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1 Introduction
One of the most interesting directions of research in theoretical physics over the past few decades has
been the study of topological solitons, particle-like regular localized field configurations with finite energy.
Topological solitons occur in various nonlinear classical field theories. Perhaps simplest examples are
the kinks which appear in (1+1)-dimensional scalar models with a potential possesing two or more
degenerated minima, see, e.g., Refs. [1, 2]. An interesting examples in (2+1) dimensions are Nielsen-
Olesen vortices in the Abelian Higgs model [3] and soliton solutions of the non-linear O(3) sigma model
[4]. Modification of the latter theory is known as the baby Skyrme model [5, 6] a planar reduction of the
original Skyrme model in (3+1) dimensions [7]. Another famous example of topological solitons in (3+1)
dimensions are monopoles in the Yang-Mills-Higgs model [8, 9].

Remarkable feature of the topological solitons is the relation between the topological charge of the
configuration and the number of fermionic zero modes localized on a soliton. The fundamental Atiyah-
Patodi-Singer index theorem requires one normalizable fermionic zero mode per unit topological charge
[10]. Moreover, apart zero modes, most configurations also support existence of a tower of localized
fermionic modes with non-zero energy.

The fermionic modes localized on solitons have been studied for many decades, starting from the pio-
neering paper [11], later revisited in [12], where fermion-vortex system was investigated. There has been
much interest in studying the localized fermionic states in various systems; examples of such are fermion
modes of the kinks [13, 14], monopoles [15, 16], and skyrmions [21, 22]. Existence of localized fermions
leads to many intriguing and fascinating phenomena, such as fermion number fractionization [14, 12],
Rubakov-Callan mechanism of monopole catalysis of proton decay [15, 16], and string superconductivity
[17].

https://creativecommons.org/licenses/by/4.0/
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Notably, fermionic zero modes naturally appear in supersymmetric theories; several simple examples
are N = 1 chiral scalar superfield in (1+1) dimensions [18], supersymmetric extensions of the O(3) sigma
model [19], and baby-Skyrme model [20]. In such situation the fermion zero modes are generated via
SUSY transformations of the bosonic sector of a static soliton. The breaking of supersymmetry of the
configurations, in agreement with the index theorem, shows a spectral flow of the eigenvalues of the Dirac
operator with some number of normalizable bounded modes crossing zero.

The typical assumption in most of such considerations is that the spinor field does not backreact
on the soliton [13, 14]; moreover, only the fermion zero modes were considered in most cases. This
assumption is justified in the weak coupling limit. However, as the Yukawa coupling increases, the effects
of the backreaction can be significant. A different approach to the problem was proposed recently in
[23, 24, 25, 26] where backreaction of the localized fermions on solitons was taken into account. This
concept was subsequently applied in modelling various dynamical systems [27, 28, 29, 30, 31].

The situation gets another twist as the gravitational interaction is taken into account. As compared
to boson fields, fermions have attracted less consideration in General Relativity. Although solutions
of the Dirac equation in curved spacetime were constructed many decades ago [32], the study of self-
gravitating fermions still remains somewhat obscure, because the Dirac field has to be treated in terms
of a normalizable quantum wave function. However, one can make use of certain restrictions supposing
that only one-particle fermion modes are considered, and second quantization of the fields is ignored. In
this framework gravitational interaction is treated purely classically. It then turns out that the system of
the Einstein-Dirac equations supports regular localized solitonic solutions [33], the so-called Dirac stars
[34, 35, 36, 37, 38]. Interestingly, the backreaction of self-gravitating fermions may significantly affect
the metric and, in particular, allow for (traversable) wormholes [39, 40]. It was pointed out that self-
gravitating spinor fields may give rise to some interesting phenomena in the cosmology of the accelerating
Universe [41, 42]. Further, it was found recently that the localization of the backreacting fermionic mode
on a Skyrmion may violate the energy conditions; as a result, regular self-gravitating asymptotically flat
solutions with negative and zero ADM mass may emerge [43].

