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The bound-state solution of the radial Klein-Gordon equation has been obtained under the interaction 
of an exponential-type and Yukawa potential functions. The Greene-Aldrich approximation has been 
used to overcome the centrifugal barrier and enable the analytical solutions of the energy and wave 
functions in closed form. The momentum space wave function in D dimensions has been constructed 
using the Fourier transform. The mean values have been conjectured for the position and momentum 
spaces using two equivalent equations. The effects of the potential parameters on the expectation 
values and quantum information measurement have been investigated. For the 1D case, the results 
obey the Heisenberg uncertainty principle, Fisher, Shannon, Onicescu, and the Rényi entropic 
inequalities. Other information complexities measures, such as Shannon Power, Fisher-Shannon, and 
Lopez-Ruiz-Mancini-Calbet, have been verified. For the ground state, the 1D momentum expectation 
value ⟨p2⟩00 coincides with the 3D ⟨p2⟩000 values, which is an indication of degeneracy. The total energy 
of a particle in both 1D and 3D space may be degenerate due to the inter-dimensional degeneracy of 
the quantum numbers. However, in this present result, the degeneracy in 1D and 3D occurred for fixed 
quantum states at different momentum intervals. Thus, in 1D, a particle may transit an entire space 
( −∞ < p < ∞ ) with a certain kinetic energy, which must be equal to its kinetic energy if it moves 
through the interval 0 < p < ∞  in 3D space. This may have implications for kinetic energy degeneracy 
in higher dimensions.

Keywords Radial Klein-Gordon equation, Shannon Entropy, Renyi entropy, Fisher information, Kinetic 
energy

Quantum mechanical observables are useful for predicting the behaviour of particles confined in potential barriers 
and wells. The average kinetic and potential energies of particles and molecules may aid in the understanding 
of the spectroscopic and statistical properties of quantum mechanical systems. The position mean values and 
the corresponding momentum average values have been used to measure physical quantities in many branches 
of science1. For example, the mean value ⟨ r2⟩has been used to determine the Pauli-Lagevin diamagnetic 
susceptibility2. The expected value for the momentum moments ( pa) may provide useful information on kinetic 
energy measurement, Compton profile, and the relativistic kinetic energy corrections3. Also, the entropic 
densities derived from the probability of the wave functions play important roles in determining the Shannon4, 
Tsallis5, and Rényi6information entropies, as well as energy exchanges in atomic physics7. The matrix elements of 
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certain particles, together with their energy levels, have been applied to obtain the strength of oscillators8and the 
optical properties of quantum dots9. The bound-state solutions to the wave equations are vital for describing the 
properties of quantum systems. A considerable number of potential functions have been used to describe physical 
systems with the relativistic and nonrelativistic wave equations10–20where only a few permit exact analytical 
solutions. The solutions of the non-exactly solvable systems may be obtained using approximations21,22as well 
as numerical methods23. Gil-Barrera et al.24 investigated one-dimensional quantum information entropies with 
hyperbolic potentials. They obtained the Shannon entropies for both position and momentum spaces and their 
results verify the global Shannon entropic sum inequality. Dong et al.25obtained the bound states of the one-
dimensional Schrödinger equation with a squared tangent potential function. They applied the wave function 
to obtain the position and momentum space expectation values and the Shannon entropies. Their results satisfy 
the Heisenberg uncertainty and the Shannon sum inequality. Quantum information theoretic measures for 
one-dimensional systems under different potential wells have also been examined in the literature26,27. In two 
dimensions, the cylindrical polar wave equation is used to obtain the bound state for any magnetic and principal 
quantum numbers. The resulting wave function has been applied to obtain quantum information theoretic 
measures with different potential functions28,29. For the three-dimensional problem, the bound state solutions 
for any principal, orbital, and magnetic quantum numbers can be obtained by solving the Schrödinger equation 
in spherical polar coordinates, where the wave function may be separated into the spherical harmonics and the 
radial component. The radial part of the wave function has been used to investigate quantum information under 
a three-dimensional infinite Spherical well30. The energy levels of the multi-dimensional eigenvalue problem 
can be obtained using any preferred analytical method but the analytical solutions of the momentum space wave 
functions in two and three dimensions may require a rigorous algebraic approach depending on the potential 
function. Our motivation is drawn from the fact that quantum information theoretic studies for two and three 
dimensions have been conspicuously neglected due to the difficulty in obtaining the Fourier transforms for the 
momentum space wave functions.

