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1 | INTRODUCTION
1.1 | Quantum invariants of knots associated with 3[(2)

From a quantum group and its category of finite-dimensional representations, one can construct
invariants of knots, links (and ribbon graphs). It is the original construction of Reshetikhin and
Turaev [36]. A quantum group could be think as a one parameter deformation of the enveloping
algebra of a given semisimple Lie algebra. In the present paper, we only study the knot invariants
arising from U, 8[(2) which is a standard notation for the quantum group associated with 81(2).
Such knot invariants could be computed from braid group representations that are also part of
the theory because they are defined using same finite dim. representations of U,8[(2). It is the
approach of the present work. Historically, there are two families of knots that were extracted
from the corresponding Reshetikhin-Turaev construction in this 8[(2)-case.

(1) The colored Jones polynomials{Jy € Z [qil] ,N € N} obtained from standard irreducible rep.
of dim. N +1 of Uq§I(2) denoted Sy as input (see, e.g., [32]), by use of Reshetikhin-Turaev
construction. They could all be derived from the famous Jones polynomial [21].

(2) The ADO polynomials, sometimes called colored Alexander polynomials, {ADO, €
C|A*!'],r €N} arising from particular irreducible representations of U, 8l(2) when g
is evaluated at a root of unity. They were first defined by Akutsu-Deguschi-Ohtsuki [1],
but they require a slight modification of the original tool developed by Reshetikhin-Turaev
while the philosophy of using U, 8[(2) is a constant. The first of the family is the well-known
Alexander polynomial denoted A.

The construction of Reshetikhin and Turaev uses the fact that in categories of representations of
quantum groups they find inherent tools of the category behaving nicely with Reidemeister moves.
Namely, there are R-matrices allowing to linearly represent braid groups carrying Reidemeister
moves for braids, and Markov traces allowing to extract knot invariants from braid groups rep-
resentations hence taking care of the remainder Reidemeister moves. Even though finding these
two objects in any context is not trivial (e.g., colored Jones vs. ADO polynomials, where they are
differently defined), they are always operators on U,81(2) modules satisfying nice equation trans-
lating Reidemeister moves in an algebraic language. In the end, one obtains powerful topological
invariants but their full algebraic flavor makes the topological interpretation of their content dif-
ficult and the subject of many conjectures in the field. One of the most famous expectation of
topological content is the hyperbolic volume, which is the subject of the volume conjecture first
stated by Kashaev [22] and relocated in the context of colored Jones polynomials by Murakami
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and Murakami in [32]. The question on how to interpret topologically quantum invariants is more
generally central.
Two other questions could be addressed to the picture.

* Could we construct knot invariants out of infinite dim. modules of U,8[(2)? While
Reshetikhin-Turaev construction requires finite dimension.

* Are quantum invariants colored Jones and ADO related or even equivalent? Even though the
theory of representations of U,81(2) is singularly different when q is a root of one (ADO case)
than when q is generic (colored Jones case).

These three last questions (the two above and the topological interpretation of the construction
of knot invariants) have recently reached new steps by use of the same objects: U,8[(2) Verma
modules, which are infinite dim. modules on UqéI(Z).

In [38], the second author has constructed a knot invariant denoted F, using as input U, 81(2)
Verma modules. The obtained object is a two variable infinite sum converging in the sense that it
lives in a nice completion of the ring of Laurent polynomials with two variables R := Z [qil, sil] .
By nice, we mean, for example, that F, can be evaluated at g being a root of unity or s being a
power of g. Moreover in the first case F, recovers the ADO polynomials and in the second the
colored Jones ones. This double interpolation property implies an equivalence between the two
families of knots invariants.

In [29], the first author has reconstructed Uqél(z) Verma modules, their tensor products, and
the quantum braid group representation upon them from homology of configuration spaces of
points in punctured disks with coefficients in a local ring isomorphic to R. The action of braid
groups on these modules is given by (more or less) homeomorphisms of configuration spaces,
using the fact that braid groups are mapping class groups (isotopy classes of homeomorphisms)
of punctured disks. Hence one can use this purely homological definition of Verma modules and
quantum braid group representations avoiding dealing with quantum modules theory, shedding
light on the topological content of it.

The present paper studies in details the tools surrounding Verma modules (their tensor prod-
uct, braid group representations and knot invariant) developed in the two papers [29, 38], more
particularly what topological information one could extract out of F .

Next steps could be achieved using U,$1(2) and its modules, for instance, constructions of topo-
logical quantum field theories (TQFTs) which is a categorical construction providing invariants of
links and embedded graphs (extending those of knots), 3-manifolds and mapping class groups of
surfaces representations (extending those of braids). This was initiated by Reshetikhin and Turaev
again [37] and the universal construction of Blanchet-Habegger—-Masbaum-Vogel [8]. In the col-
ored Jones context (for which the category of U,8[(2) modules is semisimple), the output is the
Witten-Reshetikhin-Turaev TQFT (WRT). More recently, Blanchet-Costantino-Geer-Patureau
have succeeded in constructing TQFT [7] from the category of modules on Uq§I(2) when g isaroot
of 1 (which is non-semisimple). We call them non-semisimple TQFTs and the inherent knot invari-
ant is hence the ADO family. These non-semisimple TQFTs are improvements of WRT because,
for example, they detect lens spaces and Dehn twists, but F, shows that at the level of invariants
of knots they are the same. The invariant F is still not defined on links, while colored Jones
and ADO families might differ at some point (as at the end one associated TQFT contains more).
Notice that the authors have tried hard to generalize F , to links finding systematic and important
convergence issues. As the definition of F, is made in the non-semisimple spirit: namely opening
the knot along a strand and transforming it to a long knot, one has to make this process indepen-
dent of the choice of a strand in the case of links, or to make the invariant computable from a full
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trace (which corresponds to a fully closed knot). Refer to Figures 4 and 5 for pictures of long knots
with an opened strand, or of a partial braid closure (with one strand left opened) that justifies
the use of a partial trace in the definition of F_, . For (renormalized) Jones and ADO families of
invariants, well-defined for links, a normalization is applied so to make the computation indepen-
dent of the choice of a strand. This normalization cannot be generalized in the infinite context of
Verma modules that is used here to define F, roughly speaking it corresponds to a normaliza-
tion by a series and the result is not converging, namely it does not live in a good completion of
A [qil, sil] , same for the full trace. Hence, it seems to the authors that it cannot be generalized to
links in a way that interpolates both families of invariants (in good completions we expect to be
able to evaluate q at roots of unity, for instance). Following the homological approach of Section 4
it means that no homological model can provide a unification of Jones and ADO families in the
general case of links (we call a unification something that is a link invariant in a ring that can
specialized to the underlying families), as none of them can be obtained out of universal Verma
modules. Consequently, the level of closed 3-manifold invariants has no chance to be reached and
it is not a surprise: as mentioned WRT invariants (arising from Jones polynomials) do not clas-
sify lens spaces while some non-semisimple ones (arising from the ADO family) do. Indeed both
families have no chance to be unified in the same way F does for knots. Nevertheless, F, is
related to Habiro’s universal invariant [11] for knots in the way it interpolates the whole family
of Jones polynomials, for instance, and this universal invariant was successfully generalized to
integral homology spheres in [14, 15] by Habiro and Lé. The first author is currently trying to gen-
eralize the present unifying invariant for knots to integral homology spheres (which would still
be consistent with the mentioned gap at the level of lens spaces), using homology techniques as
in Section 4 based on the fact that homological models for quantum representations of mapping
class groups were recently generalized to arbitrary genus surfaces in [35].

1.2 | Content: Unified invariant of knots and homological action of
braids

In [38], the second author defines an invariant of knots denoted F, which is an element living in
some completion RIofR =7 [q”—’l, sil]. This definition implies the application of a universal
invariant constructed by Lawrence and Ohtsuki [23, 24, 34] and widely studied by Habiro [11],
on any vector of some quantum 81(2) Verma module. In [29], the first author has developed braid
group representations on tensor products of these Verma modules with coefficients in R providing
ahomological definition arising from local systems on configuration spaces of points in punctured
disks. In this paper, we express F , as a partial trace of the braid action on tensor products of Verma
modules.

Theorem (Theorem 33). Let V' be the universal Verma R-module of Uq§I(2). Let K be a knot such
that it is the closure of a braid § € B,,. Then

.....

where the right term is the partial trace of the action of 8 on V®" post composed with the (fixed)
operator h explicitly defined later on.

We re-prove the following property.
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Theorem (Theorem 39). For an integer r € N* and {,, a 2rth root of 1, we have:

(A)Yf x ADO,(A, K)
Ap(A%)

Foo(§2r’ A’ Kf) =

>

where f is the framing of the knot, ADO, is the rth ADO polynomial [1] and Ay the Alexander
polynomial of K.

The latter was proved in [38] but considering Melvin-Morton-Rozansky (MMR) conjecture
which is a theorem due to Bar-Natan and Garoufalidis [4]. Here we prove it carefully studying the
structure of tensor products of Verma modules when q is a root of 1. Hence, we have re-proved
MMR conjecture in a slight generalization, namely an analytic relation between any colored Jones
polynomial and the Alexander polynomial.

It is well-known that the Alexander polynomial of a knot is invariant under the change of vari-
able s = s~1. We extend this symmetry to the entire F_, and it gives a nice symmetry for the ADO
invariants of knots too.

Theorem (Theorem 43, Corollary 44). For any knot K:

1,-2

* F(K)isunchanged unders — s~'q~%,
* ADO,(K) is unchanged under s — s~'¢ 2.

The second bullet point implies that the non-semisimple U,8l(2) invariant of planar
graphs introduced by Costantino—Geer-Patureau in [9] does not detect orientation of knots
(Corollary 45).

Using the homological definition from [29] for tensor products of Verma modules, and Poincaré
duality in homology, we express F, as the intersection pairing with coefficients in R between
fixed middle dimension homology classes in configuration spaces of points in punctured disks.

