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Abstract

A model for describing the behavior of Ising models very near T, is introduced.
The description is based upon dividing the Ising model into cells which are micro-
scopically large but much smaller than the coherence length and then using the
total magnetization within each cell as a collective variable. The resulting calcu-
lation serves as a partial justification for Widom’s conjecture about the homogene-
ity of the free energy and at the same time gives his result sv' =y’ + 2p.

1. Introduction

IN a recent paper [1] widom has discussed the consequences of the assumption that the free
energy in a system near a phase transition of second order is a homogeneous function of para-
meters which describe the deviation from the critical point and has shown that this assumption
leads to consequences which roughly agree with our present numerical information [2] about the
behavior of such systems. Another paper by Widom (3] written at the same time explores the con-
sequences of an apparently quite independent idea: that the behavior of the interface separat-
ing droplets of the "wrong phase" within a system just below a phase transition should be quite
similar to the behavior of an interface separating a region of fluctuation in the order para-
meter from the surrounding medium [4]. Here again information is derived which agrees with
numerical calculations and experiment i

Widom’ s ideas about interfaces are based upon physical plausibility arguments; his idea
about the homogeneity of the singular part of the free energy is not given any very strong
justification beyond the fact that it appears to work. In the present paper, the Ising model
is analyzed in a manner which 1s designed to throw light upon how correlations between the
order parameter in different regions of the lattice scale when the parameters describing the
deviation from the critical point — in this case T - T, and the applied magnetic field - are
changed. Widom’ s homogeneity condition upon the singular part of the free energy and some of
his results for interfaces are then derived as a consequence of these scaling arguments based
upon our model.
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Although the argument is carried out in Ising model language, it is clear that the arguments
could be generalized to other cases of second order phase transitions.

2. Description of Model

Consider an Ising Model in a weak magnetic field near T,. This model can be described in
terms of two parameters

g= (F~ Tc)/Tc- (1)

which measures the deviation from the critical temperature, and h, a dimensionless magnetic
field defined so that flipping a single spin gives a change in magnetic energy 2h/kT. A full
solution of the Ising model would be obtained if we knew f(e, h), the free energy per site in
the presence of the magnetic field.

To get some feeling for the behavior of the Ising model, imagine that we divided the entire
lattice into cells of L lattice sites on a side. Then each cell in this s-dimensional lattice
contains L® lattice sites. We take L to be large, but much smaller than the coherence length,
€, which describes the range of spin correlations, measured in lattice constants. Since & goes
to infinity at e =0 and' h = 0, it is easy to find an L which satisfies this criterion.

To zeroth order, each cell can be considered to be isolated from the others and from the
external magnetic field. Then to zeroth order f(e, h) = fj(e) where f;(e) is a free energy per
site of a lattice of side L in no magnetic field. Since the small size of the cell tends to
eliminate the singularities from the phase transition, f;(e) should be an analytic function of
e but not of L, i.e.

freey = f100 4 etV o+ et P+ L (2)

where f;° f'; and f;2 should not all be analytic functions of L [4].
Next consider interactions of the cell « with the magnetic field. This gives a term in B
of the form
h 22 op (3)
rex

The basic assumption of our analysis is that within each cell, the spins tend to line up so
that they mostly point either up or down. That is,

Z or = ug<o>pLs (4)
rex

where py is either plus one or minus one. The average spin, <o>;, defined in (4) is given by

<o'rgr'>
<o>f = Z Z _L.is—— (5)

rex r'ea

Because of the "small" size of the cell, this depends strongly on only L, not upon & or h. Thus,
the interaction with the magnetic field takes the form of a term in exp[-—ﬁﬁfﬂ of

exp(zh by L% <c>L) (8)
x
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Next, consider the interaction among cells. The free energy will tend to be larger if the
spins on neighboring cells are lined up. There will tend to be a smaller contribution if they
are anti-parallel. Then, in net, this tends to make a contribution to the exponential exp[-—BFj

exp 2: [uau@ E(e, LY ¥ Fsanle, L) }- (7)