The objectives of this paper are: To obtain the analytical bound state solutions of the relativistic radial 
Klein-Gordon equation in closed form with an exponential-type potential plus Yukawa potential function. To 
obtain expectation values and verify quantum information theoretic complexity measures in multi-dimensional 
spaces using the nonrelativistic bound state solutions. The organization of the remaining parts of the paper 
are as follows. In sect. two, the energy levels and wave function of the time-independent radial Klein-Gordon 
equation (KGE) will be obtained in closed form using the Parametric Nikiforov-Uvarov approach (pNU)31. 
Section three contains the determination of the non-relativistic wave function which will be applied to obtain 
quantum expectation values and theoretic information complexity measures in D dimensions. The inequalities 
characterizing the theoretic quantities will be verified for both 1D-3D spaces. In sect. four, we present the 
discussion of results and the article is concluded in sect. five.

Bound state solution of exponential-type plus Yukawa potential function using pNU 
method
In this work, we proposed the an exponential potential plus Yukawa potential function given by

 
U (r) = V0

(
1− qe−α(r−R)

1− e−αr

)2

+ V1
e−αr

r
. (1)

The first term is a special case of the molecular potential32 for q = 1, V0 = De , V1 = 0. Also, the Yukawa 
potential33 can be obtained when V0 = 0. The notations Vi (i = 0, 1) , α  and R are the respective depths of the 
potential, range and equilibrium distance. The bound states solutions with the individual potentials have been 
obtained for the wave equations in existing literature32–34 using different methods. The bound state solutions 
have various applications in molecular and nuclear physics.

The time-independent radial KGE can be expressed as35,36

 

d2ψnl

dr2
+

(
1

ℏ2c2
(
ER

nl − U (r)
)2 − 1

ℏ2c2
(
Mc2 + S (r)

)2 − l (l + 1)

r2

)
ψnl = 0 (2)

where ER
nl, M , ℏ  and c are the respective relativistic energy, rest mass, reduced Planck’s constant and speed of 

light. The notations U (r) and S (r) are repulsive vector and attractive scalar potentials. In this work, we used 
the condition for equal vector and scalar potential such that (2) can be reduced further to

 

d2ψnl

dr2
+

(
ϵnl −ΛU (r)− l (l + 1)

r2

)
ψnl = 0, (3)

where

 
ϵnl =

(
ER

nl

)2 −M 2c4

ℏ2c2
,

 
Λ =

2
(
ER

nl +Mc2
)

ℏ2c2
.
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The radial Schrödinger equation can be obtained from (3) using the transformation (E
R
nl−Mc2)
ℏ 2c2

→ 2ER
nl and 

(ER
nl+Mc2)
ℏ 2c2

→ µ /ℏ 2. Inserting the potential in Eq. (1) into Eq. (3) gives

 

d2ψnl

dr2
+

(
ϵnl −Λ

(
V0

(
1− qe−α(r−R)

1− e−αr

)2

+ V1
e−αr

r

)
− l (l + 1)

r2

)
ψnl = 0. (4)

To solve Eq. (4) we adopted the pNU method used for obtaining the bound states of the wave equations with 
solvable potential functions in quantum mechanics. The details of the method can be found in the literature31. 
Equation (4) is not exactly solvable owing to the centrifugal barrier term. To this end an approximation such as 
the Greene-Aldrich approximation for small α ≪ 1and radial distance21 has been used to solve exponential-
type potential.

 

1

r2
∼

(
α

1− e−αr

)2

. (5)

Using the change of variable, ω = e−α r, Eq. (4) transforms to the standard hypergeometric-type differential 
equation:

 

d2ψnl

dω2
+

1− ω

ω (1− ω)

dψnl

dω
+

(
−γ1ω

2 + γ2ω − γ3

ω2(1− ω)2

)
ψnl = 0, (6)

where

 
γ1 =

1

α2

(
ΛV0q

2e2αR −ΛαV1 − ϵnl
)
, (7)

 
γ2 =

1

α2

(
2ΛV0qe

αR −ΛαV1 − 2ϵnl
)
, (8)