Theorem (Theorem 68). Let 8 € B, be a braid such that its closure is the knot K. Then

F(K) = 1 z <‘3 'A”(E) nB”(E)>q_22k",

where for any list of n — 1 integers k, A" (k) and B" (k) are precisely defined middle dimension man-
ifolds of the space of configurations of points in the nth punctured disks. The action of f8 is naturally
defined by homeomorphism of the punctured disk, and (- N -) is a homological intersection pairing
in R given by Poincaré duality.

The latter means that the right term in the equation, which is an infinite sum of intersection
pairing of middle dimension homology classes, lives in R! and is invariant under Markov moves.

Finally, we express F, using a generalized notion of determinant of matrices called quan-
tum determinant of right quantum matrices, defined for matrices with noncommutative entries.
This quantum determinant is presented in [10]. The quantum determinant formula resembles the
classical one for the Alexander polynomial: it is the quantum determinant of a deformed Burau
matrix instead of a regular determinant of the regular Burau matrix. It is stated in Theorem 82,
and generalizes formula of Lé and Huynh [17] for colored Jones polynomials.
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1.3 | Plan of the paper

In Section 2, we establish the context of the quantum group U,81(2) and its Verma module. We
define the action of braid groups, the splitting into finite dim. levels, and we carefully study
the structure while specializing g at roots of one, giving rise to a particular r-part factorization
(Proposition 23).

In Section 3, we redefine (Theorem 33) the knot invariant F as a partial trace on braid group
representations previously defined after having recalled its former definition from [38]. Using
the r-part factorization at roots of unity from previous section, we prove Theorem 39 re-proving
the factorization of F at roots of one, re-proving MMR conjecture. We then prove Theorem 43
providing an Alexander-like symmetry for invariants F, and ADO.

In Section 4, we prove Theorem 68 that expresses F, as a sum of intersection pairing between
Lagrangians in configuration spaces of punctured disks. This requires first a precise recall of the
homological set-up from [29], that is, the homological definition of Verma modules, their tensor
products and the braid action.

In Section 5, we recall the definition of quantum determinant for right quantum matrices. We
recall the context of paper [16], and finally prove Theorem 82 providing a quantum determinant
formula for invariants F, and ADO.

2 | QUANTUM 8I1(2) AND ITS UNIVERSAL VERMA MODULE
We introduce quantum numbers, factorials and binomials.

Definition 1. Let i, k,[, n be integers. We define the following elements of Z [qil] :

; ; k
M kTR o ST [ IR (P
[l]q = m,[k]q! = g[l]q, [l]q = Wq![l]q!’ D
{n} = q" — g "and{n}! = [ i ©)
i=1

with the convention [Z]q =0ifn <0.

We also fix notation for elements of Z [g*!, s*!] but using the following notation g** := s*!

that will be useful later on.

n—1

{O(}q =q*—q % {a+ k}q — qa+k _ q—a—k’{a;n}q = H{a - i}q’ 3)
i=0

where one can easily deduce how to write them in Z [qil, s’—’l] .(To do computation in C and think
of g, o and s as complex numbers, one must fix a logarithm of q.)

In what follows, we will define Uqél(z) in Subsection 2.1, then its Verma modules and the
associated action of braid groups in Subsection 2.2. We study the structure of this braid group
representation while variables are evaluated at some particular value in Subsection 2.3. In the case
of g being a root of one, we show that the representation splits into r-parts subrepresentations.
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L
2.1 | The algebra U, 3l(2)

In this section, we define an integral version for the quantized algebra associated with 8[(2). By
integral, we mean as an algebra over the ring of Laurent polynomials in one variable, but first we
define the standard algebra U, 8[(2) on the rational field.

Definition 2. The algebra U,81(2) is the algebra over Q(q) generated by elements E, F and K £
satisfying the following relations:

KEK™' = g°E,KFK™! = q7°F

The algebra U, 8[(2) is endowed with a coalgebra structure defined by A and ¢ as follows:

AE)=1®E+E®K, AF)=K'®@F+F®1
AK)=K®K, AKH=K1®K™!
eE)=eF)=0, e(K)=eXK =1

and an antipode defined as follows:
S(E) = EK',S(F) = —KF,S(K) =K', S(K™!) =K.
This provides a Hopf algebra structure, so that the category of modules over U, 8[(2) is monoidal.

We are interested in an integral version that resembles Lusztig version but with only half of
divided powers for generators. This version is used and introduced in [12, 20, 29, 38] (with subtle
differences in the definitions of divided powers for F). Let:

C

F .
[n],!

LetRy,=7Z [qil] be the ring of integral Laurent polynomials in the variable g.

L
Definition 3 (Half integral algebra). Let U 31(2) be the R -subalgebra of U,31(2) generated by
E,K*!and F™ for n € N*. We call ita half integral version for UqQI(Z), the word half to illustrate
that we consider only half of divided powers as generators.

L
Remark 4 (Relations in qu 81(2), [20, (16) (17)]). The relations among generators involving divided
powers are the following ones:

KF(H)K_l — q—ZnF(n)

[B.F00] = P (q7K - g"K ") andFO R = | I R,
9 n q
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L
Together with relations from Definition 2, they complete a presentation of U, 8[(2).

L
qu 81(2) inherits a Hopf algebra structure with a coproduct given by:

n
AK) =K ®KA(E)=E®K +1QE,andAF™) = Y g7 /=Dgi="F0) @ Fin=J),
j=0

L
Proposition 5 (Poincaré-Birkhoff-Witt basis). The algebra Uq2 31(2) admits the following set as an
R-basis:

{KIE”‘F(”),I cZ.mne N}.

2.2 | Verma modules and braiding

L
We define the Verma modules. They are infinite-dimensional modules over U/ $1(2) depending

on a parameter. Again we work with an integral version by including the parameter in the ring of
Laurent polynomials as a formal variable. Let R := Z [g*!, s*!].

L L
Definition 6 (Verma modules for qu 3[(2)). Let VS be the Verma module of qu 81(2). It is the

infinite R-module, generated by the family of vectors {v;,i € N}, and endowed with an action of
L

qu 81(2), generators acting as follows:

. n—1
Y n+] s _ N
K-v;=sq%v,E-v; = vj_landF(")vj = ([ j ] I I (sq7* —s 1q“k)) Vjin-
q k=0

Remark 7 (Weight vectors). We will often make implicitly the change of variable s := g% and
denote VS by V. This choice is made to use a practical and usual denomination for eigenval-
ues of the K action (which is diagonal in the given basis). Namely we say that vector v; is of weight
a—2j,asK-v; = q* v ;- The notation with s shows an integral Laurent polynomials structure
strictly speaking. In the case s = g% one can use a simpler notation in the action of F(:

n—1
[T6a™ 7 -s7'¢*) = fa - j.n}
k=0

Definition 8 (R-matrix, [20, (21)]). Let s = g%, t = g% . The operator gH®H/2 is the following:

S Vi@V - Vi@V '
V@V, q(a—Zi)(a’_z Do, @ v;

We define the following R-matrix:
n(n—1)

(o)
R : qH®H/2 Z B En ®F(n),

n=0
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which will be well-defined as an operator on Verma modules in what follows.
We recall the Artin presentation of the braid groups.

Definition 9. Let n € N. The braid group on n strands B, is the group generated by n —1
elements satisfying the so called “braid relations™

J J

0,0, =0,0; ifli — j| > 2 >
0;0;410; = 0;4,0;0;4; fori=1,---,n -2

B, = <01’ 0 Op ]

L
Proposition 10 [20, Theorem 7). Let VS and V' be Verma modules of U4 81(2) (with s = q* and
t= q“' ). Let R be the following operator:

R : g % /2ToR,

L
where T is the twist defined by T(v ® w) = w ® v. Then R provides a braiding for qu 81(2) integral
Verma modules. Namely, the morphism:

R[B,] - End . (V*®")
b, : R,U{ 8L(2)
o, ~ 1®-1QRE1I® !

1

is an R-algebra morphism. It provides a representation of 1B, such that its action commutes with that
L

of qu 81(2). In the sequel, we will sometime denote ¢,,(q%, -) to emphasize the dependence in variables.

Remark 11. One can consider a braid action over V*1 @ -+ ® V5 (considering more variables
in the ring) such that the morphism ¢, is well-defined but becomes an algebra morphism only
when restricted to the pure braid group P23,,. These braids indeed define endomorphisms. See
[31, appendix] for a detailed explanation on colored versions.

Elements of same weight in the tensor product of Verma modules form a subrepresentation of
the braid group.

Definition 12 (Sub-weight representations). Let:

n
V,m(@,9%) := Span {vi] ®-®y € V& such that Z i = m}
k=1

be the space of sub-weight m vectors. 1t is stable under the action of braids so that we denote:

(pn,m(q’ qcx’ ) : Bn - EndR(Vn,m)’

the associated (restricted) representation. When there is no ambiguity on variables, we will write
Vn,m L= Vn,m(q’ q%) and gon,m(‘g) = qon,m(q’ q“, B).
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Remark 13. The stability of sub-weight vectors under braid actions is deduced from the fact that
L

the latter action commutes with that of qu 81(2) and from the fact that sub-weight vectors are
eigenvectors for the K action. Namely,

V,m(q.9%) ={v € VE"|Kv = ¢**"u}. 4)

This is for g being a formal variable. At roots of unity (i.e., when q is a root of 1, see next section),
as g~2" = 1, Equation (4) does not stand. Still the braid action preserves V..m and this can be seen
directly from the terms of the R-matrix preserving the sum of indices of tensors.

2.3 | Specialization of variables

Working with the ring R is particularly comfortable for specialization of variables, that is, giving
a complex value to variables g and s. This corresponds to a morphism:

spec : R - C

and algebraically speaking, all the data set just presented has to be replaced by:

- L

Vipee += Ug 81(2)@pecCandV*®gp.C, and so on.
This is what we will mean by specialization. (We will simply denote ¥ when the specialization is
clear.)
231 | Specialization to integral weights
We can take a specialization at integral weights setting s = g* = g"V for N € Z in the previous
formulae and we denote V" the corresponding Verma module with integral weights. We find a

classical sub-module in that case:

Definition 14 (Simple module of dim. N)). We denote Sy the module spanned by {v,, ..., Uy}. It is
a sub-module of VV isomorphic to the highest weight simple module of dim. N + 1.