Below we briefly review recent works on solitons with localized backreacting fermions.

2 Fermion localization on the kinks
As a prototype model, which describes solitons with localized fermions in (1+1) dimensions, we consider
the minimal N = 1 supersymmetric sigma-model with the chiral scalar superfield Φ(x, θ) = φ(x) +
iθψ(x) + i

2 (θ̄θ)F (x), where φ is a real scalar field, ψ is a fermion field and F is an auxiliary field [18]. In
component notation the Lagrangian of the model is

LN=1 =
1

2
(∂µφ)

2
+
i

2
ψ̄γµ∂µψ +

1

2
F 2 + FW ′ − 1

2
W ′′ψ̄ψ , (1)

where W is the so-called superpotential, the matrices γµ are γ0 = σ1, γ1 = iσ3, where σi are the Pauli
matrices, and ψ̄ = ψγ0.

Since the Euler-Lagrange equation for the field F is just F = −W ′, it can be eliminated, so the
Lagrangian (1) becomes

LN=1 =
1

2
(∂µφ)

2
+
i

2
ψ̄γµ∂µψ −

1

2
W ′′ψ̄ψ − 1

2
(W ′)2. (2)

The supersymmetry transformations of the fields are

δφ = ηψ, δψ = η (γµ∂µφ−W ) , (3)

where η is a Grassmann valued parameter. A particular choice of the superpotential W ′ = 1√
2

(
φ2 − 1

)
leads to the action of the φ4 model with the double vacuum potential V = (W ′)2 coupled to the fermions

via the fixed Yukawa coupling g =
√

2:

S =
1

2

∫
d2x

[
(∂µφ)

2
+ iψ̄γµ∂µψ − gφψ̄ψ −

1

2

(
φ2 − 1

)2]
. (4)

The supersymmetry of the model is violated as the Yukawa coupling becomes a free parameter, or as the
potential V is no longer related to the prepotential W .
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Figure 1: Normalized energy ε
g

of the localized fermionic states as a function of the Yukawa coupling g for several
fermion modes at m = 0 without backreaction (left panel) and with backreaction of the fermions on the kink
(right panel). Reprinted (without modification) from Ref. [25], c©2019 The Authors of [25] under the CC BY 4.0
license.

The field equations of the model are given by

∂µ∂
µφ+ gψ̄ψ − φ+ φ3 = 0 ,

iγµ∂µψ − gφψ = 0 .
(5)

Using the parametrization of the two-component spinor ψT = e−iεt(u, v), the equations (5) become:

φxx − guv − φ+ φ3 = 0, ux + gφu = εv , −vx + gφv = εu . (6)

This system is supplemented by the normalization condition
∞∫
−∞

dx (u2 + v2) = 1.

Consideration of the fermionic modes is usually related to the simplifying assumption that the scalar
field background is fixed [13, 14]. In the decoupled limit g = 0, the φ4 model supports a spatially localized
static topological soliton, the kink, located at x = x0 and interpolating between the vacua φ0 = −1 and
φ0 = 1:

φK(x) = tanh(x− x0). (7)

For the sake of simplicity, we take x0 = 0. The kink satisfies the Bogomolny equation dxφK = W ′. The
components of the spinor field on that external static background are solutions of the Schrödinger-type
equations (

−∂2x + U+(x)
)
u = ε2u,

(
−∂2x + U−(x)

)
v = ε2v (8)

where U±(x) = g2 − g(g ± 1)sech2x is the usual Pöschl-Teller potential. Thus, the zero mode ε = 0 is a
particular solution of the Dirac equation [13, 14]:

ψ0 ∼
(

sechgx

0

)
. (9)

In the special case of the unbroken N = 1 supersymmetry this mode is generated via the above-mentioned
supersymmetry transformation of the field of the kink, and the configuration preserves half of the SUSY
generators.