 
γ3 =

1

α2

(
α2l (l + 1) +ΛV0 − ϵnl

)
. (9)

Comparing the parameters associated with the standard hypergeometric equation31 with Eq. (6), we obtained 
the necessary conditions for the energy spectra and the wave function respectively

 

γ3 =
1

4


n +

1

2
+


γ3 + γ1 − γ2 +

1

4
+

γ3 − γ1

n + 1
2 +


γ3 + γ1 − γ2 +

1
4




2

, (10)

 ψnl (ω) = Nnlω
√
γ3(1− ω)

1
2+
√

γ3+γ1−γ2+
1
4P

(
2
√
γ3 , 2

√
γ3+γ1−γ2+

1
4

)

n (1− 2ω) , (11)

where.
P

(a, b )
n (1− 2ω) is the Jacobi polynomial of order n and Nnl is the normalization constant.

Inserting the quantities γ i (i = 1, 2, 3) in Eqs. (7–9) into (10) and (11), the bound state energy of the radial 
KGE can be written in closed-form

 
ϵnl = ∆0 −

α2

4

(
n +∆1 +

∆2

n +∆1

)2

, (12)

where

 ∆0 = ΛV0 + α2l (l + 1) ,

 
∆1 =

1

2
+

√(
l +

1

2

)2

+
ΛV0

α2
(1− qeαR)2,

 
∆2 =

ΛV0

α2

(
1− q2eαR

)
+

ΛV1

α
+ l (l + 1) .

Using the transformation (E
R
nl−Mc2)
ℏ 2c2

→ 2ER
nl and (E

R
nl+Mc2)
ℏ 2c2

→ µ /ℏ 2, the non-relativistic energy is obtained as

 
ENR

nl = K0 −
α2ℏ2

8µ

(
n + K1 +

K2

n + K1

)2

, (13)

where
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K0 = V0 +

α2ℏ2l (l + 1)

2µ
,

 
K1 =

1

2
+

√(
l +

1

2

)2

+
2µV0

α2ℏ2
(1− qeαR)2,

 
K2 =

2µV0

α2ℏ2
(
1− q2eαR

)
+

2µV1

αℏ2
+ l (l + 1) .

The nonrelativistic wave function can be written as

 ψNR
nl (r) = Nnl

(
e−αr

)A(
1− e−αr

)1
2+B

P (2A, 2B )
n

(
1− 2e−αr

)
, (14)

where

 
A =

√(
l (l + 1) +

2µV0

α2ℏ2
−

2µ ENR
nl

α2ℏ2

)
,

 
B = K1 −

1

2
.

Normalization of the wave function and determination of expectation values in 
position and momentum spaces
One-dimensional case
The normalization factor for the position space wave function can be obtained starting from the probability of 
finding a quantum particle in the region 0 < r < ∞  of space provided the condition is satisfied

 

∞∫

0

∣∣ψNR
nl (r)

∣∣2dr = 1. (15)

Using the wave function in (14), Eq. (15) turned out as

 
N 2

nl

∞∫

0

(
e−αr

)2A(
1− e−αr

)1+2B
(
P (2A, 2B )
n

(
1− 2e−αr

))2

dr = 1. (16)

If we let ω = e−α r then

 

N 2
nl

α

1∫

0

ω2A−1(1− ω)1+2B
(
P (2A, 2B )
n (1− 2ω)

)2

dω = 1. (17)

The explicit expression for the Jacobi polynomial can be written in two different ways37

 
P (2A, 2B )
n (1− 2ω) =

Γ (n + 2A + 1)

Γ (n + 2A + 2B + 1)

n∑
k=0

(ω)k(−1)kΓ (n + 2A + 2B + 1 + k)

k! (n− k)!Γ (k + 2A + 1)
, (18)

 
P (2A, 2B)
n (1− 2ω) = (−1)nΓ (n + 2A + 1)Γ (n + 2B + 1)×

n∑
j=0

(−1)j(ω)n−j(1− ω)j

j! (n− j)!Γ (n + 2A− j + 1)Γ (2B + j + 1)
. (19)

Substituting Eqs. (18) and (19) into (17) gives

 

(−1)n
Γ (n + 2B + 1) (Γ (n + 2A + 1))2

Γ (n + 2A + 2B + 1)