Here the sum extends over nearest neighbor cells, K + f;,, gives the contribution to the free
energy when neighboring cells are aligned and, — K + f; . gives the contribution to the free
energy when they are out of step. Sipce the direct interactions between cells which produce
fint occur within a distance which is very short compared to the coherence length, we assume
that f; . is, like fp(e), a regular function of e, but not necessarily a regular function of L.
On the other hand, k'is perhaps a somewhat more subtle beast. This describes the extra free
energy that it costs to put two cells out of step. This involves, then, the rather delicate
difference between the ways cells can match up when thgy are in step and when they are out of
step. Nonetheless, it seems reasonable to assume that K(e, L) is also a regular function of e;
but, we assert this with somewhat less confidence than our other statements relating to this
model. In writing (7) we are asserting that the correlations among cells can be totally repre-
sented by these interactions among near neighbors and that there are no less direct interactions
that we need include in (7) as long ranged interactions. This statement, together with the
assertion that the cell can be represented by the double valued variable, b, are the two basic
assumptions of this model.

To find the correction to the zeroth order result (1), we sum the product of (6) and (7) over
both possible orlentatlons of each p,. This sum is, of course just an Ising model calculation

with coupling constant K and effective magnetic field h This then gives a contribution to the
total free energy

2 s finele, L) + f(5, B) (8)
[0

where € measures the deviation of the new coupling constant from the critical value, and where,
from (6) the effective magnetic field in the cell problem is

h(h, L) = h<o> Ls (9)

Since the original Ising model problem has within it correlations over many cells, we assert
that € and h must be sufficiently small so that the new Ising model problem retains long-ranged
correlations in < pgug >. This requires e << 1, h << 1,

Since there are LS sites per cell, equations (1) and (9) give the free energy as
f(e, h) = fr(e) + sL=5 f, (e, L) + L-% f(e, h). (10)

Equation (10) is one of the two basic relations in our analysis.-The other is obtained by
discussing the spin-spin correlation function < opop’ > for the case in which the distance be-
tween spins |r - r'l, as measured in lattice constants, is much larger than L. Then each op can
be replaced by the average of oy over the cell in which it lies so that (4) may be used to re-
write the correlation function as

’ 2 ~ ~ b
<opoy'> = g(e, h,|r - r'|) = <o > <ugMg'> = <0>L2g(e, h,lr - ¢'|/L). (11)
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The last line of (11) follows because the W's are described by an Ising model with effective
distance from T,, €, effective magnetic field h and cell L lattice constants long.

3. Analysis of the Model
The free energy is a singular function of &. For example if the specific heat diverges as
—
e ¥ [(-e)™%] above [below] T,, for small e and h =0,
2-«
fo t f18 * fae + ... for T > T,
fle, 0) = (12a)

]

fo + f1e t f'z(-e)z_a + ... for T < T,

In three dimensions (2) 0 < a<l1, 0=< o' < 1. Another possible pehavior has the specific heat
above and/or below T, diverge logarithmically so that « and/or o are zero but

fe, 0) = fo + f1e + 1/2 e [B - 4 log €] for T > T, (12b)

and/or

f(e, 0) = fo + f1e + 1/2 ¢2 [B' - A" loglell for T < T, (12¢)

We first attack the case in which the o’s differ from zero and later consider the possibility
of behaviors (12b) and/or (12c).

Consider first, at h =0, the terms in equation (10) which are singular in e and £ If we
equate these singular terms above T, we find

g% g [F]A-%pe
It follows then that

g = L'’V above T

(13)
g = eLl/V below T,
and
sv = (2 - «) (14a)
sv' = (2 - «f) (14b)

Notice that if we assert that E.is a regular function of e, g, which is kl— K., cannot have 2
discontinuous first derivative with respect to e. Therefore, our assertion about the regularity
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of K implies
v =v' (15)

which in turn implies o = «’. It should be recognized that equation (15) is more dubious than
the other assertions of this paper. Consequently, we hold this statement aside and do not use
it in simplifying our further analysis.

More generally, when h # 0, we can equate the singular parts in ¢ and h on both sides of
equation (10) and find

1 &
Fainglts BY = Fa Fedngler H)s (16)
This can only be true if h is proportional to some power of L, i.e. if
<g> =LY (17)

and then (16) and (14) can hold true if the singular part of f(e, h) obeys

g’ F(E(S_W)v/h) for T > T,

fsing(e; hy = )

e 28 el e =Y sy tor € < 7,

This is Widom’ s homogeneity assertion [1] which we have now derived from our model.