As the Yukawa coupling g increases, the potential well becomes deeper and new levels appear in
the spectrum of the bound states, see the left plot of Fig. 1. We note that the energy spectrum of the
localized fermions is symmetric with respect to inversion ε → −ε, apart nodeless zero mode, which we
will denote as A0, each state with a positive eigenvalue ε has a counterpart with reflected anti-symmetric
u(v)-component and a negative eigenvalue −ε, see Fig. 1, left plot. We classify the corresponding solutions
according to their parity, there are two types of the boundary conditions for the massless fermions localized
on the kink ux

∣∣
0

= 0 v
∣∣
0

= 0 or u
∣∣
x0

= 0 vx
∣∣
0

= 0 . We refer to the modes of the first type to
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Figure 2: Left panel: The fermion density distribution of the fermion modes of different types localized on the
kink in the absence of backreaction are plotted as functions of the coordinate x for g = 5. Right panel: The
profiles of the field of the kink coupled to the backreacting fermionic mode B1 are plotted for several values of
the Yukawa coupling g. Reprinted (without modification) from Ref. [25], c©2019 The Authors of [25] under the
CC BY 4.0 license.

as Ak-modes and to the modes of the second tape to as Bk-modes. Here the index k corresponds to the
minimal number of nodes of the components.

However, as the Yukawa coupling becomes stronger, the backreaction of the localized fermions could
significantly affect the kink [25]. Indeed, for g & 1, the self-consistent numerical solution of the coupled
system of equations (5) becomes very different from the spectrum of fermions in the external field of the
kink φK , as displayed in the right plot of Fig. 2. The backreaction of the fermions breaks the symmetry
between the localized modes with positive and negative eigenvalues. Localization of the fermions gives
rise to spatial oscillations of the profile of the kink, where fermion modes are located. This configuration
can be thought of as a chain of kink-antikink pairs tightly bounded by the localized fermions, and the
number of the constituents on the chain increases for higher fermionic modes. Indeed, KK̄ pair can be
stabilized by a collective fermionic mode localized between the solitons [26].

3 Fermion localization on the self-gravitating monopole
3.1 Fermionic zero mode of the non-Abelian monopole
As a second example of fermionic mode localized on a soliton, we consider the (3+1)-dimensional SU(2)
Yang-Mills-Higgs system coupled to the Dirac fermions in the flat space [14]:

L− 1

2
Tr(FµνF

µν) + Tr(Dµφ D
µφ)− V (φ) + Lsp , (10)

where the covariant derivative of the scalar field in adjoint representation φ = φaτa is Dµφ = ∂µφ +
ie[Aµ, φ] and e is the gauge coupling constant. The usual symmetry breaking potential is V (φ) =
λ
4 Tr

(
φ2 − φ20

)2
.

The bosonic sector of the model (10) is coupled to the Dirac isospinor fermions ψ with the La-
grangian [14] of the form

Lsp =
ı

2

(
( /̂Dψ̄)ψ − ψ̄ /̂Dψ

)
− ı

2
hψ̄γ5φψ +mψ̄ψ , (11)

where m is the bare fer4mion mass, h is the Yukawa coupling constant, D̂µψ = (∂µ + ieAµ)ψ and γµ are
the Dirac matrices in the standard representation.

The ’t Hooft-Polakov monopole solution of the corresponding system of field equations

DνF
aνµ = −eεabcφbDµφc − e

2
ψ̄γµσaψ ,

DµD
µφa + λφa

(
φ2 − φ20

)
+ ihψ̄γ5σaψ = 0 ,

ıD̂/ψ − ih
2
γ5σaφaψ −mψ = 0
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is a topological map Φ : S2
∞ 7→ S2

vac, Π2(S2) = Z, it can be constructed using the renowned static
spherically symmetric hedgehog ansatz [8, 9]

φa =
ra

gr2
H(r), Aan = εamn

rm

gr2
[1−W (r)], Aa0 = 0. (12)

For the spherically symmetric Dirac spin-isospinor fermions, we make use of the ansatz ψ = e−iωt
(
χ
η

)
,

where

χ =
u(r)√

2

(
0 −1
1 0

)
, η = i

v(r)√
2

(
sin θe−iϕ − cos θ
− cos θ − sin θeiϕ

)
(13)

and the normalization condition
∫
d3xψ†ψ = 1 is imposed.