×
n∑

j=0

n∑
k=0

(−1)j+kΓ (n + 2A + 2B + k + 1)

j! (n− j)!k! (n− k)!Γ (n + 2A− j + 1)Γ (2B + j + 1)
I (j, k) = 1

, (20)

where

 
I (j, k) =

N 2
nl

α

1∫

0

ω2A+n+k−j−1(1− ω)j+1+2Bdω. (21)

Using the integral notation for the hypergeometric function37,38
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1∫

0

ωA−1(1− ω)C−A−1(1− ω)−Bdω =
2F1 (A, B, C : 1)Γ (A)Γ (C − A)

Γ (C)
. (22)

Equation (22) can further be reduced to

 

1∫

0

ωA−1(1− ω)−Bdω =
2F1 (A, B, A + 1 : 1)

A
. (23)

The property of the hypergeometric function is given as

 
2F1 (A, B, C : 1) =

Γ (C)Γ (C − A− B)

Γ (C − A) Γ (C − B)
, (24)

With Eq. (24), the solution of Eq. (21) is obtained as

 
I (j, k) =

N 2
nl

α

(j + 2B + 1)Γ (j + 2B + 1) (Γ (n + 2A + k − j))

(n + 2A + 2B + k + 1)Γ (n + 2A + 2B + k + 1)
. (25)

Inserting (25) into (20) gives the normalization constant as

 
Nnl =

1√
Gnl

,

where

 

Gnl = (−1)n
Γ (n + 2B + 1) (Γ (n + 2A + 1))2

αΓ (n + 2A + 2B + 1)

×
n∑

j=0

n∑
k=0

(−1)j+kΓ (n + 2A + k − j) (2B + j + 1)

j! (n− j)!k! (n− k)!Γ (n + 2A− j + 1)Γ (2A + k + 1) (n + 2A + 2B + k + 1)

. (26)

The momentum space wave function can be obtained from the Fourier transform as follows:

 
ψNR
nl (p) =

1√
2π

∞∫

0

ψNR
nl (r) e−iprdr. (27)

The wave function ψ NR
nl (p) is complex and satisfies the ortho-normality condition

 

∫ ∞

0

(
ψNR
n (p)

)∗
ψn

′NR(p)dr = δnn′ , (28)

where p and δ nn′  are the respective momentum of a particle and the Kronecker delta.
Using the wave function in (14) with the explicit expression of the Jacobi function in Eq. (18), the momentum 

space wave function is given as

 

ψNR
nl (p) =

Nnl√
2π

Γ (n + 2A + 1)

Γ (n + 2A + 2B + 1)

n∑
k=0

(−1)kΓ (n + 2A + 2B + 1 + k)

k! (n− k)!Γ (k + 2A + 1)

×
∞∫

0

(
e−αr

)A+k(
1− e−αr

)1
2+B

e−iprdr

. (29)

Solving Eq. (29) analytically is a difficult task but with the help of the Mathematica program, the solution becomes

 
ψNR
nl (p) =

NnlΓ
(
3
2 + B

)
Γ (n + 2A + 1)Γ

(
A + i pα

)
H (p)

√
2παΓ (1 + 2A)Γ (n + 1)Γ

(
n + A + B + 3

2 + i pα
), (30)

where H (p) is a generalized hypergeometric function given as

 
H (p) = PFQ

((
−n, n + 2A + 2B + 1, A + i

p

α

)
,

(
1 + 2A, A + B +

3

2
+ i

p

α

)
, 1

)
. (31)

Two and three-dimensional cases
The two- dimensional Schrödinger equation can be written as an eigenvalue Eq. 
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 Hnmψ
NR
nm (r, ϕr) = ENR

nm ψNR
nm (r, ϕr) . (32)

The 2D Hamiltonian is given in cylindrical polar coordinates as

 
Hnm = −ℏ2

2µ

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2
r

)
+ V (r) +

l (l + 1) ℏ2

2µr2
. (33)

The eigenfunction ψ NR
nm (r, ϕ r) =

Rnm(r)√
2π r

eimϕ r , in the boundary 0 < r < ∞ , 0 < ϕ r < 2π  is the solution of 

(32) where Rnm(r)√
r

 and eimϕ r√
2π

 correspond to the respective solutions of the radial and azimuthal components of 
the 2D Schrödinger equation given by

