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Abstract
This work re-derives and discusses non-Lorentz invariant variable speed of
light (VSL) theories in the context of cosmological problems. Following a
thorough introduction to the subject, an explicit solution demonstrating a pos-
sible dependence of the speed of light on the cosmological scale factor is
presented and analyzed. The parameters of the initial ansatz, c(t) = c0an, are
constrained by requiring the VSL formulation to be a solution to the flatness
and horizon problems. The theoretical section is concluded with a derivation
of the change of entropy in a VSL Universe. Even though such findings imply
that the speed of light can vary only in non-flat spacetime, an adapted approach
using the Generalized Second Law of Thermodynamics is shown to loosen
this restriction. Further, in the experimental section, recent evidence for a tem-
porally varying fine structure constant at ≈4σ significance is presented as a
potential test for the VSL hypothesis. Overall, this work introduces and eval-
uates many aspects of non-Lorentz invariant VSL theories whilst encouraging
future research and serving as a largely self-sufficient comprehensive overview
paper.
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It is usually assumed that the laws of nature have always been the same as they
are now. There is no justification for this. The laws may be changing, and in
particular quantities which are considered to be constants of nature may be
varying with cosmological time.

Paul Dirac, ‘On methods in theoretical physics’, June 1968, Trieste

1. Introduction

The spatial and temporal consistency of the speed of light are considered a sacred fact in most
cosmological evolution models. When discussing the conditions of the very early Universe,
contemporary physics primarily relies on theoretical formulations and well-rounded hypo-
theses. Inflation—the widely accepted theory of superluminal expansion in the earliest stages
of the Universe—solves the horizon problem without introducing variations on fundamental
constants. Contrarily, as a possible contester of Inflation, variable speed of light (VSL) theor-
ies provide solutions to cosmological problems by introducing a temporally varying speed of
light.

1.1. Varying dimensional constants

As with most varying constant theories, it is important to begin the discussion by addressing
the fact that the speed of light is not a dimensionless parameter. As a result, a counter-argument
for any VSL theory can be easily made by assuming that there exists a definition of units such
that c remains constant all throughout space and time. This argument was proposed in J Duff’s
paper, which concludes that ‘it is operationally meaningless and confusing to talk about time
variation of arbitrary unit-dependent constants whose only role is to act as conversion factors’
[1]. A similar analogy states that, if time were to be measured in some different manner, even
Newton’s equations would be rendered more complicated. However, within the context of our
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choice of units, the equations will essentially have the same meaning, just written differently.
This point was raised by Poincaré who stated that the choice of units is a trivial necessity and
units should be defined based on how convenient they are [2].

Another example given by Poincaré is the re-definition of c in Maxwell’s equations, such
that the speed of light remains constant in dielectric media. A substitution such as c= c0√

ϵ

will achieve this, however, it will significantly complicate the expression of Maxwell’s laws.
Such a substitution will require the addition of time derivatives, as well as gradients of ϵ, to
Maxwell’s equations [3]. Arguably, Poincareé will not be in favor of such a re-definition of c
due to its inconvenience, however, this example conversely demonstrates the previous claim:
given that c is a dimensional constant, units can always be defined in to render it non-varying.

1.2. VSL loophole: a variable fine structure constant

As the discussion above implies, a theory based on a varying dimensional parameter is tau-
tological. However, in most VSL theories, the temporal inconsistency of c is postulated as a
natural consequence of the variability of dimensionless parameters, such as the fine structure
constant, α, or a ratio between c(t)

c(t ′) .
In a series of papers, which will be more thoroughly discussed in section 3, Murphy

et al provide evidence for the possibility of a varying fine-structure constant [4]. In sum-
mary, their work focuses on quantifying ∆α

α in medium-redshift damped Lyman-α systems
(DLAs). Initially, they reported statistical evidence for a smaller α at earlier times: ∆α

α =
(−0.72± 0.18)× 10−5. Given the fine-structure constant’s inverse proportionality to c, the
Webb et al results appear promising for VSL theories. As remarked by Bekenstein, VSL the-
ories can be considered interchangeable with ‘variableα theories’ (and in some instances, such
as [5], ‘variable gravitational coupling’ theories).

Fundamentally, Webb’s statistical results motivate the claim that the variability in α is
caused by a temporally inconsistent c, ℏ, or e (or some combination of them). In the case
of a varying dimensionless constant theory, a choice must be made as to which dimensional
parameters are varying. This translates to fixing a system of parameters and units, thus estab-
lishing a consistent framework in which a theory can be developed [3]. In particular, VSL
theories fix the values of the elementary charge, e, and the Planck constant, ⟨. Therefore, in
this framework, any variation observed in α is credited to a variable c(t).

However, this choice is not entirely trivial; different varying ‘constants’ predict unique
physical behaviors that can potentially be experimentally verified. While proposing a varying
e theory, Beckenstein [6] implies that only in the context of electromagnetic field-to-matter
coupling can the variability of e and c be treated as equivalent. This is demonstrated in [5],
where all charges, including e, are set to vary. However, their variation is described by constant
ratios that, theoretically, can be absorbed in a varying c parameter. Nevertheless, in all other
senses, a VSL theory can be distinguished from a varying e theory since it tends to preserve
the weak equivalence principle while breaking Lorentz invariance. In simple terms, the equi-
valence principle states that the gravitational and inertial mass of particles is the same, thus
implying that the trajectory taken by any point-like particle in a non-accelerating frame under
the influence of gravity is equivalent. This was tested even before the formulation of General
Relativity through the measurement of the Eötvös parameter:

2|a1− a2|
a1 + a2

, (1)
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where a1 and a2 are the accelerations of the two test masses. Unlike VSL, as discussed by
[3], a varying e theory predicts a non-zero Eötvös parameter, in the order of 10−13. Current
experimental constraints are unable to probe this value, however, [7] outlines the possibility for
the STEP satellite to measure the Eötvös parameter to one part in 1018 which could eliminate
variable e theories capable of explaining the Webb et al results. Additional experimental tests
that distinguish a variable c from e are detailed in [8].

1.3. Brief catalogue of VSL theories

Presently, it is difficult to find a general consensus on the formulation of a unified VSL theory.
In a broader sense, current efforts uniquely explore the implications of variable c. As classified
in [3], VSL theories can be broadly catalogued into ‘extreme’, or ‘hard breaking of Lorentz
symmetry’ [9, 10] (the main focus of this paper), ‘bimetric’ [11, 12], ‘color dependent’ [13],
and ‘Lorentz invariant’ [14, 15].

As hinted above, the formulation of VSL theories is tied to the extent to which they violate
the main principles of General Relativity: non-variability of c and Lorentz invariance (essen-
tially implying that all observers moving with respect to each other within an inertial frame
will agree upon the laws of physics; in other words, dynamical equations, such as Maxwell’s
field equations, of a system are preserved under the action of a transformation in the Lorentz
group). For an example, bimetric theories, such as [11, 12], are Lorentz invariant. They are for-
mulated on the idea that even though the speed of massless particles differs, all principles of
Special Relativity are preserved in each sector. Furthermore, the fundamental building blocks
of ‘Lorentz invariant’ and ‘color dependent’ VSL theories are self-explanatory and recom-
mended further reading on this subject can be found in appendix C. In addition, appendix C.3
contains a catalogue of academic resources detailing recent research and discussion on various
aspects of VSL theories.

2. Albrecht and Magueijo (AM) VSL model

2.1. Motivation

The Big Bang model demands a theory, such as Inflation, in order to explain (for instance)
the horizon problem. Inflation—a period of superluminal expansion in the early Universe—
provides an explanation for the observation that, what should have been causally disconnected
regions, were in a causal contact at some point in the past. Alternatively, instead of changing
the matter content of the Universe, AM [9] propose that a drastic change in the speed of light
should lead to the same current space geometry and observations as Inflation. AM [9] provides
no formal solution to c(t), with a discussion revolving a step change in the speed of light at
some time in the early Universe. It is essential to consider this initially, since it emphasizes the
purpose behind a VSL theory in the simplest manner. Further on, in section 2.5, a more formal
definition of c(t) will be discussed, where c(t) is modeled as a continuous decaying function.

2.2. Particle horizons, past light cones, and the Cosmic Microwave Background (CMB)

By definition, the comoving radius, rh, is the distance covered by a particle had it been traveling
at c since the beginning of the Universe. This manifests as a cosmological horizon, implying
that any observer (at any given time) is able to see (and be affected by) only a finite region of
space, with a radius rh. This can be expressed using the conformal time, η, which is the time
a photon will require to travel from the observer’s current position to the furthest observable
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Figure 1. Past light cones in a Universe that started at the Big Bang.
Note:Diagram depicts the past light cone of an observer at current time and two causally
disconnected events occurring at the moment of the CMB’s release, stretching back to
the Big Bang. As usual, c is represented by 45◦ lines.

distance (under the assumption that the Universe stops expanding). Mathematically, conformal
time can be expressed as: η =

´ t
0 dt

′ a(t ′)−1, where t is some time and a(t) is the scale factor
that will be further discussed in the context of the Friedmann equations. A trivial derivation of
r gives: c

´ η
0 dτ =

´ rh
0 dr → rh = cη.

As previously noted, the principal motivation behind theories such as VSL and Inflation
is the observed causal connection of spatial regions that, otherwise, should not have had time
to interact. Essentially, each observer carries a past light cone, as depicted in figure 1, whose
boundaries are determined by the speed of light—a set speed limit on the motion of known
particles. Essentially, all events that can affect the observer (situated at the peak of the light
cone) must originate within the bounds of the past light cone. This ability to interact, is, what
was already referred to as, a causal connection. Light emitted outside the bounds of the past
light cone can never be measured or seen by the observer (a crucial feature of the space-time
diagram is that light travels at a π

4 angle). In close relation to the definition of a past light cone
is the notion of a particle horizon, the largest possible proper distance that can be observed
from a point in space-time. Essentially, the particle horizon marks the furthest away point, both
spatially and temporally, from which an event that occurred in the past can affect an observer.

A more detailed discussion on the origin of the CMB can be found in appendix B.1. In
essence, the CMB is a relic of radiation from the early Universe, roughly 380000 years after
the Big Bang. Among other things, it provides information on the density distribution and
structure of the early Universe. It can be thought of as a ‘frozen image’ from the Universe at the
moment when the radiation was emitted. The CMB temperature measurements have yielded
a value of 2.72548± 0.00057K [16]. This is a fairly isotropic value (same in all directions),
with minor anisotropies discussed further. The apparent isotropy of the CMB between causally
disconnected regions is the underlying premise behind the horizon problem.