If « =0, and f has the form (12b), then the last term on the right-hand side of equation
(10) has a singular part
22

Z: [B - A log &) = 52[3 - A log e - 4 log

Ll/V] (19)

if we again employ (13) for this case. The extra term in log L!/V must be cancelled out by some
other term on the right-hand side of (10). But since this term is regular in &, the compensat-
ing term can be obtained by taking fL(2’ in equation (2) to be

(2)

fL

or by a similar structure in sL™Sf, .(e, L). When «' > 0, this term in (20) does not contribute
to the leading singularity in f(e, h) for T < Tc and consequently the analysis which led to
(18) can go through just as before except that a term in e? log el must be added to F and F'.

= A log Ll/v + regular terms (20)

But, when «' is also zero, the same term, (20), must cancel out log L terms both above and
below T.. The coefficient in front of this term cannot change at T, since f is, by hypothesis,
regular in e. Then when o = «’ =0, and hence v = v’ by (14), we conclude with Widom that

A=4' (21)

It is relevant to notice that this equality holds in the Onsager solution of the two dimensional
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Ising model [4]. 1t is interesting, but perhaps quite besides the point to notice that it is
also true for the A-transition [5] of He* and in at least one anti-ferromagnetic transition [6].

The arguments of Widom are designed to use the homogeneity of the singular part of f(e, h),
as exhibited in equation (18), to derive relations between the average magnetization,

of(e, h)
M~<o>~L— (22)
oh €
the spin susceptibility
d<g >
X~ (23)
oh €

and the parameters, «, «’, v and v' which we have already defined. If we define P, y, y' and &
in the conventional manner [1,2]

<og> = |eglP forT<T

1

x =g 7 for T >T,, h =0

(24)
X = |e|_Y’ for T = T., h =0
<g> = |h|1/5 for ¢ =0
it follows from (18) that
o + B(1 +8) =2 (25a)
y' +2p +a =2 (25b)
y'/y = (2 - «')/(2 -a). (25¢)

Since the parameters in (25) are all experimental quantities, these relations could be checked
if we could find an Ising model in nature.

In the course of this analysis, we also find that y can be written in terms of experimental
quantities as
2y = s - y/v. (28)

This result is useful in the analysis in the spin-spin correlation function of equation (11),
which equation can now be written as

gte, Blr = e’y = L7 gl Y e - 20 l/0) (27)

for T > T,. The right-hand side of (27) will only be independent of L if g is a homogeneous
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function of its arguments of the form

1
r———m Ge¥ 5 ¥/n,
r = F

r—r'le”y for T > T,

gle, b, lr = r'|) = , (28)

1

2y G (e’ (s_w)/h,|r ~r'|le¥Yy for T < T..

lr - 7'

Consequently, the coherence length that we discussed at the beginning of this paper must be at
=0

eV for T > T

]E|'V' fior vl

and at ¢ = 0

g ja | B[ =tk (30)

The result (29) makes contact with the notation of Widom {3] and Fisher (2] and permits us to
identify v and v’ as experimental quantities. Therefore, equations (14a) and (14b) may be
viewed as experimental relations.

There is one more experimental relation to be obtained. From (28) as e and h go to zero, g
is proportional to Ir - r'|‘2W. This relation is conventionally [2] written as

1
ey P ALE i

g(e =0, h =0, lr =

so that, from (26), we can write

y = (2 - m)v (32)

which is our final experimental relation,

4. Discussion and Comparison with Other Theoretical Results

One can view the preceding work as developing relations among the nine "experimental" quanti-
ties o, «’, B, v, v', 8 v, v’ and n. Equations (14a), (14b), (25a), (25b), (25c) and (31) are
the six such relations that we consider to be direct consequences of our model. The relation
(15), v = v’, which implies o = a', y =y’ is a somewhat wore tenuous conclusion. With (15) in-
cluded, we have seven relations among our nine parameters; if (15) is rejected there are only
six such relations. In the first case, then, there are three free parameters; in the second two.
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None of these relations are new. Essam and Fisher [7] argued for (25b) on the basis of
homogeneity considerations not totally different from those of Widom [1] who made full use of
the homogeneity conjecture to get (25a), (25b), (25c¢) and (31) as well as (15). Besides, (31)
can be viewed as a tautology: a definition of the coherence length. In this sense, the relation

y' = (2 = n)v

which follows from (31), (25c¢), and (14) can also be viewed as trivial.