 

d2Rnm (r)

dr2
+

2µ

ℏ2

(
ENR

nm − V (r)− ℏ2

2µ

(
m2 − 1

4

))
Rnm (r) = 0, (34)

 
d2Φ (ϕr)

dϕ2
r

+m2Φ (ϕr) = 0, (35)

where ENR
nm , Rnm (r) and m are the 2D energy, wave function and the magnetic quantum number. The 2D 

bound states of both the Klein-Gordon and Schrodinger equations are obtained by mapping the 1D problem 
using the relation (l + 1/2) → m. The 2D wave function normalization condition can be written as

 

∞∫

0

∣∣∣∣
Rnm (r)√

r

∣∣∣∣
2

rdr

2π∫

0

eimϕr

√
2π

(
e−imϕr

√
2π

)
dϕr = 1, (36)

where

 Rnm (r) = Nnm

(
e−αr

)A(
1− e−αr

)1
2+B

P (2A, 2B )
n

(
1− 2e−αr

)
. (37)

The momentum space wave function in 2D space can be written via the Fourier transform

 
Rnm (p) =

1

2π

∞∫

0

Rnm (r)√
r

rdr

2π∫

0

eimϕr

√
2π

e−ip·rdφr. (38)

The solution of the azimuthal integral is straightforward using the integral properties of the Bessel function39

 

1

2π

2π∫

0

eimϕr

√
2π

e−ip·rdϕr =
1

(2π)3/2

2π∫

0

ei(mϕr−cos(ϕr−ϕp)pr)dϕr =
(−i)m√

2π
Jm (pr) eimϕp, (39)

where.
Jm (pr) is the m-order Bessel function of the first kind.
Substituting Eq. (39) into (38) yields

 
Rnm (p) =

(−i)|m|eimϕp

√
2π

∞∫

0

√
rRnm (r) Jm (pr) dr. (40)

Since the wave function contains the Jacobi function, the analytical solution of Eq.  (40) is a difficult task to 
achieve. To this end, we utilized an asymptotic approximation of the Bessel function40

 
J|m| (pr) ∼

√
2

πpr
cos

(
pr − |m| π

2
− π

4

)
. (41)

Substituting Eq. (41) into (40) with Rnm (r) gives

 
Rnm (p) =

(−i)|m|Nnme
imϕp

√
2π

∞∫

0

(
e−αr

)A(
1− e−αr

)1
2+B

P (2A, 2B )
n

(
1− 2e−αr

)√ 2

πp
cos

(
pr − |m| π

2
− π

4

)
dr. (42)

Using the expression in Eq. (18) and evaluating the integral with the help of the Mathematica programme gives 
the 2D momentum space wave function as
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Rnm (p) =

(−1)m(i)m+1/2eim(ϕp−π/2)NnmΓ
(
3
2 + B

)
Γ (n + 2A + 1)

2π
√
pαΓ (1 + 2A)Γ (n + 1)

(
eimπHnm (p)−H∗

nm (p)
)
, (43)

where

 
Hnm (p) =

Γ
(
A + i pα

)

A + B + 3
2 + i pα

× PFQ

((
−n, n + 2A + 2B + 1, A + i

p

α

)
,

(
1 + 2A, A + B +

3

2
+ i

p

α

)
, 1

)
. (44)

For m = 0, the momentum space wave function is given by

 
Rn0 (p) = (i)1/2

Nn0Γ
(
3
2 + B

)
Γ (n + 2A + 1)

2π
√
pαΓ (1 + 2A)Γ (n + 1)

(Hn0 (p)−H∗
n0 (p)) . (45)

For the 3D case, the solution of the eigenfunction of the Schrödinger equation in spherical polar coordinates is 
given by

 
Ψnlm (r, θr, ϕr) =

Rnl (r)

r
Ylm (θr, ϕr) , (46)

where Ylm (θ , φ ) are the Spherical Harmonics and the solution of the angular part of the Schrödinger equation 
whereas Rnl (r) remains the usual one-dimensional position wave function. The Ylm (θ , φ ) is expressed as

 
Ylm (θ, ϕ) = (−1)m

√
(2L + 1) (l −m)!

4π (l +m)!
Pm
l (cos(θ)) eimϕ (47)

where the function Pm
l (cos (θ )) is the associated Legendre polynomial.

