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We identify string corrections to the EM memory effect. Though largely negligible in the low-energy limit, 
the effect become relevant in high-energy collisions and in extreme events. We illustrate our findings in a 
simple unoriented bosonic string model. Thanks to the coherent effect of the infinite tower of open string 
resonances, the corrections are non-perturbative in α′ , modulated in retarded time and slowly decaying 
even at large distances from the source. Remarkably compact expressions obtain for special choices of 
the kinematics in tree-level 4-point amplitudes. We discuss further corrections occurring at higher-points 
and the exponential damping resulting from broadening and shifting of the massive poles due to loops. 
Finally we estimate the range of the parameters and masses for detectability in semi-realistic (Type I) 
contexts and propose a rationale for this string memory effect.
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1. Introduction

Thanks to the universal behavior of soft photons and gravitons 
[1], a memory effect is expected to take place both in electro-
dynamics [2] and in geometro-dynamics [3]. In a series of papers 
[4] a triangle of equivalences Soft Behavior [1,5] - BMS Symmetry 
[6–8] - Memory Effect [9] has been put forward and proposals for 
experimental tests have been suggested [10]. While gravitational 
memory implies a distortion of the detector after a GW has passed 
through [2], EM memory corresponds to a residual velocity (called 
a kick) for the charged particles of the detector [2].

Since String Theory is a consistent quantum theory of gravity 
and electro-magnetism, one expects a similar story to be told. In 
fact, the leading soft behavior of string scattering amplitudes is 
the same as in field theory [11,12]. Since the soft behavior deter-
mines the profile of electro-magnetic (EM) and gravitational waves 
(GW) at large distances from the source, one would naively ex-
pect no string corrections to the memory effect.1 Indeed standard 
low-energy expansions of string scattering amplitudes would pro-
duce corrections in α′ that are highly suppressed at large distances 
and would be totally negligible. However, taking into account the 
infinite tower of string resonances changes the story completely.

* Corresponding author.
E-mail addresses: alice.aldi@roma2.infn.it (A. Aldi), 

massimo.bianchi@roma2.infn.it (M. Bianchi), mfirrotta@roma2.infn.it (M. Firrotta).
1 The term ‘string memory effect’ was coined in [13] in relation to large gauge 

transformations of BMN .

The coherent effect of string resonances, that are crucial for the 
finiteness and consistency of the theory, play a key role in the 
non-trivial corrections to the GW profile produced in a ‘stringy’ 
BH merger in the heterotic string [14]. Here we argue that a simi-
lar phenomenon takes place for EM waves in the Veneziano model 
a.k.a. open bosonic strings. Actually we consider a variant that re-
quires internal dimensions and Wilson lines [15–17] or in modern 
language D-branes and �-planes [18–21].

We focus on the simplest non-trivial scattering amplitudes on 
the disk with insertion of a single photon,2 which expose a pole in 
the frequency at ω = 0, reproducing the EM memory effect, and a 
series of simple poles on the real axis, related to the open string 
resonances.

Integration over ω produces string corrections to the EM wave 
profile even at large distances from the collision R >> L. The 1/R
terms form a series in ζ = exp(−iu/�), where u = t − r is the re-
tarded time and � = 2α′n·p, with n = (1, �x/R) and p one of the 
momenta of the charged particles involved in the process. The se-
ries can be summed for special kinematics i.e. for ‘rational’ values 
of the ratios λi, j = n·pi/n·p j .

Clearly for u>>� i.e. at low energy the effect averages to zero 
due to the strong oscillations but we expect a detectable signal 
for u ≈ �, i.e. in high-energy processes with (many) heavy charged 
particles, such as collisions of cosmic strings or BH mergers. Since 

2 Non-linear aspects of stringy EM, encoded in the DBI action for D-branes, only 
play a role in multi-photon emission. We thank Cobi Sonnenschein for raising this 
issue.
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the effect is general and takes place in more realistic contexts, such 
as chiral Type I models [22], we will estimate the order of mag-
nitudes for the phenomenon to be observed in extreme processes 
where stringy structures may play a role. We will also propose a 
rationale for the origin of this string memory effect.

Let us start with the general line of arguments leading from 
the classical EM memory to its stringy version and then illustrate 
the phenomenon in the simple context of unoriented open bosonic 
strings, a close relative to Veneziano model.3

2. EM memory and string corrections

In classical electro-dynamics, the EM field produced by a source 
Jμ is given by retarded potential Aret

μ . In Fourier space, at large 
distances from the source R = |�x| � |�x′| ≈ L, setting �n = �x/R , one 
finds4

Ãμ(ω, �x) =
∫

d3x′ eiω|�x−�x′|

4π |�x − �x′| J̃μ(ω, �x′)

≈ eiωR

4π R
Ĵμ(ω, �k = ω�n) .

(1)

In QED, the leading behavior (as k → 0) of an amplitude with a 
soft photon and n hard particles with charge Q a is dictated by [1]

AQ E D
n+1 (a,k; p j) = g

n∑
j=1

Q ja·p j

k·p j
AQ E D

n (p j) + ... (2)

where g is the charge quantum. Stripping off the photon polarisa-
tion aμ(k), the amplitude becomes a source for the ‘classical’ EM 
potential that at large distances assumes the form

Ãμ(ω, �x) = g
eiωR

ωR

∑
j

Q j pμ
j

np j
, (3)

with nμ=kμ/ω = (1, �x/R). Integrating over ω, the pole at ω = 0
produces a constant shift of A>

μ(t, �x) at late retarded time u = t − R
w.r.t. A<

μ(t, �x), which is known as ‘electro-magnetic memory’.
In String Theory (ST), whenever a massless abelian vector boson 

is present in the spectrum as in Veneziano model, the (transverse) 
‘current’ that sources the EM potential Aμ is given by

Ĵ ST
μ (k; p j) = δAST

n+1(a,k; p j)

δaμ(k)
. (4)

In the low-energy limit, Veneziano amplitude or its generalisa-
tions can be expanded in powers of α′k·p j . Fourier-transforming 
in ω back to t would produce string corrections to the retarded 
potential decaying faster than 1/R , that would be totally negligible 
at large distances.