2.3. The horizon problem: a powerful motivation for VSL theories

As previously discussed, the existence of particle horizons limits the ability of an event to
affect a region of space if it occured outside the bounds of its light cone. It is expected, for
two causally disconnected regions, as depicted by the two smaller cones in figure 1, to have
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no information about the properties (or existence) of each other (at the time when the CMB
was released). The figure below demonstrates the essence of the horizon problem: an observer
existing at current time can simultaneously view/measure regions of space that were causally
disconnected at the moment when the CMB was released; furthermore, the CMB temperature
isotropy observed among those regions led to the conclusion that in some way, spatial regions
that should not have had time to interact since the Big Bang, were somehow in causal contact
at a point in the past.

A more rigorous mathematical description of the horizon problem can be found in chapter
8.8 of [17]. An expanded version of this derivation, as well as a conceptual explanation, is
presented in appendix A.1. Essentially, the particle horizon (comoving radius from themoment
of the Big Bang until the emission of the CMB) can be approximated to rCMB = 0.06×H−1

0 .
Based on this, any event occurring outside this boundary, at the moment of the Big Bang, is
considered causally disconnected from a region in space at the time of the CMB. In figure 1
this is represented by the red light cones that do not intersect at any point in the past.

When measuring regions of the CMB, a current observer can see radiation from points in
space that were causally disconnected at that time. This can be demonstrated by a derivation
of ∆r, the comoving distance between a current observer and a point on the CMB, as ∆r≈
2×H−1

0 . Noting that ∆r≫ rCMB (where ∆r corresponds, in figure 1, to the observer’s past
light cone radius at the CMB line), it can be concluded that by measuring distant points on the
CMB at current time, it is possible to see the properties of causally disconnected regions in
the past.

However, the isotropy of the CMB temperature, or in other words, the thermal smoothness
currently observed at all points, implies that disconnected regions of space (whose past light
cones do not intersect) were in causal contact in the very early Universe. In a search for a
theory that can explain the information exchange between distant patches of the Universe,
different theories, such as Inflation and VSL, were formulated. Inflation proposes a solution
of superluminal expansion of space, indicating that space was much more compact. However,
instead of changing the geometry of space, VSL, more simply, suggests that instead of space
expanding superluminously, light slowed down. In such a manner, a faster speed of light would
imply that information would have been able to reach more distant patches of the Universe
without the need for superluminal spatial expansion. The most basic application of this idea
will be discussed in the following section, where c(t) is assumed to have only two discrete
values. Notably, this is not necessarily the case with VSL theories, and a continuous c(t) can
be found that provides solutions to the horizon, as well as flatness problem.

2.4. Simple VSL solution: an illustrative example in flat spacetime

Prior to a more rigorous derivation, it is important to discuss the aforementioned simplified,
intuitive version of the formulation in [9, 10]. This is solely done for explanation purposes, with
a more rigorous derivation being outlined in the following section 2.5. (Note: the notation used
throughout this paper may differ from the original for the purpose of consistency and clarity)

In the simplified picture, [9] proposes that at some critical time, tc, the speed of light instant-
aneously changed from c+ to c−, where c+ > c−. Vaguely, this would imply that prior to tc the
past light cone of any spacetime region would be stretched out, with light traveling at a smaller
angle seen from the horizontal, space, axis. Consequently, regions that should have been caus-
ally disconnected, had intersecting past light cones in the early Universe. In turn, this enabled
said regions to interact and exchange information. This could explain the isotropic temperature
observed in the CMB among distant patches of space.
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Figure 2. Conformal diagram of past light cone with VSL.
Note: Diagram depicts the shape of the past light cone and the horizon at tc when c+ →
c−. As usual, c− is represented by 45◦ lines.

Themain feature of figure 2 is to demonstrate that an observer’s particle horizon can discon-
tinuously (in this case, where c(t) is modeled by a step change) become larger at some critical
time if the speed of light at t< tc was greater than what is currently measured. Another thing
to note on the diagram is that, for the purpose of clarity, the entire past light cone is not drawn,
just until the intersection, where the particle horizon increases. The red region represents the
future light cone of a photon originating at the Big Bang, assuming it freely moved through
space since t= 0. Due to the assumption that it traveled at speed c+, the cone’s radius is larger
than the one associated with c− (represented in blue), which is the speed of light measured
at present time. In such a way, information in the pre-CMB Universe has the ability to travel
faster and affect more distant regions of space, leading to a causal connection between those
patches.

In order to quantify the ratio c+
c−

, the comoving radius at tc, rc, can easily be expressed. Let
η be the conformal time now and ηc the conformal time at t= tc. Based on the formula derived
in section 2.2, the comoving radius at tc is rc = c+ηc. Similarly, let r0 be the comoving radius
from current time until the intersection at t= tc. It can be easily seen that r0 = c−(η− ηc). In
order to satisfy the condition that rc≫ r0:

c+
c−
≫ η

ηc
− 1 ≈ c+

c−
≫ η

ηc
assuming η≫ ηc. (2)

Satisfying this condition enables distant regions of the Universe to be in causal contact
at some point in the distant past. In order to get a very rough numerical order-of-magnitude
estimate, a log10 can be applied on both sides. As done by [9], lets assume that at the critical
time, ηc, takes the value of 10−32 s. This reflects a theoretical value determined for the end of
the inflationary epoch. In reference to Inflation, this marks the final moment of superluminal
spatial expansion and the beginning of a (much slower) universal expansion that is observed at
current time. Hence, in the context of VSL theories, this value is appropriate for a rough estim-
ate since it marks a theoretical turning point in the early Universe. As stated, unlike Inflation,
VSL uses the idea that a larger speed of light resulted in the causal contact of distant regions,
not superluminal spatial expansion. Instead of an inflationary epoch, during t< 10−32 s, an
increased c allowed for a vaster network of spatial patches to be causally connected in the
early Universe. Essentially, it was not space that was more compact, but the traveling speed of
information that was significantly greater.
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To roughly estimate the ratio c+
c−

, it is necessary to determine an approximate value for η.
Since the only imposed condition is that η≫ ηc, as done by [9], η will be taken to be the
conformal time at the matter-radiation equality, about 50000 years after the Big Bang. This
choice is convenient since the estimate of the redshift at the matter-radiation equivalence can
be done through a trivial calculation (see appendix A.2). The equation for conformal time is
η =
´ t
0 dt

′ a(t ′)−1. Assuming a matter dominated Universe, a(t)∝ t 23 . Therefore, at t= teq:

η =

ˆ teq

0
dt ′ a(t ′)−1 ∝ 3t

1
3
eq ∝

√
a(teq). (3)

(Note: WLOG, a more detailed, similar derivation can be found in appendix A.1, in the context
of the horizon problem and comoving radii)

Further, applying the relation a(teq) = 1
1+zeq

gives an estimate of η ≈
√

1
1+zeq

≈ z−
1
2

eq .

Plugging the values using a logarithmic scale gives a very rough numerical estimate of
equation (2):

log10
c+
c−
≫ 32− 1

2
log10 zeq ≈ 30. (4)

Therefore, in this very simple illustrative example, which was derived for the purpose of
presenting the chief idea behind VSL in a more intuitive manner, in order for equation (2)
to hold, the speed of light needs to be roughly 30 orders of magnitude greater in the very
early Universe. Similarly, the estimation performed in [9] agrees with the value calculated
above. This result, however, should not be confused with the actual formulation of the VSL
theories presented in [10], which models the speed of light as a continuous function dependent
on the scale factor, a(t). The following section presents a detailed discussion of this, and the
constraints imposed on c(t) derived as a consequence of the horizon and flatness problems.

2.5. AM VSL formulation for any spacetime curvature

2.5.1. Justification for a preferred cosmological reference frame. The VSL theory proposed
in [9] and further discussed in [10] is based on the idea that the Universe has a preferred
cosmological reference frame. Magueijo [3] points out that the cosmological reference frame
is a suitable choice for a preferred frame, since it has witnessed all performed experiments
and events. The experimental observation of dipole anisotropy in the CMB radiation [18] can
be interpreted to imply that all observers are in motion with respect to the cosmic rest frame.
In other words, the patterns detected in the CMB’s thermal fluctuations can be thought of
as largely due to an observer’s Doppler shift relative to the cosmological frame (indeed, the
anisotropy is also partially caused by primordial density fluctuations, but this is outside the
scope of the current argument). Physically, this translates to the observation of slightly higher
CMB temperatures in the direction of motion, as demonstrated by [19].

2.5.2. VSL and the Einstein field equation. The modified Albrecht-Maguejo (AM) model
(developed in [10]) postulates that the Einstein field equations are valid in a variable cUniverse,
with minimal coupling in the cosmological frame. This approach requires the stress-mass
tensor Tµν to have a non-vanishing divergence. Physically, this implies that the canonical
energy and momentum will not be conserved.
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The modified action, initially proposed by [9], is:

S =

ˆ
dx4

[√
−g
(
ψ (R+ 2Λ)

16πG
+Lm

)
+Lψ

]
, (5)

where Lm is the matter field Lagrangian, Λ is the geometrical cosmological constant, Lψ

is the Lagrangian associated with the scalar field ψ(xµ) that does not explicitly contain the
metric. In order to have the Einstein field equations remain valid for the cosmological reference
frame it is necessary to require ψ(xµ) = c4 and δgµνLψ = 0 [10]. Due to this condition, the
Riemann tensor and the Ricci scalar can be derived in the usual way. Therefore, the Einstein
field equations can be obtained following the original derivation. This is explicitly shown in
appendix A.3. Essentially, after a trivial calculation, it can be seen that minimizing the action
in equation (5) gives:

Gµν − gµνΛ =
8πG
ψ

Tµν . (6)

Where the stress-energy tensor is defined as:

Tµν =−
Lm

g
δg
δgµν

− 2
√
−gδLm

δgµν
− 2√
−g

δLψ

δgµν
. (7)

Those familiar with this derivation can identify that equation (7) has an additional term con-
tributed by Lψ (the usual derivation of the Einstein–Hilbert action defines Tµν =−Lm

g
δg
δgµν −

2
√
−g δLm

δgµν ). A way to eliminate this term is to impose the condition for Lψ not to contain the

metric explicitly (nor be multiplied by it). This implies that δLψ =
δLψ

δgµν = 0, thus eliminating
the additional term. In reference frames where the scalar field ψ is not constant, there will be
additional ∂µψ terms in the Ricci scalar and Riemann tensor [10].

Essentially, the modified AM formulation implies that the speed of light is modeled by
a scalar field that is constant only in the cosmological reference frame. Since all observers
are in relative motion to it, they measure a varying speed of light. The main purpose of the
derivation above is to demonstrate that the modified AMmodel attempts to preserve the valid-
ity of Einstein’s field equation under some conditions and thus minimize the damage done to
currently accepted theories of spacetime geometry.

2.6. VSL solution to the flatness problem

2.6.1. Generic c(t) case: solving the Friedmann equations with a variable c. Current obser-
vations claim that, on a large scale, the Universe is relatively flat. For this to be the case, there
is a required critical density of matter, ρc. Even the slightest deviation from ρc =

3H2

8πG (found
by plugging K= 0, denoting flat space, and H= ȧ

a in the Friedmann equations) will result in
curved space geometry at current time.

