layer of the RBM’s positive phase (here termed ‘RBM with augmented positive phase’). Here, the symbolic expressions for the
approximate posterior and prior distributions [g¢ (z|x) and pg (2?), respectively] highlight the fact that the posterior latents are
relaxed into continuous random variables z during training whereas the prior latents (fantasy states) remain discrete variables Z¢.
In a bipartite latent-space RBM, the latent states z of the approximate posterior remain ‘clamped’ to their original values (VAE
encoder output) whereas the fantasy states z¢ of the negative phase are evolved via PCD Gibbs sampling. In this work, we treat the
latent variables z of the approximate posterior as the visible units of the RBM (z,) and add an equal number of hidden units (zi),

thus augmenting the RBM’s positive phase. The values of z{ are determined by one-step Gibbs sampling, given the values of z,.
The values of the ‘visible’ and ‘hidden’ units of the negative phase are evolved by PCD Gibbs sampling, as in the bipartite
latent-space model. The symbol k denotes the number of Gibbs-sampling steps.

such features an ‘RBM with augmented positive phase’ The contrasting architectures of the two models are
shown in figure 2. We chose the augmented model rather than the bipartite latent-space one to conduct our
experiments because it had demonstrated a somewhat more dynamic training and a slightly better
performance in preliminary experiments that did not comprehensively evaluate and compare the training
behavior and performance characteristics of the two RBM-model versions.

4. Evaluation of anomaly-detection performance

For the experiments reported in this paper, we trained 16 models (10 for the experiments assessing
performance on the baseline dataset with nonoptimal hyperparameters; section 5.1.2) independently, and we
report mean +/— standard deviation. The reconstruction error of the ELBO [negative of left term in (6)]
can be operationalized by the mean squared error (MSE) between the training data and the decoder output
(reconstructed training data). We used this error metric when the input data were normalized by mean
centering and scaling to unit variance (z scores), which was the case for the datasets with drop-in-airspeed
anomaly during takeoff. The MSE between the original and reconstructed training data is:

S
1 .
MSE, = S § |[x® —x)|2, (10)
s=1

where x symbolizes the input data and X their reconstructions and the sum is taken over a minibatch of
training data.

We used a different error metric to estimate the reconstruction error when the training data were
normalized to lie between zero and one using the transformation

5/ — E — min{é}
max{€} — min{€}’
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where &’ symbolizes the transformed data. This was the case for the dataset with a delay-in-flap-deployment
anomaly during approach to landing. In this case, we used the binary cross entropy (BCE) to estimate the
reconstruction error:

S ]
1 S ~ls S ~lS
BCEX:—E E E x})logx]-()+(1—x]())log(l—x]-()) , (12)

s=1 j=1

where the sums are over input instances s and features j. Our experiments had shown that the BCE error
metric captured the reconstruction error more accurately when the input data were scaled
to the interval [0, 1].

Since nominal data points are much more prevalent than anomalous ones, a generative model primarily
learns patterns exhibited by nominal data, and, therefore, their reconstruction errors (MSE or BCE) tend to
be smaller than the errors of anomalous points. However, a powerful encoder-decoder model without
regularization will also fit anomalous data points, which is undesirable when the reconstruction error is used
as the metric to identify anomalies, as is the case in our studies. To discourage the fitting to anomalous
instances, our models are variational (rather than pure) autoencoders. The regularizing KL-divergence term
in the ELBO of a VAE [(4)] penalizes the divergence between the approximate posterior g4 (z|x) and prior
po(z). To control the extent of fitting to the training data (via the autoencoding term) relative to the strength
of regularization (via the KL term), we introduce the hyperparameter (5 into the objective function [see (7)],
based on the method developed in [21]. 5 regulates the relative weighting of the autoencoding and KL terms
of the ELBO. When {3 is chosen properly, in such a way that the reduction in KL divergence due to the
similarity between posterior and prior outweighs the rise in reconstruction error due to the lack of fit to (the
few) anomalous data points, the model can be induced to preferentially fit data in the nominal majority class.
Hence, optimal anomaly detection depends on the careful tuning of the hyperparameter (.

Once a VAE model is trained with empirically optimized hyperparameters, we use the reconstruction
errors per training instance, e, to determine an anomaly-score threshold. The threshold is based on the
assumption that the data (nominal and anomalous instances) are normally distributed and is specified as:

thr = (e) + zAe, (13)

where the angle brackets and A denote, respectively, the mean and standard deviation over training
instances, and z the z score, derived from the (known) percentage of anomalies in the training set using the
quantile function. Once the threshold is determined based on the training data, we identify anomalies in the
test data by calculating the anomaly score (reconstruction error) for each test-data instance and comparing it
to the above threshold; instances with an anomaly score below the threshold are classified as nominal, and
instances with a score above the threshold are considered anomalous. This two-step process, of computing
the anomaly-score threshold based on the training data and calculating anomaly scores from test data,
ensures that the proportion of anomalies in the test set needs not to be the same as in the training set: the
threshold is simply determined from the training set, and, independent thereof, test-set instances with
anomaly scores less than the threshold are considered nominal and test instances with scores greater than it
are considered anomalous. In practical situations, the fractions of anomalies in the training and test sets
might often be similar (as in our experiments), but this will not always be the case, and our models and
anomaly-detection methodology can accommodate such cases.

Anomaly scores given by the BCE error metric are reasonably normally distributed. However, anomaly
scores corresponding to the MSE metric are considerably skewed to the right and possess a long right tail. We
applied various normalizing transformations to such anomaly scores, including the square-root,
natural-logarithm, and inverse (reciprocal) transformation. On average, the logarithm produced the best
anomaly-detection performance (on the validation set). For this reason, we applied a log transformation to
the reconstruction errors of training-set instances and the anomaly scores of test-set instances derived from
datasets normalized with standard (z-score) scaling. We sampled both the (log-transformed) training-set
reconstruction errors and the (log-transformed) anomaly scores of the test set ten times each per data point.
We then used the average (log-transformed) reconstruction errors per training instance e to compute the
anomaly-score threshold thr according to (13) and the average (log-transformed) anomaly scores of the test
set to classify data as nominal or anomalous. The thus predicted data labels, determined in an unsupervised
way, were then compared with the known true data labels to compute performance metrics.
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In all studies, we assume that the nominal data are the negative class and that the anomalous data are the
positive class. We assess model performance with three metrics—precision, recall, and F1 score—specified as:

TP
precision = TP~ FP’
1l L 14
recall = ———
TP+FN’ (14)
2
F1 score =

1 .. 1
recall”" + precision

where TP represents true positives: correctly identified anomalies, FP false positives (alarms): nominal
instances incorrectly categorized as anomalous, and FN false negatives: missed anomalies or instances that
were incorrectly classified as nominal.