The dimensionless parameters of the model (10) are defined as the mass ratios λ = Ms

Mv
and h =

2Mf

Mv
,

where Ms, Mv, and Mf are the masses of linearized excitations of the scalar, gauge and Dirac fields,
respectively.

The system of non-linear coupled differential equations for four functions H,W, u, and v can be solved
numerically, see, e.g., Ref. [44]; in general, it does not have an analytical solution. The only known
exception is the self-dual Bogomolny-Prasad-Sommerfield (BPS) monopole, which exists in the limit of
vanishing Higgs potential with non-zero vacuum expectation value of the scalar field φ0 = a [45, 46]:

W =
x

sinhx
, H = cothx− 1

x
, x = aer. (14)

The corresponding equations for the spherically symmetric fermionic zero mode, localized on the BPS
monopole, are

u′ + u

(
1−W
x

− h

2
H

)
= 0, v′ + v

(
1 +W

x
+
h

2
H

)
= 0.

Integrating these equations, we easily obtain the normalizable solution for the localized zero mode,

v = 0 , u ∼ e−
∫
dx[ 1−W (x)

x −h
2H(x)]. It exists only for nonzero values of the scaled Yukawa coupling.

Setting, for example, h = 2 and making use of the exact BPS monopole solution (14), we obtain

v = 0 , u =
1

cosh2(x/2)
. (15)

Notably, zero mode is unique, in the N = 1 supersymmetric counterpart of the model (10) it arises as a
result of SUSY variations of the field of the BPS monopole in the bosonic sector. Similar to the above-
considered case of the N = 1 supersymmetric kink, the monopole breaks down half of the supersymmetry;
this configuration is referred to as the 1/2-BPS monopole. Variation of the Yukawa coupling h breaks the
supersymmetry. However, since the eigenvalue of the Dirac operator for this mode remains zero for all
values of h, it does not backreact on the bosonic sector. Situation becomes different for radial excitations
of this mode, or in the case of non-zero bare mass term for the Dirac field. Another interesting scenario
is observed when gravity is coupled to the monopole with localized fermion modes.

3.2 Fermion zero mode localized on a self-gravitating non-Abelian monopole
Let us now consider a self-gravitating non-Abelian monopole-fermion system [47]. The action of the
model is:

S =

∫
d4x
√
−g
[
− R

16πG
− 1

2
Tr(FµνF

µν) + Tr(Dµφ D
µφ)− λ

4
Tr
(
φ2 − φ20

)2
+ Lsp

]
, (16)

where R is the scalar curvature, G is Newton’s gravitational constant, g denotes the determinant of the
metric tensor and the Dirac Lagrangian Lsp is defined by the eq. (11) above with the isospinor covariant

derivative on a curved spacetime D̂µψ = (∂µ − Γµ + ieAµ)ψ. Here Γµ are the spin connection matrices.
Variation of the action (16) with respect to the metric leads to the Einstein equations

Rµν −
1

2
gµνR = 8πG

[
(Tµν)YM + (Tµν)φ + (Tµν)s

]
(17)
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Figure 3: Left panel: The dependence of the ADM mass M of the gravitating monopole on the effective
gravitational coupling α is shown for β = 0 and β = 1 at h = −1 and ω = 0. Right panel: The same
dependence is shown for the bounded monopole-fermion system with nonzero eigenvalues ω for β = 1
and h = 1, 1.5. For comparison, in both panels, the mass of the extremal Reissner-Nordström black hole
of unit charge is also shown. Reprinted (without modification) from Ref. [47], c©2019 The Authors of
[47] under the CC BY 4.0 license.