On the other hand, for α′k·p j ≈ 1, including the contribution 
of the infinite tower of string resonances turns out to produce a 
coherent effect that is non-perturbative in α′ and corrects even 
the leading 1/R terms. Indeed, starting from

Ãμ(ω, �x) =
∫

d3x′ eiω|�x−�x′|

4π |�x − �x′| J̃μ(ω, �x′; p j)

≈ eiωR

4π R

δAST
n+1(a,k; p j)

δaμ(k)

∣∣∣
kμ=ω(1,�n)

(5)

3 More details and more elaborate examples will be given in a companion paper 
[26].

4 We denote by G̃(ω, �x) the Fourier transform w.r.t. t and by Ĝ(ω, �k) the further 
transform w.r.t. �x.

and integrating over ω yields contributions from the tower of poles 
lying on the real axis (at tree level). These form various series 
in the variables ζ j = exp(−iu/2α′n·p j), that may give rise to de-
tectable signals

A ST
μ (t, �x) = A Q E D

μ (t, �x) + 
s Aμ(t, �x) . (6)

Contrary to the ‘standard’ EM memory, which is a DC effect relat-
ing the behavior at u > 0 to the one at u < 0, the ‘EM string mem-
ory’ is modulated i.e. depends on u. Quite remarkably 
s Aμ =
θ(u)
s A>

μ + θ(−u)
s A<
μ inherits peculiar duality properties from 

the parent string amplitudes i.e. 
s A>
μ + 
s A<

μ = 0.
In theories with open unoriented bosonic strings, massless vec-

tor bosons are ubiquitous. At tree level (disk) ‘color-ordered’ ampli-
tudes5 are cyclic and expose simple poles in channels correspond-
ing to sums of consecutive momenta. In particular soft poles in kp
arise as usual when a photon is inserted on a charged leg. This 
is accompanied by ‘massive’ poles 1/2α′kp+n that are responsible 
for the string corrections to the EM memory. Complete amplitudes 
require summing over non-cyclic orderings and expose all the ex-
pected soft poles as well as massive ones. Multi-particle channels 
involving a photon, that give rise to sub-leading corrections to the 
soft behavior in field theory, produce new towers of massive poles 
and further string corrections to the EM memory.

Actually, massive string resonances are unstable and acquire fi-
nite width and mass-shifts due to loop effects. As a consequence 
an exponential damping of the string memory will result [14]. Still, 
assuming gs<<1, this may be a small effect that can be taken into 
account in a detailed analysis of the signal, very much as QNM’s 
with Imω �= 0 in the Ring-down phase of BH mergers.

3. Setup

Let us identify a convenient setup with a massless photon and 
two charged (massive) scalars that allow to illustrate the EM string 
memory. To this end we compute a 4-point amplitude that admits 
a closed-form expression for special kinematics. We then extend 
our analysis to higher points, where new structures appear and 
briefly address higher loops that mark the onset log corrections.

In the presence of an �25-plane, dilaton tadpole cancellation 
requires the introduction of 213 D25-branes, resulting in the gauge 
group S O (8192) [24,25]. Neglecting closed strings and the cou-
pling to gravity, one can work in a local setting with D3-branes 
and �3-planes well separated from the remaining branes. By T-
duality this is equivalent to a configuration of D25-branes with 
Wilson lines [15–17].

More specifically we consider a 4-dimensional configuration 
(Fig. 1) with one D3-brane on top of an �3-plane, giving rise to an 
O (1) gauge group (no vector bosons), and one D3-brane (together 
with its image) parallel to the �3-plane and separated from it by 
a distance d in one of the 22 ‘internal’ directions giving rise to a 
U (1) gauge group with a massless photon like in Maxwell theory.6

In addition to the massless photon, the low-mass spectrum con-
tains neutral and charged tachyons. Discarding the neutral ones 
(a ‘symmetric’ singlet of O (1) and the neutral singlet of U (1)), we 
have a singly charged scalar φ+ and its conjugate φ− , stretching 
from the U (1) D3-brane to the O (1) D3-brane and vice versa, with 
mass α′M2±1 = −1 + δ2 (where δ2 = d2/α′) and a doubly charged 
scalar χ+2 and its conjugate χ−2, stretching from the U (1) D3-
brane to its image and vice versa, with mass α′M2±2 = −1 + 4δ2. 

5 We only consider open-string insertions on the boundary. Amplitudes with 
closed-string insertions on the bulk have been recently studied in [23].

6 Actually, after coupling to closed strings, the photon mixes at the disk level and 
will be eaten by the BMN or else will eat a ‘dilaton’. As already said, we work at 
open-string tree-level and safely neglect this complication.
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Fig. 1. Representative picture of the �3/D3 setup.

Fig. 2. Amplitude with one U (1) photon and 3 ‘tachyons’.

For δ > 1 the ‘tachyons’ are massive. We safely assume this to be 
the case and largely neglect the extra dimensions henceforth.

The vertex operators for φ+ and χ−2 take the standard ‘tachy-
onic’ form Vφ = √

2α′eiK ·X with K = (pμ; ±�d) for φ± and K =
(pμ; ±2�d) for χ±2. For the U (1) gauge boson Aμ one has VA =
a·i∂ Xeik·X with no ‘internal’ components of the momentum.

At tree level (disk) non-vanishing 3-point amplitudes are: 
Aφ±φ±χ∓2 = gop/

√
2α′ , where gop=√

gs is the open string cou-

pling, and the ‘minimal’ couplings of φ± and χ∓2 to the photon 
AAφQ φ−Q

= Q gopa·(p1 − p2).

4. 4-pt amplitude

As a 4-point amplitude with a single photon insertion, one can 
consider

A3+1 =
∫ ∏3

j=0 dz j

V C K G

〈
VA(z0)Vφ+(z1)Vφ+(z2)Vχ−2(z3)

〉
D2

(7)

where the disk normalization constant is fixed to be CD2 =
(gop2α′)−2. Including the two contributions AAφφχ and Aφφ Aχ

in Fig. 2 yields

A3+1 = g2
op√
2α′

(
a·p1

k·p1
− a·p3

k·p3

)
�(2α′k·p1+1)�(2α′k·p3+1)

�(1 − 2α′k·p2)

+ g2
op√
2α′

(
a·p2

k·p2
− a·p3

k·p3

)
�(2α′k·p2+1)�(2α′k·p3+1)

�(1 − 2α′k·p1)

(8)

Setting k = ωn = ω(1, �n) and defining the ‘scattering lengths’ [14], 
�a = 2α′npa with 

∑3
a=1 �a = 0 thanks to 

∑3
a=1 k·pa = −k2 = 0, the 

amplitude can be written as

A3+1 = g2
op

√
2α′

[(
a·p1

�1
− a·p3

�3

)
H13(ω) + (1 ↔ 2)

]
(9)

where the function (a generalisation of Veneziano amplitude)

H13(ω) = 1

ω

�(1+ω�1)�(1+ω�3)

�(1 − ω�2)
(10)

has simple poles at ω = 0 as well as at ω�1 = −n1 − 1 and ω�3 =
−n3 − 1 and admits an expansion à la Mittag-Leffler (ML) of the 
form

H13 = 1

ω
+

∞∑
n1=1

(−1)n1�1

n1!(ω�1 + n1)

�(1 − n3λ3,1)

�(1 + n1λ2,1)

+
∞∑

n3=1

(−1)n3�3

n3!(ω�3 + n3)

�(1 − n3λ2,3)

�(1 + n3λ1,3)

(11)

where the ratios

λb,a = �b

�a
= n·pb

n·pa
= k·pb

k·pa
, (12)

satisfy λ3,1+λ2,1=−1 and cyclic. The same applies to H23(ω) after 
1 ↔ 2 exchange.

