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Abstract
We re-build the quantum 𝔰𝔩(2)unified invariant of knots
𝐹∞ from braid groups’ action on tensors of Verma mod-
ules. It is a two variables series having the particularity
of interpolating both families of colored Jones polyno-
mials and ADO polynomials, that is, semisimple and
non-semisimple invariants of knots constructed from
quantum 𝔰𝔩(2). We prove this last fact in our context
that re-proves (a generalization of) the famous Melvin–
Morton–Rozansky conjecture first proved by Bar-Natan
and Garoufalidis. We find a symmetry of 𝐹∞ nicely
generalizing the well-known one of the Alexander poly-
nomial, ADO polynomials also inherit this symmetry. It
implies that quantum 𝔰𝔩(2) non-semisimple invariants
are not detecting knots’ orientation. Using the homo-
logical definition of Verma modules we express 𝐹∞ as
a generating sum of intersection pairing between fixed
Lagrangians of configuration spaces of disks. Finally,
we give a formula for 𝐹∞ using a generalized notion of
determinant, that provides one for the ADO family. It
generalizes that for the Alexander invariant.
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1 INTRODUCTION

1.1 Quantum invariants of knots associated with 𝖘𝖑(𝟐)

From a quantum group and its category of finite-dimensional representations, one can construct
invariants of knots, links (and ribbon graphs). It is the original construction of Reshetikhin and
Turaev [36]. A quantum group could be think as a one parameter deformation of the enveloping
algebra of a given semisimple Lie algebra. In the present paper, we only study the knot invariants
arising from 𝑈𝑞𝔰𝔩(2) which is a standard notation for the quantum group associated with 𝔰𝔩(2).
Such knot invariants could be computed from braid group representations that are also part of
the theory because they are defined using same finite dim. representations of 𝑈𝑞𝔰𝔩(2). It is the
approach of the present work. Historically, there are two families of knots that were extracted
from the corresponding Reshetikhin–Turaev construction in this 𝔰𝔩(2)-case.

(1) The colored Jones polynomials {J𝑁 ∈ ℤ
[
𝑞±1

]
, 𝑁 ∈ ℕ} obtained from standard irreducible rep.

of dim. 𝑁 + 1 of 𝑈𝑞𝔰𝔩(2) denoted 𝑆𝑁 as input (see, e.g., [32]), by use of Reshetikhin–Turaev
construction. They could all be derived from the famous Jones polynomial [21].

(2) The ADO polynomials, sometimes called colored Alexander polynomials, {ADO𝑟 ∈

ℂ
[
𝐴±1

]
, 𝑟 ∈ ℕ} arising from particular irreducible representations of 𝑈𝑞𝔰𝔩(2) when 𝑞

is evaluated at a root of unity. They were first defined by Akutsu–Deguschi–Ohtsuki [1],
but they require a slight modification of the original tool developed by Reshetikhin–Turaev
while the philosophy of using𝑈𝑞𝔰𝔩(2) is a constant. The first of the family is the well-known
Alexander polynomial denoted.

The construction of Reshetikhin andTuraev uses the fact that in categories of representations of
quantum groups they find inherent tools of the category behaving nicely with Reidemeister moves.
Namely, there are 𝑅-matrices allowing to linearly represent braid groups carrying Reidemeister
moves for braids, and Markov traces allowing to extract knot invariants from braid groups rep-
resentations hence taking care of the remainder Reidemeister moves. Even though finding these
two objects in any context is not trivial (e.g., colored Jones vs. ADO polynomials, where they are
differently defined), they are always operators on𝑈𝑞𝔰𝔩(2)modules satisfying nice equation trans-
lating Reidemeister moves in an algebraic language. In the end, one obtains powerful topological
invariants but their full algebraic flavor makes the topological interpretation of their content dif-
ficult and the subject of many conjectures in the field. One of the most famous expectation of
topological content is the hyperbolic volume, which is the subject of the volume conjecture first
stated by Kashaev [22] and relocated in the context of colored Jones polynomials by Murakami
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andMurakami in [32]. The question on how to interpret topologically quantum invariants is more
generally central.
Two other questions could be addressed to the picture.

∙ Could we construct knot invariants out of infinite dim. modules of 𝑈𝑞𝔰𝔩(2)? While
Reshetikhin–Turaev construction requires finite dimension.

∙ Are quantum invariants colored Jones and ADO related or even equivalent? Even though the
theory of representations of 𝑈𝑞𝔰𝔩(2) is singularly different when 𝑞 is a root of one (ADO case)
than when 𝑞 is generic (colored Jones case).

These three last questions (the two above and the topological interpretation of the construction
of knot invariants) have recently reached new steps by use of the same objects: 𝑈𝑞𝔰𝔩(2) Verma
modules, which are infinite dim. modules on 𝑈𝑞𝔰𝔩(2).
In [38], the second author has constructed a knot invariant denoted 𝐹∞ using as input𝑈𝑞𝔰𝔩(2)

Verma modules. The obtained object is a two variable infinite sum converging in the sense that it
lives in a nice completion of the ring of Laurent polynomials with two variables ∶= ℤ

[
𝑞±1, 𝑠±1

]
.

By nice, we mean, for example, that 𝐹∞ can be evaluated at 𝑞 being a root of unity or 𝑠 being a
power of 𝑞. Moreover in the first case 𝐹∞ recovers the ADO polynomials and in the second the
colored Jones ones. This double interpolation property implies an equivalence between the two
families of knots invariants.
In [29], the first author has reconstructed 𝑈𝑞𝔰𝔩(2) Verma modules, their tensor products, and

the quantum braid group representation upon them from homology of configuration spaces of
points in punctured disks with coefficients in a local ring isomorphic to . The action of braid
groups on these modules is given by (more or less) homeomorphisms of configuration spaces,
using the fact that braid groups are mapping class groups (isotopy classes of homeomorphisms)
of punctured disks. Hence one can use this purely homological definition of Verma modules and
quantum braid group representations avoiding dealing with quantum modules theory, shedding
light on the topological content of it.
The present paper studies in details the tools surrounding Verma modules (their tensor prod-

uct, braid group representations and knot invariant) developed in the two papers [29, 38], more
particularly what topological information one could extract out of 𝐹∞.
Next steps could be achieved using𝑈𝑞𝔰𝔩(2) and itsmodules, for instance, constructions of topo-

logical quantum field theories (TQFTs) which is a categorical construction providing invariants of
links and embedded graphs (extending those of knots), 3-manifolds and mapping class groups of
surfaces representations (extending those of braids). This was initiated by Reshetikhin and Turaev
again [37] and the universal construction of Blanchet–Habegger–Masbaum–Vogel [8]. In the col-
ored Jones context (for which the category of 𝑈𝑞𝔰𝔩(2) modules is semisimple), the output is the
Witten–Reshetikhin–Turaev TQFT (WRT). More recently, Blanchet–Costantino–Geer–Patureau
have succeeded in constructing TQFT [7] from the category ofmodules on𝑈𝑞𝔰𝔩(2)when 𝑞 is a root
of 1 (which is non-semisimple).We call them non-semisimple TQFTs and the inherent knot invari-
ant is hence the ADO family. These non-semisimple TQFTs are improvements of WRT because,
for example, they detect lens spaces and Dehn twists, but 𝐹∞ shows that at the level of invariants
of knots they are the same. The invariant 𝐹∞ is still not defined on links, while colored Jones
and ADO families might differ at some point (as at the end one associated TQFT contains more).
Notice that the authors have tried hard to generalize𝐹∞ to links finding systematic and important
convergence issues. As the definition of𝐹∞ is made in the non-semisimple spirit: namely opening
the knot along a strand and transforming it to a long knot, one has to make this process indepen-
dent of the choice of a strand in the case of links, or to make the invariant computable from a full
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trace (which corresponds to a fully closed knot). Refer to Figures 4 and 5 for pictures of long knots
with an opened strand, or of a partial braid closure (with one strand left opened) that justifies
the use of a partial trace in the definition of 𝐹∞. For (renormalized) Jones and ADO families of
invariants, well-defined for links, a normalization is applied so tomake the computation indepen-
dent of the choice of a strand. This normalization cannot be generalized in the infinite context of
Verma modules that is used here to define 𝐹∞, roughly speaking it corresponds to a normaliza-
tion by a series and the result is not converging, namely it does not live in a good completion of
ℤ
[
𝑞±1, 𝑠±1

]
, same for the full trace. Hence, it seems to the authors that it cannot be generalized to

links in a way that interpolates both families of invariants (in good completions we expect to be
able to evaluate 𝑞 at roots of unity, for instance). Following the homological approach of Section 4
it means that no homological model can provide a unification of Jones and ADO families in the
general case of links (we call a unification something that is a link invariant in a ring that can
specialized to the underlying families), as none of them can be obtained out of universal Verma
modules. Consequently, the level of closed 3-manifold invariants has no chance to be reached and
it is not a surprise: as mentioned WRT invariants (arising from Jones polynomials) do not clas-
sify lens spaces while some non-semisimple ones (arising from the ADO family) do. Indeed both
families have no chance to be unified in the same way 𝐹∞ does for knots. Nevertheless, 𝐹∞ is
related to Habiro’s universal invariant [11] for knots in the way it interpolates the whole family
of Jones polynomials, for instance, and this universal invariant was successfully generalized to
integral homology spheres in [14, 15] by Habiro and Lê. The first author is currently trying to gen-
eralize the present unifying invariant for knots to integral homology spheres (which would still
be consistent with the mentioned gap at the level of lens spaces), using homology techniques as
in Section 4 based on the fact that homological models for quantum representations of mapping
class groups were recently generalized to arbitrary genus surfaces in [35].

1.2 Content: Unified invariant of knots and homological action of
braids

In [38], the second author defines an invariant of knots denoted 𝐹∞ which is an element living in
some completion ̂𝐼̂ of  ∶= ℤ

[
𝑞±1, 𝑠±1

]
. This definition implies the application of a universal

invariant constructed by Lawrence and Ohtsuki [23, 24, 34] and widely studied by Habiro [11],
on any vector of some quantum 𝔰𝔩(2) Vermamodule. In [29], the first author has developed braid
group representations on tensor products of theseVermamoduleswith coefficients in providing
a homological definition arising from local systems on configuration spaces of points in punctured
disks. In this paper, we express𝐹∞ as a partial trace of the braid action on tensor products of Verma
modules.

Theorem (Theorem 33). Let 𝑉 be the universal Verma-module of𝑈𝑞𝔰𝔩(2). Let be a knot such
that it is the closure of a braid 𝛽 ∈ 𝑛. Then

𝐹∞ = Tr2,…,𝑛
(
ℎ◦𝛽, 𝑉⊗𝑛

)
,

where the right term is the partial trace of the action of 𝛽 on 𝑉⊗𝑛 post composed with the (fixed)
operator ℎ explicitly defined later on.

We re-prove the following property.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 5 of 45

Theorem (Theorem 39). For an integer 𝑟 ∈ ℕ∗ and 𝜁2𝑟 a 2𝑟th root of 1, we have:

𝐹∞(𝜁2𝑟, 𝐴,) =
(𝐴)𝑟𝑓 × ADO𝑟(𝐴,)

(𝐴
2𝑟)

,

where 𝑓 is the framing of the knot, ADO𝑟 is the 𝑟th ADO polynomial [1] and  the Alexander
polynomial of.

The latter was proved in [38] but considering Melvin–Morton–Rozansky (MMR) conjecture
which is a theorem due to Bar-Natan and Garoufalidis [4]. Here we prove it carefully studying the
structure of tensor products of Verma modules when 𝑞 is a root of 1. Hence, we have re-proved
MMR conjecture in a slight generalization, namely an analytic relation between any colored Jones
polynomial and the Alexander polynomial.
It is well-known that the Alexander polynomial of a knot is invariant under the change of vari-

able 𝑠 ↦ 𝑠−1. We extend this symmetry to the entire 𝐹∞ and it gives a nice symmetry for the ADO
invariants of knots too.

Theorem (Theorem 43, Corollary 44). For any knot:

∙ 𝐹∞() is unchanged under 𝑠 ↦ 𝑠−1𝑞−2,
∙ ADO𝑟() is unchanged under 𝑠 ↦ 𝑠−1𝜁−2

2𝑟
.

The second bullet point implies that the non-semisimple 𝑈𝑞𝔰𝔩(2) invariant of planar
graphs introduced by Costantino–Geer–Patureau in [9] does not detect orientation of knots
(Corollary 45).
Using the homological definition from [29] for tensor products of Vermamodules, and Poincaré

duality in homology, we express 𝐹∞ as the intersection pairing with coefficients in  between
fixed middle dimension homology classes in configuration spaces of points in punctured disks.

Theorem (Theorem 68). Let 𝛽 ∈ 𝑛 be a braid such that its closure is the knot. Then

𝐹∞() = 𝑠𝑛−1
∑
𝑘

⟨
𝛽 ⋅ 𝐴′′(𝑘) ∩ 𝐵′′(𝑘)

⟩
𝑞−2

∑
𝑘𝑖 ,

where for any list of 𝑛 − 1 integers 𝑘,𝐴′′(𝑘) and 𝐵′′(𝑘) are precisely defined middle dimensionman-
ifolds of the space of configurations of points in the 𝑛th punctured disks. The action of 𝛽 is naturally
defined by homeomorphism of the punctured disk, and ⟨⋅ ∩ ⋅⟩ is a homological intersection pairing
in given by Poincaré duality.

The latter means that the right term in the equation, which is an infinite sum of intersection
pairing of middle dimension homology classes, lives in ̂𝐼̂ and is invariant under Markov moves.
Finally, we express 𝐹∞ using a generalized notion of determinant of matrices called quan-

tum determinant of right quantum matrices, defined for matrices with noncommutative entries.
This quantum determinant is presented in [10]. The quantum determinant formula resembles the
classical one for the Alexander polynomial: it is the quantum determinant of a deformed Burau
matrix instead of a regular determinant of the regular Burau matrix. It is stated in Theorem 82,
and generalizes formula of Lê and Huynh [17] for colored Jones polynomials.
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6 of 45 MARTEL and WILLETTS

1.3 Plan of the paper

In Section 2, we establish the context of the quantum group 𝑈𝑞𝔰𝔩(2) and its Verma module. We
define the action of braid groups, the splitting into finite dim. levels, and we carefully study
the structure while specializing 𝑞 at roots of one, giving rise to a particular r-part factorization
(Proposition 23).
In Section 3, we redefine (Theorem 33) the knot invariant 𝐹∞ as a partial trace on braid group

representations previously defined after having recalled its former definition from [38]. Using
the r-part factorization at roots of unity from previous section, we prove Theorem 39 re-proving
the factorization of 𝐹∞ at roots of one, re-proving MMR conjecture. We then prove Theorem 43
providing an Alexander-like symmetry for invariants 𝐹∞ and ADO.
In Section 4, we prove Theorem 68 that expresses 𝐹∞ as a sum of intersection pairing between

Lagrangians in configuration spaces of punctured disks. This requires first a precise recall of the
homological set-up from [29], that is, the homological definition of Verma modules, their tensor
products and the braid action.
In Section 5, we recall the definition of quantum determinant for right quantum matrices. We

recall the context of paper [16], and finally prove Theorem 82 providing a quantum determinant
formula for invariants 𝐹∞ and ADO.

2 QUANTUM 𝖘𝖑(𝟐) AND ITS UNIVERSAL VERMAMODULE

We introduce quantum numbers, factorials and binomials.