5. Experimental results and discussion

All VAE models were implemented in Python using the PyTorch deep-learning library [62]. Our VAE model
with Gaussian prior is an upgraded version of the CVAE model introduced in [41], which achieved
state-of-the-art performance in detecting anomalies in aviation time series. In all models, the Adam
optimizer was used, with a learning rate of 3 x 10~* and default momentum parameters [63]. We used
minibatch-based optimization. Minibatches of mutually exclusive training-set instances were re-shuffled for
each epoch of training. All minibatches comprised 128 training-set instances, except for the minibatches
used for post-training in the transferability study (section 5.2), which contained 32 instances. We used
validation sets to determine combinations of hyperparameter values with good performance. Except for the
final layer of the encoder, which outputs the estimated parameters of the approximate posterior and the
reparameterized latent variables (and effects the relaxation of discrete latent variables in discrete-variable
models), all models use the same encoder and decoder architecture presented in appendix G.

5.1. Baseline study: drop in airspeed during takeoff

We determined the baseline performance of the VAE models with Gaussian, Bernoulli, and RBM priors on a
dataset of departing flights with drop-in-airspeed anomaly. Subject matter experts ascertained that if the
speed of an aircraft drops by more than 20 knots during the first minute of flight, an adverse event might
ensue, and, therefore, data points with such a property are classified as anomalous. The dataset contains

27 346 instances of flight-operation data from commercial flights, with 657 (2.40%) anomalies. It comprises
time series of primarily 1 Hz recordings of seven flight parameters, including position (i.e. altitude),
orientation (i.e. angle of attack and pitch angle), speed (i.e. computed airspeed and wind speed), and binary
state variables describing whether the auto-throttle and lateral autopilot modes were on or off. The data were
acquired in real time aboard the aircraft and downloaded by the airline once the aircraft had reached the
destination gate. The time series of each data instance span the first 60 s of the initial ascent after becoming
airborne. The drop-in-airspeed anomaly is not necessarily the only type of anomaly in the dataset, and the
true number of operationally significant anomalies is unknown.

5.1.1. Model training

For this baseline study, we randomly divided the data into training (60%), validation (20%), and test (20%)
sets. We used the training set to train the models, the validation set to monitor overfitting and select
hyperparameters, and the test set to assess model performance in an unbiased way. Since the input data were
normalized by mean centering and scaling to unit variance, the MSE [(10)] was used to estimate the
reconstruction error. Models were trained for 400 epochs. Model weights tended to converge at about 100
epochs. We did not observe any overfitting with increasing training time, as visualized by the change over
time of the model’s loss [negative of the 5-ELBO objective (7), sampled over minibatches] when evaluated
on the validation set (figure S1 in the supplementary material).

We assessed many combinations of hyperparameters, separately for each model type (Gaussian,
Bernoulli, RBM), and selected the hyperparameter values that produced the best overall performance in
precision, recall, and F1 score. Our approach to use anomaly-detection performance on a validation set,
assessed by comparing the data labels predicted by a model with the validation set’s known true labels, to
tune model hyperparameters is comparable to the hyperparameter-optimization strategies employed in [41,
64]. The hyperparameters chosen for each model are given in table 1. The RBM model, which has a more
flexible and expressive prior than the models with standard normal or Bernoulli prior, performed optimally
at a lower latent-space dimensionality than the Gaussian and Bernoulli models. We also explored the
application of a loss penalty to the RBM coupling weights W and the use of a sampling replay buffer, in which
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Table 1. Hyperparameters used for the Gaussian, Bernoulli, and RBM models.

Model prior No. latents® beta® lambda“ No. fant. part.4 Len. pers. chains®

Drop-in-airspeed anomaly during takeoff

Gaussian 256 [16-512] 60 [1-100] N/A N/A N/A
Bernoulli 128 [16-512] 60 [1-100] 0.1 [0.05-0.3] N/A N/A
RBM 64 [16-512] 60 [1-100] 0.1 [0.05-0.3] 500 [100-2000] 20 [1-100]

Delay-in-flap-deployment anomaly during approach to landing

RBM 32 [16-512] 30 [1-100] 0.1f 5008 25 [1-100]

Numbers in brackets give the minimum and maximum hyperparameter values investigated.

2 Number of latent units.

 Hyperparameter 3 controlling the balance between the autoencoding and KL terms.

¢ Temperature of the relaxed Bernoulli distribution.

4 Number of fantasy particles/persistent chains.

¢ Length of persistent chains.

fWe did not re-tune the temperature parameter for the study with delay-in-flap-deployment anomaly because in prior studies values of
A less than 0.1 had led to numerical instability in gradient computation due to insufficient smoothness during some training runs and
greater values did not improve performance while increasing estimation bias.

8 We did not re-tune this parameter for this study because performance is quite insensitive to the number of persistent chains. The
insensitivity to this variable is due to the fact that negative-phase energies are averaged (over the number of chains) at the end of each
sequence of Gibbs updates and only the average energies are used to calculate (unnormalized) log prior probabilities.

Table 2. Training times (400 epochs) of VAE models with Gaussian, Bernoulli, and RBM priors when trained on the combined
training/validation set.

Model Training time

Gaussian 1 h 00 min 29 s (£ 56s)
Bernoulli 58 min 27 s (= 19s)
RBM (k=1) 1h04 min13s (£ 305s)
RBM (k=20) 1h34min17s (£ 195s)

Times in parentheses indicate standard deviations.
The symbol k stands for the number of Gibbs-sampling steps.