For the EM wave profile at large distances one has

Ãμ(ω, �x) = gop Â3(p j)
eiωR

4π R

∑
j

Q j pμ
j

n·p j
F j(ω, �n; p j) , (13)

where F1 = H13, F2 = H23 and F3 = 1
2 (H13 + H23) and Â3 =

2gop/
√

2α′ is an overall, non-zero factor, that can be absorbed 
into the largely unknown distance R from the source. Anti-Fourier 
transforming, one finds

Aμ(t, �x) = gop

4π R

∑
j

Q j pμ
j

n·p j

+∞∫
−∞

dω

2π
e−iωuF j(ω, � j) . (14)

The pole at ω=0 reproduces the EM memory DC effect. In addition 
to this, one finds genuine (open) string corrections 
s Aμ(t, �x) to 
the retarded potential. Adopting some reasonable prescription to 
deform the integration path, i.e. kpa→kpa − iε , one can perform the 
integral and get series in ζ j = eiu/� j . Note that the effect is non-
perturbative in α′ as � j = 2α′np j . Assuming φ+(p1) and φ+(p2) to 
be incoming (pμ= − pμ

phys) and χ−2(p3) and a(k) to be outgoing 
(pμ=+pμ

phys), in the physical kinematic region one has �1,2 > 0
and �3 < 0. For u = t − R > 0 and for u = t − R < 0 one finds 
respectively



(>)
s Aμ(t, �x)

= −g

4π R

∞∑
n=1

(−)n

n! e
in u

�3

[
pμ

1

n·p1

�(1 − nλ1,3)

�(1+nλ2,3)

+ pμ
2

n·p2

�(1 − nλ2,3)

�(1+nλ1,3)

− pμ
3

n·p3

(
�(1 − nλ1,3)

�(1+nλ2,3)
+�(1 − nλ2,3)

�(1+nλ1,3)

)]
(15)



(<)
s Aμ(t, �x)

= g

4π R

∞∑
n=1

(−)n

n!

[
pμ

1

n·p1

�(1 − nλ3,1)

�(1+nλ2,1)
e

in u
�1

+ pμ
2

n·p2

�(1 − nλ3,2)

�(1+nλ1,2)
e

in u
�2

− pμ
3

n·p3

(
�(1 − nλ3,1)

�(1+nλ2,1)
e

in u
�1 +�(1 − nλ3,2)

�(1+nλ1,2)
e

in u
�2

)]
(16)

Recall that the dependence on the position is coded in n·p j= −
E j(1 − �n�v j) with �n=�x/R . The series have finite radii of conver-
gence that may exclude the physical domain |ζ j |=1. Yet they can 
be summed explicitly for special choices of the kinematics.
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Table 1
Some examples of ‘rational’ kinematical regimes.

λ13 λ23 λ31 λ21 λ12 λ32

-1/2 -1/2 -2 1 1 -2
-1/3 -2/3 -3 2 1/2 -3/2
-1/4 -3/4 -4 3 1/3 -4/3
-1/5 -4/5 -5 4 1/4 -5/4
-2/3 -1/3 -3/2 1/2 2 -3
-3/4 -1/4 -4/3 1/3 3 -4

In the CoM frame, one has �p1=�p= − �p2, �p3= − �k= − ω�n,

E3=Ephys
3 =

√
M2

3+ω2 , E1,2= − Ephys
1,2 =

√
M2

1,2+|�p|2

Ephys
1 = M̃2

3 + M2
1 − M2

2

2M̃3
, Ephys

2 = M̃2
3 + M2

2 − M2
1

2M̃3

|�p| =
√
F(M2

1, M2
2, M̃2

3)

2M̃3
(17)

where M̃3 = E3+ω and F(x, y, z) = x2 + y2 + z2 −2xy −2yz −2zx, 
a.k.a. as the ‘fake square’. Setting μ1 = M2

1/M̃2
3, μ2 = M2

2/M̃2
3 and 

cos θ = �x·�p
4π R|�p| , F is positive in the physical domain: 0<μ1, μ2<1, 

(μ1 − μ2)
2 − 2(μ1+μ2)+1>0. In our example μ1 = μ2 = μ =

M2/M̃2
3, one has λ1,3 = − 1

2 + 1
2 cos θ

√
1 − 4μ and λ2,3 = − 1

2 −
1
2 cos θ

√
1 − 4μ In particular, for cos θ = 0, �1 = �2 = − 1

2 �3 so that 
λ1,3≡λ2,3= − 1/2, λ3,1≡λ3,2= − 2 and λ1,2≡λ2,1=1.

Inserting these special values of λa,b in (15) and (16), for u > 0
yields

−g

4π R

(
pμ

1

n·p1
+ pμ

2

n·p2
− 2

pμ
3

n·p3

) ∞∑
n=1

(−)n

n!
�(1+n

2 )

�(1 − n
2 )

e
in u

�3

= g

4π R

(
pμ

1

n·p1
+ pμ

2

n·p2
− 2

pμ
3

n·p3

)
eiu/�3√

4 + e2iu/�3

(18)

with n·p j = −E j

(
1 − �x�v j

4π R

)
, and for u < 0 one has

g

4π R

(
pμ

1

n·p1
+ pμ

2

n·p2
− 2

pμ
3

n·p3

) ∞∑
n=1

(−)n

n!
�(1+2n)

�(1+n)
e

in u
�1

= g

4π R

(
pμ

1

n·p1
+ pμ

2

n·p2
− 2

pμ
3

n·p3

)(
1√

1 + 4e
i u
�1

− 1

)
(19)

Although the radii of convergence of the series are finite (|ζ3| < 2, 
|ζ1| < 1/4) as for the closed (heterotic) string [14], the explicit 
expressions allow to analytically continue both functions to the 
physical range |ζ j | = 1 without the log terms found in [14]. In fact 



(>)
s Aμ + 


(<)
s Aμ = 0 as a remnant of planar duality. For other 

choices of ‘rational’ kinematics as the ones in Table 1, one finds 
similar results. We display the plots of the real and imaginary part 
of the string corrections to the EM wave profile at fixed large R as 
a function of u/� for some ‘rational’ choices of the kinematics in 
Fig. 3. As evident, in order to detect the string memory effect one 
needs a time resolution 
t ≈ �.