Definition 1. Let 𝑖, 𝑘, 𝑙, 𝑛 be integers. We define the following elements of ℤ
[
𝑞±1

]
:

[𝑖]𝑞 ∶=
𝑞𝑖 − 𝑞−𝑖

𝑞 − 𝑞−1
,[𝑘]𝑞! ∶=

𝑘∏
𝑖=1

[𝑖]𝑞,

[
𝑘

𝑙

]
𝑞

∶=
[𝑘]𝑞!

[𝑘 − 𝑙]𝑞![𝑙]𝑞!
; (1)

{𝑛} = 𝑞𝑛 − 𝑞−𝑛and{𝑛}! =
𝑛∏
𝑖=1

{𝑖}; (2)

with the convention
[𝑛
𝑘

]
𝑞
= 0 if 𝑛 < 0.

We also fix notation for elements of ℤ
[
𝑞±1, 𝑠±1

]
but using the following notation 𝑞±𝛼 ∶= 𝑠±1

that will be useful later on.

{𝛼}𝑞 = 𝑞𝛼 − 𝑞−𝛼, {𝛼 + 𝑘}𝑞 = 𝑞𝛼+𝑘 − 𝑞−𝛼−𝑘, {𝛼; 𝑛}𝑞 =

𝑛−1∏
𝑖=0

{𝛼 − 𝑖}𝑞, (3)

where one can easily deduce how towrite them inℤ
[
𝑞±1, 𝑠±1

]
. (To do computation inℂ and think

of 𝑞, 𝛼 and 𝑠 as complex numbers, one must fix a logarithm of 𝑞.)

In what follows, we will define 𝑈𝑞𝔰𝔩(2) in Subsection 2.1, then its Verma modules and the
associated action of braid groups in Subsection 2.2. We study the structure of this braid group
representationwhile variables are evaluated at some particular value in Subsection 2.3. In the case
of 𝑞 being a root of one, we show that the representation splits into r-parts subrepresentations.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 7 of 45

2.1 The algebra𝑼
𝑳

𝟐

𝒒 𝖘𝖑(𝟐)

In this section, we define an integral version for the quantized algebra associated with 𝔰𝔩(2). By
integral, we mean as an algebra over the ring of Laurent polynomials in one variable, but first we
define the standard algebra 𝑈𝑞𝔰𝔩(2) on the rational field.

Definition 2. The algebra𝑈𝑞𝔰𝔩(2) is the algebra over ℚ(𝑞) generated by elements 𝐸, 𝐹 and 𝐾±1,
satisfying the following relations:

KE𝐾−1 = 𝑞2𝐸,KF𝐾−1 = 𝑞−2𝐹

[𝐸, 𝐹] =
𝐾 − 𝐾−1

𝑞 − 𝑞−1
and𝐾𝐾−1 = 𝐾−1𝐾 = 1.

The algebra 𝑈𝑞𝔰𝔩(2) is endowed with a coalgebra structure defined by Δ and 𝜖 as follows:

Δ(𝐸) = 1 ⊗ 𝐸 + 𝐸 ⊗ 𝐾, Δ(𝐹) = 𝐾−1 ⊗ 𝐹 + 𝐹 ⊗ 1

Δ(𝐾) = 𝐾 ⊗ 𝐾, Δ(𝐾−1) = 𝐾−1 ⊗ 𝐾−1

𝜖(𝐸) = 𝜖(𝐹) = 0, 𝜖(𝐾) = 𝜖(𝐾−1) = 1

and an antipode defined as follows:

𝑆(𝐸) = 𝐸𝐾−1, 𝑆(𝐹) = −𝐾𝐹, 𝑆(𝐾) = 𝐾−1, 𝑆(𝐾−1) = 𝐾.

This provides aHopf algebra structure, so that the category of modules over𝑈𝑞𝔰𝔩(2) is monoidal.

We are interested in an integral version that resembles Lusztig version but with only half of
divided powers for generators. This version is used and introduced in [12, 20, 29, 38] (with subtle
differences in the definitions of divided powers for 𝐹). Let:

𝐹(𝑛) ∶=
(𝑞 − 𝑞−1)𝑛

[𝑛]𝑞!
𝐹𝑛.

Let0 = ℤ
[
𝑞±1

]
be the ring of integral Laurent polynomials in the variable 𝑞.

Definition 3 (Half integral algebra). Let 𝑈
𝐿
2
𝑞 𝔰𝔩(2) be the0-subalgebra of 𝑈𝑞𝔰𝔩(2) generated by

𝐸, 𝐾±1 and 𝐹(𝑛) for 𝑛 ∈ ℕ∗. We call it a half integral version for𝑈𝑞𝔰𝔩(2), the word half to illustrate
that we consider only half of divided powers as generators.

Remark 4 (Relations in𝑈
𝐿
2
𝑞 𝔰𝔩(2), [20, (16) (17)]). The relations among generators involving divided

powers are the following ones:

𝐾𝐹(𝑛)𝐾−1 = 𝑞−2𝑛𝐹(𝑛)[
𝐸, 𝐹(𝑛+1)

]
= 𝐹(𝑛)

(
𝑞−𝑛𝐾 − 𝑞𝑛𝐾−1

)
and𝐹(𝑛)𝐹(𝑚) =

[
𝑛 + 𝑚

𝑛

]
𝑞

𝐹(𝑛+𝑚).
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8 of 45 MARTEL and WILLETTS

Together with relations from Definition 2, they complete a presentation of 𝑈
𝐿
2
𝑞 𝔰𝔩(2).

𝑈
𝐿
2
𝑞 𝔰𝔩(2) inherits a Hopf algebra structure with a coproduct given by:

Δ(𝐾) = 𝐾 ⊗ 𝐾,Δ(𝐸) = 𝐸 ⊗ 𝐾 + 1 ⊗ 𝐸, andΔ(𝐹(𝑛)) =
𝑛∑
𝑗=0

𝑞−𝑗(𝑛−𝑗)𝐾𝑗−𝑛𝐹(𝑗) ⊗ 𝐹(𝑛−𝑗).

Proposition 5 (Poincaré–Birkhoff–Witt basis). The algebra𝑈
𝐿
2
𝑞 𝔰𝔩(2) admits the following set as an

0-basis: {
𝐾𝑙𝐸𝑚𝐹(𝑛), 𝑙 ∈ ℤ,𝑚, 𝑛 ∈ ℕ

}
.

2.2 Verma modules and braiding

We define the Verma modules. They are infinite-dimensional modules over 𝑈
𝐿
2
𝑞 𝔰𝔩(2) depending

on a parameter. Again we work with an integral version by including the parameter in the ring of
Laurent polynomials as a formal variable. Let ∶= ℤ

[
𝑞±1, 𝑠±1

]
.

Definition 6 (Verma modules for 𝑈
𝐿
2
𝑞 𝔰𝔩(2)). Let 𝑉𝑠 be the Verma module of 𝑈

𝐿
2
𝑞 𝔰𝔩(2). It is the

infinite -module, generated by the family of vectors {𝑣𝑖, 𝑖 ∈ ℕ}, and endowed with an action of

𝑈
𝐿
2
𝑞 𝔰𝔩(2), generators acting as follows:

𝐾 ⋅ 𝑣𝑗 = 𝑠𝑞−2𝑗𝑣𝑗,𝐸 ⋅ 𝑣𝑗 = 𝑣𝑗−1and𝐹(𝑛)𝑣𝑗 =

([
𝑛 + 𝑗

𝑗

]
𝑞

𝑛−1∏
𝑘=0

(
𝑠𝑞−𝑘−𝑗 − 𝑠−1𝑞𝑗+𝑘

))
𝑣𝑗+𝑛.

Remark 7 (Weight vectors). We will often make implicitly the change of variable 𝑠 ∶= 𝑞𝛼 and
denote 𝑉𝑠 by 𝑉𝛼. This choice is made to use a practical and usual denomination for eigenval-
ues of the𝐾 action (which is diagonal in the given basis). Namely we say that vector 𝑣𝑗 is of weight
𝛼 − 2𝑗, as 𝐾 ⋅ 𝑣𝑗 = 𝑞𝛼−2𝑗𝑣𝑗 . The notation with 𝑠 shows an integral Laurent polynomials structure
strictly speaking. In the case 𝑠 = 𝑞𝛼 one can use a simpler notation in the action of 𝐹(𝑛):

𝑛−1∏
𝑘=0

(𝑠𝑞−𝑘−𝑗 − 𝑠−1𝑞𝑗+𝑘) = {𝛼 − 𝑗, 𝑛}

Definition 8 (𝑅-matrix, [20, (21)]). Let 𝑠 = 𝑞𝛼, 𝑡 = 𝑞𝛼
′ . The operator 𝑞𝐻⊗𝐻∕2 is the following:

𝑞𝐻⊗𝐻∕2 ∶

{
𝑉𝑠 ⊗ 𝑉𝑡 → 𝑉𝑠 ⊗ 𝑉𝑡

𝑣𝑖 ⊗ 𝑣𝑗 ↦ 𝑞(𝛼−2𝑖)(𝛼
′−2𝑗)𝑣𝑖 ⊗ 𝑣𝑗

.

We define the following R-matrix:

𝑅 ∶ 𝑞𝐻⊗𝐻∕2
∞∑
𝑛=0

𝑞
𝑛(𝑛−1)

2 𝐸𝑛 ⊗ 𝐹(𝑛),
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 9 of 45

which will be well-defined as an operator on Verma modules in what follows.

We recall the Artin presentation of the braid groups.

Definition 9. Let 𝑛 ∈ ℕ. The braid group on 𝑛 strands 𝑛 is the group generated by 𝑛 − 1

elements satisfying the so called “braid relations”:

𝑛 ∶=

⟨
𝜎1,⋯, 𝜎𝑛−1| 𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 if|𝑖 − 𝑗| ≥ 2

𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1 for𝑖 = 1,⋯, 𝑛 − 2

⟩

Proposition 10 [20, Theorem 7]. Let 𝑉𝑠 and 𝑉𝑡 be Verma modules of 𝑈
𝐿
2
𝑞 𝔰𝔩(2) (with 𝑠 = 𝑞𝛼 and

𝑡 = 𝑞𝛼
′). Let R be the following operator:

R ∶ 𝑞−𝛼𝛼
′∕2𝑇◦𝑅,

where 𝑇 is the twist defined by 𝑇(𝑣 ⊗ 𝑤) = 𝑤 ⊗ 𝑣. Then R provides a braiding for𝑈
𝐿
2
𝑞 𝔰𝔩(2) integral

Verma modules. Namely, the morphism:

𝜙𝑛 ∶

⎧⎪⎨⎪⎩
[𝑛] → End

,𝑈
𝐿
2
𝑞 𝔰𝔩(2)

(
𝑉𝑠⊗𝑛

)
𝜎𝑖 ↦ 1⊗𝑖−1 ⊗ R⊗1⊗𝑛−𝑖−1

is an-algebramorphism. It provides a representation of𝑛 such that its action commutes with that

of𝑈
𝐿
2
𝑞 𝔰𝔩(2). In the sequel, wewill sometimedenote𝜙𝑛(𝑞𝛼, ⋅) to emphasize the dependence in variables.

Remark 11. One can consider a braid action over 𝑉𝑠1 ⊗⋯⊗𝑉𝑠𝑛 (considering more variables
in the ring) such that the morphism 𝜙𝑛 is well-defined but becomes an algebra morphism only
when restricted to the pure braid group 𝑛. These braids indeed define endomorphisms. See
[31, appendix] for a detailed explanation on colored versions.

Elements of same weight in the tensor product of Verma modules form a subrepresentation of
the braid group.

Definition 12 (Sub-weight representations). Let:

𝑉𝑛,𝑚(𝑞, 𝑞
𝛼) ∶= Span

{
𝑣𝑖1 ⊗⋯⊗ 𝑣𝑖𝑛 ∈ 𝑉⊗𝑛

𝛼 such that
𝑛∑

𝑘=1

𝑖𝑘 = 𝑚

}

be the space of sub-weight𝑚 vectors. It is stable under the action of braids so that we denote:

𝜑𝑛,𝑚(𝑞, 𝑞
𝛼, .) ∶ 𝐵𝑛 → End(𝑉𝑛,𝑚),

the associated (restricted) representation. When there is no ambiguity on variables, we will write
𝑉𝑛,𝑚 ∶= 𝑉𝑛,𝑚(𝑞, 𝑞

𝛼) and 𝜑𝑛,𝑚(𝛽) ∶= 𝜑𝑛,𝑚(𝑞, 𝑞
𝛼, 𝛽).
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10 of 45 MARTEL and WILLETTS

Remark 13. The stability of sub-weight vectors under braid actions is deduced from the fact that

the latter action commutes with that of 𝑈
𝐿
2
𝑞 𝔰𝔩(2) and from the fact that sub-weight vectors are

eigenvectors for the 𝐾 action. Namely,

𝑉𝑛,𝑚(𝑞, 𝑞
𝛼) = {𝑣 ∈ 𝑉⊗𝑛

𝛼 |𝐾𝑣 = 𝑞𝛼−2𝑚𝑣}. (4)

This is for 𝑞 being a formal variable. At roots of unity (i.e., when 𝑞 is a root of 1, see next section),
as 𝑞−2𝑟 = 1, Equation (4) does not stand. Still the braid action preserves𝑉𝑛,𝑚 and this can be seen
directly from the terms of the R-matrix preserving the sum of indices of tensors.

2.3 Specialization of variables

Working with the ring is particularly comfortable for specialization of variables, that is, giving
a complex value to variables 𝑞 and 𝑠. This corresponds to a morphism:

spec ∶  → ℂ

and algebraically speaking, all the data set just presented has to be replaced by:

̃spec ∶= 𝑈
𝐿
2
𝑞 𝔰𝔩(2)⊗specℂand𝑉𝑠⊗specℂ, and so on.

This is what we will mean by specialization. (We will simply denote ̃ when the specialization is
clear.)

2.3.1 Specialization to integral weights

We can take a specialization at integral weights setting 𝑠 = 𝑞𝛼 = 𝑞𝑁 for 𝑁 ∈ ℤ in the previous
formulae and we denote 𝑉𝑁 the corresponding Verma module with integral weights. We find a
classical sub-module in that case:

Definition 14 (Simple module of dim.𝑁). We denote 𝑆𝑁 the module spanned by {𝑣0, … , 𝑣𝑁}. It is
a sub-module of 𝑉𝑁 isomorphic to the highest weight simple module of dim. 𝑁 + 1.

This specialization has a symmetry as shown in the following lemma:

Lemma 15. For𝑁 ∈ ℕ∗, we have the isomorphism of ̃ modules:

𝑉−𝑁−2 ≅ 𝑉𝑁∕𝑆𝑁.

Proof. While (𝑣𝑖)𝑖∈ℕ is set to be the basis of 𝑉𝑁 , (𝑣𝑖)𝑖 the basis of the quotient 𝑉𝑁∕𝑆𝑁 , we get:

𝐸𝑣𝑁+1 = 0

𝐸𝑣𝑁+1+𝑖+1 = 𝑣𝑁+1+𝑖

𝐾𝑣𝑁+1+𝑖 = 𝑞−𝑁−2−2𝑖𝑣𝑁+1+𝑖
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 11 of 45

𝐹(𝑛)𝑣𝑁+1+𝑖 =

[
𝑛 + 𝑁 + 1 + 𝑖

𝑛

]
𝑞

{−𝑖 − 1; 𝑛}𝑞𝑣𝑁+1+𝑛+𝑖.