In this section, it will be demonstrated that the AM (VSL) theory proposed in [9], explains a
fine-tuning mechanism that is capable of driving the early Universe towards the critical density
ρc. The Friedmann equations (see appendix B.2), when incorporating a generic c(t) become:(

ȧ
a

)2

=
8πGρ

3
− Kc2 (t)

a2
, (8)

ä=−4πGa
3

(
3p
c2 (t)

− ρ
)
, (9)
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where a is the dimensionless scale parameter, ρ and p are the density and pressure of mat-
ter, respectively, and K is the curvature parameter (see appendix B.2 for a table detailing the
relation between the value of K and the Robertson–Walker metric geometry). Differentiating
equation (8) and plugging it back into equation (9) gives:

ρ̇+ 3
ȧ
a

(
ρ+

p
c2

)
=
ċ
c

3Kc2

4πGa2
. (10)

It is important to mention that any term potentially involving the cosmological constant, Λ,
has been taken to equal 0. These terms are closely related to the vacuum energy in Einstein’s
equation. Incorporating this would require the density to be set equal to ρ= ρm + ρΛ (where
ρm is the density of mass and ρΛ is the density in the cosmological constant). AM [9] acknow-
ledges that a non-zero value for ρΛ (where ρΛ = Λc2

8πG ) can be incorporated in the equation
above without an impact on the underlying principles of the theory. A conceptual explanation
of the cosmological constant can be found in appendix B.3. For the purpose of simplicity,
however, in the derivations presented further Λ is equated to 0. This renders it mathematically
easier to analyze a variable c theory in the context of the Friedmann equations.

In an analysis of equation (10), [9] notes that it provides a fine-tuning mechanism for the
early Universe to approach ρc, given that it started with a value of ρ that is a small perturbation
from ρc. As previously demonstrated, [9] required the speed of light to be much larger in the
past, therefore ċ

c < 0. Initially, if the Universe started with ρ < ρc, then K< 0 and the right-
hand side of equation (10) will cause an increase in the mass density of the Universe (it will
be positive, leading to a more positive ρ̇). Oppositely, if ρ > ρc, K> 0, then mass will be
‘destroyed’ (the mass density will decrease), driving the Universe to the critical density where
K= 0. A more formal discussion and derivation related to this mechanism can be found in
[20]. (Note: the derivation in [20] was performed using the density parameters of matter and
the cosmological term, meaning a non-zero Λ Universe was assumed. This is not the case in
the discussion above, however, the derivation still applies. Further discussion on the Λ term
will be presented in section 2.6.2.)

This was demonstrated by [9] in a different manner as well. Defining a quantity Ω= ρ
ρc
, it

is evident that Ω< 1 if K< 0, Ω= 1 if K= 0, and Ω> 1 if K> 0.
In this formulation, the Universe is modeled by a perfect fluid. The equation of state for a

perfect fluid is p= (γ− 1)ρc2, where γ is a constant, related to the characteristic thermal speed
of molecules (for non-relativistic matter γ≈ 1, for vacuum energy γ= 0, see appendix B.3,
and for relativistic matter γ ≈ 4

3 ). Substituting this into equation (10) (dividing by ρ and using

the definition for ρc = 3ȧ2

8πGa2 ) gives:

ρ̇

ρ
+ 3

ȧ
a
γ = 2

Ω− 1
Ω

ċ
c
. (11)

This can be re-arranged to give an expression for ρ̇ρ . The same can be done to express ρ̇c
ρc
, by

setting K= 0 in equation (10):

ρ̇c
ρc

+ 3
ȧ
a
(1+Ω(3γ− 2)) = 0. (12)

In order to examine the change in Ω, we can express:

Ω̇ =
ρcρ̇− ρρ̇c

ρ2c
=Ω

(
ρ̇

ρ
− ρ̇c
ρc

)
. (13)

11
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As done in [9], equations (11) and (12) can be used to find an expression of Ω̇ in terms of other
parameters:

Ω̇ =
ȧ
a
Ω(Ω− 1)(γ− 2)+ 2

ċ
c
(Ω− 1) . (14)

As noted in [9] the condition of Ω= 1 (or ρ= ρc) is not stable for any (standard Big
Bang) matter field that satisfies 0⩽ γ < 2

3 (this comes from the strong energy condition, see
appendix C.4.1). However, the additional term 2 ċc (Ω− 1), can drive a perturbed Ω to 1 in the
early Universe. This process of fine-tuning can be more easily seen if a variable ϵ=Ω− 1
is defined, showing that it will be driven to 0. If | ċc | ≫

ȧ
a , neglecting the first term gives

ln(ϵ) = 2ln(c)+ (const.) or ϵ∝ c2. AM [9] acknowledges that given this proportionality rela-
tion, assuming that the Universe started off with a matter density perturbed from the critical
value, for instance, Ω> 1 (implying that ϵ> 0), the decrease in the speed of light would result
in ϵ≪ 1.

It is necessary to expand upon the implications of the derivation above. [9] acknowledge
that VSL prevents a Universe with ‘natural initial conditions’ (such as ϵ≈±1, a small perturb-
ation from ϵ= 0) to either re-collapse soon after the Big Bang (ϵ≈ 1), or become an empty,
Milne Universe, devoid of matter and radiation (ϵ≈−1). This is a consequence of the driving
mechanism derived above, where the second term in equation (14) will push any ϵ value (that
is a small perturbation from 0) to ϵ= 0. As mentioned in [9], this is a feature unique to VSL,
and Inflation is unable to ‘save’ Universes with an initial condition of ϵ=−1.

2.6.2. Defining an expression for c(t): constraining the ansatz in relation to the flatness prob-
lem. The following method was explored in [10], where a time-evolved c(t) is more rigor-
ously defined as:

c(t) = c0a
n, (15)

where c0 and n are constants and a is the dimensionless scale factor.
In the previous section, it was demonstrated that a VSL theory can provide a fine-tuning

mechanism to drive a perturbed Universe to the critical density. In this section, an explicit
definition for c(t) will be found in order to demonstrate that, in the context of the flatness and
horizon problems, the ansatz in equation (15) is consistent.

Notably, unlike [9, 10], a variable G will not be considered in this paper. This is justifiable
since the explicit solutions for c(t), as well as the entire discussion regarding the flatness and
horizon problems in cosmology, are not impacted by a variableG. This can easily be confirmed
by assuming a temporalG dependence and re-deriving the solution starting from the Friedman
equations. The final constraints for the parameter n in the equation c(t) will be equivalent to a
constant G approach.

Notably, the LHS of equation (11) can be treated as an expanded quotient rule and rewritten
as:

d
dt

(
ρa3γ

)
ρa3γ

. (16)

This mathematical trick used in [10] allows the rewriting of equation (10) (also plugging in
p= (γ− 1)ρ and noticing that c⌋̇= c20na

n+n−1ȧ) as:
d
dt

(
ρa3γ

)
ρa3γ

=
3Knc20a

n+n−1ȧ
4πGρa2

.

12
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This can be equivalently re-written as:

d
dt

(
ρa3γ

)
=

3nKc20a
2n+3(γ−1)ȧ
4πG

. (17)

Integrating the solution (with ξ as an integration constant) gives:

ρa3γ =
3Kc20
4πG

· na2(n−1)+3γ

2(n− 1)+ 3γ
+ ξ → ρ=

3Kc20
4πG

· na2(n−1)

2(n− 1)+ 3γ
+ ξ a−3γ . (18)

Prior to discussing the consequence of this, plugging it back into equation (8) gives:

(
ȧ
a

)2

=
8π
(

3Kc20
4πG ·

na2(n−1)

2(n−1)+3γ + ξ a−3γ
)
G

3
− Kc20a

2n

a2
, (19)

∴
(
ȧ
a

)2

= Kc20
2− 3γ

2(n− 1)+ 3γ
a2n−2 + ξ ′a−3γ . (20)

The flatness condition is to have K= 0 at large a. This translates to a flat Universe cosmo-
logical time after the Big Bang, such as the one we observe now. The coefficients in front of
each term are not necessarily relevant in this discussion, since the main argument in [10] is to
derive a value for n so the term containing K becomes negligible at large a. This can be done
in the following manner:

a−3γ ≫ a2(n−1) → −3γ≫ 2(n− 1) (21)

∴ n≪ 1
2
(2− 3γ) . (22)

This result matches the solution derived in [10], n⩽ 1
2 (2− 3γ). This result emphasizes that

it is necessary for the curvature term (the one multiplied by K) to never overtake the expansion
term, since this will result in a largely non-flat space geometry. It can be argued that the solution
in [10] allows for n= 1

2 (2− 3γ). However, in this case, the term multiplying K will blow up,
due to the denominator becoming 0. Additionally, for values n≲ 1

2 (2− 3γ), a similar behavior
is expected. Therefore it is more appropriate to state n as n≪ 1

2 (2− 3γ).
Previously it was indicated that in order to analyze, in isolation, the form of c(t) needed to

satisfy the current observations of a flat Universe, Λ = 0 was assumed. A trivial calculation
can show that the substitution of ρ= ρm+ ρΛ and p= pm− pΛ (with the equation of state
pΛ =−ρΛc(t)2, since this corresponds to vacuum energy, and is derived through the relation
Tµν =−ρΛgµν , discussed in appendix B.3) in equation (10) will result in an additional ρ̇Λ
term on the left-hand side. Plugging in the definition for ρΛ and differentiating it with respect

13
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to t leads to the term ρ̇Λ =
nc20a

2n−1ȧΛ
4πG . Following the integration steps outlined above generates

the equation:

( ȧ
a

)2
=
(
3(3γ+ 2n− 2)(4Gπ(2n+ 3γ)+ c20Λna

2n
)−1

×
(
ξ ′ ′a−3γ + 24c20GKπn(2n+ 3γ)a2n−2

)
−Kc20a2n−2 +

c20a
2Λ

3
, (23)

which reduces to equation (20) when Λ = 0 (the last term comes from the Friedman equation,
equation (8), modified to include a non-zero Λ, where ρ= ρm+ ρΛ). Notably, this result
includes the constant G, which [10] sets to vary in order to provide a solution for n in the
context of a non-zero cosmological constant. However, this is well outside the scope of this
paper, which is primarily concentrated on a varying c. Further reading can be found in [10],
where a varying G(t) constraints the value of n to n⩽− 3γ

2 . This result is of importance for
a non-0 Λ Universe. Further comments on this result can be found in the discussion section
(section 2.8.1).