5% randomly chosen fantasy states are not determined by the persistent chains but randomly set to 0 or 1
with equal probability [65]. In addition, we looked into KL-term annealing (‘warm-up’) [66], a hierarchical
(conditional) posterior [31, 32], multiple sampling and averaging of the ELBO and its gradients [31], and the
continuous Bernoulli to normalize the ELBO’s reconstruction term [67]. In the end, we did not apply any of
these modifications because none of them improved the performance of our models, where applicable.

To assess model performance, the training and validation sets were combined, and the models were
re-trained on the combined training/validation set. We then evaluated the performance of the models on the
test set. The times of training the Gaussian, Bernoulli, and RBM models on the combined training/validation
set for 400 epochs on a Skylake GPU-enhanced node of the Pleiades supercomputer’ at the NASA Ames
Research Center are shown in table 2. The Gaussian and Bernoulli models as well as the RBM model with
one PCD Gibbs-sampling update during the negative phase require about the same average training time
[Gaussian: 1 h 0 min 29 s, Bernoulli: 58 min 27 s, RBM (k=1): 1 h 4 min 13 s]. On the other hand, the RBM
model with 20 Gibbs updates requires, on average, more time to train [RBM (k=20): 1 h 34 min 17 s].

Figure 3 shows the values of the latent units of the positive phase [z ~ g4(z|x)] and of the negative phase
(2% ~ pg(z9)] averaged over latent dimensions and minibatch instances during a typical training run as well
as the corresponding mean energies according to the bottom equation of (2). Values for each minibatch (171
per epoch) are shown. The figure illustrates that the mean negative-phase values (of the latent variables and
energy) closely follow their positive-phase counterparts. However, the mean negative-phase values fluctuate
less and are more centered. These findings indicate that the (free-running) negative phase re-produces a
smoothed and partially averaged version of the structure of the VAE latent units of the (clamped) positive
phase.

Training of the RBM biases and weights was dynamic, suggesting that the PCD algorithm explored well
the energy landscape of the configurations of the system given by the dataset and model (figures S2 and S3 in

9 www.nas.nasa.gov/hecc/resources/pleiades.html.

11


https://www.nas.nasa.gov/hecc/resources/pleiades.html

I0OP Publishing

Mach. Learn.: Sci. Technol. 4 (2023) 035018 T Templin et al

0.01 Positive Phase
0.53 : Negative Phase
-0.51 §
e
i=
D 0.52 =1.0
E >
2 o
® g =1.5 P
% 0.51 Lg
3 T =2.0
a =
>
030 -2.5
18]
(7]
=
‘ -3.0
0:49 Positive Phase
Negative Phase -35
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Epoch Epoch
Figure 3. Values of latent units and energy, averaged over latent units and minibatch instances, of the positive phase [z ~ g (z|x)]
and of the negative phase [Z¢ ~ pg(Z?)]. The average negative-phase values of these quantities are more centered than the
corresponding average values of the positive phase, indicating that the negative phase re-produces a smoothed version of the
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Figure 4. Histograms of average log-transformed anomaly scores for two training modes of the RBM model. Data points to the
right of the dashed threshold line are categorized as anomalies. The mode with a threshold of ~5.70 demonstrates a good
separation between nominal and anomalous data, whereas the mode with a threshold of ~5.86 exhibits a less good separation,
with a relatively high number of nominal data classified as anomalies (false positives).

the supplementary material). Histograms of average log-transformed anomaly scores of the RBM model are
shown in figure 4 for two training modes. We sampled both reconstruction errors based on the training data,
to determine the anomaly-score threshold, as well as the test data’s anomaly scores ten times and used the
sample statistics to gauge model performance, as described in section 4. We observed that models enter
different modes during training and differ in their anomaly-detection performance depending on the
adopted mode. The mode with a threshold of about 5.7 for log-transformed anomaly scores produced the
best model performance, with F1 scores >0.65. Training with modes with a threshold 25.8, on the other
hand, resulted in inferior model performance (F1 score <0.65). The superior performance of the mode with
thr = 5.7 is illustrated by the cleaner separation between nominal and anomalous data. Modes with thr 2 5.8,
on the other hand, are characterized by a greater number of false positives (nominal data to the right of the
anomaly-score threshold). Other modes, with thresholds between 5.7 and 5.8, were also observed but are less
common.

5.1.2. Model performance

The performance of the VAE models with Gaussian, Bernoulli, and RBM priors in the baseline study is
shown in figure 5. The RBM model achieved a mean precision of 0.563, a mean recall of 0.817, and a mean
F1 score of 0.666. The Gaussian model achieved a similar performance (pr 0.579, rc 0.778, f1 0.663). A
notable observation is that the Bernoulli model lags behind both the RBM and the Gaussian model (pr 0.425,
rc 0.596, f1 0.495). Our models demonstrate an excellent performance considering that the training was
unsupervised and that the similar unsupervised CVAE model with Gaussian prior developed by [41], which
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Figure 5. Performance of VAE models with Gaussian, Bernoulli, and RBM priors in the baseline study. Error bars indicate
standard deviations of performance metrics among 16 independently trained models. Overall, the models demonstrate excellent
performance on this unsupervised anomaly-detection task (average F1 score of 0.608). The more expressive discrete RBM model
performs better than the simple discrete Bernoulli model and at a level comparable to the continuous Gaussian model. The DVAE
appears to benefit from the flexibility and adaptability of the energy-based RBM prior.

achieved state-of-the-art anomaly-detection performance on aviation datasets, achieved a precision of 0.31
and recall of 0.53 on a dataset similar to the one used in our baseline study'’. Both the Gaussian and
Bernoulli models use the simplest factorized priors—the Gaussian model the continuous standard normal
distribution and the Bernoulli model the discrete ‘standard’ Bernoulli distribution, with a parameter of 0.5.
The models’ similar training times also attest to their comparability (see table 2). Comparing the two models
with simple factorized priors, the continuous (Gaussian) model performs better on this dataset, which is
dominated by continuous time-series inputs (5 continuous time series, 2 discrete/binary ones). On the other
hand, the performance deficit of the simple Bernoulli model is offset by the more expressive RBM model,
both of which are discrete VAE models. Precisely the RBM model’s flexibility and capability to adapt to the
posterior distribution push it to a level of performance on par with the continuous Gaussian model. This
observation highlights the performance boost accorded by energy-based modeling and MCMC sampling of
the persistent states of the negative phase.