We slightly transform the last equality using:

{𝑛 + 𝑁 + 1 + 𝑖; 𝑛}𝑞{−𝑖 − 1; 𝑛}𝑞 = {𝑖 + 𝑛; 𝑛}𝑞{−𝑁 − 2 − 𝑖; 𝑛}𝑞,

so that:

𝐹(𝑛)𝑣𝑁+1+𝑖 =

[
𝑛 + 𝑖

𝑛

]
𝑞

{−𝑁 − 2 − 𝑖; 𝑛}𝑞𝑣𝑁+1+𝑛+𝑖.

Setting 𝑣𝑖 ∶= 𝑣𝑁+1+𝑖 for 𝑖 ⩾ 0, one recognizes precisely the definition of 𝑉−𝑁−2. □

2.3.2 Specialization of 𝑞 to 1

We treat the case 𝑞 = 1 slightly differently from other roots of unity (see next section). We fix
particular notations in this context.

Notation 16. When 𝑞 = 1 we fix:

∙ SB𝑛,𝑚 ∶= 𝑉𝑛,𝑚(1, 𝑞
𝛼),

∙ 𝑤𝑖 ∶= 𝑣𝑖 ,
∙ 𝜓𝑛,𝑚(𝑞

𝛼, 𝛽) ∶= 𝜑𝑛,𝑚(1, 𝑞
𝛼, 𝛽).

(The notation SB refers to the fact that it is isomorphic to a symmetric power of the Burau
representation, see next proposition).

A nice property of the 𝑞 = 1 case is that the sub-weight𝑚 level representation can be obtained
as a symmetric power of the first sub-weight level.

Proposition 17. Let 𝛽 ∈ 𝐵𝑛, then:

𝜓𝑛,𝑚(𝑞
𝛼, 𝛽) = Sym𝑚(𝜓𝑛,1(𝑞

𝛼, 𝛽)).

Proof. First we need to consider a diagonal change of bases. We set 𝑢𝑗 ∶= 𝑗!𝑤𝑗 . Let 𝑒𝑘 ∶=
𝑢0 ⊗⋯⊗ 𝑢1 ⊗⋯⊗ 𝑢0 ∈ SB𝑛,1 where the only 𝑢1 is located at the 𝑘th position. The family
{𝑒𝑘, 𝑘 = 1,… , 𝑛} is a basis of SB𝑛,1. We can identify higher weight tensors with symmetric powers
of the 𝑒𝑘 using the one to one following correspondence:

𝑢𝑗1 ⊗⋯⊗ 𝑢𝑗𝑛 ⟷

𝑛∏
𝑘=1

𝑒
𝑗𝑘
𝑘
.
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12 of 45 MARTEL and WILLETTS

Now, in the basis 𝑒𝑘, we have:

𝜓𝑛,1(𝜎𝑖) =

⎛⎜⎜⎜⎜⎝
𝐼𝑖−1 0 0

0
1 − 𝑞−2𝛼 𝑞−𝛼

𝑞−𝛼 0
0

0 0 𝐼𝑛−𝑖−1

⎞⎟⎟⎟⎟⎠
.

We compute the symmetric power action in the 𝑢𝑗 basis,

Sym𝑚(𝜓𝑛,1(𝜎𝑖))𝑢𝑗 =

𝑛∏
𝑘=0

(𝜓𝑛,1(𝜎𝑖)𝑒𝑘)
𝑗𝑘

= 𝑒
𝑗1
1
⋯ 𝑒

𝑗𝑖−1
𝑖−1

((1 − 𝑞−2𝛼)𝑒𝑖 + 𝑞−𝛼𝑒𝑖+1)
𝑗𝑖 × (𝑞−𝛼𝑒𝑖)

𝑗𝑖+1𝑒
𝑗𝑖+2
𝑖+2

⋯ 𝑒
𝑗𝑛
𝑛

=

𝑗𝑖∑
𝑙=0

(
𝑗𝑖
𝑙

)
{𝛼}𝑙𝑞−(𝑗𝑖+𝑗𝑖+1)𝛼𝑢𝑗1 ⊗⋯⊗ 𝑢𝑗𝑖+1+𝑙 ⊗ 𝑢𝑗𝑖−𝑙 ⊗⋯⊗ 𝑢𝑗𝑛

If we transpose it back in the basis of the 𝑤𝑗 ’s we get:

𝑆𝑦𝑚𝑚(𝜓𝑛,1(𝜎𝑖))𝑤𝑗
=

𝑗𝑖∑
𝑙=0

(
𝑗𝑖+1 + 𝑙

𝑙

)
{𝛼}𝑙𝑞−(𝑗𝑖+𝑗𝑖+1)𝛼𝑤𝑗1

⊗⋯⊗𝑤𝑗𝑖+1+𝑙
⊗ 𝑤𝑗𝑖−𝑙

⊗⋯⊗𝑤𝑗𝑛

= 𝜓𝑛,𝑚(𝑞
𝛼, 𝛽)𝑤

𝑗

The last equality is directly checked from the set-up: Defs. 6 and 8 and Proposition 10. □

2.3.3 Specialization of 𝑞 to roots of 1: 𝑟-part subrepresentations

In this subsection, we set 𝑞 = 𝜁2𝑟 that corresponds to a specialization as defined above.

Definition 18. The 𝑟-part of a tensor 𝑣 = 𝑣𝑖1+𝑟𝑗1 ⊗⋯⊗ 𝑣𝑖𝑛+𝑟𝑗𝑛 ∈ 𝑉⊗𝑛
𝛼 where 𝑖1, … 𝑖𝑛 ⩽ 𝑟 − 1 is

defined by

rp(𝑣) ∶=
𝑛∑

𝑘=0

𝑗𝑘.

Definition 19. We define subspaces of 𝑉⊗𝑛
𝛼

𝑉𝑚
𝑛 (𝜁2𝑟, 𝑞

𝛼) ∶= Span⟨𝑣|rp(𝑣) = 𝑚⟩
𝑉⩽𝑚
𝑛 (𝜁2𝑟, 𝑞

𝛼) ∶=

𝑚⨁
𝑖=0

𝑉𝑚
𝑛 (𝜁2𝑟, 𝑞

𝛼)

when there is no ambiguity, we will write 𝑉𝑚
𝑛 ∶= 𝑉𝑚

𝑛 (𝜁2𝑟, 𝑞
𝛼) and 𝑉⩽𝑚

𝑛 ∶= 𝑉⩽𝑚
𝑛 (𝜁2𝑟, 𝑞

𝛼).
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 13 of 45

Proposition 20. 𝑉⩽𝑚
𝑛 is a subrepresentation of braids designed by 𝜑⩽𝑚𝑛 (𝛽) (the restriction of 𝜑𝑛,𝑚,

with the implicit specialization of variables).

Proof. First remark that

rp(𝐸𝑟 ⊗ 𝐹(𝑟)(𝑣𝑖 ⊗ 𝑣𝑗)) = rp(𝑣𝑖 ⊗ 𝑣𝑗).

Moreover, 𝐹(𝑖+𝑟𝑗)𝑣𝑎+𝑟𝑢 = 0 if 𝑖, 𝑎 ⩽ 𝑟 − 1 and 𝑎 + 𝑖 ⩾ 𝑟, hence

rp(𝐸𝑛 ⊗ 𝐹(𝑛)(𝑣𝑖 ⊗ 𝑣𝑗)) ⩽ rp(𝑣𝑖 ⊗ 𝑣𝑗).

Thus, 𝑉⩽𝑚
𝑛 is invariant under the action of the 𝑅 matrix and its inverse (for the inverse, see, e.g.,

[38, Proposition 6]). □

This allows us to have another subrepresentation via projection maps.

Proposition 21. Let 𝜌𝑚𝑛 ∶ 𝑉⩽𝑚
𝑛 → 𝑉𝑚

𝑛 the canonical projection map, then 𝑉𝑚
𝑛 is endowed with a

representation of 𝑛 using the projection of the general action:

𝜑𝑚𝑛 ∶= 𝜌𝑚𝑛 ◦𝜑
⩽𝑚
𝑛 |𝑉𝑚

𝑛
.

Proof. As 𝑉⩽𝑚−1
𝑛 is a subrepresentation, if 𝑣 ∈ 𝑉⩽𝑚−1

𝑛 we have 𝜑⩽𝑚−1𝑛 (𝛽1)𝑣 ∈ 𝑉⩽𝑚−1
𝑛 and hence

𝜌𝑚𝑛 ◦𝜑
⩽𝑚
𝑛 (𝛽1)𝑣 = 𝜌𝑚𝑛 ◦𝜑

⩽𝑚−1
𝑛 (𝛽1)𝑣 = 0.

This means the following:

𝜌𝑚𝑛 ◦𝜑
⩽𝑚
𝑛 (𝛽1)◦𝜌

𝑚
𝑛 ◦𝜑

⩽𝑚
𝑛 (𝛽2)|𝑉𝑚

𝑛
= 𝜌𝑚𝑛 ◦𝜑

⩽𝑚
𝑛 (𝛽1)◦𝜑

⩽𝑚
𝑛 (𝛽2)|𝑉𝑚

𝑛
.

Finally, 𝜑𝑚𝑛 (𝛽1𝛽2) = 𝜑𝑚𝑛 (𝛽1)◦𝜑
𝑚
𝑛 (𝛽2). □

Remark 22. As braid group representation, 𝑉0
𝑛 ≅ 𝑉⩽0

𝑛 (meaning 𝜑0𝑛 = 𝜑⩽0𝑛 ).

Nowwe state themain result of this section that is the factorization to 𝑟-part subrepresentations.
Recall the Frobenius map 𝐹𝑟 ∶ ℤ[𝑞𝛼] → ℤ[𝑞𝛼] that sends 𝑞𝛼 ↦ 𝑞𝑟𝛼 (𝑠 → 𝑠𝑟 in the language of
Laurent polynomials).

Proposition 23. The isomorphism

Φ ∶

{
𝑉𝑚
𝑛 → 𝑉0

𝑛 ⊗ 𝐹𝑟(SB𝑛,𝑚)

𝑣
𝑖+𝑟𝑗

↦ 𝑣
𝑖
⊗ 𝐹𝑟(𝑤𝑗

)
,
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14 of 45 MARTEL and WILLETTS

where 𝑖 + 𝑟𝑗 = (𝑖1 + 𝑟𝑗1, … , 𝑖𝑛 + 𝑟𝑗𝑛) with 𝑖1, … , 𝑖𝑛 ⩽ 𝑟 − 1, is a braid group representation isomor-
phism. In other words, the following diagram commutes:

Proof. Using [38, Lemma 26], we can factorize the action of the𝑅matrix as follows. Let 0 ⩽ 𝑎, 𝑏, 𝑖 ⩽

𝑟 − 1 such that 0 ⩽ 𝑎 + 𝑖 ⩽ 𝑟 − 1 and 0 ⩽ 𝑏 − 𝑖 ⩽ 𝑟 − 1, we have:

𝑞
𝐻⊗𝐻
2 (𝑞

(𝑖+𝑟𝑗)(𝑖+𝑟𝑗−1)

2 𝐸𝑖+𝑟𝑗 ⊗ 𝐹(𝑖+𝑟𝑗)).𝑣𝑏+𝑟𝑣 ⊗ 𝑣𝑎+𝑟𝑢 = 𝑞
𝛼2

2 𝑞
(𝑖+𝑟𝑗)(𝑖+𝑟𝑗−1)

2

[
𝑖 + 𝑟𝑗 + 𝑎 + 𝑟𝑢

𝑖 + 𝑟𝑗

]
𝑞

× {𝛼 − 𝑎 − 𝑟𝑢; 𝑖 + 𝑟𝑗}𝑞𝑞
−(𝑎+𝑟𝑢+𝑏+𝑟𝑣)𝛼

× 𝑞2(𝑎+𝑟𝑢+𝑖+𝑟𝑗)(𝑏+𝑟𝑣−𝑖−𝑟𝑗)𝑣𝑏+𝑟𝑣−𝑖−𝑟𝑗 ⊗ 𝑣𝑎+𝑟𝑢+𝑖+𝑟𝑗

= 𝑞
𝛼2

2 𝑞
𝑖(𝑖−1)
2

[
𝑎 + 𝑖

𝑖

]
𝑞

× {𝛼 − 𝑎; 𝑖}𝑞𝑞
−(𝑎+𝑏)𝛼𝑞2(𝑎+𝑖)(𝑏−𝑖)𝑣𝑏−𝑖 ⊗ 𝑣𝑎+𝑖

⊗ 𝐹𝑟

((
𝑢 + 𝑗

𝑗

)
{𝛼}𝑗𝑞−(𝑢+𝑣)𝛼𝑤𝑣−𝑗 ⊗ 𝑤𝑢+𝑗

)
.

Hence, we have

Φ
(
𝜌𝑢+𝑣
2

(𝑅.𝑣𝑏+𝑟𝑣 ⊗ 𝑣𝑎+𝑟𝑢)
)
= (𝑅.𝑣𝑏 ⊗ 𝑣𝑎) ⊗ 𝐹𝑟(𝑅.𝑤𝑣 ⊗ 𝑤𝑢).

Finally,

Φ
(
𝜑𝑚𝑛 (𝛽).𝑣𝑖+𝑟𝑗

)
= 𝜑0𝑛(𝛽).𝑣𝑖 ⊗ 𝐹𝑟

(
𝜓𝑛,𝑚(𝛽).𝑤𝑗

)
□

Example 24. Figure 1 illustrates the weight level pyramid at 𝑛 = 2 and 𝑞 = 𝜁6 where we denote

𝑣𝑎,𝑏 = 𝑣𝑎 ⊗ 𝑣𝑏.

The blue square delimits generators of 𝑉0
𝑛, the red squares those of 𝑉

1
𝑛, and so on. Each square

corresponds to a tensor in the pyramid at 𝑞 = 1 as shown in Figure 2. Families of colored squares
are stable under the braid action 𝜑𝑚𝑛 where𝑚 correspond to a color. The union of a colored family
plus higher colored family in the pyramid are stable under the whole quantum braid action 𝜑𝑛
(e.g., the union of red and blue vectors from Figure 1 is stable under 𝑛 action).
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 15 of 45

F IGURE 1 Weight level pyramid factorization at root of unity.

F IGURE 2 Weight level pyramid at 𝑞 = 1.

3 UNIFIED INVARIANT OF KNOTS FROMQUANTUM BRAID
REPRESENTATIONS

We want to define the knot invariant 𝐹∞ from [38] from braid group representations on tensor
products of Vermamodules that are defined above.We need a completion of the ring as 𝐹∞ will
be some series living in this completion.We start with definitions for this ring and for the invariant
in Subsection 3.1. Then (Subsection 3.2) we can define (Theorem 33) 𝐹∞ from the braid action on
tensors of Verma modules. In Subsection 3.3, we use the r-part factorization of the braid action
at roots of unity to prove the factorization of 𝐹∞ at roots of unity that recovers ADO polynomials
(Theorem 39). In Subsection 3.4, we prove Theorem 43 that shows a symmetry in variables for 𝐹∞
resembling that of the Alexander polynomial. As a corollary, we obtain that ADO polynomials
inherit this symmetry relating them more closely to the Alexander polynomial.

3.1 Ring completion and unified invariant

We recall = ℤ[𝑞±1, 𝑠±1], we will construct a completion of that ring. For the sake of simplicity,
we will denote 𝑞𝛼 ∶= 𝑠 as explained before.
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16 of 45 MARTEL and WILLETTS

(a) (b)

F IGURE 3 The two possibilities for the kth crossing in 𝐷.