2.7. Horizon problem

At large a(t), K→ 0, resulting in the relatively flat Universe observed today. Then,
equation (20) evidently becomes:

(
ȧ
a

)2

= ξ a−3γ → ȧ=
√
ξ a2−3γ → a(t)∝ t

2
3γ . (24)

This condition makes sense since, for example, in a matter-dominated era, γ= 1 and a(t)∝ t 23 .
It is significant that this approximate solution does not incorporate the variability of c. This
implies that c(t) primarily impacts the early evolution of the Universe.

To provide a more intuitive understanding of the solution to the Horizon problem presented
in [10], it is important to return to the discussion of comoving coordinates and proper distance.
By definition, proper distance is the physical separation between two points at constant cos-
mological time. Unlike comoving distance, the cosmological expansion is factored into the
calculation for proper distance.

Let’s label the proper distance to the particle horizon, at some time t, as dh(t).
Fundamentally, the horizon problem reduces to the fact that causally disconnected regions
of space (at the moment of the CMB radiation emission) can be observed to have isotropic
CMB temperature (see a detailed discussion in appendix A.1).

An approach to solving the horizon problem is to postulate that the scale factor grows faster
(or as fast) as the proper distance to the horizon. Having the scale factor grow equally as fast
will imply that all points in space were causally connected since the Big Bang (and still are,
which, albeit is not what is observed). An α(t) that grows much faster than dh(t) implies that
causally connected regions in the past are not anymore; the predicted proper distance (at some
later time) between them will be less than their expansion away from each other. In other
words, regions of space that are not in causal contact at some later time, were once causally
connected. Essentially, this resembles the principle behind Inflation, stating that superluminal
expansion (a(t)≫ dh(t)) occurred in the early Universe.

14
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Any proper distance, dh, at time t, can be found by a c(t) · t proportionality. Using
equation (15) (eliminating the constants to express proportionality) and equation (24) a con-
dition for n can be derived, as shown in [10]:

dh (t)∝ c(t) t∝ ant∝ t1+
2n
3γ → dh (t)∝ t1+

2n
3γ . (25)

If it is required for a(t)≫ dh(t), a value for n can be found through the following inequality:

t
2
3γ ≫ t1+

2n
3γ → 2

3γ
≫ 1+

2n
3γ
, (26)

∴ n≪ 1
2
(2− 3γ) . (27)

Evidently, the constraint on n is equivalent to the one derived in relation to the flatness problem.
This demonstrates that an explicit temporally-dependent equation for c can be found that solves
both cosmological problems. Much more work is needed to determine the extent of theoretical
implications VSL can have. Given that a constant speed of light is a factor in many physical
theories, a solution to the flatness and horizon problem is not an indication of validity.

2.8. Discussion and counterarguments: theory

2.8.1. Evaluating the implications of n. As demonstrated above, an ansatz for a varying c
of the form c= c0an with n≪ 1

2 (2− 3γ) provides a solution for the horizon, as well as the
flatness problem. As previously mentioned, the value of γ is closely related to the contents of
space.

Initially, the early Universe was dominated by relativistic matter (radiation). In this case,
where γ = 4

3 , n≪−1. Similarly, dust (ordinary matter) filled Universe will have γ= 1, and
therefore, n≪− 1

2 . This resonates with the VSL postulate that the decrease of c (in rela-
tion to the expansion of space) should be greater in the early Universe, which was radiation-
dominated. Conversely, if the Universe was (non-relativistic) matter-dominated, then the speed
of light should have a less steep decrease in order for the ansatz to be a solution satisfying the
conditions for the horizon and flatness problem.

The more interesting result happens when γ= 0 is considered, which is characteristic of
a Universe with non-zero vacuum energy (dark energy). If the solution from section 2.6.2 is
considered, then there arises a possibility for n> 0. In other words, setting γ= 0 implies n≪ 1.
This allows for an increase in c(t) as the Universe expands. Undeniably, this suggests that the
upper limit on n should be lower. This issue is addressed in [10], by introducing a variableG(t)
and solving the Friedmann equations in a similar manner as demonstrated above. In short, the
re-derived constraint is n⩽− 3γ

2 , ensuring that n≪ 0 in all cases (γ is defined to be always
positive, or 0).

Interestingly, such a variation in G does not affect the derivation in section 2.6.2.

Equation (17) will simply be of the form d
dt (ρa

3γG) = 3nKc20a
2n+3(γ−1)ȧ
4π , which will provide the

same final result. The main difference occurs when the non-zero Λ solution is considered.
Evidently, the temporal variation in c proposed by [9, 10] implies that any curvature will

become negligible (with the accelerating expansion of the Universe) as long as c(t) drops
rapidly enough. However, considering only standalone variations in c does not provide the
necessary constraint on n given a non-zero ΛUniverse. This invites further investigation. As is
demonstrated in [10], it is possible to derive a formulation of the AM VSL theory, in the limit
of a constant c in order to have a scalar-tensor theory describing a variation in G(t). However,
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only solutions that have an equation of state resembling black body radiation are allowed to
persist. Essentially, this implies that a variable c theory cannot be converted into a variableG(t)
theory without implications. Moreover, the set limit on n contains the value 0, even in a Λ ̸= 0
Universe. This would result in the possibility for c= c0, which describes a Universe with a
constant light speed. Therefore, as remarked by [10], the constraint on n in the c(t) equation
can also be seen as a generalization of Inflation (more particularly, the conditions that allow
for an inflationary resolution to the horizon/flatness problems).

2.8.2. Counterargument and a proposed resolution: the entropy problem. As proposed
in [21], in flat, K= 0, and closed, K> 0, Universes, the Second Law of Thermodynamics
demands ċ(t) = 0, whereas in an open Universe, with K< 0, the speed of light can only
decrease. To demonstrate this [21] assumes a Universe where the particle number is conserved,
regardless of expansion (and any consequences of the fine-tuning mechanism described in
section 2.6.1). In this case, it is implied that N= nρa3 and dN

dt = 0, where N is the total num-
ber of particles, nρ is the comoving number density of particles (to distinguish it from n, that
denotes the exponential value in equation (15)), and a is the scalar factor, as before. It can be
easily seen that applying the chain rule and substituting the Hubble Parameter, H≡ ȧ

a , gives:

dN
dt

= a3 (3Hnρ+ ṅρ) = 0. (28)

Since a3 ̸= 0, it must be required for the particle number density to obey 3Hnρ+ ṅρ = 0. As
done in [21], applyingGibbs’ equation for an adiabatic system (no heat transfer) and ṅρ

nρ
=−3H

gives:

nρTṠ= ρ̇− ṅρ
nρ

(
ρ+

p

c(t)2

)
= ρ̇+ 3H

(
ρ+

p

c(t)2

)
= ρ̇+ 3

ȧ
a

(
ρ+

p

c(t)2

)
, (29)

where S is the entropy of the system and T is the temperature in Kelvin.
Evidently, the right-hand side of the equality above (equation (29)) is equivalent to

equation (10). A simple substitution gives an equation for the change in entropy as a con-
sequence of varying c:

Ṡ=
ċ
c

3Kc2

4πGa2nρT
. (30)

Initially, without referencing the equation above, it is crucial to consider the expected beha-
vior of entropy given a variable c. For example, a larger c would increase an observer’s past
light cone, resulting in more information from the early Universe reaching a point in space-
time. In turn, the inverse relation between entropy and information implies that this should
lead to a decrease in S. Conversely, since c is considered to decrease over time (in mathem-
atical terms ċ< 0), the behavior of the temporal change in entropy will resemble an opposite
relation, Ṡ> 0. This is consistent with the Second Law of Thermodynamics, which states that
the entropy of the Universe must always increase.

A complication to VSL arises when equation (30) is considered. Evidently, in VSL theories
the prefactor, ċc , is defined to be negative. If it is required for Ṡ> 0, the only possible equality
for K that satisfies this is K< 0, corresponding to an open Universe with ρ < ρc. This result
puts into question the validity of the flat Universe solutions discussed in sections 2.6.2 and 2.7.
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However, other entropy contributions can result in lesser restrictions than those imposed by
equation (30). As elaborated by [21], in cosmologies that model the Universe as a perfect fluid,
the total entropy can be modeled by the equation Ṡf + Ṡh ⩾ 0. Here Ṡf represents the entropy
of a fluid enclosed by a horizon (analogous to Ṡ in equation (30)), whereas Ṡh is the entropy
of the horizon itself. The equality states that the total entropy cannot decrease with time.

In summary, [21] derives Ṡf and Ṡh, in the limit of t→∞, as:

Ṡf ∝

{
t2

n+1
1−n ln3 t , −1< n<− 1

2 ,

t
1
2

2n+3
1−n ln3 t , − 1

2 < n< 0,
,

Ṡh ∝ t
5

1−n ln2 t − 1< n< 0.

In both ranges of n (which includes both ordinary and relativistic matter), Ṡh domin-
ates over Ṡf and the equality Ṡf + Ṡh ⩾ 0 is satisfied. Essentially, the change in entropy of a
perfect fluid, through which the Universe is modeled, at large t, will be dominated by the
entropy of the particle horizon that surrounds it, thus satisfying the Generalized Second Law
of Thermodynamics equation, Ṡf + Ṡh ⩾ 0. Chimento et al [21] states this as an alternative
approach to deriving entropy in VSL that loosens the constraints implied by equation (30).

Although the behavior of entropy under VSL may not explicitly prohibit the existence of
a flat Universe, the discussion above demonstrates the care needed in order to make concrete
claims from a varying c theory.

3. Experimental evidence for a varying fine structure constant

3.1. Methods and background

3.1.1. Quasars and redshift. A series of experiments and data analysis conducted by Webb
et al [4, 22–25] demonstrated the possibility for a variation in the fine structure constant.
Primarily, they focused on quasar spectroscopy as a method to examine physical laws and con-
stants at medium to high redshift. Essentially, quasars are one of the most luminous objects in
the Universe. Themost distant ones observedwere formed less than a billion years after the Big
Bang. (Wang et al’s paper [26] in 2021 discovered quasar J0313-1806 at redshift zem = 7.624,
dating it back to approximately 670 million years after the Big Bang, which is the most dis-
tant/oldest quasar currently measured) Additionally, quasars are considered to be powered by
accretion onto supermassive black holes [27]. Accretion refers to a process in which matter,
under the influence of a Supermassive BlackHole’s immense gravitational pull, begins to spiral
inward towards the center of the Black Hole. Throughout this process, a surrounding accretion
disk is formed. In simple terms, as the matter particles lose gravitational potential energy (they
spiral towards the center of the Black Hole) their energy is converted into heat, resulting in the
emission of large amounts of radiation, thus making the object appear bright.

In the context of cosmology, redshift refers to a measure of the stretching of the wavelength
of light. The mathematical definition is, z= λo−λe

λe
, where λo is the wavelength observed from

Earth, whereas λe is the wavelength emitted from the source. Current consensus among cos-
mologists explains redshift as a consequence of the Universe’s spatial expansion that leads
to the stretching (redshifting) of light traveling cosmological distances. However, within the
context of VSL theories, this effect can be partly credited to∆c(t)< 0, or, in other words, the
deceleration of the speed of light over large timescales.
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It is important to note, however, that the redshift (z) discussed further in the context ofWebb
et al is that of absorption rather than emission. For the purpose of consistency the subscript in
zabs will be omitted.