While training and evaluation with optimized hyperparameters allows a fair comparison between
models, the approach leads to an overestimation of model performance when no validation set with labeled
instances is available, as is frequently the case in practice, including in aeronautics applications. To give an
impression of the performance of our models when nonoptimal hyperparameters are used, we trained
models with all combinations between four different values for the latent-space dimensionality and five
different settings for the hyperparameter 3. The performance of models with 32, 64, 128, and 256 latent units
as well as (§ values of 1, 10, 25, 50, and 100 was evaluated. The other hyperparameters were set to their
optimized values, as applicable. We trained ten Gaussian, Bernoulli, and RBM models each in this way for
300 epochs, which allowed model weights to converge to their final values, and averages of the resultant F1
scores are displayed as heatmaps in figure 6. The figure demonstrates the performance degradation that
occurs when nonoptimal hyperparameters are used. A value of the hyperparameter 5 of 50 or 100 is
associated with moderate performance (F1 score between 0.314 and 0.536 across all three models), while a 5
value of 1, 10, or 25 leads to poor performance (F1 score between 0.202 and 0.328). The influence of the
hyperparameter 5 on model performance is nonlinear, with a value of 1 or 25 resulting in better performance
than a f of 10. Performance differences due to different numbers of latent units are less pronounced. All
latent-space dimensions investigated in this experiment (32, 64, 128, and 256) produce good performance
and correspond to the latent-space dimensions employed in all studies described in this paper (see table 1).

10 The experiment presented in [41] was performed on an extended version of the baseline dataset of departing flights with drop-in-
airspeed anomaly that comprised 20 input features, and, in contrast to the models used for the studies conducted for this paper, highly
correlated features were routed through five separate encoders and decoders, and the encoder and decoder outputs were combined in,
respectively, the latent space and the reconstructed input space. In the experiments reported in both papers, hyperparameters were tuned
on validation sets.
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Figure 6. Performance of the Gaussian, Bernoulli, and RBM models in the baseline study after training with nonoptimal
hyperparameters. The figure shows heatmaps of average F1 scores for the three models across the hyperparameters latent-space
dimensionality and hyperparameter 3, which are common to all three models. Across the three models, F1 scores are noticeably
lower than after training with hyperparameters tuned based on validation-set performance, demonstrating the performance
degradation incurred by using nonoptimal hyperparameters.

5.2. Model transferability

The DASHlink dataset'' used in this experiment consists of time series of sensor data collected during the
first 60 s of the takeoff phase of commercial flights. This is a dataset collected independently of the dataset
used in the baseline study (section 5.1) but containing the same flight-parameter time series as the baseline
dataset. The dataset also contains the same anomaly (drop in airspeed during takeoff by more than 20 knots)
as the baseline dataset. The transferability study tests the ability of the models tuned and trained on the
baseline data to transfer to another dataset containing the same input attributes and anomaly. All
transferability experiments were conducted with hyperparameters determined by training on the baseline
dataset’s training set and assessing model performance on the baseline dataset’s validation set (table 1). We
examined two versions of transferability: a strong version, in which a model trained on the baseline data was
directly tested on the DASHIink takeoff data, and a relaxed version, in which the best-performing model
trained on the baseline data, as evaluated on the baseline data’s validation set, was post-trained on the
DASHIink takeoff data for 300 epochs. This method ensures that the biases and weights of the previously
trained model are transferred to the target model, to be trained on the new dataset.

The DASHIink takeoff dataset of 2681 instances with 56 (2.09%) anomalies was split into training (50%)
and test (50%) sets in a random but stratified way. The training set was used to determine the anomaly-score
threshold [(13)] and the test set to compute average log anomaly scores [log of (10)], which were used, in
conjunction with the known data labels, to determine model performance. Results are shown in figure 7. The
models with Gaussian, Bernoulli, and RBM priors performed similarly; all results are within each other’s
error bounds (standard deviations of performance metrics among separately trained models). The average
F1 scores of the Gaussian, Bernoulli, and RBM models are 0.356, 0.334, and 0.355, respectively, in the
transferability experiment without post-training (figure 7(a)). The values of this metric (in the same order)
for the experiment with post-training of the best-performing baseline model are 0.420, 0.406, and 0.400
(figure 7(b)). Comparing the baseline experiments and the transferability experiments with post-training,
the model transfer reduced anomaly-detection performance (as measured by F1 score averaged across
models) by 20.0 percentage points. Post-training on the target dataset slightly improves the overall F1-score
average, by 6.03 percentage points. The relatively small extent of the performance improvement highlights
the importance of hyperparameters for model performance. The structure of the results is similar to that in
the baseline study, with recall higher than precision. The Bernoulli model does not lag behind the other
models, as in the baseline study. Overall, the model transfer markedly reduced model performance while still
producing usable results. The transferability results are more difficult to interpret with regard to performance
differences between the three models than the baseline results because the experiments from which they were
obtained were more complex and involved additional factors (compared with the baseline experiments) since
they involved two datasets. We report additional transferability experiments in supplementary section S2.

11 extracted from the data posted at https://c3.ndc.nasa.gov/dashlink/projects/85/ [77].
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Figure 7. Performance of VAE models with Gaussian, Bernoulli, and RBM priors in the study examining the ability of the models
tuned and trained on the baseline data to transfer to the DASHlink takeoff data. Error bars indicate standard deviations of
performance metrics among 16 independently trained models. Performance was assessed based on a threshold derived from the
DASHIink training set, (a) without or (b) with post-training on the new dataset for 300 epochs with model weights initialized by
training to convergence on the baseline dataset. The figure depicts similar performance for all models, trained without
supervision, markedly worse than in the baseline experiment, but still in the useful range.

5.3. Robustness of RBM model: delay in flap deployment during approach to landing

To deepen our insight into the behavior and performance of the quantum-compatible DVAE model with
RBM prior, we conducted a further anomaly-detection study with this model, on another dataset, including
de novo determination of hyperparameters and training. The experimental approach for this study is similar
to the one adopted for the baseline study (section 5.1). The anomaly in the dataset used for this study is a
delay in the deployment of flaps, as judged by a subject matter expert, during the final approach to landing,
lasting approximately 160 s'. As in the previous experiments, this labeled anomaly is not necessarily the only
anomaly in the dataset, and the label is not among the model inputs during the unsupervised training. The
dataset contains ten time series of aeronautical sensor outputs, relating to position, orientation, and speed of
the aircraft, as well as to the positions of the control surfaces.