In the very-high-energy limit u/|� j| << 1, there are two pos-
sible regimes: fixed angle for |�1| ≈ |�2| ≈ |�3| and Regge |�1| <<

|�2| ≈ |�3|. In the former case, as visible in the plots in Fig. 3, the 
real part of the signal gets a constant shift, while the imaginary 
part has a linear behavior in u. In the latter case, the real part has 
a long plateau in u and the imaginary part has a sudden jump and 
then flattens down. These peculiar features of the stringy signal 
should allow to discriminate it from the standard EM memory or 
other field-theory effects.

5. Generalizations

One can generalise the analysis to higher-points and higher-
loops or to more realistic models with open and unoriented 
strings.

n-points. Compatibly with U (1) charge conservation, the non-
vanishing scattering amplitudes involving photons and ‘tachyons’ 
in our U (1)×O (1) model are

A[A1...AnA ;φ+
1 ...φ+

n1
;φ−

1 ...φ−
n̄1

;χ+2
1 ...χ+2

n2
;χ−2

1 ...χ−2
n̄2

] (20)

with n1 − n̄1+2n2 − 2n̄2=0. Due to ‘twist’ symmetry, nA must be 
even if n1=n̄1=n2=n̄2=0. We are interested in the case nA = 1. 
The photon can be inserted on the U (1) end of any of the n ‘tachy-
on’ legs. For a given color-ordering at tree level, one has

Ac.o.
n+1(a,k; p j) =gn−1

op (2α′)
n−2

2

∫ ∏n
j=0 dz j

V C K V

×
n∑

i=1

a·pi

z0 − zi

n∏
j=1

z
2α′kp j

0 j

1,n∏
i< j

z
2α′ pi p j

i j (21)

with z j < z0 < z j+1 for some j. Integrating over z0 near z j

(z j+1) produces a soft pole 1/2α′kp j (1/2α′kp j+1) and a series of 
‘massive’ ones. Additional massive poles come from multi-particle 
channels involving the photon. These are present in QED and arise 
from photons inserted on internal lines. No soft poles are exposed 
for generic choices of the hard momenta since

1

(k+p1+..pm)2+M2
= 1

2k·(p1+..pm)+(p1+..pm)2+M2
(22)

has poles at 2ωn·P=− P 2 − M2 with P=∑m
I=1 pi , see Fig. 5. While 

in the soft limit such terms are subleading in ω:

1

2k(p1 + ....pm) + (p1 + ....pm)2 + M2

≈ 1

(p1 + ....pm)2 + M2
− 2ωn(p1 + ....pm)

[(p1 + ....pm)2 + M2]2
+ ....

(23)

integrating over ω a string amplitude produces series in ζP =
exp iu

2α′nP , arising from the infinite tower of intermediate states, 
which are the hallmark of the string memory and represent a nov-
elty w.r.t. to the 4-point case.

For instance, in our U (1)×O (1) model, one can consider the 
5-point amplitude in Fig. 4

A4+1[φ+(1), A(k),φ−(2),φ−(3),φ+(4)] (24)

the full amplitude includes insertions of A(k) in between φ+(3)

and φ−(4) as well as the exchanges φ+(1) ↔ φ+(4) and φ−(2) ↔
φ−(3). Let us focus on the indicated ‘color ordering’ [φ+(1),

A(k), φ−(2), φ−(3), φ+(4)]. Setting z4 =∞, z3 =0 and z1 = 1 with 
0< zA = z <1 and 0 < z2 = yz < z (i.e. 0 < y < 1) one has

Ac.o.
4+1 =2α′g3

op

1∫
0

dz

1∫
0

dy

(
a·p1

1 − z
− a·p2

z(1 − y)
− a·p3

z

)
× (1 − z)2α′kp1(1 − yz)2α′ p1 p2

× (1 − y)2α′kp2 z2α′(kp2+kp3+p2 p3)+1 y2α′ p2 p3 (25)

Expanding (1 − yz)2α′ p1 p2=∑∞
N=0(−2α′ p1 p2)N yN zN/N!, the inte-

grals in z and y decouple. Setting 2α′ = 1 and using momentum 
conservation one can factor out the function

4
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Fig. 3. Real and imaginary part of the string correction to the EM memory for some rational kinematical values.

Fig. 4. Two contributions to the 5-point amplitude A4+1[φ+(1), A(k),

φ−(2), φ−(3), φ+(4)].

Fig. 5. Schematic picture of the factorized amplitude respect to the different classes 
of poles.

FN(k, p j) =�(p2 p3+k(p2+p3)+N+1)�(kp1+1)

�(p1 p4 − kp3+N+1)

�(p1 p4+k(p1+p4)+N+1)�(kp2+1)

�(p2 p3 − kp4+N+1)

(26)

and get

Ac.o.
4+1 =g3

op

∞∑
N=0

(−p3 p4 − k(p3+p4))N

N! FN(k, pa)[
a·p1(p2 p3+k(p3+p3)+N+1)

kp1(p1 p4 − kp3+N+1)(p2 p3 − kp4+N+1)
+

− a·p2

kp2(p2 p3 − kp4+N+1)
+

− a·p3

(p2 p3 − kp4+N+1)(p1 p4 − kp3+N+1)

]
.

(27)

Thanks to FN (k, pa)
∣∣
ω=0 = 1, the leading behavior at the soft pole 

ω = 0 is as expected. In addition there are four infinite sets of sim-
ple poles at

ωn1 = −n1+1

�1
ωn23 = −n23+1+N+p2 p3

�2+�3

ωn2 = −n2+1

�2
ωn14 = −n14+1+N+p1 p4

�1+�4

(28)

The first two correspond to photon insertion on an external ‘tachy-
on’ leg, as in the case of 4-point amplitudes, the last two to inser-
tion on an ‘internal’ leg (multi-particle channel),7 a novel feature 
of 5- and higher-point amplitudes. Using the ML expansion, the 
string corrections to Aμ(t, �x) at large distance read

g3
op

4π R

∞∑
N=0

[
Ŝ(1)

N (ζ1) + Ŝ(2)
N (ζ2) + Ŝ(23)

N (ζ23) + Ŝ(14)
N (ζ14)

]
(29)

where ζ1=e
+i u

�1 , ζ2 = e
+i u

�2 , ζ23 = e
+i u

�2+�3 , ζ14 = e
+i u

�1+�4 while 
the expression for Ŝ(1)

N (ζ1) is shown in eq. (30).