Definition 25. Let 𝐼𝑛 be the ideal of generated by the following set {{𝛼 + 𝑙; 𝑛}𝑞, 𝑙 ∈ ℤ}.

We then have a projective system:

𝐼 ∶ 𝐼1 ⊃ 𝐼2 ⊃ ⋯ ⊃ 𝐼𝑛 ⊃ …

From which we can define the completion of as a projective limit.

Definition 26. Let ̂𝐼̂ = lim
←
𝑛

𝑅

𝐼𝑛
= {(𝑎𝑛)𝑛∈ℕ∗ ∈

∏∞
𝑖=1

𝑅

𝐼𝑛
|𝑝𝑛(𝑎𝑛+1) = 𝑎𝑛} where 𝑝𝑛 ∶

𝑅

𝐼𝑛+1
→ 𝑅

𝐼𝑛
is

the projection map.

Remark 27.

∙ If 𝑏0 ∈ 𝑅 and 𝑏𝑛 ∈ 𝐼𝑛−1 for 𝑛 ⩾ 1, the partial sums
𝑁∑
𝑖=0
𝑏𝑛 converge in ̂𝐼̂ as 𝑁 goes to infinity.

∙ We denote the limit
+∞∑
𝑖=0

𝑏𝑛 ∶= (
𝑁∑
𝑖=0
𝑏𝑛)𝑁∈ℕ∗ .

∙ Conversely, if 𝑎 = (𝑎𝑁)𝑁∈ℕ∗ ∈ ̂𝐼̂ , let 𝑎𝑛 ∈ 𝑅 be any representative of 𝑎𝑛 in 𝑅, then 𝑎 =
+∞∑
𝑖=0

𝑏𝑛

where 𝑏0 = 𝑎1 and 𝑏𝑛 = 𝑎𝑛+1 − 𝑎𝑛 for 𝑛 ∈ ℕ∗.

The completion ̂𝐼̂ contains:

Proposition 28. The canonical projection maps induce an injective map u→ ̂𝐼̂

Proof. See [38, Proposition 17]. □

We now recall how the unified invariant 𝐹∞(𝑞, 𝑞𝛼,) is defined using states diagrams of the
knot, which is the subject of [38].
For any knot seen as a (1,1)-tangle, take a diagram 𝐷 and 𝑖 = (𝑖1, … , 𝑖𝑁) ∈ ℕ𝑁 where 𝑁 is the

number of crossings of 𝐷.
Label the top and bottom strands 0 and starting from the bottom strand, label the strand after

the 𝑘th crossing encountered with the rule described in Figure 3. The resulting labeled diagram
is called a state diagram of 𝐷, we denote it 𝐷

𝑖
.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 17 of 45

(a) (b)

F IGURE 4 Examples of state diagrams to compute the invariants.

Let 𝐷
𝑖
be a state diagram of 𝐷, we define:

𝐷(𝑖1, … , 𝑖𝑁) =

(
𝑆∏
𝑗=1

𝑞∓(𝛼−2𝜖𝑗)

) ∏
𝑘∈pos

𝑞
𝑖𝑘(𝑖𝑘−1)

2

[
𝑎𝑘 + 𝑖𝑘
𝑖𝑘

]
𝑞

{𝛼 − 𝑎𝑘; 𝑖𝑘}𝑞

× 𝑞−(𝑎𝑘+𝑏𝑘)𝛼𝑞2(𝑎𝑘+𝑖𝑘)(𝑏𝑘−𝑖𝑘)
∏
𝑘∈neg

(−1)𝑖𝑘𝑞−
𝑖𝑘(𝑖𝑘−1)

2

[
𝑎𝑘 + 𝑖𝑘
𝑖𝑘

]
𝑞

× {𝛼 − 𝑎𝑘; 𝑖𝑘}𝑞𝑞
(𝑎𝑘+𝑏𝑘)𝛼𝑞−2𝑎𝑘𝑏𝑘 ,

where:

∙ 𝑓 is the writhe of 𝐷,
∙ neg ∪ pos = [|1,𝑁|] and 𝑘 ∈ pos if the 𝑘th crossing of D is positive, else 𝑘 ∈ neg,
∙ 𝑎𝑘, 𝑏𝑘 are the strands’ labels at the 𝑘th crossing of the state diagram (see Figure 3),
∙ 𝑆 is the number of + appearing in the diagram, and 𝜖𝑗 the strand label at the 𝑗th or

, the ∓ sign is negative if and positive if .

Remark 29. Notice that in [38], the definition of these numbers come with a term 𝑞
−𝑓𝛼2

2 in front,
that is removed here. It comes from the fact that in the present paper we remove a quadratic
term in the 𝑅-matrix multiplying it by 𝑞−𝛼𝛼′∕2, see the definition of R in Proposition 10, so that
both corrections make the following remark consistent: 𝐷(𝑖1, … , 𝑖𝑁) is the scalar one obtains by
considering only the𝐸𝑖𝑘 ⊗ 𝐹(𝑖𝑘) term in the𝑅-matrix action of the 𝑘th crossing of𝐷. In the present
paper, this quadratic term is also removed from the definition of ADO polynomials, so that later
in Theorem 39 we obtain the same interpolation as in [38, Theorem 57].

Example 30. See Figure 4 for some examples of state diagrams.
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18 of 45 MARTEL and WILLETTS

Definition 31 [38, Definition 20]. We define the knot invariant:

𝐹∞(𝑞, 𝐴,) ∶=

+∞∑
𝑖=0

𝐷(𝑖1, … , 𝑖𝑁).

One advantage of removing the quadratic term (Remark 29) is that it makes 𝐹∞ an element of

̂𝐼̂ , while the version of [38, Definition 20] is in 𝑞
𝑓𝛼2

2 ̂𝐼̂ .

3.2 Unified invariant from the action of braids on Vermamodules

We recall the definition of the braid group representation on tensor products of Verma modules:

𝜑𝑛(𝑞
𝛼, .) ∶ 𝐵𝑛 → End((𝑉𝛼)⊗𝑛).

The notion of partial trace is used to compute knot invariants out of finite-dimensional quantum
braid representation. We extend this notion to infinite-dimensional modules in the case of Verma
modules.

Definition 32 (Partial trace on Verma modules). Let 𝛽 ∈ 𝐵𝑛 whose closure is a knot,

Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝛽)) ∶=
∑
𝑗̄∈ℕ𝑛

0

[((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽))𝑣𝑗̄]𝑣𝑗̄

∈ ̂𝐼̂ ,

where:

∙ ℕ𝑛
0
∶= {(0, 𝑗2, … , 𝑗𝑛) ∈ ℕ𝑛},

∙ [((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽))𝑣𝑗̄]𝑣𝑗̄

∈ ℤ[𝑞±, 𝑞±𝛼] is the projection of (1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽)𝑣

𝑗
on 𝑣

𝑗
.

It is called partial trace inherited from the standard notion of partial trace on tensor products
of vector spaces, see Subsection 3.4.
Let be a long knot, 𝛽 ∈ 𝐵𝑛 whose closure is and 𝐷𝛽 be the diagram associated with seen

as the closure of 𝛽. The general picture is the following.
The following result redefines the unifying invariant as a partial trace on braid representations.

Theorem 33. Let be a knot in 𝑆3 and 𝛽 ∈ 𝐵𝑛 a braid whose closure is, then we have

𝐹∞(𝑞, 𝑞
𝛼,) = Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞

𝛼, 𝛽)) ∈ ̂𝐼̂

Proof. We denote 𝜇2(𝑖), … , 𝜇𝑛(𝑖) the labels of the closing strands of the state diagram 𝐷
𝛽

𝑖
. We let

𝜇(𝑖) = (0, 𝜇2(𝑖), … , 𝜇𝑛(𝑖)). We can then write

[((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽))𝑣𝑗̄]𝑣𝑗̄

=

+∞∑̄
𝑖=0
𝜇(𝑖)=𝑗̄

𝐷(𝑖1, … , 𝑖𝑁),
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 19 of 45

F IGURE 5 State diagram of a braid partial closure.

where [((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽))𝑣𝑗̄]𝑣𝑗̄

∈ ℤ[𝑞±, 𝑞±𝛼] is the projection of (1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽)𝑣

𝑗
on

𝑣
𝑗
. Hence,

+∞∑
𝑗̄=0

[((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽))𝑣𝑗̄]𝑣𝑗̄

=

+∞∑
𝑖=0

𝐷(𝑖1, … , 𝑖𝑁).

Finally, comparing with the definition of 𝐹∞ from diagrams (Definition 31), one recognizes the
same formula, so that

Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞
𝛼, 𝛽)) = 𝐹∞(𝑞, 𝑞

𝛼,),

which concludes the proof. □

Using Theorem 33, we can then write the unified invariant using the decomposition of 𝜙𝑛 by
weight subrepresentations (Definition 12).

Corollary 34. Let be a knot in 𝑆3 and 𝛽 ∈ 𝐵𝑛 a braid whose closure is, then we have

𝐹∞(𝑞, 𝑞
𝛼,) =

∑
𝑚

Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛,𝑚(𝛽)).

We briefly recall relations of 𝐹∞ with colored Jones invariants.

Notation 35. There are two versions of interest for colored Jones polynomials of knots, the original
one (corresponding to a trace on quantum representations of braid groups) and the normalized
one (corresponding to a partial trace on quantum representations of braid groups).

∙ The 𝑁th colored Jones polynomial of a knot is defined as follows.

J𝐾(𝑁) = 𝑞−𝑤(𝛽)
𝑁∑

𝑚=0

Tr
(
𝜑𝑛(𝛽), 𝑆

⊗𝑛
𝑁

)
,
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20 of 45 MARTEL and WILLETTS

where 𝛽 ∈ 𝑛 is an 𝑛th strands braid whose closure is the knot 𝐾, and 𝑤(𝛽) is its writhe.
Tr

(
𝜑𝑛(𝛽), 𝑆

⊗𝑛
𝑁

)
means the trace of the braid action 𝜙𝑛(𝛽) restricted to 𝑆

⊗𝑛
𝑁

⊂
(
𝑉𝑁

)⊗𝑛. The
reader must be careful as 𝑆⊗𝑛

𝑁
is not stable under the braid action in general, but it is for braids

whose closures are knots (see [30, Definition 3.14]).
∙ The 𝑁th normalized colored Jones polynomial of a knot is defined as follows (see [38,
Corollary 53]):

J′𝐾(𝑁)(𝑞
2) = 𝐹∞(𝑞, 𝑞

𝑁,)

They are related by J𝐾(𝑁) = [𝑁]𝑞 J
′
𝐾
(𝑁) (see [17, section 1.1.4] for the relation between these two

in the context of Verma modules, in particular trace vs. partial trace).

3.3 At roots of unity: factorization of the unified invariant

Now we can finally factorize the unified invariant at roots of unity using braid representations.
The result is already given in [38], it uses a conjecture of MMR proved by Bar-Natan–Garoufalidis
rather than a structural study of braid representations on Verma modules. Here, we give another
proof of the result, using braid group representations. Hence, it re-proves MMR conjecture and
moreover a generalization of it. This subsection assumes 𝑞 = 𝜁2𝑟. We refer to Subsection 2.3.3 for
notations of submodules in this case.
First, we recall howwe can obtain𝐴𝐷𝑂 polynomials (sometime called coloredAlexander invari-

ants) with the 0 𝑟-part representation. Namely, ADO polynomials were formerly defined by
Akutsu–Deguchi–Ohtsuki in [1] using matrix associated with braids (it should resemble bellow’s
formula). Then using state sum formula in [33]. More recently using 𝑈𝑞𝔰𝔩(2) representation the-
ory at roots of unity (similar to the present context, but with slightly different conventions, see
Corollary 45) in [9, section 2.2]. The following proposition could be considered as a definition for
the present work (we relate it to other definitions in the proof).

Proposition 36.

𝐴𝐷𝑂𝑟(𝑞
𝛼,) = Tr2,…,𝑛((1 ⊗ (𝐾1−𝑟)⊗𝑛−1)𝜑0𝑛(𝛽))

Proof. It is the same proof as that of Theorem 33. We use the definition of ADO polynomials
as quantum invariants and the state sum formula of [38, Proposition 13], set 𝑞 = 𝜁2𝑟, and use
truncated 𝑅 matrix 𝑅𝑟 = 𝑞𝐻⊗𝐻∕2

∑𝑟−1
𝑛=0 𝑞

𝑛(𝑛−1)
2 𝐸𝑛 ⊗ 𝐹(𝑛) and 𝐾𝑟−1 as a pivotal element. □

Now we state a factorization result at roots of unity. It is a corollary of Propositions 23 and 36.

Corollary 37.

Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑚𝑛 (𝛽)) = 𝐴𝐷𝑂𝑟(𝑞
𝛼,) × 𝐹𝑟(Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜓𝑛,𝑚(𝛽))

where 𝐹𝑟 is the Frobenius map that sends 𝑞𝛼 to 𝑞𝑟𝛼 .

Moreover, we can use MacMahon Master Theorem to prove the following proposition.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 21 of 45

Proposition 38. For 𝛽 ∈ 𝐵𝑛 whose closure is a knot, then:∑
𝑚

Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜓𝑛,𝑚(𝛽)) =
𝑞𝑓𝛼

𝐴(𝑞
2𝛼)

,

where 𝐴 is the Alexander polynomial.

Proof. Using MacMahon Master Theorem, we have∑
𝑚

[Sym𝑚(𝜓𝑛,1(𝛽))𝑣𝐼]𝑣𝑖
𝑡
𝑖1
1
⊗⋯⊗ 𝑡

𝑖𝑛
𝑛 =

1

det
(
𝐼𝑛 −

( 𝑡1
⋱

𝑡𝑛

)
𝜓𝑛,1(𝛽)

) .
Now if one takes 𝑡1 = 0 and 𝑡𝑖 = 1 for 𝑖 ≠ 1, we have the following equality:∑

𝑚

Tr2,…,𝑛(Sym𝑚(𝜓𝑛,1(𝛽))) =
1

det(𝐼𝑛 −
( 0 0
0 𝐼𝑛−1

)
𝜓𝑛,1(𝛽))

.

As𝜓𝑛,1(𝛽) is the unreducedBurau representation𝐵(𝑡) in the basis𝑓𝑘 = 𝑞−𝑘𝛼𝑒𝑘 setting 𝑡 = 𝑞−2𝛼,
and as we are taking a (𝑛 − 1) × (𝑛 − 1)minor of 𝐼𝑛 − 𝐵(𝑡), we obtain:

𝑑𝑒𝑡(𝐼𝑛 −
( 0 0
0 𝐼𝑛−1

)
𝜓𝑛,1(𝛽) = 𝑞(𝑛−1+𝑓)𝛼𝐴(𝑞

2𝛼). □

Now,

𝐹∞(𝜁2𝑟, 𝑞
𝛼,) = Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝑞

𝛼, 𝛽))

=
∑
𝑚

Tr2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑚𝑛 (𝑞
𝛼, 𝛽))

and using Corollary 37 and Proposition 38, we recover the factorization theorem:

Theorem 39 (Factorization of 𝐹∞ at roots of unity). For a knot and an integer 𝑟 ∈ ℕ∗, we have
the following factorization in ̂𝐼̂ :

𝐹∞(𝜁2𝑟, 𝐴,) =
(𝐴)𝑟𝑓 × 𝐴𝐷𝑂𝑟(𝐴,)

𝐴(𝐴
2𝑟)

,

where 𝑓 is the framing of the knot. (We have named the variable 𝐴 instead of 𝑠 used to define the
Verma modules. It is more standard when working with Alexander-like invariants.)