The dataset was randomly divided into training (60%), validation (20%), and test (20%) sets. Since the
data were normalized to lie in the range of zero to one using (11), we used the BCE [(12)] to estimate the
reconstruction error [negative of left term in (6)]. Training proceeded for 400 epochs and weights converged
to their final values after about 100 epochs. We again independently trained 16 models and report the mean
+/— standard deviation of their performance. We did not observe any overfitting over the epochs of training,
as visualized by the progression of the losses of the validation set. The hyperparameters tried out that
produced the best overall performance in precision, recall, and F1 score, evaluated on the validation set, are
given in table 1 and were used for this study. To test model performance, the training and validation sets were
combined for the purpose of model training, and then the performance of the models trained in this way was
evaluated on the test set. It should be noted that in this study anomaly scores were not log-transformed
because the original scores were already approximately normally distributed. Log transformation neither
increased the scores’ normality nor improved anomaly-detection performance. Additional information is
provided in supplementary section S3.

Table 3 shows the performance of the RBM model in this case study. The model achieved a mean
precision of 0.591, a mean recall of 0.647, and a mean F1 score of 0.618. The mean F1 score is similar to
(slightly lower than) the F1 value of 0.666 achieved by the RBM model in the baseline study, which was

12 The dataset contains 21302 instances, 954 (4.48%) of which exhibit the delay-in-flap-deployment anomaly. A larger curated unnor-
malized dataset containing these data is publicly available at https://c3.ndc.nasa.gov/dashlink/resources/1018/ [78]. The dataset used for
the study can be reproduced from the posted dataset, up to stochastic differences due to the random selection of data points. To replicate
the study’s data, one (randomly) chooses a subset of the nominal data, chooses only the anomalous data with the pertinent anomaly,
and scales the data according to (11), with & referring to the training data. Only the following attributes are then included: Corrected
AOA, Barometric Altitude, Computed Airspeed, TE Flap Position, Glideslope Deviation, Core Speed AVG, Pitch Angle, Roll Angle, True
Heading, and Wind Speed.
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Table 3. Performance of the VAE model with RBM prior in the experiment with late-deployment-of-flaps anomaly during final
approach to landing.

Performance metric ~ Average  Standard deviation

Precision 0.591 0.0543
Recall 0.647 0.0564
F1 Score 0.618 0.0554

performed on a dataset with drop-in-airspeed anomaly during takeoff. Consequently, the
late-deployment-of-flaps study corroborates the excellent anomaly-detection performance of the
unsupervised DVAE model with RBM prior observed in the baseline study and illustrates the model’s
robustness to change of anomaly type and phase of flight.

5.4. Model design

We developed two DVAE models. The Bernoulli model employs a factorized Bernoulli distribution as prior,
in analogy to the predominant continuous VAE with Gaussian prior [(1)]. The RBM model is an attempt to
make the DVAE more flexible and expressive. It places an RBM in the VAE’s latent space, so that the VAE’s
latent units are the RBM’s inputs, and uses the energy-based restricted Boltzmann distribution given in (2) as
prior. The RBM model parameters a, b, and W are tuned during training by the interplay between positive-
and negative-phase energies, and the ‘visible’ and ‘hidden’ units of the negative phase (fantasy states z¢ and
i;f, respectively) are updated via MCMC Gibbs sampling from (3).

DVAE models are less common than VAEs with continuous latent variables because an ELBO objective
[(4)] containing discrete variables cannot be differentiated, thus precluding the computation of ELBO
gradients, a necessary operation during the backward pass of training. In order to make DVAEs
differentiable, the reparameterization trick [10], which moves the variational parameters ¢ from the
distribution g4 to a more easily differentiable deterministic function gy, is extended by a smoothing function
[26] or a continuous relaxation [24, 60]. Our Bernoulli and RBM models employ the Gumbel-softmax trick
[24, 60] to relax the discrete posterior latents z7 ~ g (z%|x).

Several authors [26, 29-31] break up the VAE’s latent space into two equally sized partitions and
implement the positive phase of the RBM between the two halves of latent units z sampled from the
approximate posterior g, (z|x) and, similarly, the negative phase between the latent units z? sampled from
the RBM prior pg(z?). In this paper, we have termed an RBM model with such characteristics a ‘bipartite
latent-space RBM.’ In the experiments performed for this paper, we have adopted a somewhat different
approach and introduced a hidden layer in the RBM’s positive phase, which is obtained in one
Gibbs-sampling step from the positive phase’s visible layer, comprising the VAE’s latent units. The evolution
of the negative phase’s fantasy states is accomplished by k-step Gibbs sampling (k > 1) in both RBM versions
(see figure 2).

In addition to adding a truly hidden layer to the RBM’s positive phase, we also introduced the
hyperparameter /3 into the ELBO objective function [see (7)]. While Higgins et al [21] devised the 5-ELBO,
in which f3 regulates the trade-off between the autoencoding and KL-divergence terms, as a way to promote
disentanglement between latent dimensions by enforcing a minimum similarity between variational
posterior q¢(z|x) and prior pg(z), we tune 3 to optimize anomaly-detection performance, as measured by
performance metrics [(14)].

5.5. Hyperparameters and normalizing transformations

Latent-space dimensionality and the hyperparameter 3 are hyperparameters that have a strong effect on
model performance (in all three models) and require optimization for each application. Models with 32-256
latent units generally exhibited good performance, whereas model performance was very sensitive to the
specific choice of 3; hence, the choice of the value of the hyperparameter 3 is application-specific. The
temperature A of the concrete distribution [24, 60], which determines differentiability with respect to the
variational parameters and the bias in gradient estimation introduced by the continuous Gumbel-softmax
relaxation, is also important for the discrete models (Bernoulli and RBM) and requires tuning. We used a A
of 0.1 throughout our studies because it balances the trade-off between estimation bias and differentiability
and had proved the optimal value among the ones tested. We did not use an annealing schedule to gradually
reduce A over the epochs of training, but we used discrete (‘hard”) Bernoulli variables for validation and
testing. While the length of the persistent chains (fantasy particles) had a mild influence on the performance
of the RBM model, the number of fantasy particles was quite unimportant, due to the averaging of the
particles’ (negative-phase) energies at the end of each series of Gibbs updates (per minibatch); we used 500
throughout. When optimal, or even adequate, hyperparameters are unknown and labeled data not available,
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which is often the case in practical applications, the performance of unsupervised anomaly-detection models
can frequently be improved by making the effort to prepare a small labeled validation set that includes
relevant anomalies and using it for hyperparameter tuning [68, 69].