Figure 4: The profile functions of the solutions of the system (17) and (18) in the BPS limit β = 0
are shown as functions of the compactified radial coordinate x̄ = x/(1 + x) for some set of values of
the effective gravitational coupling α at ω = 0 and h = −1. The spinor component v always remains
zero. Reprinted (without modification) from Ref. [47], c©2019 The Authors of [47] under the CC BY 4.0
license.

where (Tµν)YM ,(Tµν)φ and (Tµν)s are the corresponding components of the total stress-energy tensor.



ISQS28
Journal of Physics: Conference Series 2912 (2024) 012002

IOP Publishing
doi:10.1088/1742-6596/2912/1/012002

7

The complete system of the field equations includes the matter field equations:

DνF
aνµ = −eεabcφbDµφc − e

2
ψ̄γµσaψ ,

DµD
µφa + λφa

(
φ2 − φ20

)
+ ıhψ̄γ5σaψ = 0 ,

ı /̂Dψ − ıh
2
γ5σaφaψ = 0.

(18)

Considering spherically symmetric configurations, we implement the ansatz (12) and (13) and make
use of the Schwarzschild-like line element

ds2 = σ(r)2N(r)dt2 − dr2

N(r)
− r2(dθ2 + sin2 θdϕ2) (19)

parametrized by two functions N(r) and σ(r). It is convenient to write the metric function N(r) as

N(r) = 1− 2Gµ(r)
r ; then the ADM mass of the configuration is defined as M = µ(∞).

The vierbein, which corresponds to the metric (19), is eaµ = diag
{
σ
√
N, 1√

N
, r, r sin θ

}
, such that

ds2 = ηab(e
a
µdx

µ)(ebνdx
ν) and γµ = eµaγ̂

a with γ̂a being the usual flat space Dirac matrices. Note that
the system (17) and (18) admits embedded Reissner-Nordström (RN) solution with unit magnetic charge:

σ = 1 , µ(x) = µ∞ −
α2

2x
, W = 0 , H = 1 , u = v = 0, (20)

where α2 = 4πGφ20 A horizon occurs when N(x) → 0; in the Schwarzschild-like parametrization it
happens at some finite critical value of x = xcr = αcr.

The limit h → 0, while β2 = λ
e2 is kept fixed, corresponds to the decoupled fermionic sector. In

such a case the well known pattern of evolution of the self-gravitating monopole is recovered, a branch
of gravitating solutions emerges smoothly from the flat space monopole as the effective gravitational
coupling α increases from zero and β remains fixed [48, 49]. Along this branch the metric function
N(x) develops a minimum, which decreases monotonically. The branch terminated at a critical value
αcr at which the gravitating monopole develops a degenerate horizon and configuration collapses into the
extremal RN black hole, as displayed in the left panel of Fig. 3.

The fundamental branch of gravitating BPS monopoles with bounded fermionic zero mode smoothly
arises from the flat space configuration (14) and (15) as the effective gravitational constant α is increased
above zero. This branch reaches a limiting solution at maximal value αmax = 1.403, where it bifurcates
with the short backward branch which leads to the extremal RN black hole with unit magnetic charge,
see Fig. 3.

Fig.4 displays solutions of the system system (17) and (18) for some set of values of the effective
gravitational coupling α at h = −1 and β = 0. With increasing α the size of the configuration with
localized modes is gradually decreasing. As the critical value of α is approached, the minimum of the
metric function N(x) tends to zero at x = xcr. The metric becomes splitted into the inner part, x < xcr
and the outer part, x > xcr, separated by the forming hozizon. The Higgs field takes the vacuum
expectation value in exterior of the black hole, while the gauge field profile function W (x) trivializes
there. As a result, the limiting configuration corresponds to the embedded extremal RN solution (20)
with a Coulomb asymptotic for the magnetic field. At the same time, the fermion field becomes absorbed
into the interior of the black hole, see Fig. 4.