We recall the MMR conjecture, which is a theorem of Bar-Natan and Garoufalidis.

Theorem 40 (Bar-Natan, Garoufalidis [4]). For a knot, the following equality in holds inℚ[[ℎ]]:

lim
𝑛→∞

J′

(𝑛)(𝑒ℎ∕𝑛) =

1

𝐴(𝑒
ℎ)

in the sense that, ∀𝑚 ∈ ℕ,

lim
𝑛→∞

coef f
(
J′

(𝑛)(𝑒ℎ∕𝑛), ℎ𝑚

)
= coef f

(
1

𝐴(𝑒
ℎ)
, ℎ𝑚

)
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22 of 45 MARTEL and WILLETTS

where, for any analytic function 𝑓, coef f (𝑓(ℎ), ℎ𝑚) = 1

𝑚!

𝑑𝑚

𝑑ℎ𝑚
𝑓(ℎ)|ℎ=0, and J′(𝑛) is the 𝑛th colored

Jones polynomial.

Re-proof of MMR conjecture. Let be a 0 framed knot. From the unified invariant,

∙ on one hand, we recover the colored Jones polynomials (see [38, Corollary 59])

𝐹∞(𝑞, 𝑞
𝑁,) = J′


(𝑁)(𝑞2),

∙ on the other hand, using Theorem 39 at 𝑟 = 1, we get

𝐹∞(1, 𝐴,) =
1

𝐴(𝐴
2)
.

Using the identification 𝑞 = 𝑒ℎ and 𝑞𝛼 = 𝑒𝛼ℎ, we have an injectivemap (see [13, Propositions 6.8 and
6.9])

̂𝐼̂ → ℚ[𝛼][[ℎ]].

Hence, as elements in ℚ[𝛼][[ℎ]], we have the following limit (in the sense defined in Theorem 40)

lim
𝑛→∞

𝐹∞(𝑞
1
𝑛 , 𝑞,) = 𝐹∞(1, 𝑞,),

so that

lim
𝑛→∞

J′

(𝑛)(𝑒

2ℎ
𝑛 ) = 𝐹∞(𝑞

1
𝑛 , 𝑞,)

= 𝐹∞(1, 𝑞,)

=
1

𝐴(𝑒
2ℎ)

which re-proves Theorem 40. □

Remark 41. There is also an alternative proof for MMR conjecture by Ito [19, Corollary 3.3]. Ito
also makes use of MacMahon Master Theorem to make the Alexander polynomial appear. One
important difference is that we use the unified invariant formulae, defined as elements of ̂𝐼̂ and
thus, well-defined as elements of ℚ[𝛼][[ℎ]] alongside evaluation maps. In Ito’s paper, it is not
clear how the right-hand side of the main formula of Theorem 3.1 is ℎ-adic (and it would mean
that Tr(𝐿𝑛,𝑚(𝛽)) should be ℎ-adically small as𝑚 grows to infinity)

The invariant 𝐹∞ thus interpolates both families of ADO polynomials and colored Jones poly-
nomials. In [32, Theorem 2.1], a first relation between ADO polynomials and Jones polynomials
evaluated at an appropriate root of 1 is provided. Simply evaluating 𝐹∞ now generalizes this to an
infinite set of relations:

𝐴𝐷𝑂𝑟(𝜁
𝑁
2𝑟,) = J′


(𝑁)(𝜁𝑟)

(
= 𝐹∞(𝜁2𝑟, 𝜁

𝑁
2𝑟,)

)
(5)

(see also [38, Remark 58]), where 𝑁 is any positive integer. We make the remark here that to
establish this one has to notice that (1) = 1. This is recalling that the Alexander polynomial
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 23 of 45

is usually well-defined only up to multiplication by ±𝐴𝑘 (for some integer 𝑘) and that one of its
basic property is that its value at 1 is always ±1 (as it corresponds to the torsion of the untwisted
𝐻1 of the knot complement). The Alexander polynomial  related to 𝐹∞ as above is then the
one that is 1 on the unknot and that is 1 when𝐴 = 1 (see [38], the discussion before Theorem 60).
Moreover, 𝐹∞ is the unique function interpolating one or the other family, in the following

sense.

Proposition 42 (Unicity property of 𝐹∞). Let  be a knot, 𝐹∞(𝑞, 𝐴,) is the only element in ̂𝐼̂

interpolating colored Jones polynomials or ADO over Alexander elements at an infinite number
of values.
In other word, if 𝑢(𝑞, 𝐴) ∈ ̂𝐼̂ is such that, for an infinite number of 𝑟 or𝑁 in ℕ∗, we have:

𝑢(𝜁2𝑟, 𝐴) =
(𝐴)𝑟𝑓 × 𝐴𝐷𝑂𝑟(𝐴,)

𝐴(𝐴
2𝑟)

or

𝑢(𝑞, 𝑞𝑁) = J′

(𝑁)(𝑞2)

then, we have the equality:

𝑢(𝑞, 𝐴) = 𝐹∞(𝑞, 𝐴,).

Proof. The map 𝑓 ∶ ℚ[𝛼][[ℎ]] →
∏
𝑘∈ℕ

ℚ[[ℎ]], 𝑥 ↦ (𝑓𝑘(𝑥))𝑘∈ℕ from [38, section 4.4] is injective. In

fact, for any infinite subset 𝐽 ∈ ℕ∗, 𝑓𝐽 ∶ ℚ[𝛼][[ℎ]] →
∏
𝑘∈𝐽

ℚ[[ℎ]], 𝑥 ↦ (𝑓𝑘(𝑥))𝑘∈𝐽 is injective. Thus,

if for an infinite number of 𝑁 ∈ ℕ∗:

𝑢(𝑞, 𝑞𝑁) = J′

(𝑁)(𝑞2),

then

𝑢(𝑞, 𝐴) = 𝐹∞(𝑞, 𝐴,).

Moreover, for any𝑁 ∈ ℕ∗,𝐴𝐷𝑂𝑟(𝜁
𝑁
2𝑟
,) = J′


(𝑁)(𝜁𝑟) (see (5)). Hence, if for an infinite number

of 𝑟 ∈ ℕ∗:

𝑢(𝜁2𝑟, 𝐴) =
(𝐴)𝑟𝑓 × 𝐴𝐷𝑂𝑟(𝐴,)

𝐴(𝐴
2𝑟)

,

then

𝑢(𝜁2𝑟, 𝜁
𝑁
2𝑟) = J′


(𝑁)(𝜁𝑟)

and as J′

(𝑁)(𝑞) is a Laurent polynomial, by knowing an infinite number of its evaluation, we

have:

𝑢(𝑞, 𝑞𝑁) = J′

(𝑁)(𝑞2),

so that 𝑢(𝑞, 𝐴) = 𝐹∞(𝑞, 𝐴,) (using the first part of the proof). □
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24 of 45 MARTEL and WILLETTS

In [32], Murakami and Murakami have relocated the volume conjecture of Kashaev [22] in the
context of colored Jones and ADO polynomials. It can be reformulated as a limit of evaluations of
𝐹∞.

Conjecture 1 (Volume conjecture, [22, 32]). The following equality would hold for any hyperbolic
knot,

2𝜋 lim
𝑁→∞

Log(𝐹∞(𝑒
𝑖2𝜋
𝑁 , 1,))

𝑁
= Vol(𝑆3∖),

where Vol(𝑆3∖) is the hyperbolic volume of the complement of the knot.

3.4 Generalization of Alexander polynomials’ symmetry

To prove a symmetry for the ADO invariants, we must change a bit how we use the partial trace.
Throughout the paper, we have set the first element in the tensor products to be 𝑣0. In fact, we
can define the partial trace using the natural definition on tensor products:

T̃r2,…,𝑛 ∶ End
(
(𝑉𝛼)⊗𝑛

)
→ End(𝑉𝛼)

and we have, by definition:

T̃r2,…,𝑛(𝑓).𝑣0 = Tr2,…,𝑛(𝑓)𝑣0.

As 𝑉𝛼 is absolutely simple, the partial trace T̃r2,…,𝑛(𝑓) is scalar, allowing us to identify to its
value Tr2,…,𝑛(𝑓). In other words,

T̃r2,…,𝑛(𝑓).𝑤 = Tr2,…,𝑛(𝑓)𝑤

for any 𝑤 ∈ 𝑉𝛼. Combining this fact with Lemma 15, one can get a symmetry for the unified
invariant.

Theorem 43 (An Alexander-like symmetry for 𝐹∞). Let be a 0 framed knot,

𝐹∞(𝑞, 𝑞
𝛼,) = 𝐹∞(𝑞, 𝑞

−𝛼−2,).

In other words, 𝐹∞ is not sensitive to 𝑠 ↦ 𝑠−1𝑞−2.

Proof. Using Theorem 33 at 𝑉𝑁 , we have the identity

T̃r2…𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝛽))𝑣0 = 𝐹∞(𝑞, 𝑞
𝑁,)𝑣0

and, as the partial trace T̃r2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝛽)) is scalar, we get:

T̃r2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝛽))𝑣𝑁+1 = 𝐹∞(𝑞, 𝑞
𝑁,)𝑣𝑁+1.

But using Lemma 15, we also have in 𝑉𝑁∕𝑆𝑁 :

T̃r2,…,𝑛((1 ⊗ 𝐾⊗𝑛−1)𝜑𝑛(𝛽))𝑣𝑁+1 = 𝐹∞(𝑞, 𝑞
−𝑁−2,)𝑣𝑁+1.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 25 of 45

Thus, for all 𝑁 ∈ ℕ∗, we have

𝐹∞(𝑞, 𝑞
𝑁,) = 𝐹∞(𝑞, 𝑞

−𝑁−2,).

Using Proposition 42, we have the equality at formal weight 𝑞𝛼:

𝐹∞(𝑞, 𝑞
𝛼,) = 𝐹∞(𝑞, 𝑞

−𝛼−2,). □

Corollary 44 (Colored Alexander symmetry). Let be a 0 framed knot,

𝐴𝐷𝑂𝑟(𝐴,) = 𝐴𝐷𝑂𝑟(𝐴
−1𝜁−22𝑟 ,).

Proof. At 𝑞 = 𝜁2𝑟, we have the factorization:

𝐹∞(𝜁2𝑟, 𝑞
𝛼,) =

𝐴𝑟𝑓 × 𝐴𝐷𝑂𝑟(𝐴,)

𝐴(𝐴
2𝑟)

and as

𝐴(𝐴
2𝑟) = 𝐴(𝐴

−2𝑟)

one obtains the desired identity. □

In [9, section 2.2], Costantino, Geer, and Patureau define an invariant of trivalent graphs
denoted 𝑁𝑟 constructed also from the theory of 𝑈𝑞𝔰𝔩(2) at 𝑞 = 𝜁2𝑟. For knots it is the ADO poly-
nomial, more precisely there is a simple change of variable (coming from the fact that they take
the variable to be the middle weight instead of here being the highest weight):

𝑁𝑟(𝑞
𝛼,) = ADO𝑟

(
𝑞𝛼+1−𝑟,

)
.

Corollary 45. The𝑈𝑞𝔰𝔩(2) non-semisimple invariant𝑁𝑟 is not sensitive to orientation for knots.

Proof. From [9, section 2.2, (1)], we know that if−1 is the knotwith reversed orientation, then:

𝑁𝑟(𝑞
𝛼,−1) = 𝑁𝑟(𝑞

−𝛼,).

Re-expressing𝑁𝑟 as ADO and using the coloredAlexander symmetry fromprevious corollary, one
deduces directly the invariance under reverse of orientation. □

Remark 46. Authors do not know how much latter invariance generalizes to next objects (e.g.,
links, graphs) for the non-semisimple invariant 𝑁𝑟.

4 UNIFIED INVARIANT FROMHOMOLOGY OF CONFIGURATION
SPACES

This section first re-defines the tensor products of Verma modules and the action of braid groups
upon them by homeomorphisms using homology of configuration spaces of points in punctured
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26 of 45 MARTEL and WILLETTS

disks (Subsection 4.1). This is another point of view independent of quantum groups theory of
representation, that was established in [29]. This homological interpretation of quantum Verma
tensors as Lagrangians of configuration spaces is the key point for Theorem 68 expressing 𝐹∞ as
an intersection pairing between such Lagrangians. Subsection 4.2 presents two families of man-
ifolds in configuration spaces defining dual homology classes regarding the Poincaré duality. In
Subsection 4.3, we prove Theorem 68 and we discuss its consequences.

4.1 A homological definition for𝑼𝒒𝖘𝖑(𝟐) Vermamodules

Definition 47. Let 𝑟 ∈ ℕ, 𝑛 ∈ ℕ, 𝐷 be the unit disk, and {𝑤1, … ,𝑤𝑛} ∈ 𝐷𝑛 points chosen on the
real line in the interior of 𝐷. Let 𝐷𝑛 = 𝐷 ⧵ {𝑤1, … ,𝑤𝑛} be the unit disk with 𝑛 punctures. Let:

Conf 𝑟(𝐷𝑛) ∶=
{
(𝑧1,⋯, 𝑧𝑟) ∈ (𝐷𝑛)

𝑟such that𝑧𝑖 ≠ 𝑧𝑗∀𝑖, 𝑗
}

be the configuration space of points in the punctured disk 𝐷𝑛. We define the following space:

𝑋𝑟(𝑤1, … ,𝑤𝑛) ∶= Conf 𝑟(𝐷𝑛)
/
𝔖𝑟 (6)

to be the space of unordered configurations of 𝑟 points inside 𝐷𝑛, where the permutation group
𝔖𝑟 acts by permutation on coordinates.

When no confusion arises in what follows, we omit the dependence in 𝑤1,… ,𝑤𝑛 to simplify
notations. All the following computations rely on a choice of base point that we fix from now on.

Definition 48 (Base point). Let 𝜉𝜉𝜉𝑟 = {𝜉1, … , 𝜉𝑟} be the base point of 𝑋𝑟 chosen so that 𝜉𝑖 ∈ 𝜕𝐷𝑛

(∀𝑖) as in the following picture:

We have illustrated the unit disk (as a square) with the punctures𝑤1,… ,𝑤𝑛, we have add another
point 𝑤0 on the boundary that will be used later on, and also the base point just defined.

We give a presentation of 𝜋1(𝑋𝑟,𝜉𝜉𝜉𝑟) as a braid subgroup (the mixed braid group).

Remark 49 [29, Remark 2.2]. The group 𝜋1(𝑋,𝜉𝜉𝜉𝑟) is isomorphic to the subgroup of𝑟+𝑛 generated
by:

⟨𝜎1, … , 𝜎𝑟−1, 𝐵𝑟,1, … , 𝐵𝑟,𝑛⟩
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 27 of 45

where the 𝜎𝑖 (𝑖 = 1, … , 𝑟 − 1) are the first standard generators of 𝑟+𝑛, and 𝐵𝑟,𝑘 (for 𝑘 = 1,… , 𝑛)
is the following pure braid:

𝐵𝑟,𝑘 = 𝜎𝑟 ⋯𝜎𝑟+𝑘−2𝜎
2
𝑟+𝑘−1

𝜎−1
𝑟+𝑘−2

⋯𝜎−1𝑟 .

See [29, Example 2.3] for a picture that illustrates the correspondence between above generators
and braids. It will help the reader understanding the following definition of a local system.