We were able to boost anomaly-detection performance by applying a normalizing transformation to
skewed anomaly scores (MSEs) with a conspicuous right tail. We always used a log transformation because,
on average, it had performed best on validation data, but less skewed scores might benefit more from a
square-root transformation and for more strongly skewed scores an inverse transformation might be optimal.

6. Conclusions

The accurate and timely discovery of flight-operation anomalies is important because they can be precursors
of potentially serious aviation incidents or accidents. To detect operationally significant anomalies and
preempt future accidents, airlines and transportation agencies will have to increasingly rely on advanced
machine-learning techniques applied to historical data or online data streams. Multifactorial and nonlinear
anomalies defy traditional anomaly-detection methods, such as exceedance detection [70, 71], and the
volume and proportion of anomalies characterized by heterogeneous and high-order feature interactions are
only expected to grow with increasing airspace complexity, characterized by increasing passenger volume, the
integration of unmanned aircraft systems, and urban air mobility. Since labeled data (i.e. data classified as
either nominal or anomalous) are costly to obtain and frequently not available and flight anomalies
heterogeneous in nature, unsupervised learning approaches, such as the one portrayed in this paper, are
often the preferred or only feasible option.

We developed unsupervised convolutional VAE models with a latent space based on Gaussian, Bernoulli,
and RBM priors. The discrete Bernoulli and RBM versions are an attempt to design models whose latent
space captures the discrete nature of objects processed by machine-learning models, such as semantic classes,
causal factors, digital samples, and other discrete entities. The RBM model allows a straightforward
integration with quantum computing because the fantasy states of the RBM’s negative phase can be sampled
by measuring a parameterizable density operator pg or wavefunction g in the computational basis. Such a
quantum generative process can be produced by a quantum Boltzmann machine (QBM) implemented on an
annealer [61] or by a quantum-circuit Born machine (QCBM) [72].

While the developed models exhibit good performance overall, the discrete Bernoulli model performs
more poorly than the other two. On the other hand, the more expressive RBM model, which, during training,
employs unnormalized energies rather than probabilities and MCMC to sample from the prior distribution,
is a discrete-variable model whose performance matches that of the VAE model with continuous Gaussian
prior, the customarily employed prior type. Transferring a model without re-tuning of hyperparameters or
re-training to a new dataset with the same anomaly results in an anomaly-detection performance that is
noticeably impaired, but still respectable, considering that the datasets involved consist of multiple complex
time series and the training was executed without supervision. Moreover, the model with RBM prior proved
robust to changes in the type of anomaly and phase of flight. We would like to note that our VAE models
with continuous and discrete priors are universal generative models and not limited in application to
aeronautics data and, with slight modification, can also be applied to other time-series or image data.

In future studies, we will use more advanced algorithms, such as parallel tempering and adaptive-step
PCD [50, 54, 73-76], to conduct negative-phase sampling, to see if such schemes improve model
performance. We will also devise an estimator of the log partition function, to compute log-likelihood
estimates for future generation studies. We also intend to use conditional VAEs or other deep generative
models to generate artificial anomalies, to enhance anomaly-detection datasets and, ultimately, the
performance of anomaly-detection algorithms. We plan to integrate quantum capabilities by developing a
QBM, implemented by quantum annealing, or a QCBM. In addition, we intend to further increase the
expressiveness of the VAE prior by replacing the relatively simple RBM network in the latent space with a
more sophisticated energy-based feedforward network, and we will attempt to integrate such an EBM with
quantum computing.

Data availability statement

The data that support the findings of this study are openly available at the following URLs/DOIs: https://c3.
ndc.nasa.gov/dashlink/projects/85/ [77] and https://c3.ndc.nasa.gov/dashlink/resources/1018/ [78]. The
proprietary data used for the baseline study (section 5.1) cannot be made available for legal reasons. The
datasets from which the data used for the studies on model transferability (section 5.2) and the robustness of
the RBM model (section 5.3) were extracted are available at, respectively, https://c3.ndc.nasa.gov/dashlink/
projects/85/ [77] and https://c3.ndc.nasa.gov/dashlink/resources/1018/ [78] (see footnote 12 for details). The
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software source code implementing our deep-learning models and containing the scripts to train them and
evaluate their performance on datasets is under official review for software-release authorization at the time
of publication and will be made available at NASA GitHub (https://github.com/nasa/) once approval of
release has been obtained.

Acknowledgments

We would like to thank Bryan Matthews for his help with preparing the datasets used in the studies reported
in this paper and Arash Vahdat for a helpful discussion on energy-based modeling while preparing this work.
This work was supported by NASA Ames Center Innovation Funding. A A A, M M, and P A L acknowledge
funding support from NASA Academic Mission Services Contract NNA16BD14C (System-Wide Safety
Project). A A acknowledges funding support from NASA Academic Mission Services Contract
NNA16BD14C and from NSF Award CCF-1918549 through the Feynman Quantum Academy Internship
Program. The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation thereon.

Appendix A. Generative model (decoder) and recognition model (encoder) of directed
generative model with latent variables

The generative model (decoder) reconstructs the input data from the latent variables [5, 55]. The statistics of
the generative model’s output are given by the marginal distribution:

pe(x) = /pg(x,z)dz: /pg(x|z)p9(z)dz. (A1)

Here, the joint distribution of the input variables x and the latent variables z, pg(x,z), defines the model
distribution. In a directed generative model, the model distribution is explicitly factored into the generative
distribution pg(x|z), the distribution of the generative model’s output given a latent-space realization, and
the model’s prior distribution pg(z). The marginal distribution is then obtained by integrating
(‘marginalizing’) over the latent variables (see figure 1). If the latent variables are discrete, the integration
in (A1) is replaced by summation.