This specialization has a symmetry as shown in the following lemma:
Lemma 15. For N € N*, we have the isomorphism of U" modules:
v N2 xyN/s,.
Proof. While (v;);ey is set to be the basis of VN, (v;); the basis of the quotient VV /Sy, we get:

Euni =0

EUN 14041 = UNg14i

—  _N-2-2i———
Koy =9 UN+1+i
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FWoy o =

n+N+1+1i
n

| == vt
q

We slightly transform the last equality using:

fn+ N+1+in}{-i—Lin}, ={i+nmn}{-N—-2—-iin},

so that:
n+i ; T
F™og iy = [ n ] =N = 2= EnlgUN 1 4nsie
q
Setting v; := Uy, 1; for i > 0, one recognizes precisely the definition of V—"N=2, ]

2.3.2 | Specialization of g to1

We treat the case g = 1 slightly differently from other roots of unity (see next section). We fix
particular notations in this context.

Notation 16. When g = 1 we fix:

* SByy = V,um(1,9%),
* wi = Ui’

* Pum(@%B) 1= Ppm(1,q% B).

(The notation SB refers to the fact that it is isomorphic to a symmetric power of the Burau
representation, see next proposition).

A nice property of the g = 1 case is that the sub-weight m level representation can be obtained
as a symmetric power of the first sub-weight level.

Proposition 17. Let 8 € B,, then:

Pnm(@, B) = Sym™ (¥, 1(q%, B)).

Proof. First we need to consider a diagonal change of bases. We set u; := jlw;. Let ¢ :=
Uy ® - Qu; - @ uy € SB,,; where the only u,; is located at the kth position. The family
{ex, k =1,...,n}is a basis of SB, ;. We can identify higher weight tensors with symmetric powers
of the e, using the one to one following correspondence:

n

Jie

ujl ® ®ujn Hek :
k=1
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12 of 45 | MARTEL and WILLETTS

Now, in the basis e;, we have:

I, 0 0
1-— —2a —a
Yo =| 0 1 1 0
qg“ 0
0 0 In—i—l

We compute the symmetric power action in the u; basis,

Sym™ (1 (05 = [ [@naloe)s
k=0

_ i i i _ P
= ell ves eil—ll ((1 —-q a)ei + q ‘er_l)]z X (q aei)]l+1eir22 vee en”

Ji .
l2 (Jll>{a}lq_(h+h+l)aujl Q- ® Ujir+l ® Uji—1 Q- ® Uj,
=0

’,

If we transpose it back in the basis of the w;

s we get:

Ji g
o1+ i
Sym™ (1 (0 )ws = Y (J o >{a}’q Uiy, @ - @w;  ®w) 1® Q@

1=0 !
= ¢n,m(qa7 ﬁ)wj
The last equality is directly checked from the set-up: Defs. 6 and 8 and Proposition 10. O
2.3.3 | Specialization of g to roots of 1: r-part subrepresentations

In this subsection, we set g = {5, that corresponds to a specialization as defined above.

Definition 18. The r-part of a tensorv =v; ,,; @ -~ QU; ,,; € v®" where iy, ...i, <r —1is
defined by

p(v) 1= ) k.
k=0

Definition 19. We define subspaces of V2"

V' ($2r,q%) i = Span(u|rp(v) = m)

m
V"o @) 1= @ VI
i=0

when there is no ambiguity, we will write V" :=V"(¢,,,q%) and V3™ 1= V"5, q%).
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Proposition 20. V3" is a subrepresentation of braids designed by ¢3"(8) (the restriction of -
with the implicit specialization of variables).

Proof. First remark that
rp(E” @ F"(v; ® v))) = rp(v; @ ;).
Moreover, Fi+" Dy, .. =0ifi,a <r—1anda+i>r, hence
rp(E" ® F™(v; ® v))) < 1p(v; ® v)).
Thus, V" is invariant under the action of the R matrix and its inverse (for the inverse, see, e.g.,
[38, Proposition 6]). ]
This allows us to have another subrepresentation via projection maps.
Proposition 21. Let p)" : Vflm — V' the canonical projection map, then V" is endowed with a

representation of 13, using the projection of the general action:

m ._ m <m
Pp = Pp 0P, Ly

Proof. As V™! is a subrepresentation, if v € V™! we have ¢S !(8;)v € V5" ! and hence

progy " (Bv = plogy™ (v = 0.
This means the following:

P oy (B1)opy oy ™ (B)lym = pyt o™ (B1)owy ™ (By)lym.

Finally, (8,8, = @!"(B1)og"(B,). O
Remark 22. As braid group representation, V0 = V5 (meaning ¢° = ¢3°).

Now we state the main result of this section that is the factorization to r-part subrepresentations.
Recall the Frobenius map F, : Z[q*] — Z[q*] that sends g* — ¢"* (s — s" in the language of
Laurent polynomials).

Proposition 23. The isomorphism

>

[0)) { V’T - V2®FV(SBn,m)

Um g b ® Fr(w]—.)
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14 of 45 | MARTEL and WILLETTS

wherei+rj =, +1jy,...,0, +rj,) withiy,..,i, <r—1, is a braid group representation isomor-
phism. In other words, the following diagram commutes:

44 o 44
(o} (o}
Vi ® F.(SBym) Vi ® F,(SBy.m)
(Pg ® (Fr°¢n,m)

Proof. Using [38, Lemma 26], we can factorize the action of the R matrix as follows. Let 0 < a, b,i <
r—1suchthat0O<a+i<r—1land0<b—i<r—1,wehave:

H®H (i4rj)(i+rj—1)
2

HeH @ @iV i+ rj+a+ru
qg 2 (q 2
q

Et @ F(i+rj))-vb+rv ®Ugru =929 i+rj

X {0( —a—-rui+ rj}qq—(a+ru+b+rv)oc

2(a+ru+i+rj)(b+rv—i—rj)
xXq / J Ub+rv—i—rj ®V

&2 -0 [g+i
=q2q2 .
q

a+ru+i+rj

1

—(a+b)a 2(a+i)(b—

x{a —ajilyq q D0p_i ® Ugy

Hence, we have
(P4 (RVp 1y @ Vyyr)) = (RUp @ 1,) @ F(Rw, @ w,).

Finally,
(@' (8)v757) = $2B)0; @ F, (% (B3 )
(]
Example 24. Figure 1 illustrates the weight level pyramid at n = 2 and q = {; where we denote
Vg = Vg ® Uy

The blue square delimits generators of Vg, the red squares those of V}l, and so on. Each square
corresponds to a tensor in the pyramid at ¢ = 1 as shown in Figure 2. Families of colored squares
are stable under the braid action ¢}’ where m correspond to a color. The union of a colored family

plus higher colored family in the pyramid are stable under the whole quantum braid action ¢,
(e.g., the union of red and blue vectors from Figure 1 is stable under B, action).
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Vo,7

00,8 V1,7 V2.6 U35 V4.4 V5,3 V6,2 V7.1 8,0

FIGURE 1 Weight level pyramid factorization at root of unity.

Wo,0

FIGURE 2 Weight level pyramid at g = 1.

3 | UNIFIED INVARIANT OF KNOTS FROM QUANTUM BRAID
REPRESENTATIONS

We want to define the knot invariant F from [38] from braid group representations on tensor
products of Verma modules that are defined above. We need a completion of the ring R as F, will
be some series living in this completion. We start with definitions for this ring and for the invariant
in Subsection 3.1. Then (Subsection 3.2) we can define (Theorem 33) F, from the braid action on
tensors of Verma modules. In Subsection 3.3, we use the r-part factorization of the braid action
at roots of unity to prove the factorization of F at roots of unity that recovers ADO polynomials
(Theorem 39). In Subsection 3.4, we prove Theorem 43 that shows a symmetry in variables for F
resembling that of the Alexander polynomial. As a corollary, we obtain that ADO polynomials
inherit this symmetry relating them more closely to the Alexander polynomial.

3.1 | Ring completion and unified invariant

We recall R = Z[g*!, s*!], we will construct a completion of that ring. For the sake of simplicity,
we will denote g% : = s as explained before.
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bk — iy ag ’—‘r ik

ay by,

(a) Positive crossing. (b) Negative crossing.

FIGURE 3 The two possibilities for the kth crossing in D.

Definition 25. Let I,, be the ideal of R generated by the following set {{a + [;n},,l € Z}.
We then have a projective system:

[:D>2L,D>+D2I,D..

From which we can define the completion of R as a projective limit.

Definition 26. Let R! = liln% ={(a,),en € H;’ill%lpn(anﬁ) = a,} where p,, : 1,,% - 15,, is
n

the projection map.

Remark 27.
N .
« Ifb, € Rand b, € I,,_; for n > 1, the partial sums Y b, converge in R! as N goes to infinity.
i=0
+c0 N
* We denote the limit } b, := (X b,)nen:-
) )
l lAA +00
* Conversely, if a = (ay)yen+ € RY, let a, € R be any representative of a,, in R, thena = Y b,
i=0
where by = a; and b, = a,,; —a, forn € N*.
The completion RT contains R:
Proposition 28. The canonical projection maps induce an injective map R < RI
Proof. See [38, Proposition 17]. O

We now recall how the unified invariant F (g, g%, K) is defined using states diagrams of the
knot, which is the subject of [38].

For any knot seen as a (1,1)-tangle, take a diagram D and i= (i1, -riN) € NN where N is the
number of crossings of D.

Label the top and bottom strands 0 and starting from the bottom strand, label the strand after
the kth crossing encountered with the rule described in Figure 3. The resulting labeled diagram
is called a state diagram of D, we denote it D;.
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(a) The trefoil knot. (b) The figure eight knot.