Absorption lines on quasar spectra occur when light emitted from a distant quasar passes
through absorption clouds prior to reaching measuring devices on Earth. As a result, the
absorption redshift, z, will be less than the emission one, zem. Intuitively, since the absorption
clouds are closer to Earth than the quasar, the moment at which absorption occurs is tempor-
ally less distant in the past than the instant of emission. As previously discussed, redshift can
be interpreted as a measure of the amount of time light has been subjected to the expansion of
space. A greater redshift indicates that the emission/absorption occurred further in the past.

3.2. Implications of a redshift-dependent fine structure constant

As previously mentioned, the fine structure constant α is proportional to c−1. If, as VSL theor-
ies claim, the speed of light has decreased since the early Universe, it is expected to observe a
temporally varying α such that ∆α(t)> 0 (for ∆α(t) = αnow−αpast, which is opposite from
the definition in Webb et al). Notably, an observation of objects at high redshift (distant) is,
in essence, synonymous with looking at a younger Universe, or probing the past. Hereby, a
redshift-dependent fine structure constant implies a temporal (or spatial) variation in α. From
VSL it is expected to observe a smaller value for α at higher redshifts (implying a smaller fine
structure constant in the past).

This contributes to many potential consequences, one of which is the accepted redshift
for the emission of the CMB radiation (a conceptual section on the CMB can be found in
appendix B.1). Since the ionization energy of hydrogen-like atoms is dependent on α, a VSL
theory implies that this value could shift. Essentially, the CMB emission corresponds to the
Universe cooling down to temperatures that allow for the formation of atomic nuclei, such as
Hydrogen. If the ionization energy of Hydrogen differed in the past, the CMB could have been
emitted at a different time than currently theorized. This can have implications for cosmolo-
gical models of the Universe’s evolution.

Additionally, as a consequence of modified energy levels, all atomic spectra will be per-
turbed when measured at redshift. In other words, the energy levels of atoms depend on α (for
hydrogen-like atoms En ∝ α2) and any change in the fundamental constant will result in their
perturbation. In relation to absorption spectra, this implies that at redshift (or equivalently, in
the past), the position of the absorption lines for each atomic species will differ from currently
measured positions. This is closely related to the study performed by Webb et al which is
further discussed in this section, where the absorption spectra of atoms were measured in the
search for a varying α.

3.3. Many-multiplet method employed by Webb et al

An expanded theoretical background of this method can be found in [4]. Essentially, the idea of
a multiplet in particle physics is a state space for the internal degrees of freedom of a particle
(such as spin, color, isospin, hypercharge etc). Mathematically this can be represented as a
vector space associated with a group of continuous symmetries (ex. SU(2) for quantum isospin,
SU(3) for color change in QCD etc). In the context of spectroscopy, however, a multiplet can
appear in the absorption spectra if an electron transition occurs between closely spaced energy
levels. These energy levels are due to a particle’s fine or hyperfine structure (a brief overview
of these concepts can be found in appendix B.4).
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As derived in [4], the energy equation for a transition from the ground state, within a par-
ticular multiplet of energy levels, at a given redshift, z, can be written as:

Ez = Ec +Q1Z
2
n

[(
αz
α0

)2

− 1

]
+K1 (LS)Z2

n

(
αz
α0

)2

+K2 (LS)
2Z4

n

(
αz
α0

)4

, (31)

where α0 is the current value of the fine structure constant, whereas αz is the value at a specific
redshift, z. In the equation above, L and S are the electron’s total orbital angular momentum
and total spin respectively. Q1 and K1,2 are relativistic corrections previously computed. Ec is
the energy of the configuration center and Zn is the nuclear charge. By assuming a possible
non-zero variation of α with respect to the redshift, Webb et al [4] simplify this equation as:

kz = k0 + q1x+ q2y

{
x≡

(
αz

α

)2− 1

y≡
(
αz

α

)4− 1
, (32)

where kz is the wavenumber in the rest-frame of the absorption cloud at redshift z, whereas k0
is the wavenumber measured at Earth.

In the paper(s) detailing their statistical results [4, 22, 23],Webb et al use themany-multiplet
method and data from Quasi-Stellar Objects (QSO) absorption spectra in order to numerically
estimate a value for ∆α

α , defined as αz−α0
α0

.

3.4. Initial results for a redshift-dependent fine structure constant by Webb et al

In a series of experiments involving statistical data analysis dating early 2000s, Webb et al
provided possible evidence for a smaller fine structure constant in the early Universe [4,
22, 23]. Notably, this adheres to the prediction postulated by VSL theories that, given a
c(t) that decreases over time, α is expected to increase. They reported an average value
of ∆α

α = (−0.72± 0.18)× 10−5 [4] found by employing the aforementioned observational
many-multiplet technique. Essentially, this enhances the sensitivity of previous measurements
by studying relativistic transitions to different ground states. This was done by using absorption
lines in quasar spectra (QSO) at medium redshift. As claimed byWebb et al themany-multiplet
method is more sensitive than the alkali-doublet method previously used in [28]. They con-
clude, in summary, that their current results are advantageous to prior computations since the
many-multiplet method allows for an order of magnitude gain in sensitivity compared to the
alkali doublet (AD) method [4] (a brief comparison of the MM method and AD method can
be found in appendix B.5).

Using spectographmeasurements of DLAswith redshifts of 0.5< zabs < 1.8 [22] and 0.9<
zabs < 3.5 [4], their final results are summarized in table I from [23]:

The table above demonstrates their results and the claim that the MM method proves to be
more sensitive than the AD method.

3.4.1. Initial results: discussion and wider scientific commentary. Due to the definition of
∆α
α , if αz (measured at some redshift) is less than α0 (measured in the laboratory), ∆α

α will be
negative. Based on table 1, this is the case for all calculated values in the range 0.5< z< 3.0.
As elaborated before, measuring distant quasars is equivalent to looking at a younger Universe.
Therefore, the results indicate that the fine structure constant was possibly smaller in the past,
in other words, αz < α0.
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Table 1. Webb et al [23], summary of results. Values of ∆α
α

are weighted in units of
10−5. Nabs is the number of absorption systems in each sample. As before, MM and AD
indicate the many multiplet and alkali doublet method. Reprinted table with permission
from [23], Copyright 2001 by the American Physical Society.

Sample Method Nabs Redshift ∆α
α

FeII/MgII MM 28 0.5 < z < 1.8 −0.70± 0.23
NiII/CrII/ZnII MM 21 1.8 < z < 3.5 −0.76± 0.28
SiIv AD 21 2.0 < z < 3.0 −0.5± 1.3

It is important to note, that if the above reasoning is followed, it is expected for ∆α
α to be

more negative at higher redshift. The results presented in table 1 make it difficult to draw a
trend conclusion since the error range is significant compared to themean value. However, even
though the methods differ, the results obtained are consistent given the much larger standard
deviation on the SiIv sample. Furthermore, the data in table 1 indicates a ∆α

α ̸= 0 at the 4.1σ
significance. This implies that there is a low chance the variability in α is due to a random or
identified systematic errors. As [4] concludes, at the 4σ confidence level, there is a possibility
for a lower fine structure constant in the past. Evidently, this result favors a variable c theory.
The temporal variation in α, however, is later re-evaluated through the results presented in
[25].

Prior to discussing newer data collected and analyzed by the same group of scientists that,
albeit, complicates the discussion on VSL, it is noteworthy to mention the wider scientific
commentary regarding the initial Webb et al’s results. The overall acceptance was positive,
followed by the formulation of different theories intended to explain the findings or their con-
sequences. In addition to variable c and e theories, these results motivated the formulation of
spatially variable h theories, such as the one proposed by [29, 30]. Conversely, some theories,
like the one discussed in [31], refrained from crediting the variability of α to a changing con-
stant, rather argued for the existence of an ultralight particle that couples to neutrons through
the α dependence of their masses. Experimental sensitivity currently is unable to rule out such
a theory.

Even though the ‘Webb results’ sparked a discussion on variable constant theories, argu-
ments have been placed forward, such as the one presented in [1], that the dimensionality of
fundamental constants renders any discussion of their variability meaningless. Additionally,
[1] indirectly states that an interpretation of the variability in α as a result of VSL (or a varying
e, h theory) is ultimately illogical. However, VSL theorist, Magueijo, remarks on this claim,
calling it an ‘equally meaningless statement’ [3]. Magueijo [3] explains that if a variation in
α is observed, it must be caused by the temporal (or in some theories—spatial) dependence
of some ‘constant’ (or a combination thereof), all of which have dimensions. As previously
mentioned, Beckenstein [6] and Magueijo [3, 8] dispute the claims that a variable c theory
can be translated to a variable e theory due to the different physical consequences they pre-
dict. Therefore, if a variation in α is caused by a temporal dependence of some fundamental
constant, there exists a set of experiments to determine which ‘constant’ is varying.

3.5. Recent results for a redshift-dependent fine structure constant by Webb et al

In a series of more recently published papers by Webb et al [24, 25], they conclude that when
probing a different region of the Universe, the evolution of α exhibits an inverse relation from
their previous measurements. They address possible inconsistencies in their data since, for the

20



Class. Quantum Grav. 41 (2024) 183001 Topical Review

Table 2. Webb et al [24], comparison to previous results. Values of ⟨∆α
α

⟩ are weighted
in units of 10−5.

Redshift HIRES data: ⟨∆α
α

⟩ VLT data: ⟨∆α
α

⟩

z< 1.8 −0.54± 0.12 −0.06± 0.16
z> 1.8 −0.74± 0.17 +0.61± 0.20

purpose of these calculations, was taken from a different observatory, Very Large Telescope
(VLT). Similarly to their previous work, they use the manu-multiplet method. The following
table 2 summarizes and compares the previous results (averaged over all of High Resolution
Echelle Spectrometer (HIRES) data, discussed in [4, 24, 25]) to the recent VLTmeasurements:

Evidently, the results shown above complicate the discussion on VSL. The inversely pro-
portional relation of α and c implies that in order to have a larger speed of light in the past,
it is required for α to be smaller at larger redshifts (in other words, ∆α, defined as αz−α0,
should become more negative at greater redshift values), assuming c is the only quantity that
varies. Under this assumption, the ‘Webb results’ [4, 22, 23], published in the early 2000s,
were cited by VSL theorists, such as Magueijo [3], as possible evidence for a VSL. However,
the more recent findings from the VLT data suggest that for z> 1.8, the value for ∆α

α could
be positive with greater confidence. Evidently, these results are not in favor of a VSL the-
ory, but rather evoke a possible counter-argument that more than one ‘constant’ is varying,
thus resulting in the ∆α

α trend observed. Additionally, depending on the choice of constants,
the physical implications of such models will vastly differ. Conversely, Webb et al propose
a different explanation for their results, that does not involve the variability of fundamental
constants.