In representational learning, input-dependent latent variables (the ‘code’) are identified by a second
model, the recognition model (encoder). The lower the number of latent variables, the more compressed is
the model’s latent space, with the degree of compression given by the ratio of input to latent variables. The
statistical distribution of the recognition model’s output is called the recognition or posterior distribution,
po(z|x), the probability of the set of latent variables conditioned on the input data (see figure 1). The
posterior distribution is given by Bayes’ rule as [55]:

_ pe(x,2z) _ pe(x|z)pe(z)
pe(Z|X) - p@(x) - PH(X) . (Az)

Appendix B. Variational inference

Models that allow the tractable computation of the posterior distribution are called invertible and those that
do not noninvertible [5]. Noninvertible models do not allow gradient computations and concomitant
optimization. Deep latent-variable models are noninvertible because no analytic solution or efficient
estimation procedure exists for the marginal probability given in (A1). Since the marginal is intractable, the
posterior given in (A2) is as well as it requires the marginal in its denominator [55]. Approximate-inference
techniques approximate the true posterior pg(z|x) and marginal pg(x) [5, 55]. The approximate posterior is
written as g (z|x) (see figure 1). Variational inference is such an approximation technique. In variational
inference, the marginal log likelihood is decomposed as follows [10, 55]:

log po(x) = Dxu.(q¢(2[x)||pe(z[x)) + L(6; $; %). (B

The expression Dy (p||q) = E,log[p/q] stands for the Kullback-Leibler (KL) divergence, an asymmetric
‘distance’ between two probability distributions. The term £(0, ¢;x) denotes the ELBO—a variational
approximation, from below, to the true marginal log likelihood. As the KL divergence is non-negative, the
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ELBO is the greater and closer to the log likelihood, i.e. the bound tighter, the closer the approximating
posterior to the true posterior. Hence, maximizing the ELBO simultaneously increases the (log) likelihood
and decreases the distance between the variational and true posteriors.

Appendix C. Unbiased gradients with respect to generative and variational parameters
of VAE with factorized Gaussian prior

Unbiased gradients with respect to the generative parameters 8 are straightforward to obtain, and we can
write:

S
v9E1~q¢(z|x) [f(Z)] = EZN%)(Z‘X) [ng(l)] ~ é Z ng(z(s)) (C1)

The mean on the right of (C1) is a Monte Carlo estimate of the gradient with respect to 8, in which z) isan
i.i.d. sample from g¢(z|x) and S indicates the size of the minibatch.

Unbiased gradients with respect to the variational parameters ¢ are more difficult to obtain because the
expectations in (4) are estimated by sampling from a probability distribution that depends on ¢ [29]. Based
on the gradient of the logarithm of ¢, V ¢ log g4, the score-function estimator [79-81] calculates gradients
with respect to ¢ as:

V¢Ez~q¢(z|x) [f(z)] = ]Ez~q¢ (z|x) [f(Z)V¢10g d¢ (Z|X)}

S
~ < D) Vglogas(291).

s=1

(C2)

Here, we assumed for simplicity that f does not depend on ¢. Unfortunately, gradients based on the
score-function estimator are characterized by high variance and require the use of intricate
variance-reduction techniques (such as control variates) in practical applications [56, 82].

The reparameterization trick [10] is used in VAEs as a low-variance alternative to the score-function
estimator. Here, the random variable z ~ g4 (z|x) is re-expressed by means of an auxiliary random variable
€ ~ p(€) independent of ¢ and a deterministic function ge(-) as z = gg (€, x). We then can write
Eygy(zx) [f(2)] = Ecvp(e)[f(ge(€,%))] and obtain unbiased Monte Carlo estimates of the gradient with
respect to ¢» by moving the gradient operator into the expectation:

V 4By (afx) [(2)] = Eenp(e) [V (85 (€,%))]

1o (C3)
~ 5D Veflga(€ x),
s=1

where €(®) ~ p(€). The reparameterization trick transfers the dependence on ¢ from q¢ into f, substituting
the problem of estimating the gradient with respect to the variational parameters of a distribution with the
simpler problem of estimating the gradient with respect to the variational parameters of a deterministic
function [60].

In a VAE with a factorized Gaussian prior, the latent variables produced by the encoder
4o (z]x) = N (z; . diag(o?)) = [ [,V (2i; pu, 07)) can be reparameterized as z = p + o © €, where ©
represents the elementwise product and € ~ A/(0,1) [55]. In other words, the components of the
reparameterized latent vector z are reparameterized univariate Gaussians z; = p; + oyep, ¢, ~ N (0, 1).
Unbiased gradients with respect to the variational parameters ¢ are then obtained as:

Vo Eon (ndiag(02) [(2)] = Eenon) [Vt +0 O €)]

S C4
gézvzpf(ﬂ-ﬂr@e(s)). ()

s=1

Appendix D. Derivation of 3-ELBO

The constrained optimization problem for a VAE is specified in (D1), where § controls the strength of the
applied constraint.
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rgzx Eyngy (2l 108 Po (x]2)]

. (D1)
st Di(ap(2)lIpo(2)) <8
Using KKT conditions [83, 84] to re-write (D1) as a Lagrangian yields:
F (0,0, 5;x) = Epugy (ax) [log po(x[2)] — B(Dxi(94 (z[x)|pe(z)) — 0), (D2)

where the KKT multiplier /3 is a regularization coefficient that constrains latent-space capacity and exerts
implicit pressure on the latent-space variables z, which represent the input data x, to become less correlated
by drawing each component variable z; in the direction of the corresponding variable sampled from the
prior. Higgins et al [21] demonstrate that a higher [ leads to less entangled latent variables, but it also
decreases reconstruction quality. Disentanglement is easy to visualize in images, by observing the continuous
change of a factor when a latent dimension is varied while the others are held constant. By eliminating the §
term, (D2) can be written as a S-ELBO:

L(0,¢:%,5) = Eqregy (2 [l0g po (X2)] — 5 D (q4 (2%)[|po (2))- (D3)

Since both 5 and § are non-negative constants in (D2), £ bounds F from below:

F(0,¢,5:x) > L(0,¢;x, 5).