FIGURE 4 Examples of state diagrams to compute the invariants.

Let Dlr be a state diagram of D, we define:

s .
; ; Fa—2e; b= faq +1 .
D(l1:---’lN)=<| [ ¢ 25’)> []a [ kl. k] {a — iy

Jj=1 q

kepos k

) ) ) i (ip—1) ;
X q—(ak+bk)aq2(ak+lk)(bk—lk) H (—1)lk q—% [ak ‘+ lk]
keneg Y q

X {O( —a; ik}qq(ak+bk)aq_2akbk,

where:

* f is the writhe of D,
* negU pos = [|1,N|] and k € pos if the kth crossing of D is positive, else k € neg,
* ay, b, are the strands’ labels at the kth crossing of the state diagram (see Figure 3),
* S is the number of %/ + ¥\ appearing in the diagram, and ¢ j the strand label at the jth »_/ or

P, the F sign is negative if %/ and positive if ¥ \.

)

Remark 29. Notice that in [38], the definition of these numbers come with a term g~ 2 in front,
that is removed here. It comes from the fact that in the present paper we remove a quadratic
term in the R-matrix multiplying it by q‘““'/ 2, see the definition of R in Proposition 10, so that
both corrections make the following remark consistent: D(iy, ..., ij) is the scalar one obtains by
considering only the Ec @ F(it) term in the R-matrix action of the kth crossing of D. In the present
paper, this quadratic term is also removed from the definition of ADO polynomials, so that later
in Theorem 39 we obtain the same interpolation as in [38, Theorem 57].

Example 30. See Figure 4 for some examples of state diagrams.
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Definition 31 [38, Definition 20]. We define the knot invariant:
+00

Fo (4, A, K) := Y D(iy, ..., i)
i=0

One advantage of removing the quadratic term (Remark 29) is that it makes F an element of

A far o
R!, while the version of [38, Definition 20] isin g 2 R'.

3.2 | Unified invariant from the action of braids on Verma modules

We recall the definition of the braid group representation on tensor products of Verma modules:
?,(q%,.) : B, — End((V*)®").

The notion of partial trace is used to compute knot invariants out of finite-dimensional quantum
braid representation. We extend this notion to infinite-dimensional modules in the case of Verma
modules.

Definition 32 (Partial trace on Verma modules). Let 8 € B, whose closure is a knot,

Tr, (L®K® g, (8) i= Y (1 ®K®" g, (g% vl € R,
jenNy J
where:
. Ng :=1{(0, j, ..., ju) €N},
* (A ® K®" Np,(q% B)v;] . € Z[g*, g**] is the projection of (1 ® K®”‘1)¢n(Q“,6)v; on vs.
J

It is called partial trace inherited from the standard notion of partial trace on tensor products
of vector spaces, see Subsection 3.4.

Let K be a long knot, 8 € B,, whose closure is K and D? be the diagram associated with X seen
as the closure of . The general picture is the following.

The following result redefines the unifying invariant as a partial trace on braid representations.

Theorem 33. Let K be a knotin S3 and B € B,, a braid whose closure is KC, then we have

.....

Proof. We denote (i), ..., u,,(i) the labels of the closing strands of the state diagram ng . We let
1
u(@) = (0, uy(i), ... , 4, (1)). We can then write

+0o0
(A ®K®" Dy, pvj], = D) Dl i),
: i=0

u®=j
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FIGURE 5 State diagram of a braid partial closure.

where [(1 ® K®" 1), (q%, P)v;l, . € ZIg*, q**] s the projection of (1 ® K®" Do (g%, ,B)UJ—. on
v;. Hence, !

™M:

+00
(A ®K®" D@, vyl = Y Dl iy).
i=0

.
Il
o

Finally, comparing with the definition of F, from diagrams (Definition 31), one recognizes the
same formula, so that

.....

which concludes the proof. O

Using Theorem 33, we can then write the unified invariant using the decomposition of ¢,, by
weight subrepresentations (Definition 12).

Corollary 34. Let K be a knot in S* and 8 € B,, a braid whose closure is K, then we have

.....

We briefly recall relations of F, with colored Jones invariants.

Notation 35. There are two versions of interest for colored Jones polynomials of knots, the original
one (corresponding to a trace on quantum representations of braid groups) and the normalized
one (corresponding to a partial trace on quantum representations of braid groups).

* The Nth colored Jones polynomial of a knot is defined as follows.

N
) =g 3 Tr (9,8, 58",

m=0
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where § € B,, is an nth strands braid whose closure is the knot K, and w(g) is its writhe.
Tr <¢n(6),5§"> means the trace of the braid action ¢,() restricted to Sﬁ’" C (VN )®n. The

reader must be careful as S]%’” is not stable under the braid action in general, but it is for braids
whose closures are knots (see [30, Definition 3.14]).

* The Nth normalized colored Jones polynomial of a knot is defined as follows (see [38,
Corollary 53]):

Tc(N)(@®) = Foo(q, g™, )

They are related by Jg(N) = [N],J %(N ) (see [17, section 1.1.4] for the relation between these two
in the context of Verma modules, in particular trace vs. partial trace).

3.3 | Atroots of unity: factorization of the unified invariant

Now we can finally factorize the unified invariant at roots of unity using braid representations.
The result is already given in [38], it uses a conjecture of MMR proved by Bar-Natan-Garoufalidis
rather than a structural study of braid representations on Verma modules. Here, we give another
proof of the result, using braid group representations. Hence, it re-proves MMR conjecture and
moreover a generalization of it. This subsection assumes q = ¢,,. We refer to Subsection 2.3.3 for
notations of submodules in this case.

First, we recall how we can obtain ADO polynomials (sometime called colored Alexander invari-
ants) with the 0 r-part representation. Namely, ADO polynomials were formerly defined by
Akutsu-Deguchi-Ohtsuki in [1] using matrix associated with braids (it should resemble bellow’s
formula). Then using state sum formula in [33]. More recently using UqQI(Z) representation the-
ory at roots of unity (similar to the present context, but with slightly different conventions, see
Corollary 45) in [9, section 2.2]. The following proposition could be considered as a definition for
the present work (we relate it to other definitions in the proof).

Proposition 36.

.....

Proof. 1t is the same proof as that of Theorem 33. We use the definition of ADO polynomials
as quantum invariants and the state sum formula of [38, Proposition 13], set g = ¢,,, and use

n(n—1)

truncated R matrix R, = g"®1/2 3" ¢~ > E" @ F and K’~! as a pivotal element. O

Now we state a factorization result at roots of unity. It is a corollary of Propositions 23 and 36.

Corollary 37.
Tr, (1 @ K®" 1@ (B)) = ADO,(q%, K) X F,(Tr, (1 @ K®"" )9, ,,(8))

where F, is the Frobenius map that sends g% to q"“.

Moreover, we can use MacMahon Master Theorem to prove the following proposition.
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Proposition 38. For 8 € B, whose closure is a knot K, then:

fa
_ q
Tty n(A® K& Dy (B)) = ———,
; 2,..,n wn,m 5 AIC(an)

where Ay is the Alexander polynomial.
Proof. Using MacMahon Master Theorem, we have

2 sym" @, Byl 1) ® - @ 1) = - :

m det (1, = (" = . )81

Now if one takes t; = 0 and t; = 1 for i # 1, we have the following equality:

1
’’’’’ det(T, — (8%, )9,.1(8)

As, ;(B)is the unreduced Burau representation B(¢) in the basis f) = q ke, settingt = g7,
and as we are taking a (n — 1) X (n — 1) minor of I,, — B(t), we obtain:
det(l, = (81,0, )$na(B) = g% Ax(g™). O

Now,

.....

and using Corollary 37 and Proposition 38, we recover the factorization theorem:

Theorem 39 (Factorization of F, at roots of unity). For a knot K and an integer r € N*, we have
the following factorization in R':

(AT x ADO,(A, K)
AIC(AZV)

Foo(§2r’A’ IC) =

>

where f is the framing of the knot. (We have named the variable A instead of s used to define the
Verma modules. It is more standard when working with Alexander-like invariants.)

We recall the MMR conjecture, which is a theorem of Bar-Natan and Garoufalidis.

Theorem 40 (Bar-Natan, Garoufalidis [4]). For a knot K, the following equality in holds in Q[[h]]:

1
AIC(eh)

lim J.(n)(e"/") =
n—oo

in the sense that, Vm € N,

. ' h/n my\ _ 1 m
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where, for any analytic function f, coeff(f(h), h'™) = % ‘gl—mm fW)|jp=g, and J ;C(n) is the nth colored
Jones polynomial.

Re-proof of MMR conjecture. Let K be a 0 framed knot. From the unified invariant,
* on one hand, we recover the colored Jones polynomials (see [38, Corollary 59])

Fo(q.q", K) = T.(N)(gP),

* on the other hand, using Theorem 39 at r = 1, we get

1

Foo(l’A’ ]C) = m
K

Using the identification q = e" and g% = e*", we have an injective map (see [13, Propositions 6.8 and

6.9])
R = a[a][[h]].

Hence, as elements in Q[a][[h]], we have the following limit (in the sense defined in Theorem 40)

1
lim F,(q7,q,K) = F,(1,9,K),
n—oo

so that
o 2h 1
lim I (n)(e ™) = Fou(q7,q, K)
=F(1,9,K)
_ 1
A,C(e2h)
which re-proves Theorem 40. l

Remark 41. There is also an alternative proof for MMR conjecture by Ito [19, Corollary 3.3]. Ito
also makes use of MacMahon Master Theorem to make the Alexander polynomial appear. One
important difference is that we use the unified invariant formulae, defined as elements of RI and
thus, well-defined as elements of Q[a][[/]] alongside evaluation maps. In Ito’s paper, it is not
clear how the right-hand side of the main formula of Theorem 3.1 is h-adic (and it would mean
that Tr(L,, ,,(8)) should be h-adically small as m grows to infinity)

The invariant F thus interpolates both families of ADO polynomials and colored Jones poly-
nomials. In [32, Theorem 2.1], a first relation between ADO polynomials and Jones polynomials
evaluated at an appropriate root of 1 is provided. Simply evaluating F ., now generalizes this to an
infinite set of relations:

ADOr(ggn ]C) = J;C(N)(gr)(= Foo(§2r’ fg, IC)) (5)

(see also [38, Remark 58]), where N is any positive integer. We make the remark here that to
establish this one has to notice that .4;.(1) = 1. This is recalling that the Alexander polynomial
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is usually well-defined only up to multiplication by +A¥ (for some integer k) and that one of its
basic property is that its value at 1 is always +1 (as it corresponds to the torsion of the untwisted
H, of the knot complement). The Alexander polynomial A related to F as above is then the
one that is 1 on the unknot and that is 1 when A = 1 (see [38], the discussion before Theorem 60).