3.5.1. Webb et al final conclusions. A summary figure of their results, as well as a more
detailed description of the dipole fit, is presented in [25]. After combining the VLT and HIRES
datasets, Webb et al conclude that the apparent sign changes in the ∆α

α calculations indicate
that a weighted mean model is not a good description of the VLT data [25]. They proceed to
define an angular dipole fit, where it is acknowledged that any possible redshift dependence
is encoded in the angular amplitude, which quantifies the magnitude of change. However, no
specific function is provided to describe this relationship.

Conclusively, Webb et al claim that their analysis provides evidence for a spatially varying
α in both VLT and HIRES datasets [25]. Based on their results, the variation of α across the
sky increases in amplitude at greater distances from Earth (note: this claim does not reference
the sign of ∆α

α , which fluctuates in their results, implying, at best, an inconclusive result in
relation to VSL theories).

After combining the two datasets, [25] claims that the fine structure constant appears larger
in the southern direction, referenced to Earth, and smaller in the northern, by a value on the
order of 10−5. This conclusion, however, is not in favor of a VSL theory, such as the ones dis-
cussed above, that solely relies on the temporal variation in c. This is true under the assumption
that α, based on the results of [24, 25], does not exhibit any temporal dependence.

3.6. Overview of experimental constraints, systematic errors, and counter-claims

3.6.1. Possible systematic errors in Webb et al data. An extended catalogue of possible
systematic errors is discussed in section 3 of [28], where it is concluded that only two are
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non-negligible: isotropic abundance variation and atmospheric dispersion. For reference, other
possible sources of error considered are: wavelength mis-calibration, systematic line blending
with unknown species, differential isotropic saturation, and hyperfine structure effects.

The isotopic abundance variation is a phenomenon that could mimic a variation in α at dif-
ferent redshifts. Webb et al assume throughout their data analysis that the isotopic abundances
in all species are equivalent to those observed on Earth. As noted in [28], a paper published
by Timmes and Clayton [32], indicates that the abundance of 30Si and 29Si decreases with a
lower metallicity. Webb et al note that in their data, when considering Silicon doublets at high
redshift, the metallicity is considered to be≲− 1 [28]. Therefore, if the isotopic abundance of
Si is significantly different at high redshifts than the one assumed, the data analysis can lead
to a false-positive, thus resulting in an incorrect conclusion of a non-zero ∆α

α .
Atmospheric dispersion is a significant cause for concern since the initial data, that was

used to generate the results discussed in section 3.4. The experiment was carried out prior to
August 1996 on HIRES, when the spectrometer was not yet equipped with an image rotator
(device intended to compensate for Earth’s rotation and keep stellar objects in the same position
relative to the measuring device). This is discussed in detail in [4, 28], however, briefly, if the
spectrograph is not positioned perpendicular to the horizon, then light of different wavelengths
will reach the detector at different angles, causing potential inaccuracies in the absorption
spectrum.

3.6.2. Questioning the validity of Webb et al’s results. In a recent paper published by A
Songaila and L L Cowie, a conclusion was reached that spectroscopic measurements of quasar
absorption lines, such as the ones used in Webb et al’s research, are currently incapable of
unambiguously detecting a variation of the fine structure constant using the many-multiplet
method [33]. As Songaila and Cowie note, laboratory measurements detailed in [34] have
demonstrated no indication of a temporally varying α, whereas analytical methods, such as the
one discussed in Gould et al [35], have established a range of (−0.11⩽ ∆α

α ⩽ 0.24)× 10−7,
which is much lower than the values obtained by Webb et al.

In their study, Songalia and Cowie analyze data from three quasars, at medium-redshifts
in the range of 2.30< zem < 3.03. They use the same telescope (Keck I/HIRES) as Webb
et al did for their initial dataset. In their detailed calibration analysis, they notice a drift in the
HIRES wavelength calibration, which can significantly impact results for elements, such as
Fe II and Mg II, that have widely spaced absorption lines. Essentially, given that the analysis
involves a comparison of absorption lines and their relative positions, even a minor error due
to wavelength calibration drift can cause inaccuracies in the computations, with the expected
relative error being higher for widely spaced absorption lines.

Additionally, it was determined that there is a linear deviation that proved significant
between sky line and Thorium–argon (ThAr) calibration. In all of their Keck I/HIRES data
collection, Webb et al used a ThAr lamp emission spectra before and after exposure, in order
to calibrate the wavelength [4, 36]. Thorium and argon emit light at well known wavelengths
that cover a wide range of the spectrum, therefore it is considered a reliable calibration device.
Similarly, sky line calibration uses emission lines from Earth’s atmosphere that spread over a
wide range of the emission spectrum. As demonstrated in section 3 of [33], the discrepancy
between ThAr and sky line calibration is linear, which introduces a significant systematic error.
When accounting for the gradient found ( d(∆v)

dλ = (−2.91± 0.66)× 10−5 km s−1 Å−1, where
v is the velocity shift—a quantity related to the Doppler effect which results in redshift due to
the relative motion of the source and observer if they are moving away from each other), [33]
conclude that for elements with widely spaced absorption lines (such as Mg II and Fe II, used
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by Webb et al [4, 36]), the measurement of ∆α
α using HIRES data and ThAr calibration will

exhibit a negative bias. Considering this, the ‘Webb results’ presented in [36] should have a
significance of ≈3.5σ, rather than their prior statement of 4.7σ [33].

3.7. Discussion and counterarguments: experimental evidence

Undeniably, the discussion on the variability of α is a rather complicated one. Initial data
provided by Webb et al [4, 22, 23, 36], as discussed in section 3.4.1, implied the existence
of a temporal dependence of α. These results were cited by VSL theorists (such as [3]), as a
justification and a potential validation. Moreover, the report that α was possibly lower in the
past, encouraged research on varying constant theories, especially VSL.

Songaila and Cowie [33]’s discussion on the current lack of ability to draw formative con-
clusions using QSO spectra from HIRES and the many-multiplet method puts into question
the validity of the vast ‘Webb results’ collection. If unaddressed systematic errors impact the
results significantly, then the temporal/spatial variability of α should be stated at a lower σ
confidence than the one initially argued by Webb et al.

The more recent results by Webb et al [24, 25], indicate a potential spatial variability in α.
In their calculations, ∆α

α is shown to be positive in some cases, which disfavors VSL theories
outlined above; a larger α in the past can not be explained by a theory that relies only on the
variability of c, where ∆c(t)< 0.

Throughout the analysis of all papers detailing theWebb results it came to my attention that
in the visual representation of their data, which can be seen in [25], most triangles, representing
quasars common to samples taken from both telescopes, have a variation in the range of 0.
Moreover, most squares, which represent data taken from the VLT telescope, are blue, which
indicates that the variability of ∆α

α on those datapoints is>0. Conversely, even though there is a
large amount of circles that show ∆α

α > 0, most statistically significant ones are red, suggesting
∆α
α < 0. Therefore, it is natural to question whether the difference in ∆α

α values can be caused
due to a calibration issue between the telescopes. This observation of a trend in the results
that may result in a major systematic error is not addressed by [24, 25]. In summary, mostly
all significant data points (that lie in the range 2σ− 3σ) for the VLT telescope demonstrate
a negative ∆α

α , whereas for the HIRES/Keck I a positive ∆α
α , which may be caused by a

calibration error. Therefore, it is crucial to be careful when discussing the validity of these
results. Accordingly, a more through study of the datasets is warranted and further research on
this subject is advised. In relation to VSL, it is difficult to determine whether such a theory is
favored by the ‘Webb results’ given the new VLT dataset. Conclusively, in order to determine
whether a variable α is a real effect, more sensitive experimental equipment is required that
can produce data at a greater confidence level with a lower systematic error.

4. Summarizing discussion: a personal take

Throughout this paper, I took an objective look at many aspects of a VSL theory. Needless to
say, the implications of a varying c theory are far-reaching, making this an extensive under-
taking. The primary appeal of the AM formulation is its simplicity, and the ability to solve
cosmological problems straightforwardly. It could be even stated that the behavior (and form)
of c(t) is consequential of the solution to the horizon/flatness problem since the constraint on
the parameter n was derived thusly. Moreover, even for a generic c(t), the expression of the
Friedmann equations hinted at the possibility for mass creation and annihilation in the early
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Universe, leading to a flat spacetime with matter density matching the critical value. This is a
bold, yet intriguing claim made by [9].

A major question that arises is: what is the nature of the mechanism which could drive a
rapid decrease in c in the early Universe? AM [9] leaves this unanswered, however, the more
formal definition of c(t) presented by [10] implies that temporal change in the speed of light is
not abrupt, but modeled by a continuous function that depends on the scale factor. Personally,
unlike Bimetric VSL theories [11, 12], I found this approach rather comprehensive and less
mathematically challenging. The parameter n in the proposed ansatz for c(t) is constrained
through solutions for cosmological problems that allow for the possibility of n= 0. Essentially,
if n is taken to be 0, no variation in the speed of light will be present. Consequently, instead of
looking at this VSL theory as a competitor to Inflation, it can be interpreted as an extension of
it. This point is raised in [10], where it is stated that the VSL formulation essentially generalizes
the conditions for the inflationary solution to the flatness/horizon problems.

Moreover, extensive care is taken to reduce the possible damage done to underlying theor-
ies. The proposed action that leads to the Einstein field equation (through the conventional
derivation, which was done as an exercise) in the preferred cosmological reference frame
where the scalar field, ψ, is constant, is an indicator of this. Arguably, this approach could
be motivated by Maxwell’s equations in dielectric media, making it conceptually easier to
grasp.

Another appealing aspect of this theory is that the constraint for n derived through the
horizon and flatness problems is consistent. Furthermore, when considering a Λ ̸= 0 Universe
(and a varying G), the revised constraint falls below the upper limit of the Λ = 0 derivation.
Mathematically, the variability of G is relevant only when considering the Λ ̸= 0 Universe,
since equation (20) is invariant under a change of G. This result requires further investigation;
a noteworthy derivation is performed by [10] where it is shown that in the limit of a constant c,
a scalar-tensor theory of a variable G will provide similar solutions to cosmological problems
(with strict limitations, however).

Prior to researching the experimental aspects of VSL, I was unaware of the magnitude
the discussion surrounding Webb et al’s results has. The initial results, published in the early
2000s, sparked a discussion on temporally varying constants (c, e, and even a spatially varying
h). Even though their 4.7σ confidence has been put into question due to systematic errors, their
initial results seemed promising and consistent. However, recent data has influenced Webb
et al to revise their hypothesis and claim that α is spatially varying, rather than temporally. A
graphical overview of their data, presented in [25], evoked some personal skepticism of the
result. As previously mentioned, most data points at the 3σ level seem to exhibit a dependency
on the telescope used for collection (Keck telescope data seems to trend towards ∆α

α < 0,
whereas VLT data favors ∆α

α > 0). This could be the result of some systematic error that is
not accounted for. Evidently, this invites further investigation.