7 Note that the Pochhammer symbol (−pi p j)N = �(−pi p j+N)/�(−pi p j) is a 
polynomial of degree N and has no pole in its argument.
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Ŝ(1)
N (ζ1) =

∞∑
n1=1

(−)n1 ζ
n1
1

n1 !

(
−p3 p4+ n1(�3+�4)

�1

)
N

N!
�

(
p1 p4 − n1

(
1+ �4

�1

)
+N+1

)
�

(
p1 p4 + n1

�3
�1

+N+1

)
�

(
p2 p3 − n1

(�2+�3)

�1
+N+1

)
�(1 − n1

�2
�1

)

�

(
p2 p3 + n1

�4
�1

+N+1

)
[ a·p1

(
p2 p3 − n1

(
�2+�3

)
�1

+N+1

)
(

p2 p3+n1
�4
�1

+N+1

)(
p1 p4+n1

�3
�1

+N+1

)

− a·p2(
p2 p3+n1

�4
�1

+N+1

)
�2
�1

+ a·p3 n1(
p2 p3+n1

�4
�1

+N+1

)(
p1 p4+n1

�3
�1

+N+1

) ]

(30)

Similar expressions obtain for Ŝ(2)
N (ζ2), Ŝ(23)

N (ζ23) and Ŝ(14)
N (ζ14). 

In addition one has to include the contributions arising from differ-
ent ‘color orderings’. The double series Ŝ(i)

N (ζi) look hard to write 
in closed form. Assuming particle 1 and 4 to be incoming and 2 
and 3 as well as the photon to be outgoing, the simplest choice of 
kinematics is taking �1 = �4 = −�2 = −�3. In the CoM frame, with 
p1 = −(E, �p), p4 = −(E, −�p), k = ω(1, �n), p2 = −(E2, �p2), p4 =
−(E3, �p3), one has 2E = ω + E2 + E3, �p2 + �p3 = −ω�n. �1 = �4 im-
plies photon emission perpendicular to the incident beams (�n·�p =
0). Then �2 = �3 implies E2 = E3 = E − ω

2 and �p2,3=±�q − ω
2 �n, 

with �n·�q = 0. In this special kinematic regime, setting �=2α′E one 
finds ζ1=ζ−1

2 =ζ−2
23 =ζ 2

14=exp(iu/�). Moreover p1 p2 = p3 p4 = t̂ , 
p1 p3 = p2 p4 = û and p1 p4 + ω� = ŝ = p2 p3 − ω� with ω� = −ni
and ŝ+t̂+û = 0. Even in this simple case, unless one further spe-
cialises the remaining 4-point kinematics, the final expressions are 
not very illuminating and we refrain from displaying them here.8

Moreover the ratios of the functions S(ζ ) to the residual 4-point 
‘tachyon’ amplitude depend on ŝ, t̂ and û.

Loops. One-loop annulus and Möbius-strip amplitudes can be 
written down and analysed in general and in particular in the 
U (1)×O (1) model. The combinatorics of boundaries is more in-
volved than at the disk level. So let us focus on the planar case, 
whereby all the insertions are on the same boundary of an annu-
lus. For a given color-ordering, one has

Ac.o.
n+1(a,k; p j) = CA gn+1

op (2α′)
n+2

2

∞∫
0

dτ

τ 14η(τ )24

∫ ∏n
j=0 dz j

V C K V

n∑
j=1

a·p j∂z0G(z0 − z j)

n∏
j=1

exp{−2α′kp jG(z0 − z j)}
1,n∏
i< j

exp{−2α′pi p jG(zi − z j)}

(31)

where η(τ ) is Dedekind function, G(z) = − log[ϑ1(z)/ϑ ′
1(0)] −

(π z2/τ ) is the bosonic propagator on the annulus with τ=iτ2. 
The moduli space includes loci where the annulus degenerates. The 
UV region τ→0 produces the closed-string tachyon pole (off-shell) 
and the dilaton tadpole that cancels for S O (8192) or its Wilson-
line breakings. When z0 collides with the adjacent points one gets 
log-‘deformed’ poles giving rise to the one-loop corrections to the 
EM memory and to the string memories. When all but one of the 
points collide one gets the one-loop corrections to the mass and 
width of the particle. Other degenerations that start to appear at 
higher loops produce quantum corrections to lower-point ampli-

8 They will appear in the companion paper [26].

tudes that require a case-by-case analysis but do not affect our 
main result in so fa as gs << 1.

Type I models. In more realistic models with open and un-
oriented superstrings, that allow an embedding of the Standard 
Model or (supersymmetric) extensions thereof, U (1) gauge bosons 
are typically anomalous and massive9 [27]. Yet, massless non-
anomalous combinations exist that can play the role of the SM 
hyper-charge [29]. Mutatis mutandis and barring issues such as 
moduli stabilisation and supersymmetry breaking, open super-
string amplitudes with photons and charged scalars or fermions 
present the same structure as in our O (1)×U (1) bosonic model 
and the analysis of the EM String Memory proceeds along the same 
steps.

Different (holographic) scenari are possible [30], whereby QCD 
is described by some strongly coupled sector (‘color branes’) and 
the electro-weak sector is coded in a weakly coupled sector (‘flavor
branes’). These configurations involve large fluxes and strong warp-
ing that lower the effective string tension. Although we expect 
genuine string corrections to EM memory also in these contexts, 
at present we cannot support our statement with explicit compu-
tations of the relevant amplitudes.

Discussion. While the coherent effect of the infinite tower of 
string resonances may well give rise to a detectable modulated EM 
‘memory’ we have not given any formal argument why it should 
happen altogether. Our results do not point towards a DC effect as 
in the standard memory in gravity and in EM [2,3,9]. Neither they 
seem to be related to the proposed ‘string memory effect’ that in-
volve large gauge transformations of the Kalb-Ramond field [13]. 
Instead the effect we find is oscillatory and it is tempting to con-
jecture that it be related to the ‘global’ part of the infinite (but bro-
ken) higher spin symmetries of string theory. In particular, redun-
dancies in the definition of the physical states, � ∼ � + QB R S T �

involved in the scattering process may effect the ‘gauge’ chosen for 
the incoming string states w.r.t. the gauge chosen for the outgoing 
string states. Note that not only states in the first Regge trajec-
tory but also states with mixed symmetry and lower spin admit 
complicated ‘gauge symmetries’ that may be exposed in certain 
regimes [31–33].