Apart from the zero mode, the system of equations (17) and (18) supports a tower of regular normal-
izable fermionic modes with ω 6= 0, |ω| < |h/2|. Here, both components u and v are non-zero, and for
h < 0 they posses at least one node while for h > 0 they are nodeless. In the flat space limit these modes
become delocalized as |ω| → |h/2|, while increasing of the gravitational coupling stabilizes the system.
The general scenario is that, depending on the value of the Yukawa coupling constant h, there exists a
critical value of the gravitational coupling αcr at which the spectral flow approaches the limit ω → ±0
and the configuration runs into the embedded RN solution (20).

4 Fermion zero mode localized on a self-gravitating Skyrmion
Finally, we consider the (3+1)-dimensional Einstein-Skyrme system coupled to a spin-isospin Dirac
field [43]:

S =

∫
d4x
√
−}
(
− R

16πG
+ Lm

)
, (21)
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Figure 5: The scaled eigenvalue ω/h of the localized fermionic mode is shown versus the Yukawa
coupling h for several values of the effective coupling α2. The inset in the left plot highlights the presence
of multiple branches close to the transition of the bifurcation point from positive to negative eigenvalues
of ω. Right plot illustrates the multibranch structure for small values of α.

where, by analogy with (16), the gravitational part is the Einstein-Hilbert action, and Lm = LSk +Lsp +
Lint. Here the Skyrme Lagrangian is [7]

LSk = −f
2
π

4
Tr
(
∂µU ∂

µU†
)

+
1

32a20
Tr
([
∂µUU

†, ∂νUU
†]2) , (22)

and fπ and a0 are the parameters of the model with dimensions [fπ] = L−1 and [a0] = L0, respectively.
It is convenient to introduce the dimensionless radial coordinate r → a0fπr, the effective gravitational
coupling α2 = 4πGf2π , and to rescale the Dirac field, the Yukawa coupling constant and the bare fermion

mass as ψ → ψ/
√
a0f3π , h→ h/(a0fπ), and m→ m/(a0fπ), respectively.

The Dirac Lagrangian is again given by eq. (11) with the isospinor covariant derivative on a curved

spacetime and the Skyrmion-fermion chiral interaction Lagrangian is Lint = hψ̄ Uγ5 ψ, Uγ5 ≡ I+γ̃5
2 U +

I−γ̃5
2 U† .

Contrary to the case of the spectrum of the Dirac fermions localized on the monopole in Minkowski
spacetime, the eigenvalue of the Dirac operator always depends on the strength of the Yukawa coupling.
However, in agreement with the index theorem, the normalizable bound mode crossing zero is unique.
Note that, in general, there is no self-dual truncation of the Skyrme model, also its supersymmetric
extension is related with non-linear realization of supersymmetry, see e.g. [50].

The matrix-valued Skyrme field U ∈ SU(2) can be decomposed into the scalar component φ0 and
the pion isotriplet φn via U = φ0 I + iφnτn, where τn are the Pauli matrices, and the field components
φa = (φ0, φn) are subject to the sigma-model constraint, φa · φa = 1.

To construct spherically symmetric solutions of the model (21), we employ Schwarzschild-like coordi-
nates (19) and make use of the conventional hedgehog parametrization U = cos (F (r)) I+ı sin (F (r)) (σana) ,
where na is the unit radial vector. The Skyrmion profile function F (r) corresponds to the configuration
of topological degree one. Again, for the isospinor fermion field localized on the Skyrmion, we implement
the spherically symmetric ansatz (13) with two real functions of the radial coordinate only.