As a concluding remark, I must acknowledge that any VSL theory requires extensive
research toward the development of a theoretical framework that is consistent with all cur-
rent observations. Since the consistency of c is assumed in many well-accepted theories and
postulates, a VSL theory should be able to make the same predictions alongside solutions to
cosmological problems. Any experimental result that favors VSL will need to produce results
at a high significance, possibly larger than the 5σ threshold, in order to prove that the effect is
real. Personally, even though a varying speed of light theory seems largely unconvincing, it is a
fascinating proposal that demonstrates the extensive effect modifying one of the foundational
principles can have on physics.
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Appendix A. Derivations

A.1. Horizon problem: derivation of non-overlapping particle horizons

The main purpose of this derivation is to demonstrate that by looking at widely spaced out
regions in the CMB, an observer at current time is measuring regions of space that were outside
each-other’s past light cone at themoment of the CMB emission. For amore detailed derivation
see chapter 8.8 in [17].

Setting c= 1, for the purpose of simplicity, the comoving radius (where a(t) is the scale
factor of the Universe) between two points in time (t1 and t2) can be found as:

rt1→t2 =

ˆ t2

t1

dt
a(t)

= 3t
2
3
0

(
t
1
3
2 − t

1
3
1

)
. (33)

In equation (33), it was assumed that the Universe is matter dominated which entails a(t) =

a0
(

t
t0

) 2
3
, where a0 = a(t0) = 1 (t0 is the time elapsed since the Big Bang). We can also express

this in terms of t: t= t0a(t)
3
2 .The Hubble parameter, defined as H(t) = ȧ(t)

a(t) in this case can be

written as 2
3t . The present Hubble parameter (for which the value has been measured), H0, can

be found by plugging in t0:

H0 =
2
3t0

→ t0 =
2

3H0
. (34)

Let a1 = a(t1) and a2 = a(t2). Then, using the derivation for t above, t1 = t0a
3
2
1 and t2 =

t0a
3
2
2 . Substituting for t0, t1, t2 in equation (33), gives:

rt1→t2 =
2
H0

(
√
a2−

√
a1) . (35)

Essentially, if the comoving radius is computed by setting t1 = 0, then it is equivalent to the
radius of the particle horizon. For a region of space, at the time of the CMB, the radius of the
particle horizon is:

rCMB =
2
H0

(
√
aCMB−������:0√

a(t= 0)

)
→ rCMB =

2
H0

√
aCMB. (36)
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Plugging the approximate numerical value for aCMB = 0.0009 (it can be found using the for-
mula a= 1

1+z , with the redshift, zCMB ≈ 1089) gives:

rCMB ≈ 0.06×H−1
0 . (37)

The value above is the radius of the particle horizon at some point during the emission of the
CMB. In order to demonstrate that current observers can see causally disconnected patches at
the time of the CMB, it is necessairy to compute the comoving radius, ∆r, from the CMB to
present time. This value will demonstrate the radius of the spatial region (at the time of the
CMB) a current observer can measure. Following the prior derivation, ∆r is:

∆r=
2
H0

(a(t= t0)−
√
aCMB) =

2
H0

(1−
√
aCMB) , (38)

∴∆r≈ 2×H−1
0 . (39)

In figure 1, ∆r corresponds to the radius of the blue cone at the dashed line labeling the
moment of the CMB, whereas rCMB refers to the comoving radius of the two red cones (separ-
ately). Evidently, since∆r≫ rCMB, if a current observer measures distant regions in the CMB,
it is equivalent to looking at patches of space that were causally disconnected at the moment
of CMB emission.

A.2. Redshift at the matter-radiation equality

The scaling ofmatter and radiation density in the Universe can bewritten in relation to the scale
factor a(t). As the Universe expands in three spatial dimensions ρmatter drops proportionally to
a(t)−3. For energy, there is volumetric expansion as well as energy reduction that is∝ a(t)−1.
Letting the current matter and energy densities (and thus setting the initial conditions, knowing
that a(t0) = 1, where t0 is the current time) be ρom and ρor , respectively, gives the equations:

ρradiation (t) =
ρor

a(t)−4 ρmatter (t) =
ρom

a(t)−3 . (40)

Since the relation between redshift, z, and the expansion factor is a(t) = 1
z+1 the equations,

at the matter-radiation equality point, can be written as:

ρradiation = ρor (1+ z)4 ρmatter = ρom (1+ z)3 , (41)

ρradiation = ρmatter → ρor (1+ zeq)
4
= ρom (1+ zeq)

3
, (42)

∴ zeq =
ρom
ρor
− 1≈ 3400, (43)

which is the numerical result when using the WMAP reported valued for Ωm and Ωr. An
explanation of the ΛCDM model is outside the scope of this paper, for a more conceptual
explanation of this see [37].

A.3. From action To Einstein field equations

The following derivation is done with reference to [17] (without setting c= 1). The action, as
defined in [10], is:

S =

ˆ
dx4

[√
−g
(
ψ (R+ 2Λ)

16πG
+Lm

)
+Lψ

]
.
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Let: ˆ
dx4
√
−gLm = δm,ˆ

dx4 Lψ = δψ,

Ω=
ψ

16πG
.

Using the principle of least action δS = 0 and the notation: δX
δgµν = δX:

δS =

ˆ
dx4

[
Ω

δ

δgµν
√
−g(R+ 2Λ)+ δSm+ δSψ

]
= 0, (44)

Expanding :
δ

δgµν
√
−g(R+ 2Λ)

→ δ
(√
−gR

)
+ 2Λδ

√
−g prod. rule

=
[
Rδ
√
−g+

√
−gδR

]
+ 2Λδ

√
−g.

Using the chain rule we get :δ
√
−g=− 1

2
√
−g

δg.

Substituting :− R
2
√
−g

δg+
√
−gδR− Λ√

−g
δg.

Substituting into equation (44)

Ω

ˆ
dx4

[
− R

2
√
−g

δ

δgµν
g+
√
−g δ

δgµν
R− Λ√

−g
δ

δgµν
g

]
=−
ˆ

dx4
δ

δgµν
√
−gLm−

ˆ
dx4

δ

δgµν
Lψ.

Now solving: δ
δgµν
√
−gLm

δ

δgµν
√
−gLm

prod. rule
= Lm

δ

δgµν
√
−g+

√
−g δ

δgµν
Lm

=
chain rule

= − Lm

2
√
−g

δ

δgµν
g+
√
−g δ

δgµν
Lm.

Substituting the result and equating the integrands gives:

Ω

[
− R
2
√
−g

δ

δgµν
g+
√

−g δ

δgµν
R− Λ√

−g
δ

δgµν
g

]
=

Lm

2
√
−g

δ

δgµν
g−
√

−g δ

δgµν
Lm − δ

δgµν
Lψ × 2√

−gΩ → R
g

δ

δgµν
g+ 2

δ

δgµν
R+

2Λ
g

δ

δgµν
g

=
1
Ω

(
−Lm

g
δ

δgµν
g− 2

√
−g δ

δgµν
Lm − 2√

−g
δ

δgµν
Lψ

)
.

Defining the energy-momentum tensor as:

Tµν =−
Lm

g
δ

δgµν
g− 2

√
−g δ

δgµν
Lm−

2√
−g

δ

δgµν
Lψ.
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Dividing everything by 2 and combining the equations gives:

R
2g

δg
δgµν

+
δR
δgµν

+
Λ

g
δg
δgµν

=
1
2Ω

Tµν . (45)

Solving this will require a term-by-term derivation. Initially the term δg
δgµν will be solved. The

following linear algebra identities will be used: let A be an n× n matrix:

ln(detA) = tr(A) ,

δ ln(detA) = δtr(A) ,

δdet(A) = det(A) tr(δ ln(A)) = det(A) tr
(
A−1δA

)
.

Let :


det(A) = g

A= gµν
A−1 = gµν

,

→ δg= g tr(gµνδgµν) = ggµνδgµν .

The identity δgµνgµν = 0 gives:

δgµνg
µν = gµνδg

µν + gµνδgµν = 0,

∴ gµνδgµν =−gµνδgµν .

Applying this gives:

δg=−ggµνδgµν ,

∴ δg
δgµν

=−ggµν .

Plugging back into equation (45):

− R
2g
ggµν +

δR
δgµν

− Λ

g
ggµν =

1
2Ω

Tµν ,

∴−R
2
gµν +

δR
δgµν

−Λgµν =
1
2Ω

Tµν .

The final step is solving δR
δgµν :

δR= Rµνδg
µν + gµνδRµν . (46)

The following derivation will make use of the following property:

∇αMλ
µν = ∂αM

λ
µν +ΓβαβM

λ
µν −ΓλµβM

β
να−ΓβναM

λ
µβ .

By definition Rµν is:

Rµν = ∂αΓ
α
µν − ∂νΓαµα+ΓαµνΓ

β
αβ −ΓαµβΓ

β
να,

product rule→ δRµν = ∂αδΓ
α
µν − ∂νδΓαµα+ΓαµνδΓ

β
αβ −ΓαµβδΓ

β
να+ΓβαβδΓ

α
µν −ΓβναδΓ

α
µβ .
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Applyign the property:

∇αδΓαµν = ∂αδΓ
α
µν +ΓβαβδΓ

α
µν −ΓαµβδΓ

β
να−ΓβµαδΓ

α
µβ ,

∇νδΓαµα = ∂νδΓ
α
µα−ΓαµνδΓ

β
αβ .

Re-writing the Ricci tensor based on the equations above and plugging into equation (46)
gives:

δRµν =∇aδΓ
α
µν −∇νδΓαµα.

The variation of the Ricci scalar is therefore:

δR= Rµνδg
µν + gµνδRµν = Rµνδg

µν +∇aδΓ
α
µνg

µν −∇νδΓαµαgµν .

Re-labeling the indices (for the second term only):

ν→ α,

α→ ν,

→ δR= Rµνδg
µν +∇α

(
δΓαµνg

µν − δΓνµνgµα
)
.

The second term∇α(δΓαµνgµν − δΓνµνgµα) is a divergence term. In the integral of the action,
S=
´
dx4(∇α(δΓαµνgµν − δΓνµνgµα)), the divergance does not contribute, in other words, S=´

dx4(∇α(δΓαµνgµν − δΓνµνgµα)) = 0:

δR= Rµνδg
µν ,

or :
δR
δgµν

= Rµν .