Moreover, F, is the unique function interpolating one or the other family, in the following
sense.

Proposition 42 (Unicity property of F,). Let K be a knot, F(q, A, K) is the only element in RI
interpolating colored Jones polynomials or ADO over Alexander elements at an infinite number
of values. ~

In other word, ifu(q, A) € RL is such that, for an infinite number of r or N in N*, we have:

(AY/ x ADO,(A, K)
Ap(A%)

u($y, A) =
or
u(g,q") = T,.(N)(g?)
then, we have the equality:
u(q, A) = Fo (, A, K).

Proof. The map f : Q[a][[h]] = [] Ql[A]], x = (f)(x))ken from [38, section 4.4] is injective. In
keN
fact, for any infinite subsetJ € N*, f; : Q[a][[h]] —» []Q[[A]], x = (fi(x))rey is injective. Thus,
kel
if for an infinite number of N € N*:

u(q, q™) = T.(N)(@),
then
u(gq,A) = F,(q, A, K).

Moreover, for any N € N*, ADO,(§ é\i . K) = JI.(N)(&,) (see (5)). Hence, if for an infinite number
ofr e N*:
(AT x ADO,(A, K)
Ap(A?)

u(§2r’ A) =

5

then

u(§2r’ ;—]2\;) = ch(N)(gr)

and as J;C(N )(q) is a Laurent polynomial, by knowing an infinite number of its evaluation, we
have:

u(q, q™) = T.(N)(@),

so that u(q, A) = F..(q, A, K) (using the first part of the proof). O
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In [32], Murakami and Murakami have relocated the volume conjecture of Kashaev [22] in the
context of colored Jones and ADO polynomials. It can be reformulated as a limit of evaluations of
F,.
Conjecture 1 (Volume conjecture, [22, 32]). The following equality would hold for any hyperbolic
knot K,

2
Log(F ~,1,K
2 lim 0g(F (e )

_ 3
Jim N = Vol(S°\K),

where Vol(S3\K) is the hyperbolic volume of the complement of the knot.

3.4 | Generalization of Alexander polynomials’ symmetry

To prove a symmetry for the ADO invariants, we must change a bit how we use the partial trace.
Throughout the paper, we have set the first element in the tensor products to be v,. In fact, we
can define the partial trace using the natural definition on tensor products:

.....

..........

.....

.....

..........

for any w € V. Combining this fact with Lemma 15, one can get a symmetry for the unified
invariant.

Theorem 43 (An Alexander-like symmetry for F ). Let K be a 0 framed knot,
Foo(q,4% K) = Foo (g, 72, K).

In other words, F, is not sensitive to s — s~1q 2.

Proof. Using Theorem 33 at VN we have the identity

Tr, (A ® K®" Mg, (B)v, = Foo(q. ", K)vy

.....

.....

.....
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Thus, for all N € N*, we have
Foo(q, 4", K) = Foo(g, ¢ V72, K.
Using Proposition 42, we have the equality at formal weight g%:
Foo(q,9% K) = Foo (g, 7%, K. O
Corollary 44 (Colored Alexander symmetry). Let K be a 0 framed knot,
ADO,(A,K) = ADO,(A7'{3%, K.
Proof. At q = {,,, we have the factorization:

A"f x ADO,(A, K)
Ap(A2)

Foo(§2r’ qaa Kj) =

and as
Ap(A7) = Ap(A™)
one obtains the desired identity. O

In [9, section 2.2], Costantino, Geer, and Patureau define an invariant of trivalent graphs
denoted N, constructed also from the theory of U,31(2) at g = {,,. For knots it is the ADO poly-
nomial, more precisely there is a simple change of variable (coming from the fact that they take
the variable to be the middle weight instead of here being the highest weight):

N,(¢% K) = ADO, (¢**'7", k).

Corollary 45. The U,81(2) non-semisimple invariant N, is not sensitive to orientation for knots.
Proof. From [9, section 2.2, (1)], we know that if X~! is the knot & with reversed orientation, then:
N,(g%, K™ = N,(q™%, ).

Re-expressing N, as ADO and using the colored Alexander symmetry from previous corollary, one
deduces directly the invariance under reverse of orientation. O

Remark 46. Authors do not know how much latter invariance generalizes to next objects (e.g.,
links, graphs) for the non-semisimple invariant N,.

4 | UNIFIED INVARIANT FROM HOMOLOGY OF CONFIGURATION
SPACES

This section first re-defines the tensor products of Verma modules and the action of braid groups
upon them by homeomorphisms using homology of configuration spaces of points in punctured
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disks (Subsection 4.1). This is another point of view independent of quantum groups theory of
representation, that was established in [29]. This homological interpretation of quantum Verma
tensors as Lagrangians of configuration spaces is the key point for Theorem 68 expressing F, as
an intersection pairing between such Lagrangians. Subsection 4.2 presents two families of man-
ifolds in configuration spaces defining dual homology classes regarding the Poincaré duality. In
Subsection 4.3, we prove Theorem 68 and we discuss its consequences.

4.1 | Ahomological definition for U 81(2) Verma modules

Definition 47. Letr € N, n € N, D be the unit disk, and {w,, ..., w,} € D" points chosen on the
real line in the interior of D. Let D,, = D \ {w;, ..., w,} be the unit disk with n punctures. Let:

Conf,(D,) := {(z;, -, 2,) € (D,) such thatz; # z,Vi, j }
be the configuration space of points in the punctured disk D,,. We define the following space:
X, (wy, ..., w,) := Conf,(D,) / S, 6)

to be the space of unordered configurations of r points inside D,,, where the permutation group
@, acts by permutation on coordinates.

When no confusion arises in what follows, we omit the dependence in w, ..., w, to simplify
notations. All the following computations rely on a choice of base point that we fix from now on.

Definition 48 (Base point). Let & = {£,, ..., £,} be the base point of X, chosen so that §; € 4D,
(Vi) as in the following picture:

w, w, W,

W @ ® O 0

gr gr—l 51

We have illustrated the unit disk (as a square) with the punctures wy, ..., w,,, we have add another
point w, on the boundary that will be used later on, and also the base point just defined.

We give a presentation of 77;(X,, &") as a braid subgroup (the mixed braid group).

Remark 49 [29, Remark 2.2]. The group 77, (X £") is isomorphic to the subgroup of 3, ,,, generated
by:

(015> F15 By 155 Br )
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where the o; (i = 1,...,r — 1) are the first standard generators of B,,,, and B, ; (fork =1,...,n)
is the following pure braid:

= cee 2 _1 cee _1
Brk =0 Orpk—29, 45 10rik—2 " Or

See [29, Example 2.3] for a picture that illustrates the correspondence between above generators
and braids. It will help the reader understanding the following definition of a local system.

Definition 50 (Local ring R,.). We define the following morphism:

Z[m (X, €D - R i=2z[s*,*]

B, — s

In what follows, we will use the notation g% : = s. Using this notation, the morphism becomes:

z[m(X,.€D] - R :=2z[g*,*]
Pr - g P t
Br,k = chx'
(We may sometimes omit the dependence in (w;, ..., w,,).) The data set (p,, R) will be re-united
under the notation R, and named local ring of coefficients.

Definition 51 [29, Definition 2.6]. Let r € N, and let w, = —1 be the leftmost point in the
boundary of D,, (see the picture in Definition 48), we define the following set:

X (wy, -, wy) = {{zy, -+, 2,} € X, (wy, -+, wy)such that3i, z; = wy}.

We let H!f designate the homology of locally finite chains, and we use the following notation for
relative homology modules with local coefficients in the ring R:

rel . _ pqlf -.
H® :=H, (X,.X;R,).
See next remark for precisions on such construction.

Remark 52. We recall how this homology modules are constructed, namely we work with the
following homology theories:

* the locally finite version of the singular homology, for which we consider locally finite infinite
linear combination of singular simplices, (see [29, appendix]);

* the homology of the pair (X,,Xr_);

* thelocal ring R,. Let p, be the morphism from Definition 50. This can be seen as the homology
associated with the chain complex C,(X,) where X, is the covering naturally associated with
the kernel of p, which is naturally endowed with an action of R by deck transformation as p,
is surjective (hence the deck transformation group of )/(7 is generated by ¢ and s).

We define classes in Hﬁel. We refer the reader to [29] for further details on these constructions.
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Definition 53 (Multi-arc diagrams). Let (ko,...,k,_;) such that Y k;=r. we define
A (ky, ..., k,_1) to be the following diagram:

Allky, .o kyq) = \\\: - {\ ///krf“q
gr 5]

Remark 54. These above diagrams are denoted A’ because there will be slightly different versions
for them later on and denoted A.

For A’(ky, ..., k,_,) defined above, let:
¢ : I; > D,

be the embedding of the dashed black arc number i indexed by k;_,, where I; is a copy of the unit
interval. Let A be the standard (open) k simplex:

={0<t; < <f <1}

for k € N. For all i, we consider the map ¢ki-1:

¢k'_1 . Akl ' - in_l
B GRS BT - Y () WN-N () 3

which is a singular locally finite (k;_,)-chain and moreover a cycle in X because locally finite
homology of an open ball is one-dimensional and concentrated in the ambient dimension [29,
appendix].