There exists an alternative derivation of equation (14a) due to Pippard [8] and Ginsberg [9].
Imagine that we were in a situation of zero magnetic field in which the temperature lay just
above T, i.e. € > 0. Then imagine that a temperature fluctuation occurred which took a region
of side X of the material into the ordered state. This would cost a free energy of the order
of the volume of the region times the difference in free energy density between that at T and
that at T,, i.e.

XSE(2—G)' (33)

But, the probability that such a fluctuation will occur is proportional to the exponential of
the cost in free energy, divided by kT,. Therefore, the maximum possible value of X, which is
the coherence length, is given by setting (33) to be of order ch or

X, oy ™€~ g l2-8l8 (34)

max

Therefore, we find at once v = (2 - a)/s.

Despite this simple derivation equations (14) are not unassailable. One could argue that,
as s ~ ©, we know that the molecular field approximation is valid. This gives v = 1/2, a =0,
and (14) fails, But, it may well be that as s — ®, the molecular field approximation becomes
valid closer and closer to T,; and for all finite s there remains a region within a very small
neighborhood of T, for which the molecular field approximation fails. Then (14) can still be
true for all s, in the strict limit as e — 0.

Precisely this effect is expected to occur in the superconductor [8-10]. Here, the molecular
field approximation (Landau-Ginzberg theory) is known to be valid until you get very close to
T.. This theory introduces a coherence length

|-/ 2¢, (35)

EL.c. = le
where &, is a very large number "~ 104 lattice constants for a pure superconductor. Over most
of the temperature range §; g is larger than the coherence length defined by (34). Then the
molecular field theory remains valid because fluctuations in the order parameter are not im-
portant. But very close to T,, the coherence length of (34) will surpass that of (35), and then
the molecular field theory will fail. In this tiny temperature region about T, equations (14)
are expected to be true if the analysis of reference [10] is correct.

To check the seven relations among physical parameters we compare with known results for
two and three dimensional Ising models. A variety of numerical results have been obtained in
both two and three dimensions through evaluations of the singularities of power series. These
are reviewed in references [2,11-13]. In the two dimensional case there are also a variety of
analytical results available [14-16] all based upon Onsager’s solution [4]. For the two dimen-
sional case, equations (28) would imply that the spin-spin correlation function is of the form
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’r - r'|_1/4 H(E'r - r'\)

2171

when the magnetic field vanishes and lr - r'l >> 1., This result agrees with the conclusions of

reference [16].

The second column of Table 1 lists the known values of the nine experimental parameters for
the two dimensional Ising model. These all check exactly with Widom' s relations.

TABLE 1
Two dimensional case Three dimensional case
Parameter Previously calculated | Reference Fit to data

Value Reference value
@ 0 4 0.0 £ ax<0.2 2 0.085
o 0 4 0.0 <a' <0.06 2 0.085
B 1/8 13 0.303 <P <0.318 2 0.332
Y 7/4 2, 11, 16 1.250 = 0.001 2 1.250
y' 7/4 2, 16 1.28 <y’ < 1.32 2 1.250
8 15 13 5.2 0,15 13 4.178
v ol 2 0.644 t 0,003 2 0.638
v’ 1 16 2 0.638
n 1/4 14 0.060 * 0.007 2 0.045

The first column listed under the three dimensional case gives information which has been
obtained via Pade and other numerical methods. The last column, labeled "Fit to data", gives a
set of values for these parameters which agrees with all seven of our relations including the

more doubtful statement v = v,

This fit agrees with all the known numerical results to within

about two and one-half standard deviations. These results indicate at least that the conclu-
sions drawn from our model are not grossly inaccurate.
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