Substituting into equation (45):

− R
2
gµν +

δR
δgµν

−Λgµν =
1
2Ω

Tµν → −R
2
gµν +Rµν −Λgµν =

1
2Ω

Tµν ,

∴ Rµν −
R
2
gµν −Λgµν =

1
2Ω

Tµν .

By the definition of the Einstein tensor, Gµν :

Gµν = Rµν −
1
2
Rgµν .

Substituting this in, alongside Ω which was defined as ψ
16πG , where ψ(xµ) = c4:

Gµν −Λgµν =
8πG
ψ

.
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Appendix B. Brief explanation of concepts and derivations

B.1. CMB radiation

The CMB Radiation was accidentally discovered by Penzias and Wilson [38] in 1965. In
their paper, they detail the discovery of a higher than expected temperature on their antenna.
Forthwith, Dicke proposed an explanation [39] that the radiation detected is a remnant from
the extremely hot early Universe. A more rigorous mathematical discussion on the CMB, the
observed anisotropies, and dark matter can be found in [40].

More conceptually, the CMB is relic radiation from the Universe when the temperatures
were approximately 3000 degrees Kelvin. Soon after the Big Bang, until the Universe was
about 380000 years old, the high temperatures allowed for a rapidly-moving bath of particles,
where collisions were frequent. At that epoch, ordinary mater (vaguely: electrons, protons,
and neutrons) was coupled to photons meaning that a ray of light did not have the ability to
travel long distances due to the hot and dense particle-radiation bath of the early Universe.
After a period of expansion and cooling, the Universe reached the necessary temperatures to
enable the formation of atomic nuclei and hydrogen. At this stage, ordinary matter decoupled
from the photons (which implies that the amount of free electrons that absorbed and emitted
radiation was lower), light could travel further and the Universe became transparent. These
light rays, emitted prior to the formation of the first atoms, are what we currently detect as the
CMB Radiation.

B.2. Friedmann equations

For a more detailed derivation see chapters 8.2–8.3 in [17]. Conceptually, the Friedmann
equations are derived from the Robertson–Walker metric (after defining a dimensionless scale
factor a(t)). Since this metric is defined for any function a(t), it can be plugged into Einstein’s
equation in order to derive the Friedmann equations. One of the main characteristics of this
derivation is that the Universe is modeled as a perfect fluid (which is isotropic).

The two Friedmann equations are:(
ȧ
a

)2

=
8πGρ

3
− Kc2

a2
(47)

ä=−4πGa
3

(
3p
c2
− ρ
)
. (48)

These equations relate the density and pressure of the Universe to the expansion. The value
for K determines the geometry of the Robertson–Walker. Setting K= 0 gives the critical dens-
ity, ρc, that would result is a flat Universe. The following table summarizes the K values and
their implications:

ρ > ρc←→ K< 0←→ open geometry
ρ= ρc←→ K= 0←→ flat geometry
ρ < ρc←→ K> 0←→ closed geometry

B.3. Cosmological constant

Commonly, when performing physical experiments, only the change in energy from one state
to another is measurable. As noted by [17], equations of motion for a particle in potential V(x)
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would be equivalent to a particle moving in potential V(x)+V0 (for some real constant V0).
However, in gravitational physics, the precise value of the energy is significant, not just the
difference between two states. This indicated the possibility of (then) yet unmeasured constant
energy of the vacuum itself.

In the formulation of General Relativity, Einstein noted the possibility for vacuum energy,
which is interchangeable with Λ. This energy density, which exhibits Lorentz invariance, is
characteristic to empty space. A generalized metric including the vacuum energy density, ρΛ,
can be written as: −ρΛgµν . Since it is common to model the Universe as a perfect fluid, a
comparison with the energy-momentum tensor of a perfect fluid gives the equation of state
pΛ =−ρΛc2.

This is appropriate since Lorentz invariance implies that the energy-momentum tensor of
the vacuum should be proportional to the generalized metric gµν (this implies that the vacuum
does not have a preferred direction). For reference, the perfect fluid energy-momentum tensor
is Tµν = (ρ+ p

c2 )U
µUν + pgµν . Equating the term that does not include the 4-velocities (since

it is a vacuum, the first term can be neglected) gives the equation of state shown above.
The vacuum energy can be interchanged to the concept of dark energy, with the equation

of state pΛ =−ρΛc2.
(A more detailed explanation of the cosmological constant, Λ, can be found in chapter 4.5

of [17].)

B.4. Fine and hyperfine structure

A comprehensive theoretical overview of the Fine and Hyperfine splitting in atoms (Hydrogen
in particular) can be found in chapter 7.3–7.5 of Griffiths [41]. Essentially, the Fine Structure
of atoms results in a splitting of spectral lines due to relativistic corrections to the Schrödinger.
This can be measured as the Zeeman effect, resulting from the interactions between the elec-
tron’s spin and the magnetic field generated by the electron’s orbit around the nucleus.

Hyperfine Structure (whose correction is of lesser order than the Fine Structure contribu-
tions, as noted by Griffiths in chapter 7.3 [41]), on the other hand, results from an interaction
between the magnetic field generated by the electron’s orbit and the nuclear spin. Both Fine
and Hyperfine structure result in the splitting of energy levels. Energy levels in a multiplet
are typically associated with electrons that have the same n (principal quantum number) and l
(orbital angular momentum), but differ in s (spin) or j (total angular momentum).

B.5. AD and many multiplet method: comparison

The theoretical background of the AD method is presented in more detail in Murphy et al
[28]. The primary purpose of this method is to analyze doublet separations in quasar (QSO)
absorbtion spectra. Murphy et al used the following equation as a constraint on ∆α

α , previously
derived by Varshalovich et al (qtd. [28]):

∆α

α
=
cr
2

[(
∆λ ·λ−1

)
z

(∆λ ·λ−1)0
− 1

]
(49)

where (∆λλ )z and (∆λλ )0 are the relative doublet separations in the absorption cloud at some
redshift, z, and as measured in the laboratory respectively. The constant cr ≈ 1 accounts for
higher order relativistic corrections.

Similarly to theMMmethod discussed in section 3.3, the ADmethod employed byMurphy
et al relies on equation (32). In their initial paper [28], they increase the precision of the AD
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method by a factor of 3.3 from prior calculations. Essentially, this was achieved by eliminating
systematic errors, using improved wavelength measurements in the laboratory, and better QSO
absorbtion data quality. However, as they note in their discussion, the MM method, which is
based on the same equation, differs by using multiple transitions from many multiplets of
different ions. In this manner, the q1 (which can be positive or negative given the nature of the
ground and excited states of the ion) and q2 coefficients are found to be more sensitive to the
properties of the ions giving an order of magnitude greater sensitivity than the AD method.
In summary, MM allows for more sensitivity over AD, permits the usage of all transitions
appearing in the absorption spectra (resulting in enhanced precision due to a larger amount of
usable data points), and minimizes systematic errors (discussed in section 3.6.1) through the
comparison of transitions with opposite sign q1 coefficients.

B.6. Celestial sphere

The celestial sphere is an imaginary, concentric to Earth (or some other observing point),
sphere with an arbitrarily large radius. The primary purpose is to ease the mapping of astro-
nomical objects. Each object is projected onto the inner surface of the celestial sphere. It is
important to note that in such a manner the linear distance from the observer to the object is
not considered, only the angular separation.

Appendix C. Brief catalogue of related readings

C.1. Varying constant theories

C.1.1. VSL: related to the AM formulation. → Albrecht A and Magueijo J 1999 Time varying
speed of light as a solution to cosmological puzzles [9]
→ Barrow J D 1999 Cosmologies with varying light speed [10]

C.1.2. VSL: bimetric formulation. → Clayton M A and Moffat J W 1999 Dynamical mech-
anism for varying light velocity as a solution to cosmological problems [11]
→ Kursunoglu B N 2002 Quantum Gravity, Generalized Theory of Gravitation, and

Superstring Theory-Based Unification [12]

C.1.3. VSL: color dependent speed of light, theory and experiment. Theory:
→ Amelino-Camelia G 2002 Relativity in spacetimes with short-distance structure gov-

erned by an observer-independent (Planckian) length scale [13]
→Manida S N 1999 Fock–Lorentz transformations and time-varying speed of light [42]
Experimental:
→ Ellis J et al 2000 A search in gamma-ray burst data for nonconstancy of the velocity of

light [43]

C.1.4. VSL: lorentz invariant. →Moffat J W 1993 Superluminary Universe: a possible solu-
tion to the initial value problem in cosmology [14]
→Moffat J W 2005 Variable speed of light cosmology and bimetric gravity: an alternative

to standard inflation [15]
→ Magueijo J 2000 Covariant and locally Lorentz-invariant varying speed of light

theories [5]
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C.1.5. Dual theory: variable c (AM formulation) and e. → Barrow J D and Magueijo J 1998
Varying-α theories and solutions to the cosmological problems [44]

C.1.6. VSL and string theory. → Kiritsis E 1999 Supergravity, D-brane probes and thermal
super Yang-Mills: a comparison [45]
→ Alexander S H S 2000 On the varying speed of light in a brane-induced FRW universe

[46]

C.2. VSL: experimental

C.2.1. ‘Webb results’: chronological. →Webb J K et al 1998 A search for time variation of
the fine structure constant [22]
→ Murphy M T et al 2001 Possible evidence for a variable fine-structure constant from

QSO absorption lines: motivations, analysis and results [4]
→ Murphy M T et al 2001 Further constraints on variation of the fine-structure constant

from alkali-doublet QSO absorption lines [28]
→ Webb J K et al 2001 Further evidence for cosmological evolution of the fine structure

constant [23]
→ Murphy M T et al 2003 Further evidence for a variable fine-structure constant from

Keck/HIRES QSO absorption spectra [36]
→Webb J K et al 2011 Indications of a spatial variation of the fine structure constant [24]
→ King J A et al 2012 Spatial variation in the fine-structure constant—new results from

VLT/UVES [25]

C.3. Recent VSL research

→Eaves R E 2021 Constraints on variation in the speed of light based on gravitational constant
constraints [47]
→ Lee S 2023 A viable varying speed of light model in the RW metric [48]
→Cuzinatto R et al 2023Dynamical analysis of the covarying coupling constants in scalar–

tensor gravity [49]
→ Bassani P M 2023 Varying constants and the Brans–Dicke theory: a new landscape in

cosmological energy conservation [50]
→ Gupta R 2020 Cosmology with relativistically varying physical constants [51]
→ Lee S 2023 The cosmological evolution condition of the Planck constant in the varying

speed of light models through adiabatic expansion [52]

C.4. Supplementary recommended readings

C.4.1. Energy conditions overview. → Curiel E 2017 A primer on energy conditions [53]
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C.4.2. Extensive overview of VSL theories. →Magueijo J 2003 New varying speed of light
theories [3]

C.4.3. Reading on cosmology and general relativity. → Carroll S 2004 Spacetime and
Geometry: An Introduction to General Relativity [17]
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