To get a class in the homology with R coefficients, one may choose a lift of the chain to the
cover X, associated with the morphism p,. We do so using the red handles of A’(ky, ..., k,_;) (the
union of red paths) with which is naturally associated a path:

h={h,...h}:I>X,

joining the base point & and (a point 1n) the r-chain assigned to the union of dashed arcs. At the
cover level (X ) there is a unique lift h of h that starts at E a choice of lift of the base point to X

that we ﬁx from now on. It is the umque lift property apphed to lift based paths to a covering space.

The lift A(ky, ..., k,_;) of A(ky, ..., k,_,) passing by f (1) defines a cycle in Crel_ and we still call
(by abuse of notation) A (ky, .- n—l) the associated class in Hfd as we will only use this class out
of the original object.

Definition 55 (Multi-arcs (first version)). Following the above construction, we naturally assign
aclass A'(ky, ..., k,,_) € H"™! with any n-tuple such that Y, k; = r. This class is called a multi-arc.

Now we state a proposition that clarifies the structure of the homology as R-modules.
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Proposition 56 (Multi-arcs generate the homology, [29, Proposition 3.6]). Let r € N, the homology
of the pair (X, X") has the following structure.

* The module Hf’l is free over R.
* The set of multi-arcs:

{A'(ky, -+, k,,_1 )such that Z k; =r}

yields a basis of H™.
* The module H:E’I is the only nonvanishing module of Hl_f (X,,Xr‘ ; R).

The braid group was earlier defined (Definition 9) using its so called Artin presentation. Here
we give another definition, relying on topological objects.

Definition 57. The braid group on » strands is the mapping class group of D,,.
+
B, = Mod(D,)) = Homeo(D,,, 8D) /Homeo(D,, D),

namely the group of isotopy classes of homeomorphisms of the unit disk: preserving the
orientation, the set of punctures, and being the identity on the boundary.

Remark 58. This definition is isomorphic to the Artin presentation of the braid group (Definition 9)
by sending generator o; to the isotopy class of the half Dehn twist swapping punctures w; and w; , ;.

Lemma 59 (Lawrence representations). For all r,n € N, the modules H;el are endowed with an
action of the braid group 1,,.

Idea of the construction. It is Lawrence construction of braid groups representations [25]. See
[29, Lemma 6.33] for this precise lemma. The representations are constructed as follows (sketch of

proof).

* Let S; be the Dehn twist associated with the standard Artin generator o; of B,,, fori € {1,...,n — 1}
(see Remark 58).

* The homeomorphism S; extends to X, coordinate by coordinate. Namely, extended S; is the map
that sends a configuration {z,, ..., z,} to {S;(z1), ..., S;(z,)}, as S; is a homeomorphism, so is its
extension.

* The action of S; on X, naturally lifts to Hiel (it is the heart of [29, Lemma 6.33] and of Lawrence’s
work).

* By defining the action of o; on Hrrel by that of S; one obtains a well-defined (and multiplicative)
action of BB, on Hrrel. It is well-defined as braids are homeomorphisms considered up to isotopy
while we study their homological action.

The above representations are often called Lawrence(-like) representations.
We can now recall the main result from [29] relating these homological representations with
Verma modules representations defined in Subsection 2.2.

Theorem 60 [29, Theorem 2,3]. The isomorphism of R-modules:

H = @pen Hyy VE" = @men Vim
Alkys . k) Uk, QR Uk, -
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is B,, equivariant. In the above isomorphism, the following vectors are involved:
A(ko, ey kn—l) = qa Z?;ll ikiAl(kO, ey kl’l—l)

for any (kg,...k,_;) € N" (see [29, Definition 6.16]). The identification of rings R is made by
considering =% = —t (the variable s being the same on both sides).

Remark 61.

n—1 .

* A diagonal term q_a< =1 lki) normalizes vectors A [29, Definition 6.16].
L

* The isomorphism from the above theorem also respects the qu 81(2) action that is defined on
L

Verma modules in Section 2.2. In the sense that there is an action of qu 3[(2) defined on H, see
[29, Theorem 1].

We will use this isomorphism relating quantum braid representations with homology so for
interpreting the partial trace defining F in terms of homological intersections.

4.2 | Homological duality
421 | Multi-arcs: Another version

We recall that for (k,...,k,_;) such that Y k; = m, there is a multi-arc A’(ky,...,k,_;)
defining a vector in H;fl, and so that the whole family yields a basis. We draw such an ele-
ment but with a slightly different drawing that better fits with the knot invariant we are
seeking.

Definition 62 (Multi-arcs (second version)). For (ky, ..., k,,_;) € N" such that )’ k; = r, we define
the following diagram.

&1
Sky
/. w,
-
-
e 513
-
Jeg Si
, __eu
’ _ -
i e
1 c— W Y -7
A (ko,...,kn_l) = Wy .\:\\ .
N kn‘—}\ ?:l.:
\\ S~ ) >J3
n>~1 \. Wy
N
N
~
~
~
. &,
~ £
SO Sr
@ W,
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As diagrams from Definition 54 naturally defines classes in H;el (see Definition 55, natural process
explained above it), same natural process associates classes in erl with the above A" (ky, ..., k,,_1)-
We use latter notation to designate the homology class also.

We have three families of diagrams corresponding to homology classes. They are related
diagonally as follows.

Proposition 63. In H™, the following relations hold.

r
n—1 .
Alky, ... k) = qZi=1 F% A kg, .. K1), (7)

r(r

-1 n— .
A Ky, o oy y) = (=) 7 P Z Dk g (e k) ®)

forall (ky, ..., k,_;) such that Y k; = r. Finally,

r(r—1

-1 n-1.
A(ko, ceey kn—l) = (—t) 2 thanq—a zi:Ol lkiAN(ko, ey kn—l)' (9)

Proof. The first equality of the proposition was already considered in [29] and was recalled in
Theorem 60. The second one follows from the following equalities:

v

vy

wrure

.
<[z
0 &
/// £
L <&
/ko _ew s
, -
r(r—1) n-1 . s kT
— S 2ay._ (n=ik; , b
_(—t) 2 q i=0 xul%\ :
e £
\\ ﬂ\\\ < %
i =@ Wi
\\
~ £
S <[
‘ w, °

The first equality comes from an isotopy of the disk, the second one comes from the application
of the handle rule ([29, Remark 4.1], see details in following Remark 64). Then one recognizes
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leftmost diagram to be A(k, ..., k,_;) and last one to be A”(k, ... , k,,_;)- Finally,

r(r

2—1) q“ lnz—ol(zn_i)kiA//(ko, S )

A(ko, vee sy kn—l) = (_t)

_r(’z D qa(an—Ei":O lki>

= (=t) A (kyy o k)

provides last relation. O

Remark 64 (Handle rule). We give more details on the handle rule applied once in the proof of the
previous proposition. The handle rule [29, Remark 4.1] states:

where « is the path in X, corresponding to the (red)-handle on the left and § to that on the right,

and p, the representation of 77,(X,) recalled in Definition 50. We evaluate p, at t = —t, see [29,

Remark 4.2], because in diagrams the permutation of the red strands implies a permutation of

embeddings of configurations. Hence, the homology class must be multiplied by the sign of the

permutation (i.e., the power of t in p,(ax~1)) corresponding to the induced change of orientation.
In the present case, the path a8~! is drawn below.

w Wy, w, w;

¢ &

n

/ :
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Every little red tube means parallel red paths not crossing with each other. Crossings involving
these tubes are materialized using A boxes inside which the following happens:

=

Then pr(aﬁ‘l)“:_t = (—t)*q*" such that a is the sum (with signs) of red-red crossings, and b is
the total winding number of red strands around gray ones. The reader should pay attention to the
fact that in [29] braids a read from top to bottom as in the present work we do the converse.

422 | Barcodes
We now define homology classes in H, (X,,0X, \ X ; R,) that are usually called barcodes.

Definition 65 (Barcodes). We fix notation for the following diagrams:

A

B”(ko, 7kn—l) = W @

@ Wy

o w,

AN A
F

where Y k; = r. We naturally assign a class in H, (X,,0X, \ X, ;R,) with the above diagram
according to the following process.

* The union of blue arcs well defines an embedding:
@I X,,

where [ is the unit interval.

* As ends of blue arcs are lying in dX, \ X, the hypercube @ defines a homology class in
H, (X,,0X,\ X;;Z). -

* It remains to choose a lift of ® to the cover X, so to work in the local ring set-up. We do so
using the fact that the image of ® contains the Pase point €, so that we choose the only lift of ®
containing our choice of lift for the base point &.

We still denote B” (k, ..., k,,_1) the resulting element of H, (X,,8X, \ X, ; R,).
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Proposition 66. We have the following:

<A”(k0, ey kn—l) n B,,(k, PRI k;l—l)> = 5(k0 kn—l)’(k(/) K’

---------- n—1

)’

where § is the Kronecker (list) symbol, and (- N -) is the intersection pairing arising from the Poincaré-
Lefschetz duality:

H'™ x H, (X,,0X, \X;R,) > R.

Proof. We put diagrams associated with A”(k, ..., k,_;) and B"(k/, ...,k! ) all together in one
picture.

£
S1
Sk
( @ W
s tko
>
.
7 %13
. z
kg Sj
. _-@ W,
. -
AT -t ¥y

N &

< Sr

( @ Wy l
}kn—l

An intersection point is a configuration lying on both manifolds, namely such a configuration
has one point on each blue arc, and k of them on a dashed arc indexed by k. The only way there
is an intersection is: ky = k{, ... ,k,_; = k/,_, that explains the Kronecker symbol in the formula.
When we are in this equality case, we call p :={py, ..., p,} the single intersection configuration,
and it remains to prove that the intersection is equal to 1 at this configuration. We recall that the
Poincaré-Lefschetz duality gives an intersection pairing:

H™ x H, (X,,0X, \ X ;R,) = R,

see [30, Lemma 4.1]. This pairing is given by graded intersection, where each intersection point
contributes for a sign (that of the intersection) times a monomial in R. Let A” (k,, ..., k,_,) and
B (kg, ..., k,_1) be the lifts of the corresponding manifolds chosen using the red handle, respec-
tively, the one that contains f ". In our case, the only monomial m,, involved could be computed
by defining the following loop in X,, by composing paths.