Definition 50 (Local ring𝑟.). We define the following morphism:

𝜌𝑟 ∶

⎧⎪⎨⎪⎩
ℤ
[
𝜋1(𝑋𝑟,𝜉𝜉𝜉

𝑟)
]

→  ∶= ℤ
[
𝑠±1, 𝑡±1

]
𝜎𝑖 ↦ 𝑡

𝐵𝑟,𝑘 ↦ 𝑠2.

In what follows, we will use the notation 𝑞𝛼 ∶= 𝑠. Using this notation, the morphism becomes:

𝜌𝑟 ∶

⎧⎪⎨⎪⎩
ℤ
[
𝜋1(𝑋𝑟,𝜉𝜉𝜉

𝑟)
]

→  ∶= ℤ
[
𝑞±𝛼, 𝑡±1

]
𝜎𝑖 ↦ 𝑡

𝐵𝑟,𝑘 ↦ 𝑞2𝛼.

(We may sometimes omit the dependence in (𝑤1, … ,𝑤𝑛).) The data set (𝜌𝑟,) will be re-united
under the notation𝑟 and named local ring of coefficients.

Definition 51 [29, Definition 2.6]. Let 𝑟 ∈ ℕ, and let 𝑤0 = −1 be the leftmost point in the
boundary of 𝐷𝑛 (see the picture in Definition 48), we define the following set:

𝑋−
𝑟 (𝑤1,⋯, 𝑤𝑛) = {{𝑧1,⋯, 𝑧𝑟} ∈ 𝑋𝑟(𝑤1,⋯, 𝑤𝑛)such that∃𝑖, 𝑧𝑖 = 𝑤0} .

We let Hlf designate the homology of locally finite chains, and we use the following notation for
relative homology modules with local coefficients in the ring:

rel
𝑟 ∶= Hlf

𝑟

(
𝑋𝑟, 𝑋

−
𝑟 ;𝑟

)
.

See next remark for precisions on such construction.

Remark 52. We recall how this homology modules are constructed, namely we work with the
following homology theories:

∙ the locally finite version of the singular homology, for which we consider locally finite infinite
linear combination of singular simplices, (see [29, appendix]);

∙ the homology of the pair (𝑋𝑟, 𝑋−
𝑟 );

∙ the local ring𝑟. Let 𝜌𝑟 be the morphism fromDefinition 50. This can be seen as the homology
associated with the chain complex 𝐶∙(𝑋𝑟) where 𝑋𝑟 is the covering naturally associated with
the kernel of 𝜌𝑟 which is naturally endowed with an action of by deck transformation as 𝜌𝑟
is surjective (hence the deck transformation group of 𝑋𝑟 is generated by 𝑡 and 𝑠).

We define classes inrel
𝑟 . We refer the reader to [29] for further details on these constructions.
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28 of 45 MARTEL and WILLETTS

Definition 53 (Multi-arc diagrams). Let (𝑘0, … , 𝑘𝑛−1) such that
∑
𝑘𝑖 = 𝑟. we define

𝐴′(𝑘0, … , 𝑘𝑛−1) to be the following diagram:

Remark 54. These above diagrams are denoted𝐴′ because there will be slightly different versions
for them later on and denoted 𝐴.

For 𝐴′(𝑘0, … , 𝑘𝑛−1) defined above, let:

𝜙𝑖 ∶ 𝐼𝑖 → 𝐷𝑛

be the embedding of the dashed black arc number 𝑖 indexed by 𝑘𝑖−1, where 𝐼𝑖 is a copy of the unit
interval. Let Δ𝑘 be the standard (open) 𝑘 simplex:

Δ𝑘 = {0 < 𝑡1 < ⋯ < 𝑡𝑘 < 1}

for 𝑘 ∈ ℕ. For all 𝑖, we consider the map 𝜙𝑘𝑖−1 :

𝜙𝑘𝑖−1 ∶

{
Δ𝑘𝑖−1 → 𝑋𝑘𝑖−1

(𝑡1, … , 𝑡𝑘𝑖−1 ) ↦ {𝜙𝑖(𝑡1), … , 𝜙𝑖(𝑡𝑘𝑖−1)},

which is a singular locally finite (𝑘𝑖−1)-chain and moreover a cycle in 𝑋𝑘𝑖−1 because locally finite
homology of an open ball is one-dimensional and concentrated in the ambient dimension [29,
appendix].
To get a class in the homology with  coefficients, one may choose a lift of the chain to the

cover 𝑋𝑟 associated with the morphism 𝜌𝑟. We do so using the red handles of𝐴′(𝑘0, … , 𝑘𝑛−1) (the
union of red paths) with which is naturally associated a path:

𝐡 = {ℎ1, … , ℎ𝑟} ∶ 𝐼 → 𝑋𝑟

joining the base point 𝜉𝜉𝜉 and (a point in) the 𝑟-chain assigned to the union of dashed arcs. At the
cover level (𝑋𝑟) there is a unique lift 𝐡̂ of 𝐡 that starts at 𝜉𝜉𝜉, a choice of lift of the base point to 𝑋𝑟
that we fix from now on. It is the unique lift property applied to lift based paths to a covering space.
The lift 𝐴(𝑘0, … , 𝑘𝑛−1) of 𝐴(𝑘0, … , 𝑘𝑛−1) passing by 𝜉𝜉𝜉(1) defines a cycle in Crel−𝑟 , and we still call
(by abuse of notation)𝐴′(𝑘0, … , 𝑘𝑛−1) the associated class inrel

𝑟 as we will only use this class out
of the original object.

Definition 55 (Multi-arcs (first version)). Following the above construction, we naturally assign
a class𝐴′(𝑘0, … , 𝑘𝑛−1) ∈ rel

𝑟 with any 𝑛-tuple such that
∑
𝑘𝑖 = 𝑟. This class is called amulti-arc.

Now we state a proposition that clarifies the structure of the homology as-modules.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 29 of 45

Proposition 56 (Multi-arcs generate the homology, [29, Proposition 3.6]). Let 𝑟 ∈ ℕ, the homology
of the pair (𝑋𝑟, 𝑋−

𝑟 ) has the following structure.

∙ The modulerel
𝑟 is free over.

∙ The set of multi-arcs:
{𝐴′(𝑘0,⋯, 𝑘𝑛−1)such that

∑
𝑘𝑖 = 𝑟}

yields a basis ofrel
𝑟 .

∙ The modulerel
𝑟 is the only nonvanishing module ofHlf

∙

(
𝑋𝑟, 𝑋

−
𝑟 ;

)
.

The braid group was earlier defined (Definition 9) using its so called Artin presentation. Here
we give another definition, relying on topological objects.

Definition 57. The braid group on 𝑛 strands is the mapping class group of 𝐷𝑛.

𝑛 = Mod(𝐷𝑛) =
+

Homeo(𝐷𝑛, 𝜕𝐷)
/
Homeo0(𝐷𝑛, 𝜕𝐷),

namely the group of isotopy classes of homeomorphisms of the unit disk: preserving the
orientation, the set of punctures, and being the identity on the boundary.

Remark 58. This definition is isomorphic to theArtin presentation of the braid group (Definition 9)
by sending generator𝜎𝑖 to the isotopy class of the half Dehn twist swapping punctures𝑤𝑖 and𝑤𝑖+1.

Lemma 59 (Lawrence representations). For all 𝑟, 𝑛 ∈ ℕ, the modules rel
𝑟 are endowed with an

action of the braid group 𝑛.

Idea of the construction. It is Lawrence construction of braid groups representations [25]. See
[29, Lemma 6.33] for this precise lemma. The representations are constructed as follows (sketch of
proof).

∙ Let 𝑆𝑖 be the Dehn twist associated with the standard Artin generator 𝜎𝑖 of𝑛, for 𝑖 ∈ {1, … , 𝑛 − 1}

(see Remark 58).
∙ The homeomorphism 𝑆𝑖 extends to 𝑋𝑟 coordinate by coordinate. Namely, extended 𝑆𝑖 is the map
that sends a configuration {𝑧1, … , 𝑧𝑟} to {𝑆𝑖(𝑧1), … , 𝑆𝑖(𝑧𝑟)}, as 𝑆𝑖 is a homeomorphism, so is its
extension.

∙ The action of 𝑆𝑖 on 𝑋𝑟 naturally lifts torel
𝑟 (it is the heart of [29, Lemma 6.33] and of Lawrence’s

work).
∙ By defining the action of 𝜎𝑖 on rel

𝑟 by that of 𝑆𝑖 one obtains a well-defined (and multiplicative)
action of 𝑛 on rel

𝑟 . It is well-defined as braids are homeomorphisms considered up to isotopy
while we study their homological action.

The above representations are often called Lawrence(-like) representations.
We can now recall the main result from [29] relating these homological representations with

Verma modules representations defined in Subsection 2.2.

Theorem 60 [29, Theorem 2,3]. The isomorphism of-modules:{
 ∶=

⨁
𝑚∈ℕ

rel
𝑚 → 𝑉⊗𝑛

𝛼 =
⨁

𝑚∈ℕ 𝑉𝑛,𝑚

𝐴(𝑘0, … , 𝑘𝑛−1) ↦ 𝑣𝑘0 ⊗⋯⊗ 𝑣𝑘𝑛−1 .
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30 of 45 MARTEL and WILLETTS

is 𝑛 equivariant. In the above isomorphism, the following vectors are involved:

𝐴(𝑘0, … , 𝑘𝑛−1) ∶= 𝑞𝛼
∑𝑛−1
𝑖=1 𝑖𝑘𝑖𝐴′(𝑘0, … , 𝑘𝑛−1)

for any (𝑘0, … 𝑘𝑛−1) ∈ ℕ𝑛 (see [29, Definition 6.16]). The identification of rings  is made by
considering 𝑞−2 = −𝑡 (the variable 𝑠 being the same on both sides).

Remark 61.

∙ A diagonal term 𝑞
−𝛼

(∑𝑛−1
𝑖=1 𝑖𝑘𝑖

)
normalizes vectors 𝐴 [29, Definition 6.16].

∙ The isomorphism from the above theorem also respects the 𝑈
𝐿
2
𝑞 𝔰𝔩(2) action that is defined on

Vermamodules in Section 2.2. In the sense that there is an action of𝑈
𝐿
2
𝑞 𝔰𝔩(2) defined on, see

[29, Theorem 1].

We will use this isomorphism relating quantum braid representations with homology so for
interpreting the partial trace defining 𝐹∞ in terms of homological intersections.

4.2 Homological duality

4.2.1 Multi-arcs: Another version

We recall that for (𝑘0, … , 𝑘𝑛−1) such that
∑
𝑘𝑖 = 𝑚, there is a multi-arc 𝐴′(𝑘0, … , 𝑘𝑛−1)

defining a vector in rel
𝑚 , and so that the whole family yields a basis. We draw such an ele-

ment but with a slightly different drawing that better fits with the knot invariant we are
seeking.

Definition 62 (Multi-arcs (second version)). For (𝑘0, … , 𝑘𝑛−1) ∈ ℕ𝑛 such that
∑
𝑘𝑖 = 𝑟, we define

the following diagram.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 31 of 45

As diagrams fromDefinition 54 naturally defines classes inrel
𝑟 (see Definition 55, natural process

explained above it), samenatural process associates classes inrel
𝑟 with the above𝐴′′(𝑘0, … , 𝑘𝑛−1).

We use latter notation to designate the homology class also.

We have three families of diagrams corresponding to homology classes. They are related
diagonally as follows.

Proposition 63. Inrel
𝑟 , the following relations hold.

𝐴(𝑘0, … , 𝑘𝑛−1) = 𝑞
∑𝑛−1
𝑖=1 𝑖𝑘𝑖𝛼𝐴′(𝑘0, … , 𝑘𝑛−1), (7)

𝐴′(𝑘0, … , 𝑘𝑛−1) = (−𝑡)
𝑟(𝑟−1)
2 𝑞2𝛼

∑𝑛−1
𝑖=0 (𝑛−𝑖)𝑘𝑖𝐴′′(𝑘0, … , 𝑘𝑛−1) (8)

for all (𝑘0, … , 𝑘𝑛−1) such that
∑
𝑘𝑖 = 𝑟. Finally,

𝐴(𝑘0, … , 𝑘𝑛−1) = (−𝑡)
𝑟(𝑟−1)
2 𝑞𝛼2𝑛𝑟𝑞−𝛼

∑𝑛−1
𝑖=0 𝑖𝑘𝑖𝐴′′(𝑘0, … , 𝑘𝑛−1). (9)

Proof. The first equality of the proposition was already considered in [29] and was recalled in
Theorem 60. The second one follows from the following equalities:

The first equality comes from an isotopy of the disk, the second one comes from the application
of the handle rule ([29, Remark 4.1], see details in following Remark 64). Then one recognizes
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32 of 45 MARTEL and WILLETTS

leftmost diagram to be 𝐴(𝑘0, … , 𝑘𝑛−1) and last one to be 𝐴′′(𝑘0, … , 𝑘𝑛−1). Finally,

𝐴(𝑘0, … , 𝑘𝑛−1) = (−𝑡)
𝑟(𝑟−1)
2 𝑞𝛼

∑𝑛−1
𝑖=0 (2𝑛−𝑖)𝑘𝑖𝐴′′(𝑘0, … , 𝑘𝑛−1)

= (−𝑡)
𝑟(𝑟−1)
2 𝑞

𝛼
(
2𝑛𝑟−

∑𝑛−1
𝑖=0 𝑖𝑘𝑖

)
𝐴′′(𝑘0, … , 𝑘𝑛−1)

provides last relation. □

Remark 64 (Handle rule). We give more details on the handle rule applied once in the proof of the
previous proposition. The handle rule [29, Remark 4.1] states:

where 𝛼 is the path in 𝑋𝑟 corresponding to the (red)-handle on the left and 𝛽 to that on the right,
and 𝜌𝑟 the representation of 𝜋1(𝑋𝑟) recalled in Definition 50. We evaluate 𝜌𝑟 at 𝑡 = −𝑡, see [29,
Remark 4.2], because in diagrams the permutation of the red strands implies a permutation of
embeddings of configurations. Hence, the homology class must be multiplied by the sign of the
permutation (i.e., the power of 𝑡 in 𝜌𝑟(𝛼𝛽−1)) corresponding to the induced change of orientation.
In the present case, the path 𝛼𝛽−1 is drawn below.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 33 of 45

Every little red tube means parallel red paths not crossing with each other. Crossings involving
these tubes are materialized using Δ boxes inside which the following happens:

Then 𝜌𝑟(𝛼𝛽−1)|𝑡=−𝑡 = (−𝑡)𝑎𝑞𝛼𝑏 such that 𝑎 is the sum (with signs) of red–red crossings, and 𝑏 is
the total winding number of red strands around gray ones. The reader should pay attention to the
fact that in [29] braids a read from top to bottom as in the present work we do the converse.

4.2.2 Barcodes

We now define homology classes in H𝑟

(
𝑋𝑟, 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 ;𝑟

)
that are usually called barcodes.

Definition 65 (Barcodes). We fix notation for the following diagrams:

where
∑
𝑘𝑖 = 𝑟. We naturally assign a class in H𝑟

(
𝑋𝑟, 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 ;𝑟

)
with the above diagram

according to the following process.

∙ The union of blue arcs well defines an embedding:

Φ ∶ 𝐼𝑟 → 𝑋𝑟,

where 𝐼 is the unit interval.
∙ As ends of blue arcs are lying in 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 , the hypercube Φ defines a homology class in

H𝑟

(
𝑋𝑟, 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 ; ℤ

)
.