The wave function in momentum space is given by the Fourier transform41

 
Ψnlm (p, θp, ϕp) =

1

(2π)3/2
∫
R3

Ψnlm (r, θr, ϕr) e
−ip·rdr. (48)

The notation dr=
(
r2dr

)
sin (θ ) dθ dφ  is the volume element in position space. The plane-wave expansion for 

e−ip·ris given as42

 
e−i p·r = (2π)3/2

∞∑
l=0

l∑
m=−l

i−l Jl+1/2 (pr)√
pr

Ylm (θp, ϕp)Y*
lm (θr, ϕr) . (49)

Due to axial symmetry, only the m = 0 terms would remain such that the plane-wave expansion reduces to

 
e−ip·r = (2π)3/2Ylm (θp, ϕp)

∞∑
l=0

i−l Jl+1/2 (pr)√
pr

Y*
l0 (θr, ϕr) . (50)

Inserting Eqs. (46) and (50) into (48) gives

 

Ψnlm (p, θp, ϕp) = i−lYlm (θp, ϕp)

π∫

0

2π∫

0

Yl0 (θr, ϕr)Y*
l0 (θr, ϕr) sin (θ) dθdϕ

×
∞∫

0

Rnl (r)

r

Jl+1/2 (pr)√
pr

r2dr

 (51)

By utilizing Eq. (41) for the Bessel function, and also the orthonormality condition for the Spherical Harmonics, 
Eq. (51) simplifies to

 
Ψnlm (p, θp, ϕp) =

Ylm (θp, ϕp)

p
Fnl (p) , (52)

where

 
Fnl (p) = i−l

√
2

π

∞∫

0

Rnl (r) cos

(
pr −

(
l + 1

2

)
π

2
− π

4

)
dr. (53)

Using the position wave function with the expression for the Jacobi function in (18), the integral in Eq. (53) can 
be evaluated with the Mathematica programme. The momentum space wave function is then obtained as
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Ψnlm (p, θp, ϕp) =

e−iπl/2Γ
(
3
2 + B

)
Γ (n + 2A + 1)Nnl i

(1−l)

α
√
2πpΓ (1 + 2A)Γ (n + 1)

(
eilπHnl (p)−H∗

nl (p)
)

Ylm (θp, ϕp) , (54)

where

 
Hnl (p) =

Γ
(
A + i pα

)

A + B + 3
2 + i pα

× PFQ

((
−n, n + 2A + 2B + 1, A + i

p

α

)
,

(
1 + 2A, A + B +

3

2
+ i

p

α

)
, 1

)
. (55)

Expectation values and theoretic information measures
The respective 1D position and momentum space expectation values can be given as

 


rt

=




(−i)t
∞

−∞
(Rn0 (p))

dt (Rn0(p))
∗

dpt
dp

∞
0

(Rn0 (r))
∗rtRn0 (r) dr

 (56)

 


pt

=




(−i)t
∞
0

Rn0 (r)
dt(Rn0(r))

∗

drt
dr

∞
−∞

(Rn0 (p))
∗ptRn0 (p) dp

 (57)

It is worth stating that the first equations in (56) and (57) containing the derivative, are not suitable to finding 
the expectation values with t < 0 and fractional values of t. In 2D, the expectation values in position and 
momentum spaces are given by the relations

 

〈
rt
〉
nm

= 2π

∞∫

0

∣∣∣∣
Rnm (r)√

2πr

∣∣∣∣
2

rt+1dr, (58)

 

〈
pt
〉
nm

= 2π

∞∫

0

(Rnm (p))∗Rnm (p) pt+1dp (59a)

 

〈
p2
〉
nm

= −2π

∞∫

0

Rnm (r)
d2(Rnm (r))∗

dr2
rdr . (59b)

In 3D space, the mean values in position and momentum spaces are given by

 

〈
rt
〉
nlm

=

∞∫

0

rt
∣∣∣∣
Rnl (r)

r

∣∣∣∣
2

r2dr

∫
Ylm (θr, ϕr)Y*

lm (θr, ϕr) dΩ, (60)

 

〈
pt
〉
nlm

=

∞∫

0

pt(Rnl (p))
∗Rnl (p) p

2dp

∫
Ylm (θp, ϕp)Y*

lm (θp, ϕp) dΩ, (61)