* First the path going from {£;, ..., .} to A” (k, ..., k,,_;) following red handles.

* Then joining {p, ..., p,} going along A" (ky, ..., k,,_1).

* Then going back to £ running along B” (k,, ..., k,,_;).

This composition of paths yields a loop denoted y,, of X, based at &. By considering one of its lift to

)/(;, one can check that it relates 2 and mpf. The explanation of this fact is exactly the same as the
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one given before [31, Lemma 3.11] that is adapted from [5, section 3.1]. Knowing this, we directly
conclude:

my = p.(Yp)s

and moreover that:

mp = p-(yp) = 1.

One can check that the braid given by y,, seen as an element of 77 (X, §) (following the model [29,
Remark 2.2]) is trivial. This ensures the above equality by the definition of p, (Definition 50). []

Remark 67 (Homological dual bases). The above theorem says that sets
{A" (ky, -+, k,_y)such that Y k; = r} and {B”(ky, -, k,_)such that} k; =r} are dual bases
of H;el, respectively, H, (X,,8X, \ X;R,) (the one to one correspondence being given by the
canonical indexing).

4.3 | Unified invariant from homological intersection

Theorem 68 (The unified invariant from homological intersection pairing). Let 8 € 1B, a braid
such that its closure is the knot K. Then, letting t = —q~2:

F () =5""1 Y (B A"(0.kj, ...k, ) N B"(0.ky, ... k,_))g 225,

TN
keNy

where the action of f is that from Lemma 59. The latter means that the right term in the equation,
which is an infinite sum of intersection pairing of middle dimension homology classes, lives in R!
and is invariant under Markov moves.

Proof. The main tool is Theorem 60 which shows that (under t = —q~2) by sending v, @ ®
v, to Ay, ..., i,_) (for any integers iy, ..., i,_;) then matrices for the quantum action and the
homological actions of  are strictly identical. The partial trace formula from Theorem 33 is the
same replacing the v;’s by the A vectors from the homological side. Then the partial trace of any
endomorphism f of H could be expressed as follows:

.....

T enN?
keNg

where A, means the dual family of A regarding the Poincaré-Lefschetz duality studied in Propo-
sition 66. As the change of bases from A’s to A”’s is diagonal (see Proposition 63), we can replace
A and A, in the above formula by the A”’s and its dual family, namely the B as it was proved
in Proposition 66. Now the f we wish to consider here is (1 ® K®"~1)o¢, (8). One notices that
(1 ® K®"1) on the image by ¢,,(8) of any A” (0, ky, ..., k,,_;) is the multiplication by s"1q=2 X ki
that concludes the proof. O

The fact that F interpolates ADO invariants and colored Jones polynomials by some special-
ization, implies the above theorem at the corresponding specialization gives infinite sum from

85UB017 SUOWILLOD) 31D 3|qed![dde sy Aq pausenob afe sajoilke O ‘8sn JO SenJ Joj Areuq i auljuQ 8|1 UO (SUOIPUOD-pUe-SWBI0Y A8 1M AReIqRUIUO//SdNY) SUONIPUCD PUe SWiS | 8U1 89S *[7202/80/60] U0 Aiq1T8uluO A8|IM ‘6652T SWId/ZTTT OT/I0P/WO00 A8 1M ARIq 1 PUIUO™D0SYRWPUO |//:Sdny Wolj pepeoumod ‘G ‘202 ‘Xvz09rT



36 of 45 | MARTEL and WILLETTS

which one can extract these invariants out of Lagrangian intersections. Moreover, infinite sums
are not crucial.

Corollary 69. Let 8 € B,, a braid such that its closure is the knot K.

(1) Let J;C(N) be the Nth colored Jones polynomial (normalized) and spec the specialization
morphism sending s to q", then:

T =g"" D 3 spec (B A0, ky, k) NB (0, k) g 22 )
ksuch that
> k; <N,Vi

(2) Let ADO, be the rth ADO polynomial and spec the specialization morphism sending q to ¢,,,
then:

ADO,(R) =" Y spec((B- A"(0,ker, ) VB0 Ky, ep o)) 4P 2H)
ksuch that
Vi, k; <r

Proof. The proofis the same as that of the previous theorem. The sum is truncated directly as only
first weight levels are necessary to compute them, see:

(1) [38, Lemma 51] for the colored Jones case;
(2) Proposition 36 for the ADO case.

g

Remark 70 (Normalized colored Jones). As a partial trace is involved in the above formula for the
colored Jones polynomial, we are dealing with the normalized version (being 1 on the unknot) (see
Notation 35), which is a different version as that in [30]. It explains the difference of the homology
classes involved in the sums from here and the mentioned paper.

Example 71 (The trefoil knot). We illustrate the fact that the homological formula from Theo-
rem 68 gives an independent algorithm of computation arising from homological computation by
computing F_, with this formula and comparing with the expression given in [38, section 5]. To
do the computation, we use the element A’(0, k) € H (instead of A” in the formula, for clarity
of diagrams) for k € N, the disk is considered with two punctures (w,, w,) as we need a braid
with two strands to get the trefoil knot as a braid closure (namely the closure of o > € B,, we use
inverse twists for simplicity of diagrams). We use notation s = g“.

L
- - e k-~ W . ‘
o} (A'(0,k) =07 ‘j[_ = ' ,

We recall that this element have to be paired with the dual class of A’(0, k) (and then summed
over k € N) so to obtain F_,. The class B’(0, k) with the following diagram is this dual class (i.e.,
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A’(0,k) and B’ (0, k) have pairing 1, see the proof of Proposition 66):

B'(0,k) :=

gk él

We simplify the diagram of o 3(A’(0,k)) using rules from [29, section 4] to simplify the
computation of the intersection.

wy . o

This is similar to [29, Example 4.6]. In the right-hand sum, when ever [ is not 0, the manifold
associated with the diagram has no intersection with B’(0, k) (an intersection point is a k-tuple,
one on each blue line of B’(0, k) and respecting the indices of A’(0, k)). Hence, the only diagram
having nontrivial intersection with B’(0, k) is when [ = 0 so that:

N B'(0, k)>

» / w; w; \\
= ¢ ‘), N B'(0,k)

We use the handle rule [29, Remark 4.2] (see also in the proof of Proposition 63), to rearrange the
red handle:

k_ oy _ -
- T~ ~ s - T~ ~
// N 7/ N\
w, w, \\ Kk(k=1) w, w,
wy ° e _ (—1)k(—t) : 20\ 2K Wy ° j
N / - q \ /
N P Sk e
~ - -
—_— - - J - _>_ P
£ £
Sk S1 & &

The coefficient showing up is the image by p, of the loop in X, defined as the composition of
the red path on the left with that on the right. The (—1) appears because we have reversed the
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orientation of the dashed arc. Then,

<01‘3A’(O, k)N B/(0, k)> _ <(_1)k(_t)@ (qza)Zk W, : u w, /,' NFO, k)>

= (1R ()" < o L n B(0, k)>

k-1

= (D= T <H<1 — = (=) )A0. k) N B'(0, k)>
i=0

where in the second equality, we have again applied [29, Example 4.6] dividing the k indexed arc

into two arcs passing by w, but again, we have kept the only term of the hypothetical sum that

has nontrivial intersection with B’(0, k). Last equality is straightforward from [29, Proposition 7.4].

Finally, to compute F, one has to do the identification —¢ = g2, and:
F(o7%) = D (A'(0,k) N B'(0,k))g*
keN
k—1
_ Z qcc 2k —k(k 1) 4ak( 1)k H(l —20cq21)
keN i=0

k-1

k(k=1) » .

— E: qa—qu—k(k—l)q4o¢k(_Dkq—akq > I |(qocq 1_q oqu)
i=0

keN

cx—l_ )

=Y g

keN

One recovers precisely the formula for F for the trefoil knot given in [38, section 5], with zero
framing. The identification is under the change ¢ — q~! as we chose 01_3 for the trefoil instead of
3.

Theorem 68 expresses F, from intersections of middle dimension submanifolds of configu-
ration spaces, sometimes called Lagrangians. Such interpretations for quantum invariants was
initiated by Lawrence, and then Bigelow for the Jones polynomial [6, 26], then in a more quan-
tum way colored Jones and ADO polynomials were formulated in the same spirit in, for example,
[3,30], respectively, [2, 18]. The present theorem should interpolate all these formulae (sometimes
under a simple change of dual bases, corresponding to changing the manifolds to pair). Moreover,
there is the uniqueness property of interpolation (Proposition 42), that we recall in the following
remark.
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Remark 72.

* The fact that F_, is the only two variables element interpolating both colored Jones polynomi-
als or ADO polynomials (Proposition 42), could be interpreted as the only intersection pairing
computed from manifolds in abelian covers of configuration spaces of disks interpolating both
families. Moreover, it is a knot invariant.

* In [30], the second author has also showed that colored Jones polynomials compute some Lef-
schetz numbers. This is because colored Jones polynomials could be computed from a full trace
on homological representations of braids, not only with a partial trace. With some study of the
structure of homology modules, the trace formula then satisfies the Lefschetz formula. Unfor-
tunately, authors have tried to interpret F, as a full trace on homological braid action, and only
found convergence problems seeming to be essential.

5 | UNIFIED INVARIANT FROM A QUANTUM DETERMINANT

This section is inspired by the paper [16] where Huynh and Lé compute the colored Jones polyno-
mials from U,81(2) Verma modules. By some assimilation of tensor products of Verma modules
with some quantum plane, they succeed in giving a formula for colored Jones polynomials involv-
ing a quantum determinant for quantum matrices by use of the quantum MacMahon Master
Theorem [10]. The matrix associated with a given braid from which one computes this quantum
determinant are deformed Burau matrices because while abelianizing the entries one recovers

usual Burau matrices. We follow [16, section 0.1] to state the theorem and we will give a direct
proof involving their theorem and some interpolation argument.