In the decoupled limit (h→ 0) the dependence of the regular self-gravitating Skyrmion on the effec-
tive gravitational coupling α2 = 4πGf2π is well known. There are two branches of solutions which are
characterized by their limiting behavior as α tends to zero [51]. The first branch originates from the
flat spacetime Skyrmion, it extends up to a maximal value α2

max ≈ 0.0404, where it bifurcates with the
second, upper mass branch. The second (backward) branch extends down to the limit α → 0 which is
approached as fπ → 0. Thus the sigma-model term in the Skyrme Lagrangian (22) is vanishing and
the configuration tends to the scaled Bartnik-McKinnon (BM) solution. We will refer to them as the
Skyrmion branch and the BM branch, respectively.

In the presence of the fermions, the limit α = 0 with G = 0 corresponds to the fermionic mode
localized on the Skyrmion in Minkowski spacetime. Unlike the monopole counterpart, which always has
zero eigenvalue of the Dirac operator, this mode emerges from the positive continuum at some critical
value of the Yukawa coupling hcr ≈ −0.40. Further increase of the modulus of the Yukawa coupling
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Figure 6: Left panel: The scaled ADM mass M/α2 of the gravitating Skyrmion-fermion system is
shown versus the Yukawa coupling h for a set of values of the effective coupling α2. Right panel: The
contributions to the scaled total ADM mass (M/α2, black) from the fermion (Msp/α

2, red) and the
Skyrme (MSk/α

2, blue) fields are shown versus the Yukawa coupling h for effective coupling α2 = 0.1.

decreases the scaled eigenvalue ω/|h| of the Dirac operator. For some critical value of the coupling h the
curve ω(h) then crosses zero, as seen in Fig. 5. There is a single fermionic level which monotonically flows
from positive to negative values as the coupling decreases.

More generally, there is a family of solutions depending continuously on two parameters, the Yukawa
coupling constant h and the eigenvalue of the Dirac operator ω, for each particular value of the effective
gravitational coupling α. Since the appearance of a single zero crossing fermionic level is related to the
underlying topology of the Skyrme field, we may expect that, as the self-gravitating configuration evolves
towards the topologically trivial BM solution, this mode undergoes a certain transition.

Indeed, for any non-zero value of the gravitational coupling, the spherically symmetric fermionic mode
localized on the Skyrmion is no longer linked to the positive continuum, as seen in Fig. 5. Instead, it arises
at some particular value of the Yukawa coupling hmax(α) < hcr with a scaled eigenvalue ω/|h| smaller
than the threshold value. Physically, this situation reflects the energy balance of the system of a self-
gravitating Skyrmion dressed by the fermions: the added gravitational interaction must be compensated
by the force of the Yukawa interaction.

The multiple branch structure can be associated with the form of the dimensionless Yukawa coupling
h → h/(a0fπ) when the same value of the coupling h may correspond to different choices of all three
parameters. Further, variation of the parameter fπ may be related to a corresponding change of the
effective gravitational constant α.

An intriguing pattern is observed in the dependency of the scaled ADM mass M/α2 on the Yukawa
coupling h, see Fig. 6. For a given value of the Yukawa coupling h, the mass of the configurations on
the Skyrmion branch is smaller than the mass on the BM branch. With increasing α the mass of the
configurations on the BM branches, including the bifurcation points, decreases. In contrast, the mass on
the lower parts of the Skyrmion branches does not vary significantly as α is increased.

Interestingly, the ADM mass on the Skyrmion branches crosses zero when the Yukawa coupling is
decreased, as demonstrated in Fig. 6. Inspection of the configurations at this critical point with M = 0
shows that the metric component g00 is nearly unity almost everywhere in space, and that the first
derivative of the metric function N at spatial infinity vanishes. Beyond this critical point, the ADM mass
of the backreacting Skyrmion-fermion system becomes negative as the Yukawa coupling h decreases along
the Skyrmion branch, as seen in Fig. 6. While surprising at first, this hints at the capacity of fermions
to violate the energy conditions [43].
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