Moreover, in a given model, only for a special range of the 
parameters and the masses of the particles involved in the colli-
sion the effect may give rise to a measurable signal. A reasonable 
time-scale, compatible with present detector resolutions, would be 

t ≈ α′E ≈ 10−15s = 1 f s that in turn would require E ≈ 1015GeV , 
well beyond the present and near future accelerators even for 
T eV -scale (super)strings with α′ = E−2

s ≈ 10−6GeV −2 [34]. An al-
ternative more promising scenario is a collision of macroscopic 
objects such as (open) string coherent states [35–37] with large 
mass (and spin) E >> 1015GeV . In this case, even for 
t >> 1 f s
one could hope to recognise the string imprints in the EM radia-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

We would like to thank A. Addazi, A. Anastasopoulos, D. Con-
soli, F. Fucito, A. Grillo, Y-t Huang, E. Kiritsis, S. Mancani, A. Mar-
cianó, J. F. Morales, G. Pradisi, G. C. Rossi, R. Russo, R. Savelli, 

9 For recent work on axions, (gravi-)photons and their mixings in holographic 
setups see e.g. [28].

6



A. Aldi, M. Bianchi and M. Firrotta Physics Letters B 813 (2021) 136037
J. Sonnenschein, N. Tantalo, P. Di Vecchia, G. Veneziano for inter-
esting discussions and valuable comments on the manuscript. The 
work is partly supported by the University of Tor Vergata through 
the Grant “Strong Interactions: from Lattice QCD to Strings, Branes 
and Holography” within the Excellence Scheme “Beyond the Bor-
ders”.

References

[1] F.E. Low, Phys. Rev. 110 (1958) 974;
S. Weinberg, Phys. Rev. 140 (1965) B516;
D.J. Gross, R. Jackiw, Phys. Rev. 166 (1968) 1287.

[2] L. Bieri, D. Garfinkle, Class. Quantum Gravity 30 (2013) 195009, arXiv:1307.
5098 [gr-qc].

[3] Y.B. Zel’dovich, et al., Radiation of gravitational waves by a cluster of super-
dense stars, Sov. Astron. 18 (1974) 17, Astron. Ž. 51 (1974) 30;
V.B. Braginsky, Gravitational-wave bursts with memory and experimental 
prospects, Nature 327 (1987) 123;
D. Christodoulou, Nonlinear nature of gravitation and gravitational wave exper-
iments, Phys. Rev. Lett. 67 (1991) 1486–1489;
Kip S. Thorne, Gravitational-wave bursts with memory: the Christodoulou ef-
fect, Phys. Rev. D 45 (2) (1992) 520–524.

[4] Andrew Strominger, et al., Gravitational memory, BMS supertranslations and 
soft theorems, J. High Energy Phys. 1601 (2016) 086, arXiv:1411.5745 [hep -th].

[5] Freddy Cachazo, et al., Evidence for a new soft graviton theorem, arXiv:1404 .
4091 [hep -th];
Z. Bern, S. Davies, P. Di Vecchia, J. Nohle, Phys. Rev. D 90 (8) (2014) 084035, 
arXiv:1406 .6987 [hep -th];
S. He, Y.t. Huang, C. Wen, J. High Energy Phys. 1412 (2014) 115, arXiv:1405 .
1410 [hep -th].

[6] H. Bondi, et al., Gravitational waves in general relativity. 7. Waves from axisym-
metric isolated systems, Proc. R. Soc. Lond. A 269 (1962) 21–52;
R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically 
flat space-times, Proc. R. Soc. Lond. A 270 (1962) 103–126.

[7] G. Barnich, et al., Symmetries of asymptotically flat 4 dimensional spacetimes 
at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103, arXiv:0909 .2617
[gr-qc], ULB-TH-09-24;
G. Barnich, et al., Supertranslations call for superrotations, in: PoS CNCFG2010, 
2010, p. 010, Ann. Univ. Craiova, Phys. AUC 21 (2011) S11–S17, arXiv:1102 .4632
[gr-qc], ULB-TH-11-02;
G. Barnich, et al., BMS charge algebra, J. High Energy Phys. 1112 (2011) 105, 
arXiv:1106 .0213 [hep -th], ULB-TH-11-10.

[8] Andrew Strominger, On BMS invariance of gravitational scattering, J. High En-
ergy Phys. 1407 (2014) 152, arXiv:1312 .2229 [hep -th];
Temple He, et al., BMS supertranslations and Weinberg soft graviton theorem, 
J. High Energy Phys. 1505 (2015) 151, arXiv:1401.7026 [hep -th].

[9] L. Susskind, Electromagnetic memory, arXiv:1507.02584 [hep -th];
S. Pasterski, J. High Energy Phys. 1709 (2017) 154, arXiv:1505 .00716 [hep -th];
S. Pasterski, A. Strominger, A. Zhiboedov, J. High Energy Phys. 1612 (2016) 053, 
arXiv:1502 .06120 [hep -th];
P. Mao, W.D. Tan, Phys. Rev. D 101 (12) (2020) 124015, arXiv:1912 .01840 [gr-
qc].

[10] Paul D. Lasky, et al., Detecting gravitational-wave memory with LIGO: implica-
tions of GW150914, Phys. Rev. Lett. 117 (6) (2016) 061102, arXiv:1605 .01415
[astro -ph .HE].

[11] M. Bianchi, S. He, Y.t. Huang, C. Wen, Phys. Rev. D 92 (6) (2015) 065022, arXiv:
1406 .5155 [hep -th];
M. Bianchi, A.L. Guerrieri, J. High Energy Phys. 1509 (2015) 164, arXiv:1505 .
05854 [hep -th];
M. Bianchi, A.L. Guerrieri, Nucl. Phys. B 905 (2016) 188, arXiv:1512 .00803 [hep -
th];
P. Di Vecchia, R. Marotta, M. Mojaza, J. High Energy Phys. 1505 (2015) 137, 
arXiv:1502 .05258 [hep -th].

[12] A. Addazi, M. Bianchi, G. Veneziano, J. High Energy Phys. 1905 (2019) 050, 
arXiv:1901.10986 [hep -th].

[13] H. Afshar, E. Esmaeili, M.M. Sheikh-Jabbari, J. High Energy Phys. 1902 (2019) 
053, arXiv:1811.07368 [hep -th].

[14] A. Addazi, M. Bianchi, M. Firrotta, A. Marcianò, arXiv:2008 .02206 [hep -th].
[15] M. Bianchi, A. Sagnotti, Phys. Lett. B 247 (1990) 517.