51 | Deformed Burau matrix

We recall that R, := Z [g*!]. On the polynomial ring R,, [x*!, y*!, u*!| we define operators.

Definition 73. Let %, 9,7 and 7,7, 7, be operator acting on R, [xil, yE, uil] as follows:
XfOe,y,u) = xfx, y,u),7 f(x,y,u) = f(qx,y,u)

the reader can guess definitions of the four remainder operators. Let x;, x, € {x,y, u} then:

_ 0
X1Tx, =4 xl’xzfxle’

namely operators - and 7 g-commute if they involve the same variable, commute otherwise.
Operators - commute one with each other, so do operators 7.

From these operators we define other ones:

Dol by =02 ¢, = %1%t (10)

a_:=(t,—xYHelr, b_:=a%> c =yt g, 11)

85UB017 SUOWILLOD) 31D 3|qed![dde sy Aq pausenob afe sajoilke O ‘8sn JO SenJ Joj Areuq i auljuQ 8|1 UO (SUOIPUOD-pUe-SWBI0Y A8 1M AReIqRUIUO//SdNY) SUONIPUCD PUe SWiS | 8U1 89S *[7202/80/60] U0 Aiq1T8uluO A8|IM ‘6652T SWId/ZTTT OT/I0P/WO00 A8 1M ARIq 1 PUIUO™D0SYRWPUO |//:Sdny Wolj pepeoumod ‘G ‘202 ‘Xvz09rT



40 of 45 | MARTEL and WILLETTS

0 c_ >
. (12)
a_

We add more variables, for a fixed index j € N, we define operators a i b 9 Cjs acting on

and two matrices:

™
+
I
VR
o Q
+ F
S
\/
|VJ
|
N
&

R, [xjil,yjil,ujil as a,,b,,c, (resp.) do and trivially on any R, [x;—"l,yiil,uiﬂ] if i #j. We
extend as well definitions of S I (resp., S j,_) as those of S, (resp., S_) involving a jbj.cj.

Definition 74 (Deformed Burau matrix). Let § : = crl.ell af: € B, be a braid written as a product
of Artin generators. We define its deformed Burau matrix as follows:

k
pe(B) = H Ay,
j=1

where A; 1= Id,-j_1 GBSj’ej ®Idn—ij—1' Entries of p(f) are operators acting on Py :=
k +1 . +1  +1

®j1 Ro [xj Vi ]

Definition 75 (Evaluation of operators). Let P be a polynomial in operators a, b, , c, (with maybe

indices) with coefficients in R,. The evaluation £(P) e R :=Z [qil,s’—rl] is defined to be the

application of P to the constant function 1 € P then substituting u; by 1and x;, y; by the formal
variable s forall j =1, ..., k.

The following lemma is part of [17, Lemma 1.4]:
Lemma 76. Letd,r,s € N, we have:
é’(bic:ai) =q (1 - sq_r)g_]
ebicat) =51 -s"g",
where (1 — x)g = Hli_ol(l —xq').
We hence have a convergent series in RT when evaluating a, series operators with £.

Definition 77 (Evaluation of series operators). Let P be a polynomial in operators b, ,c, and a
series in a, (with maybe indices) with coefficients in R,. The evaluation £(P) € RT is defined to
be the application of P to the constant function 1 € P then substituting u; by 1 and x;, y; by the
formal variable s for all j =1, ..., k.

Remark 78. In [16], the framework is the Jones polynomials, meaning that there is an evaluation
at g" along side £. As we try to do the same for the unified invariant, we now must be cautious
because operators power series will appear in the formula. Fortunately, as we will see Lemma 81,
they are a, power series operators, lying in R after evaluating with £.
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5.2 | Quantum determinant
Definition 79 (Right quantum matrices). A 2 X 2-matrix <j Z) is said to be right quantum if:

ac=qca bd=qdb ad=da+ qcb—q 'bc.
An m X m matrix is right quantum if any of its 2 X 2-submatrix is.

Definition 80 (Quantum determinant). Let A = (q;;) be a right quantum matrix. Its quantum
determinant is defined as follows:

det(A) = Z (_q)inV(ﬂ)aﬂl,lan’Z,Z  Armmo
a €S,

where inv(7r) is the number of inversions.

det,(Id — A) :=1—-C,withC := )’ (-1)"I"'de(4)),
Jci, - m q

where A; is the J X J submatrix of A (which is right-quantum).

Question 1. Does there exist a right quantum change of basis changing the deformed Burau
matrices (Definition 74) into deformed reduced Burau matrices? The latter would clearly be related
to the reduction of braid representation that exists on the quantum side (Definition 12), and with
the fact that we remove one row and column in determinant formulae in the next section. It could
be related with the fact that we use a partial trace to define F,.

5.3 | Unified invariant from a quantum determinant

1

Lemma 81. Let 8 € B,, be a braid which standard closure is a knot. The operator ——————is
det,(Id —gp'(8))

aseriesina,.

Proof. We first study symmetric powers of the deformed Burau matrices of Artin generators A;.
Let (x;)1<i<m SPan an m dimensional quantum algebra, meaning that x;x; = gx;x; for i < j. For

a right quantum matrix A = (q;;) let X; = 2;11 a;;x; and let G(jy, ..., j,,) be the coefficient of
x{‘ ...x{’" in TT%, Xij".
Recall that A;, is the deformed Burau matrix of the Artin generator o;.. Let 2:11 Ji=N,

m m

N . .

sym" (A [ Jee = [ (A
k=1 k=1

J1 ...xjifl(a X; + b, .x: )Jz X (C x,)ji+1xji+2 xjm

i—1 +i+1 + i+2 m

=x1

Ji g
_ Ji Gi=Djiz1 ol pli=l Jiv1 1 Jivttl_ji=l jm
_IZ<I 1q Tl by e XXX Xy
=0 q-
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Hence, each Artin generator will induce a sum at the level of the action, the index I of the sum
is called state and the sum is called state sum. Recall that g = afll crflf is such that the induced
permutation 7(8) is a derangement (while dealing with braids closing to knots). The element
G(0, j,, .., j,) Is a k-states sum that verifies

J=(@)@) = Ji *+ linearcombinationofstateswithcoefflor — 1.

As () is a derangement, j; is a linear combination of states with coeff1or —1. Nowif ", j; =
N, there is always a state I that verifies [ > % By use of the quantum MacMahon Master Theorem
[10], we know that

1
__ I G(0, jpy e jm)-
det,(Id —gqp'(8)) JZZJM :

Hence, isaseriesina,. O

dety(1d ~gp'(8))

Theorem 82. Let 8 € B, be a braid which standard closure is a knot. One remarks that p(f5) is
right quantum. Let p'(B) be obtained from p(f3) by removing first row and column. Then

Foo(;é) = S(w(,@)—m+1)/28<~;>’
det,(Id —qp’(y))

where w(f) is the writhe of the braid.

Proof. Let £y be the evaluation corresponding to the substitution s = g¢N=!. Then, for any N € N:

ey sw@r-mvrze( L)) =y ),
det, (Id ~qp' (1)) g

where J %(N ) is the open Nth-colored Jones polynomial of B, this is [16, Theorem 1]. We conclude

using the unique element interpolating colored Jones polynomials property, Proposition 42. []

Remark 83. The entire proof of Theorem 1 from [16] adapts to F, almost step by step and word by
word, although here we have preferred to use a stronger and concise argument. The proof from
[16] explains in details the relations between the operators a,,b,,c, and the braiding of Verma
modules, so that it is important for the understanding of the formula.

Corollary 84 (ADO polynomials from quantum determinant). Let § € BB,, be a braid which
standard closure is a knot, and &, be the composition of € with the substitution q = {,,. Then:

DO, 8 =501 e ) ), o)
e

whereF, : Z[s*'] - Z[s*'],s > 5".

Proof. Straightforward consequence of Theorems 82 and 39, and the fact that £ (det (Id —p'(y)))
is the Alexander polynomial [16, Theorem 1(b)]. O
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Remark 85 (L?-torsion and volume conjecture). Let 8 € BB, be a braid: it acts naturally on the free

group F, on n generators z,, ..., z,. Let () := % be the matrix where partial derivatives

L,

arise from Fox differential calculus. Latter matrix has coéfficients in Z [F, ] but it is well-known
that by sending them to Z[Z] we obtain the Burau matrix of § which is a presentation of the
Alexander torsion module of the closure of § (hence one could extract the Alexander polynomial
of the closure of § out of its determinant). To relate the matrix () (with noncommutative entries)
with some torsion module, one has to consider the L? torsion [27]. To compute such an invariant,
the regular determinant has to be replaced by the Fuglede-Kadison determinant denoted det,
in [17]. Taking the Fuglede-Kadison determinant of such a matrix 1(8) then computes the L?
torsion of the complement of (3’s closure (see, e.g., [27, Theorem 4.9]). An important theorem of
Liick and Schick [28] relates the L?-torsion of a manifold with its (eventual) hyperbolic volume.
It is summed up in our context in [17, Proposition 0.2] as follows:

Vol(K)\ _ 1
p(‘ o1 )‘1—detm @B (13)

where in 1’() one line and one column has been removed from (), K is (a knot) the closure
of B and Vol its (possible) hyperbolic volume. Equation (13) resembles that from Theorem 82 for
F,: one has removed one line and column before taking a generalized notion of determinant for
matrices with noncommutative entries in the same way. Moreover, the matrices involved are equal
the Burau matrix in both cases whenever entries are abelianized. F, is conjectured to contain
logarithmically the hyperbolic volume of the knot complement in a nice analytic way (Conjecture
1). The way the Burau matrix is quantized in both cases and the relation between Fuglede-Kadison
determinant and quantum determinant are still to be clarified.
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