∙ It remains to choose a lift of Φ to the cover 𝑋𝑟 so to work in the local ring set-up. We do so
using the fact that the image of Φ contains the base point 𝜉𝜉𝜉, so that we choose the only lift of Φ
containing our choice of lift for the base point 𝜉𝜉𝜉.

We still denote 𝐵′′(𝑘0, … , 𝑘𝑛−1) the resulting element of H𝑟

(
𝑋𝑟, 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 ;𝑟

)
.
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34 of 45 MARTEL and WILLETTS

Proposition 66. We have the following:⟨
𝐴′′(𝑘0, … , 𝑘𝑛−1) ∩ 𝐵

′′(𝑘′0, … , 𝑘′𝑛−1)
⟩
= 𝛿(𝑘0,…,𝑘𝑛−1),(𝑘′0,…,𝑘

′
𝑛−1

),

where𝛿 is theKronecker (list) symbol, and ⟨⋅ ∩ ⋅⟩ is the intersection pairing arising from thePoincaré–
Lefschetz duality:

rel
𝑟 × H𝑟

(
𝑋𝑟, 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 ;𝑟

)
→ .

Proof. We put diagrams associated with 𝐴′′(𝑘0, … , 𝑘𝑛−1) and 𝐵′′(𝑘′0, … , 𝑘′
𝑛−1

) all together in one
picture.

An intersection point is a configuration lying on both manifolds, namely such a configuration
has one point on each blue arc, and 𝑘 of them on a dashed arc indexed by 𝑘. The only way there
is an intersection is: 𝑘0 = 𝑘′

0
, … , 𝑘𝑛−1 = 𝑘′

𝑛−1
that explains the Kronecker symbol in the formula.

When we are in this equality case, we call 𝑝𝑝𝑝 ∶= {𝑝1, … , 𝑝𝑟} the single intersection configuration,
and it remains to prove that the intersection is equal to 1 at this configuration. We recall that the
Poincaré–Lefschetz duality gives an intersection pairing:

rel
𝑟 × H𝑟

(
𝑋𝑟, 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 ;𝑟

)
→ ,

see [30, Lemma 4.1]. This pairing is given by graded intersection, where each intersection point
contributes for a sign (that of the intersection) times a monomial in . Let 𝐴′′(𝑘0, … , 𝑘𝑛−1) and
𝐵′′(𝑘0, … , 𝑘𝑛−1) be the lifts of the corresponding manifolds chosen using the red handle, respec-
tively, the one that contains 𝜉𝜉𝜉𝑟. In our case, the only monomial 𝑚𝑝𝑝𝑝 involved could be computed
by defining the following loop in 𝑋𝑟, by composing paths.

∙ First the path going from {𝜉1, … , 𝜉𝑟} to 𝐴′′(𝑘0, … , 𝑘𝑛−1) following red handles.
∙ Then joining {𝑝1, … , 𝑝𝑟} going along 𝐴′′(𝑘0, … , 𝑘𝑛−1).
∙ Then going back to 𝜉𝜉𝜉𝑟 running along 𝐵′′(𝑘0, … , 𝑘𝑛−1).

This composition of paths yields a loop denoted 𝛾𝑝𝑝𝑝 of𝑋𝑟 based at𝜉𝜉𝜉. By considering one of its lift to
𝑋𝑟, one can check that it relates 𝜉𝜉𝜉 and𝑚𝑝𝑝𝑝𝜉𝜉𝜉. The explanation of this fact is exactly the same as the
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 35 of 45

one given before [31, Lemma 3.11] that is adapted from [5, section 3.1]. Knowing this, we directly
conclude:

𝑚𝑝𝑝𝑝 = 𝜌𝑟(𝛾𝑝𝑝𝑝),

and moreover that:

𝑚𝑝𝑝𝑝 = 𝜌𝑟(𝛾𝑝𝑝𝑝) = 1.

One can check that the braid given by 𝛾𝑝𝑝𝑝 seen as an element of 𝜋1(𝑋𝑟,𝜉𝜉𝜉) (following themodel [29,
Remark 2.2]) is trivial. This ensures the above equality by the definition of 𝜌𝑟 (Definition 50). □

Remark 67 (Homological dual bases). The above theorem says that sets
{𝐴′′(𝑘0,⋯, 𝑘𝑛−1)such that

∑
𝑘𝑖 = 𝑟} and {𝐵′′(𝑘0,⋯, 𝑘𝑛−1)such that

∑
𝑘𝑖 = 𝑟} are dual bases

of rel
𝑟 , respectively, H𝑟

(
𝑋𝑟, 𝜕𝑋𝑟 ⧵ 𝑋

−
𝑟 ;𝑟

)
(the one to one correspondence being given by the

canonical indexing).

4.3 Unified invariant from homological intersection

Theorem 68 (The unified invariant from homological intersection pairing). Let 𝛽 ∈ 𝑛 a braid
such that its closure is the knot. Then, letting 𝑡 = −𝑞−2:

𝐹∞() = 𝑠𝑛−1
∑
𝑘∈ℕ𝑛

0

⟨
𝛽 ⋅ 𝐴′′(0, 𝑘1, … , 𝑘𝑛−1) ∩ 𝐵

′′(0, 𝑘1, … , 𝑘𝑛−1)
⟩
𝑞−2

∑
𝑘𝑖 ,

where the action of 𝛽 is that from Lemma 59. The latter means that the right term in the equation,
which is an infinite sum of intersection pairing of middle dimension homology classes, lives in ̂𝐼̂

and is invariant under Markov moves.

Proof. The main tool is Theorem 60 which shows that (under 𝑡 = −𝑞−2) by sending 𝑣𝑖1 ⊗⋯⊗

𝑣𝑖𝑛−1 to 𝐴(𝑖0, … , 𝑖𝑛−1) (for any integers 𝑖0, … , 𝑖𝑛−1) then matrices for the quantum action and the
homological actions of 𝛽 are strictly identical. The partial trace formula from Theorem 33 is the
same replacing the 𝑣𝑖 ’s by the 𝐴 vectors from the homological side. Then the partial trace of any
endomorphism 𝑓 of could be expressed as follows:

Tr2,…,𝑛(𝑓) =
∑
𝑘∈ℕ𝑛

0

⟨𝑓(𝐴(0, 𝑘1, … , 𝑘𝑛−1)), 𝐴∗(0, 𝑘1, … , 𝑘𝑛−1)⟩
where 𝐴∗ means the dual family of 𝐴 regarding the Poincaré–Lefschetz duality studied in Propo-
sition 66. As the change of bases from 𝐴’s to 𝐴′′’s is diagonal (see Proposition 63), we can replace
𝐴 and 𝐴∗ in the above formula by the 𝐴′′’s and its dual family, namely the 𝐵′′ as it was proved
in Proposition 66. Now the 𝑓 we wish to consider here is (1 ⊗ 𝐾⊗𝑛−1)◦𝜙𝑛(𝛽). One notices that
(1 ⊗ 𝐾⊗𝑛−1) on the image by 𝜙𝑛(𝛽) of any 𝐴′′(0, 𝑘1, … , 𝑘𝑛−1) is the multiplication by 𝑠𝑛−1𝑞−2

∑
𝑘𝑖

that concludes the proof. □

The fact that 𝐹∞ interpolates ADO invariants and colored Jones polynomials by some special-
ization, implies the above theorem at the corresponding specialization gives infinite sum from
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36 of 45 MARTEL and WILLETTS

which one can extract these invariants out of Lagrangian intersections. Moreover, infinite sums
are not crucial.

Corollary 69. Let 𝛽 ∈ 𝑛 a braid such that its closure is the knot.

(1) Let J′

(𝑁) be the 𝑁th colored Jones polynomial (normalized) and spec the specialization

morphism sending 𝑠 to 𝑞𝑁 , then:

J′

(𝑁) = 𝑞𝑁(𝑛−1)

∑
𝑘̄such that∑
𝑘𝑖 < 𝑁, ∀𝑖

spec
(⟨
𝛽 ⋅ 𝐴′′(0, 𝑘1,⋯, 𝑘𝑛−1) ∩ 𝐵

′′(0, 𝑘1,⋯, 𝑘𝑛−1)
⟩
𝑞−2

∑
𝑘𝑖
)

(2) Let ADO𝑟 be the 𝑟th ADO polynomial and spec the specialization morphism sending 𝑞 to 𝜁2𝑟,
then:

ADO𝑟() = 𝑠𝑛−1
∑

𝑘̄such that
∀𝑖, 𝑘𝑖 < 𝑟

spec
(⟨
𝛽 ⋅ 𝐴′′(0, 𝑘1,⋯, 𝑘𝑛−1) ∩ 𝐵

′′(0, 𝑘1,⋯, 𝑘𝑛−1)
⟩
𝑞−2

∑
𝑘𝑖
)

Proof. The proof is the same as that of the previous theorem. The sum is truncated directly as only
first weight levels are necessary to compute them, see:

(1) [38, Lemma 51] for the colored Jones case;
(2) Proposition 36 for the ADO case.

□

Remark 70 (Normalized colored Jones). As a partial trace is involved in the above formula for the
colored Jones polynomial, we are dealingwith the normalized version (being 1 on the unknot) (see
Notation 35), which is a different version as that in [30]. It explains the difference of the homology
classes involved in the sums from here and the mentioned paper.

Example 71 (The trefoil knot). We illustrate the fact that the homological formula from Theo-
rem 68 gives an independent algorithm of computation arising from homological computation by
computing 𝐹∞ with this formula and comparing with the expression given in [38, section 5]. To
do the computation, we use the element 𝐴′(0, 𝑘) ∈  (instead of 𝐴′′ in the formula, for clarity
of diagrams) for 𝑘 ∈ ℕ, the disk is considered with two punctures (𝑤1,𝑤2) as we need a braid
with two strands to get the trefoil knot as a braid closure (namely the closure of 𝜎−3

1
∈ 2, we use

inverse twists for simplicity of diagrams). We use notation 𝑠 = 𝑞𝛼.

We recall that this element have to be paired with the dual class of 𝐴′(0, 𝑘) (and then summed
over 𝑘 ∈ ℕ) so to obtain 𝐹∞. The class 𝐵′(0, 𝑘) with the following diagram is this dual class (i.e.,
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 37 of 45

𝐴′(0, 𝑘) and 𝐵′(0, 𝑘) have pairing 1, see the proof of Proposition 66):

We simplify the diagram of 𝜎−3
1
(𝐴′(0, 𝑘)) using rules from [29, section 4] to simplify the

computation of the intersection.

This is similar to [29, Example 4.6]. In the right-hand sum, when ever 𝑙 is not 0, the manifold
associated with the diagram has no intersection with 𝐵′(0, 𝑘) (an intersection point is a 𝑘-tuple,
one on each blue line of 𝐵′(0, 𝑘) and respecting the indices of 𝐴′(0, 𝑘)). Hence, the only diagram
having nontrivial intersection with 𝐵′(0, 𝑘) is when 𝑙 = 0 so that:

We use the handle rule [29, Remark 4.2] (see also in the proof of Proposition 63), to rearrange the
red handle:

The coefficient showing up is the image by 𝜌𝑘 of the loop in 𝑋𝑘 defined as the composition of
the red path on the left with that on the right. The (−1)𝑘 appears because we have reversed the
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38 of 45 MARTEL and WILLETTS

orientation of the dashed arc. Then,

where in the second equality, we have again applied [29, Example 4.6] dividing the 𝑘 indexed arc
into two arcs passing by 𝑤0, but again, we have kept the only term of the hypothetical sum that
has nontrivial intersectionwith𝐵′(0, 𝑘). Last equality is straightforward from [29, Proposition 7.4].
Finally, to compute 𝐹∞ one has to do the identification −𝑡 = 𝑞−2, and:

𝐹∞(𝜎
−3
1 ) =

∑
𝑘∈ℕ

⟨𝐴′(0, 𝑘) ∩ 𝐵′(0, 𝑘)⟩𝑞𝛼−2𝑘
=

∑
𝑘∈ℕ

𝑞𝛼−2𝑘𝑞−𝑘(𝑘−1)𝑞4𝛼𝑘(−1)𝑘
𝑘−1∏
𝑖=0

(1 − 𝑞−2𝛼𝑞2𝑖)

=
∑
𝑘∈ℕ

𝑞𝛼−2𝑘𝑞−𝑘(𝑘−1)𝑞4𝛼𝑘(−1)𝑘𝑞−𝛼𝑘𝑞
𝑘(𝑘−1)

2

𝑘−1∏
𝑖=0

(𝑞𝛼𝑞−𝑖 − 𝑞−𝛼𝑞𝑖)

=
∑
𝑘∈ℕ

𝑞𝛼−2𝑘𝑞3𝛼𝑘𝑞−
𝑘(𝑘−1)

2 (−1)𝑘
𝑘−1∏
𝑖=0

(𝑞𝛼𝑞−𝑖 − 𝑞−𝛼𝑞𝑖).

One recovers precisely the formula for 𝐹∞ for the trefoil knot given in [38, section 5], with zero
framing. The identification is under the change 𝑞 → 𝑞−1 as we chose 𝜎−3

1
for the trefoil instead of

𝜎3
1
.

Theorem 68 expresses 𝐹∞ from intersections of middle dimension submanifolds of configu-
ration spaces, sometimes called Lagrangians. Such interpretations for quantum invariants was
initiated by Lawrence, and then Bigelow for the Jones polynomial [6, 26], then in a more quan-
tum way colored Jones and ADO polynomials were formulated in the same spirit in, for example,
[3, 30], respectively, [2, 18]. The present theorem should interpolate all these formulae (sometimes
under a simple change of dual bases, corresponding to changing themanifolds to pair). Moreover,
there is the uniqueness property of interpolation (Proposition 42), that we recall in the following
remark.
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UNIFIED INVARIANT OF KNOTS FROM BRAIDS 39 of 45

Remark 72.

∙ The fact that 𝐹∞ is the only two variables element interpolating both colored Jones polynomi-
als or ADO polynomials (Proposition 42), could be interpreted as the only intersection pairing
computed from manifolds in abelian covers of configuration spaces of disks interpolating both
families. Moreover, it is a knot invariant.

∙ In [30], the second author has also showed that colored Jones polynomials compute some Lef-
schetz numbers. This is because colored Jones polynomials could be computed from a full trace
on homological representations of braids, not only with a partial trace. With some study of the
structure of homology modules, the trace formula then satisfies the Lefschetz formula. Unfor-
tunately, authors have tried to interpret 𝐹∞ as a full trace on homological braid action, and only
found convergence problems seeming to be essential.

5 UNIFIED INVARIANT FROMA QUANTUMDETERMINANT

This section is inspired by the paper [16] where Huynh and Lê compute the colored Jones polyno-
mials from 𝑈𝑞𝔰𝔩(2) Verma modules. By some assimilation of tensor products of Verma modules
with some quantum plane, they succeed in giving a formula for colored Jones polynomials involv-
ing a quantum determinant for quantum matrices by use of the quantum MacMahon Master
Theorem [10]. The matrix associated with a given braid from which one computes this quantum
determinant are deformed Burau matrices because while abelianizing the entries one recovers
usual Burau matrices. We follow [16, section 0.1] to state the theorem and we will give a direct
proof involving their theorem and some interpolation argument.

5.1 Deformed Burau matrix

We recall that0 ∶= ℤ
[
𝑞±1

]
. On the polynomial ring0

[
𝑥±1, 𝑦±1, 𝑢±1

]
we define operators.