[16] M. Bianchi, A. Sagnotti, Nucl. Phys. B 361 (1991) 519.
[17] M. Bianchi, G. Pradisi, A. Sagnotti, Nucl. Phys. B 376 (1992) 365.
[18] A. Sagnotti, Cargese 1987, Proceedings, Nonperturbative Quantum Field Theory 

521-528 and Rome II Univ. - ROM2F-87-025 (87,Rec.Mar.88), 12p, arXiv:hep -th /
0208020.

[19] M. Bianchi, A. Sagnotti, Phys. Lett. B 231 (1989) 389.
[20] G. Pradisi, A. Sagnotti, Phys. Lett. B 216 (1989) 59.
[21] J. Dai, R.G. Leigh, J. Polchinski, Mod. Phys. Lett. A 4 (1989) 2073.
[22] C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti, Y.S. Stanev, Phys. Lett. B 385 

(1996) 96, arXiv:hep -th /9606169;
G. Aldazabal, S. Franco, L.E. Ibanez, R. Rabadan, A.M. Uranga, J. Math. Phys. 42 
(2001) 3103, arXiv:hep -th /0011073.

[23] A. Aldi, M. Firrotta, arXiv:2001.09468 [hep -th].
[24] M. Bianchi, A. Sagnotti, Phys. Lett. B 211 (1988) 407.
[25] S. Weinberg, Phys. Lett. B 187 (1987) 278.
[26] A. Aldi, M. Bianchi, M. Firrotta, in preparation.
[27] L.E. Ibanez, R. Rabadan, A.M. Uranga, Nucl. Phys. B 542 (1999) 112, arXiv:hep -

th /9808139;
P. Anastasopoulos, M. Bianchi, E. Dudas, E. Kiritsis, J. High Energy Phys. 0611 
(2006) 057, arXiv:hep -th /0605225.

[28] P. Anastasopoulos, P. Betzios, M. Bianchi, D. Consoli, E. Kiritsis, J. High Energy 
Phys. 1910 (2019) 113, arXiv:1811.05940 [hep -ph];
P. Anastasopoulos, P. Betzios, M. Bianchi, D. Consoli, E. Kiritsis, J. High Energy 
Phys. 2019 (2020) 113;
P. Anastasopoulos, M. Bianchi, D. Consoli, E. Kiritsis, String (gravi)photons, 
‘dark brane photons’, holography and the hypercharge portal, arXiv:2010 .07320
[hep -ph].

[29] G. Aldazabal, L.E. Ibanez, F. Quevedo, A.M. Uranga, J. High Energy Phys. 0008 
(2000) 002, arXiv:hep -th /0005067;
P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis, A.N. Schellekens, Nucl. Phys. B 759 
(2006) 83, arXiv:hep -th /0605226.

[30] U. Gursoy, E. Kiritsis, J. High Energy Phys. 0802 (2008) 032, https://doi .org /10 .
1088 /1126 -6708 /2008 /02 /032, arXiv:0707.1324 [hep -th];
U. Gursoy, E. Kiritsis, F. Nitti, J. High Energy Phys. 0802 (2008) 019, arXiv:0707.
1349 [hep -th];
M. Kruczenski, L.A. Pando Zayas, J. Sonnenschein, D. Vaman, J. High Energy 
Phys. 0506 (2005) 046, arXiv:hep -th /0410035;
J. Sonnenschein, Prog. Part. Nucl. Phys. 92 (2017) 1, arXiv:1602 .00704 [hep -th].

[31] M. Bianchi, J.F. Morales, H. Samtleben, J. High Energy Phys. 0307 (2003) 062, 
arXiv:hep -th /0305052;
N. Beisert, M. Bianchi, J.F. Morales, H. Samtleben, J. High Energy Phys. 0402 
(2004) 001, arXiv:hep -th /0310292;
N. Beisert, M. Bianchi, J.F. Morales, H. Samtleben, J. High Energy Phys. 0407 
(2004) 058, arXiv:hep -th /0405057.

[32] S.H. Lai, J.C. Lee, Y. Yang, arXiv:1603 .00396 [hep -th];
S.H. Lai, J.C. Lee, Y. Yang, Nucl. Phys. B 941 (2019) 53–71, arXiv:1806 .05033
[hep -th].

[33] D.J. Gross, P.F. Mende, Phys. Lett. B 197 (1987) 129;
D.J. Gross, P.F. Mende, Nucl. Phys. B 303 (1988) 407;
D.J. Gross, H. Ooguri, Phys. Rev. D 58 (1998) 106002, arXiv:hep -th /9805129;
D. Amati, M. Ciafaloni, G. Veneziano, Int. J. Mod. Phys. A 3 (1988) 1615;
D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 197 (1987) 81.

[34] W.Z. Feng, D. Lust, O. Schlotterer, S. Stieberger, T.R. Taylor, Nucl. Phys. B 843 
(2011) 570, arXiv:1007.5254 [hep -th];
L.A. Anchordoqui, W.Z. Feng, H. Goldberg, X. Huang, T.R. Taylor, Phys. Rev. D 83 
(2011) 106006, arXiv:1012 .3466 [hep -ph];
W.Z. Feng, T.R. Taylor, Nucl. Phys. B 856 (2012) 247, arXiv:1110 .1087 [hep -th];
L.A. Anchordoqui, et al., Phys. Rev. D 90 (6) (2014) 066013, arXiv:1407.8120
[hep -ph].

[35] M. Bianchi, M. Firrotta, Nucl. Phys. B 952 (2020) 114943, arXiv:1902 .07016
[hep -th].

[36] A. Aldi, M. Firrotta, Nucl. Phys. B 955 (2020) 115050, arXiv:1912 .06177 [hep -
th].

[37] M. Hindmarsh, D. Skliros, Phys. Rev. Lett. 106 (2011) 081602, arXiv:1006 .2559
[hep -th];
D. Skliros, M. Hindmarsh, Phys. Rev. D 84 (2011) 126001, arXiv:1107.0730 [hep -
th];
D.P. Skliros, E.J. Copeland, P.M. Saffin, Nucl. Phys. B 916 (2017) 143, arXiv:1611.
06498 [hep -th].
7