Appendix E. Reparameterization trick and unbiased gradients with respect to
variational parameters of VAE with discrete latent space

If each individual latent variable is sampled as z ~ B(p), where B denotes the Bernoulli distribution and p
its parameter, the concrete relaxation can be expressed as [60]:

z=o0((log o +log p —log(1 — p))/A), (E1)

where o denotes the logistic function, o(x) = 1/(1 + e~ *), « the odds of the Bernoulli probability,
a=p/(1—p), pacontinuous uniform random variable on the interval [0, 1], and A the temperature of the
concrete distribution. The temperature parameter A controls the degree of continuous relaxation: the greater
A, the greater is the relaxation and departure from a Bernoulli random variable, whereas small A values
produce continuous variates close to 0 and 1. In our studies, we consistently use a A of 0.1, which we
determined as a hyperparameter with good performance and which introduces only a small bias in gradient
estimation. The concrete or Gumbel-softmax relaxation was only applied during training and not during
evaluation (validation or testing) because differentiability of the objective function is only required during
the training phase and we sought to retain, where possible, the discrete character of the model and avoid the
(slight) estimation bias introduced by the continuous relaxation.

Unbiased gradients of the posterior latents with respect to the variational parameters ¢ of the encoder
are then obtained as:

Voo f2)] = Eprri01)[Veflo((log @t +log p—log(1 - p))/ )]

1S (E2)
~ <D Voflo((log at +log pt —log(1 - p))/2),
s=1

where B(q) denotes the relaxed Bernoulli distribution with parameter q, log 9 the log-odds parameter
vector of the relaxed Bernoulli approximate posterior probabilities, and p ~ 4(0,1).
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Appendix F. KL-divergence terms in ELBO objective of DVAE models

E.1. Bernoulli prior

E.1.1. Stochastic expression

Based on the probability mass function of a Bernoulli random variable, B(k;p) = p* (1 — p)' =, the KL term
of the ELBO of a VAE with a Bernoulli prior can be expressed as:

p d Q¢dk
Dxr(qe(2°[%)|po(2%)) = Ezireg, (21x)

L Z
B 1—@V’
~Ersig | ) log 52" —0.5)
:1 :
[ L

=By | D@ logqi+(1—2)log(1—q;) — 2 log 0.5 — (1 —2) log(1—0.5))
LI=1

ML

0.5 —0.5
Li=1

where g; stands for the parameter of the latent Bernoulli variable Zf ~ B(q;), considered to be discrete, and
0.5 is the parameter of the Bernoulli prior distribution, B(p; = 0.5). The KL term can be implemented with a
binary-cross-entropy loss with logits, frequently available as a class or function in deep-learning libraries,
with the log-odds parameter vector of the respective relaxed Bernoulli distribution [log a9 (approximate
posterior) or log & = 0 (prior)] and the relaxed latent vector z as input arguments. We used this (stochastic)
method [Monte Carlo estimator of (F1)] in all experiments in which the VAE had a Bernoulli prior.

FE.1.2. Analytic expression
For a Bernoulli prior, the KL term can also be written as:

1—k

L1
1_
Dx1(B(z%;q)||B(20.5)) qu — )" Flog a(1—q)

0.5% (1 —0.5)! =k’ (F2)
I=1 k=0

where the possible outcomes k in the support of the posterior distribution g4 (z?|x) are considered to be
discrete and | indexes a latent variable. Algebraic manipulation of (F2) then leads to an alternative analytic
expression for the KL term of a VAE with Bernoulli prior:

L o
Dy (B(z;09)||B(z% 1)) = >

=1

)+ (o +1)log2

)

)+log( a‘lfl_;'_l
ozl +1

(F3)

where a4 stands for the vector of the odds of the parameters of the Bernoulli posterior and reparameterizes
it. We tested this analytic method using the odds of the relaxed Bernoulli posterior to compute the
KL-divergence term in the minibatch-based 8-ELBO loss [negative of (7) over minibatches] during training,
and it basically produces the same results as the stochastic approximation described in the previous section
(same results within the bounds of stochastic variability).

E.2. RBM prior (stochastic)

Since the applied concrete (Gumbel-softmax) relaxation replaces discrete latent variables z* with continuous
variables z, the KL term of the ELBO of a VAE with a relaxed Bernoulli approximate posterior and an RBM
prior can be expressed as:
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Figure G1. Architecture of the encoder of the VAE models.

Dx1(q¢(z[%)|pe(2))
61¢(ZX)}
= E’ZN z|x log=——+
¢ (z[x) { 08 o(z)
= By (21 108 46 (21X)] — By (21 [10g o (2)]

e—Ee(Z)
= IEzr\/qq;.(ZP‘) [log q¢(z|x)] - EZqug,(ZIX) [log Zo :|

(F4)
o Fol2(®.p))
p—
=Epu(0.1)[108 46 (2(®, p)[X)] — Epio,1) [log e #(#P))] +1og Zg
=Epu(0,1)[l0g 9¢(2(¢, p)[X)] +Eprs(0,1) [Eo (2(, p))] +10g Zo.

=Epu(01)[l0g 94 (2(¢, p)[x)] — Eprs(o.1) {108

Since Vglog Zg = —Vg i, () [Ee (z%)] [30, 85], unbiased gradients of the KL term with respect to the
generative and variational parameters can be obtained as:

Vo, {Eonu(0.1)[108 46 (2(¢, ) |%)] +Eprrs0,1)[Eo (2(#, p))] — iy a0y [Eo (27)]}. (F5)

The symbolic expression z? denotes ‘fantasy states, i.e. values of the latent variables produced by the RBM
model (prior) distribution, which remain discrete and are not relaxed during training [30, 31].

Appendix G. Architecture of 3-CVAE models

Figure G1 shows the architecture of the encoder of the VAE models. The input data traverse three parallel
branches of 1D convolution operations with different filter sizes (first numeric) and kernel sizes (second
numeric), followed by batch normalization and ReLU activation, and finally max pooling of size 2. The
decoder is identical to an inverted encoder in which 1D convolutions have been replaced with 1D transpose
convolutions and max pooling with upsampling (with bilinear interpolation).
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