Definition 73. Let 𝑥̂, 𝑦̂, 𝑢̂ and 𝜏𝑥, 𝜏𝑦, 𝜏𝑢 be operator acting on0

[
𝑥±1, 𝑦±1, 𝑢±1

]
as follows:

𝑥𝑓(𝑥, 𝑦, 𝑢) = xf(𝑥, 𝑦, 𝑢),𝜏𝑥𝑓(𝑥, 𝑦, 𝑢) = 𝑓(qx, 𝑦, 𝑢)

the reader can guess definitions of the four remainder operators. Let 𝑥1, 𝑥2 ∈ {𝑥, 𝑦, 𝑢} then:

𝑥1𝜏𝑥2 = 𝑞𝛿𝑥1,𝑥2 𝜏𝑥2𝑥1,

namely operators .̂ and 𝜏 q-commute if they involve the same variable, commute otherwise.
Operators .̂ commute one with each other, so do operators 𝜏.

From these operators we define other ones:

𝑎+ ∶= (𝑢̂ − 𝑦̂𝜏−1𝑥 )𝜏−1𝑦 𝑏+ ∶= 𝑢̂2 𝑐+ = 𝑥̂𝜏−2𝑦 𝜏−1𝑢 (10)

𝑎− ∶= (𝜏𝑦 − 𝑥̂−1)𝜏−1𝑥 𝜏𝑢 𝑏− ∶= 𝑢̂2 𝑐− = 𝑦̂−1𝜏−1𝑥 𝜏𝑢 (11)
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40 of 45 MARTEL and WILLETTS

and two matrices:

𝑆+ ∶=

(
𝑎+ 𝑏+

𝑐+ 0

)
𝑆− ∶=

(
0 𝑐−

𝑏− 𝑎−

)
. (12)

We add more variables, for a fixed index 𝑗 ∈ ℕ, we define operators 𝑎𝑗,±, 𝑏𝑗,±, 𝑐𝑗,± acting on

0

[
𝑥±1
𝑗
, 𝑦±1

𝑗
, 𝑢±1

𝑗

]
as 𝑎±, 𝑏±, 𝑐± (resp.) do and trivially on any 0

[
𝑥±1
𝑖
, 𝑦±1

𝑖
, 𝑢±1

𝑖

]
if 𝑖 ≠ 𝑗. We

extend as well definitions of 𝑆𝑗,+ (resp., 𝑆𝑗,−) as those of 𝑆+ (resp., 𝑆−) involving 𝑎𝑗, 𝑏𝑗, 𝑐𝑗 .

Definition 74 (Deformed Buraumatrix). Let 𝛽 ∶= 𝜎
𝜖1
𝑖1
⋯𝜎

𝜖𝑘
𝑖𝑘
∈ 𝑛 be a braid written as a product

of Artin generators. We define its deformed Burau matrix as follows:

𝜌(𝛽) ∶=

𝑘∏
𝑗=1

𝐴𝑘,

where 𝐴𝑗 ∶= 𝐼𝑑𝑖𝑗−1 ⊕𝑆𝑗,𝜖𝑗 ⊕ 𝐼𝑑𝑛−𝑖𝑗−1. Entries of 𝜌(𝛽) are operators acting on 𝑘 ∶=⨂𝑘
𝑗=10

[
𝑥±1
𝑗
, 𝑦±1

𝑗
, 𝑢±1

𝑗

]
.

Definition 75 (Evaluation of operators). Let𝑃 be a polynomial in operators𝑎±, 𝑏±, 𝑐± (withmaybe
indices) with coefficients in 0. The evaluation (𝑃) ∈  ∶= ℤ

[
𝑞±1, 𝑠±1

]
is defined to be the

application of 𝑃 to the constant function 1 ∈ 𝑘 then substituting 𝑢𝑗 by 1 and 𝑥𝑗, 𝑦𝑗 by the formal
variable 𝑠 for all 𝑗 = 1,… , 𝑘.

The following lemma is part of [17, Lemma 1.4]:

Lemma 76. Let 𝑑, 𝑟, 𝑠 ∈ ℕ, we have:

(𝑏𝑠+𝑐
𝑟
+𝑎

𝑑
+) = 𝑞−𝑟𝑑𝑠𝑟(1 − 𝑠𝑞−𝑟)𝑑

𝑞−1

(𝑏𝑠−𝑐
𝑟
−𝑎

𝑑
−) = 𝑠−𝑟(1 − 𝑠−1𝑞𝑟)𝑑𝑞 ,

where (1 − 𝑥)𝑑𝑞 =
∏𝑑−1

𝑖=0 (1 − 𝑥𝑞𝑖).

We hence have a convergent series in ̂𝐼̂ when evaluating 𝑎± series operators with  .

Definition 77 (Evaluation of series operators). Let 𝑃 be a polynomial in operators 𝑏±, 𝑐± and a
series in 𝑎± (with maybe indices) with coefficients in0. The evaluation (𝑃) ∈ ̂𝐼̂ is defined to
be the application of 𝑃 to the constant function 1 ∈ 𝑘 then substituting 𝑢𝑗 by 1 and 𝑥𝑗, 𝑦𝑗 by the
formal variable 𝑠 for all 𝑗 = 1,… , 𝑘.

Remark 78. In [16], the framework is the Jones polynomials, meaning that there is an evaluation
at 𝑞𝑛 along side  . As we try to do the same for the unified invariant, we now must be cautious
because operators power series will appear in the formula. Fortunately, as we will see Lemma 81,
they are 𝑎± power series operators, lying in ̂𝐼̂ after evaluating with  .
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5.2 Quantum determinant

Definition 79 (Right quantum matrices). A 2 × 2-matrix
(
𝑎 𝑏

𝑐 𝑑

)
is said to be right quantum if:

𝑎𝑐 = 𝑞𝑐𝑎 𝑏𝑑 = 𝑞𝑑𝑏 𝑎𝑑 = 𝑑𝑎 + 𝑞𝑐𝑏 − 𝑞−1𝑏𝑐.

An𝑚 ×𝑚matrix is right quantum if any of its 2 × 2-submatrix is.

Definition 80 (Quantum determinant). Let 𝐴 = (𝑎𝑖𝑗) be a right quantum matrix. Its quantum
determinant is defined as follows:

det
𝑞
(𝐴) ∶=

∑
𝜋∈𝔖𝑚

(−𝑞)inv(𝜋)𝑎𝜋1,1𝑎𝜋2,2⋯𝑎𝜋𝑚,𝑚,

where inv(𝜋) is the number of inversions.

d̃et𝑞(Id − 𝐴) ∶= 1 − 𝐶, with𝐶 ∶=
∑

𝐽⊂{1,⋯,𝑚}

(−1)|𝐽|−1det
𝑞
(𝐴𝐽),

where 𝐴𝐽 is the 𝐽 × 𝐽 submatrix of 𝐴 (which is right-quantum).

Question 1. Does there exist a right quantum change of basis changing the deformed Burau
matrices (Definition 74) into deformed reducedBuraumatrices? The latterwould clearly be related
to the reduction of braid representation that exists on the quantum side (Definition 12), and with
the fact that we remove one row and column in determinant formulae in the next section. It could
be related with the fact that we use a partial trace to define 𝐹∞.

5.3 Unified invariant from a quantum determinant

Lemma 81. Let 𝛽 ∈ 𝑚 be a braid which standard closure is a knot. The operator 1

d̃et𝑞(𝐼𝑑 −𝑞𝜌
′(𝛽))

is

a series in 𝑎±.

Proof. We first study symmetric powers of the deformed Burau matrices of Artin generators 𝐴𝑗 .
Let (𝑥𝑖)1⩽𝑖⩽𝑚 span an𝑚 dimensional quantum algebra, meaning that 𝑥𝑗𝑥𝑖 = 𝑞𝑥𝑖𝑥𝑗 for 𝑖 < 𝑗. For
a right quantum matrix 𝐴 = (𝑎𝑖𝑗) let 𝑋𝑖 =

∑𝑚
𝑗=1 𝑎𝑖𝑗𝑥𝑗 and let 𝐺(𝑗1, … , 𝑗𝑚) be the coefficient of

𝑥
𝑗1
1
…𝑥

𝑗𝑚
1
in

∏𝑚
𝑖=1 𝑋

𝑗𝑖
𝑖
.

Recall that 𝐴𝑘 is the deformed Burau matrix of the Artin generator 𝜎𝑘. Let
∑𝑚

𝑖=1 𝑗𝑖 = 𝑁,

Sym𝑁(𝐴𝑖)

𝑚∏
𝑘=1

(𝑥𝑘)
𝑗𝑘 =

𝑚∏
𝑘=1

(𝐴𝑖𝑥𝑘)
𝑗𝑘

= 𝑥
𝑗1
1
⋯𝑥

𝑗𝑖−1
𝑖−1

(𝑎+𝑥𝑖 + 𝑏+𝑥𝑖+1)
𝑗𝑖 × (𝑐+𝑥𝑖)

𝑗𝑖+1𝑥
𝑗𝑖+2
𝑖+2

⋯𝑥
𝑗𝑚
𝑚

=

𝑗𝑖∑
𝑙=0

(
𝑗𝑖
𝑙

)
𝑞−1

𝑞(𝑗𝑖−𝑙)𝑗𝑖+1𝑎𝑙+𝑏
𝑗𝑖−𝑙
+ 𝑐

𝑗𝑖+1
+ 𝑥

𝑗1
1
… 𝑥

𝑗𝑖+1+𝑙

𝑖
𝑥
𝑗𝑖−𝑙

𝑖+1
…𝑥

𝑗𝑚
𝑚

 1460244x, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12599, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



42 of 45 MARTEL and WILLETTS

Hence, each Artin generator will induce a sum at the level of the action, the index 𝑙 of the sum
is called state and the sum is called state sum. Recall that 𝛽 = 𝜎

𝜖1
𝑖1
⋯𝜎

𝜖𝑘
𝑖𝑘
is such that the induced

permutation 𝜋(𝛽) is a derangement (while dealing with braids closing to knots). The element
𝐺(0, 𝑗2, … , 𝑗𝑚) is a 𝑘-states sum that verifies

𝑗𝜋(𝛽)(𝑖) = 𝑗𝑖 + linearcombinationofstateswithcoef f1or − 1.

As𝜋(𝛽) is a derangement, 𝑗𝑖 is a linear combination of stateswith coeff 1 or−1. Now if
∑𝑚

𝑖=2 𝑗𝑖 =

𝑁, there is always a state 𝑙 that verifies 𝑙 ⩾ 𝑁

𝑚𝑘
. By use of the quantumMacMahonMaster Theorem

[10], we know that

1

d̃et𝑞(𝐼𝑑 −𝑞𝜌
′(𝛽))

=
∑

𝑗2,…,𝑗𝑚

𝐺(0, 𝑗2, … , 𝑗𝑚).

Hence, 1

d̃et𝑞(𝐼𝑑 −𝑞𝜌
′(𝛽))

is a series in 𝑎±. □

Theorem 82. Let 𝛽 ∈ 𝑚 be a braid which standard closure is a knot. One remarks that 𝜌(𝛽) is
right quantum. Let 𝜌′(𝛽) be obtained from 𝜌(𝛽) by removing first row and column. Then

𝐹∞(𝛽) = 𝑠(𝑤(𝛽)−𝑚+1)∕2

(
1

d̃et𝑞(𝐼𝑑 −𝑞𝜌
′(𝛾))

)
,

where 𝑤(𝛽) is the writhe of the braid.

Proof. Let 𝑁 be the evaluation corresponding to the substitution 𝑠 = 𝑞𝑁−1. Then, for any𝑁 ∈ ℕ:

𝑁

(
𝑠(𝑤(𝛽)−𝑚+1)∕2

(
1

d̃et𝑞(𝐼𝑑 −𝑞𝜌
′(𝛾))

))
= J′

𝛽
(𝑁),

where J′
𝛽
(𝑁) is the open𝑁th-colored Jones polynomial of 𝛽, this is [16, Theorem 1]. We conclude

using the unique element interpolating colored Jones polynomials property, Proposition 42. □

Remark 83. The entire proof of Theorem 1 from [16] adapts to 𝐹∞ almost step by step and word by
word, although here we have preferred to use a stronger and concise argument. The proof from
[16] explains in details the relations between the operators 𝑎±, 𝑏±, 𝑐± and the braiding of Verma
modules, so that it is important for the understanding of the formula.

Corollary 84 (ADO polynomials from quantum determinant). Let 𝛽 ∈ 𝑚 be a braid which
standard closure is a knot, and 𝜁2𝑟 be the composition of  with the substitution 𝑞 = 𝜁2𝑟. Then:

ADO𝑟(𝛽) = 𝑠(𝑤(𝛽)−𝑚+1)∕2𝐹𝑟
(

(
det

(
𝐼𝑑 −𝜌′(𝛾)

)))
𝜁2𝑟

(
1

d̃et𝑞(𝐼𝑑 −𝑞𝜌
′(𝛾))

)

where 𝐹𝑟 ∶ ℤ[𝑠±1] → ℤ[𝑠±1], 𝑠 ↦ 𝑠𝑟.

Proof. Straightforward consequence of Theorems 82 and 39, and the fact that 
(
det

(
𝐼𝑑 −𝜌′(𝛾)

))
is the Alexander polynomial [16, Theorem 1(b)]. □
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Remark 85 (𝐿2-torsion and volume conjecture). Let 𝛽 ∈ 𝑛 be a braid: it acts naturally on the free

group𝐹𝑛 on 𝑛 generators 𝑧1, … , 𝑧𝑛. Let𝜓(𝛽) ∶=
(
𝜕𝛽(𝑧𝑖)

𝜕𝑧𝑗

)
𝑖,𝑗

be thematrixwhere partial derivatives

arise from Fox differential calculus. Latter matrix has coefficients in ℤ [𝐹𝑛] but it is well-known
that by sending them to ℤ [ℤ] we obtain the Burau matrix of 𝛽 which is a presentation of the
Alexander torsion module of the closure of 𝛽 (hence one could extract the Alexander polynomial
of the closure of𝛽 out of its determinant). To relate thematrix𝜓(𝛽) (with noncommutative entries)
with some torsion module, one has to consider the 𝐿2 torsion [27]. To compute such an invariant,
the regular determinant has to be replaced by the Fuglede–Kadison determinant denoted det𝜋1
in [17]. Taking the Fuglede–Kadison determinant of such a matrix 𝜓(𝛽) then computes the 𝐿2
torsion of the complement of 𝛽’s closure (see, e.g., [27, Theorem 4.9]). An important theorem of
Lück and Schick [28] relates the 𝐿2-torsion of a manifold with its (eventual) hyperbolic volume.
It is summed up in our context in [17, Proposition 0.2] as follows:

exp

(
−
Vol(𝐾)

6𝜋

)
=

1

1 − det𝜋1 (𝜓
′(𝛽))

, (13)

where in 𝜓′(𝛽) one line and one column has been removed from 𝜓(𝛽), 𝐾 is (a knot) the closure
of 𝛽 and Vol its (possible) hyperbolic volume. Equation (13) resembles that from Theorem 82 for
𝐹∞: one has removed one line and column before taking a generalized notion of determinant for
matriceswith noncommutative entries in the sameway.Moreover, thematrices involved are equal
the Burau matrix in both cases whenever entries are abelianized. 𝐹∞ is conjectured to contain
logarithmically the hyperbolic volume of the knot complement in a nice analytic way (Conjecture
1). Theway the Buraumatrix is quantized in both cases and the relation betweenFuglede–Kadison
determinant and quantum determinant are still to be clarified.
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