http://refhub.elsevier.com/S0370-2693(20)30840-6/bib2F55C765FB93BCE1958682320DE9F25Cs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib2F55C765FB93BCE1958682320DE9F25Cs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib2F55C765FB93BCE1958682320DE9F25Cs3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib169CB05EDC649310B112E5477841F93As1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib169CB05EDC649310B112E5477841F93As1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7BA0931E2358ECA7F1564DE523637078s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibAD0129ECDE40B46E937927669D01E08Bs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibAD0129ECDE40B46E937927669D01E08Bs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibEE020F7286DBE1A624937106E0AE85D0s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibEE020F7286DBE1A624937106E0AE85D0s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibEE020F7286DBE1A624937106E0AE85D0s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibEE020F7286DBE1A624937106E0AE85D0s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibEE020F7286DBE1A624937106E0AE85D0s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibEE020F7286DBE1A624937106E0AE85D0s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib0659DFCE1A7FBE5BB2EBE0C73756FC06s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib0659DFCE1A7FBE5BB2EBE0C73756FC06s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib0659DFCE1A7FBE5BB2EBE0C73756FC06s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib0659DFCE1A7FBE5BB2EBE0C73756FC06s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib1FA8FA90D988C1FF794B7239BA62D296s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib25777444818C783593AFE3BC9AD22433s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib25777444818C783593AFE3BC9AD22433s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib25777444818C783593AFE3BC9AD22433s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib25777444818C783593AFE3BC9AD22433s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibE06F8B999F2704D0EBF4F7A27F8E2205s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibE06F8B999F2704D0EBF4F7A27F8E2205s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibE06F8B999F2704D0EBF4F7A27F8E2205s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibE06F8B999F2704D0EBF4F7A27F8E2205s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibE06F8B999F2704D0EBF4F7A27F8E2205s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibE06F8B999F2704D0EBF4F7A27F8E2205s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6FE736E03F718A90CA47011F66884E7As1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6FE736E03F718A90CA47011F66884E7As1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6FE736E03F718A90CA47011F66884E7As1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA75C7EB9AF6ADC10A2102997AF871AC1s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib30AD33224D360624324C2DA51DB08F26s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib30AD33224D360624324C2DA51DB08F26s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibF87D6853DEA77B1C774ECCE69A89E549s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibF87D6853DEA77B1C774ECCE69A89E549s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib38ACCA1CB727A4FD29DEBE198FD5C749s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib2153A5753DA059348BEFE75D95439D66s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibBD88FF9EC0AE40FDC2C033197226571Ds1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib38C6581972B323DB1A3BD3F07B392BC8s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibC5797F79EECB5B7CBB1E7F3BFB5E68CDs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibEEC330A2A4E36EE632FF0AF372EDA700s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib3D56AE5A062104CA772EBFCC25782122s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6CC439B6B3DBEDB4FD6EFE29B6ED22AFs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6CC439B6B3DBEDB4FD6EFE29B6ED22AFs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6CC439B6B3DBEDB4FD6EFE29B6ED22AFs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6CC439B6B3DBEDB4FD6EFE29B6ED22AFs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib7E90CD2460D203614642A672C5EE5C9Es1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibC46D62E42B29D62155B1660C53F40BB3s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib5AD2255401AC7652162A4B2EF2FB5A36s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4ECFA9A5A43CC206249789E0CA17D66Cs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4ECFA9A5A43CC206249789E0CA17D66Cs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4ECFA9A5A43CC206249789E0CA17D66Cs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4ECFA9A5A43CC206249789E0CA17D66Cs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6342D542C34BA3F8DB4F6DEE062D89B5s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6342D542C34BA3F8DB4F6DEE062D89B5s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6342D542C34BA3F8DB4F6DEE062D89B5s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6342D542C34BA3F8DB4F6DEE062D89B5s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6342D542C34BA3F8DB4F6DEE062D89B5s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6342D542C34BA3F8DB4F6DEE062D89B5s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib6342D542C34BA3F8DB4F6DEE062D89B5s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib8E8EA9CC0BC9728D74D6E0561767222Ds1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib8E8EA9CC0BC9728D74D6E0561767222Ds1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib8E8EA9CC0BC9728D74D6E0561767222Ds2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib8E8EA9CC0BC9728D74D6E0561767222Ds2
https://doi.org/10.1088/1126-6708/2008/02/032
https://doi.org/10.1088/1126-6708/2008/02/032
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib45C01BBCD5E7CF8C6EDFF1793F8BA45Bs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib45C01BBCD5E7CF8C6EDFF1793F8BA45Bs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib45C01BBCD5E7CF8C6EDFF1793F8BA45Bs3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib45C01BBCD5E7CF8C6EDFF1793F8BA45Bs3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib45C01BBCD5E7CF8C6EDFF1793F8BA45Bs4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4BB4D19F1DEAC7DA545E00AA3DBF0C28s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4BB4D19F1DEAC7DA545E00AA3DBF0C28s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4BB4D19F1DEAC7DA545E00AA3DBF0C28s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4BB4D19F1DEAC7DA545E00AA3DBF0C28s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4BB4D19F1DEAC7DA545E00AA3DBF0C28s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib4BB4D19F1DEAC7DA545E00AA3DBF0C28s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib5583C261F6DAE47A8BD1E01389910850s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib5583C261F6DAE47A8BD1E01389910850s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib5583C261F6DAE47A8BD1E01389910850s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib61597C0975B0529F0DCB4E174861589Cs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib61597C0975B0529F0DCB4E174861589Cs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib61597C0975B0529F0DCB4E174861589Cs3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib61597C0975B0529F0DCB4E174861589Cs4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib61597C0975B0529F0DCB4E174861589Cs5
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib24911B19383C2A8A79BB241B1F5FAA81s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib24911B19383C2A8A79BB241B1F5FAA81s1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib24911B19383C2A8A79BB241B1F5FAA81s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib24911B19383C2A8A79BB241B1F5FAA81s2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib24911B19383C2A8A79BB241B1F5FAA81s3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib24911B19383C2A8A79BB241B1F5FAA81s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib24911B19383C2A8A79BB241B1F5FAA81s4
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibAC21DFC4F5351DECB9AAA2752536486Ds1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibAC21DFC4F5351DECB9AAA2752536486Ds1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibBF99698EF791FDA0C0398C2B4E789DBDs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bibBF99698EF791FDA0C0398C2B4E789DBDs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib03F909DC308804959B4094978269668Cs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib03F909DC308804959B4094978269668Cs1
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib03F909DC308804959B4094978269668Cs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib03F909DC308804959B4094978269668Cs2
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib03F909DC308804959B4094978269668Cs3
http://refhub.elsevier.com/S0370-2693(20)30840-6/bib03F909DC308804959B4094978269668Cs3

	String memories... openly retold
	1 Introduction
	2 EM memory and string corrections
	3 Setup
	4 4-pt amplitude
	5 Generalizations
	Declaration of competing interest
	Acknowledgements
	References