 

〈
p2
〉
nlm

= −
∞∫

0

Rnl (r)
d2(Rnl (r))

∗

dr2
r2dr

∫
Ylm (θr, ϕr)Y*

lm (θr, ϕr) dΩ +
〈
r−2

〉
nlm

, (62a)

 

〈
r2
〉
nlm

= −
∞∫

0

Rnl (p)
d2(Rnl (p))

∗

dr2
p2dp

∫
Ylm (θp, ϕp)Y*

lm (θp, ϕp) dΩ +
〈
p−2

〉
nlm

, (62b)

where dΩ = sin (θ) dθdϕ is the differential solid angle.
The knowledge of the wave functions is vital in studying the quantum information theoretic measures using 

the entropic densities. The Rényi entropies in D-dimensional spaces for the position and momentum coordinates 
are given by the equations43

 

Rg (ρ) =
1

1− g
ln





RD

(ρ (r))gdr


 , (63)
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Rg (γ) =
1

1− g
ln





RD

(γ (p))gdp


 , (64)

where g ∈ [0,∞ ] is a real number. The Rényi entropies increase with a decrease in g but decrease as gincreases. 
An increment in the Rényi entropy is an indication of delocalization or the reduction of information for a given 
system39,44. When the Rényi entropy decreases then we have more information on the system or localization is 
prominent. Also, the sum of the Rényi entropies for a system should satisfy global inequality44

 
R (T ) = Rf (γ) +Rg (ρ) ⩾ −D

2

(
1

1− f
ln
f

π
+

1

1− g
ln

g

π

)
, (65)

where D is the dimension number and the parameters f  and gsatisfy the linear constraint44. 

 
1

f
+

1

g
= 2, 0.5 ≤ f < 1. (66)

 

When the index parameter g = 1, the Rényi entropies reduce to the Shannon entropies44

 

S (ρ) = −
∫

RD

ρ (r) lnρ (r) dr (67)

 

S (γ) = −
∫

RD

γ (p) lnγ (p) dp. (68)

The Shannon entropic sum obeys the Beckner Bialynicky Birula Mycielski (BBM)45 inequality

 S (T ) = S (ρ) + S (γ) ⩾ D (1 + lnπ) . (69) 

 

The Fisher information is a local measure of the spread of the probability distribution which can be represented 
by the gradient of the probability densities in position and momentum spaces46.

 

I (ρ) =

∫

RD

|∇ρ (r)|2

ρ (r)
dr, (70)

 

I (γ) =

∫

RD

|∇γ (p)|2

γ (p)
dp, (71)

whereρ (r) = |Ψ (r)|2 and γ (p) = |Ψ (p)|2 are the respective probability densities in position and momentum 
spaces. The notation∇is the gradient operator of a particle. In spherical coordinates, it is given as

 
∇ = r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin(θ)

∂

∂ϕ
 (72)

The higher the fisher information, the more localized the probability density which implies also less uncertainty. 
The Fisher information obeys the inequality I (ρ ) I (γ ) ≥ 4D2. The Onicescu information is the square of 
the probability densities which measure the distance of the system from uniform equilibrium47. The Onicescu 
information in position and momentum spaces entropies can be expressed as48

 

O (ρ) =

∫

RD

|ρ (r)|2dr, (73)

 

O (γ) =

∫

RD

|γ (p)|2dp. (74)

The total Onicescu information obeys the inequality49 O (ρ )O (γ ) ≤ 1

(2π )D
. The smaller the value of 

O (ρ )O (γ ), the more information we have about the system47,50 and vice versa.
Using the information-theoretic quantities, other complex measures can be obtained. The Shannon entropic 

power in position and momentum spaces are given as51
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J (ρ) =

1

2πe
e
2S(ρ)
D , (75)

 
J (γ) =

1

2πe
e
2S(γ)
D . (76)

The Shannon entropic power for a quantum system should satisfy the uncertainty relation

 
J (ρ) J (γ) ⩾

1

4
. (77)

The Fisher-Shannon complexity measure obeys the uncertainty relations.
I (ρ ) J (ρ ) ≥ D and I (γ ) J (γ ) ≥ D. Another information complexity measure is the Lopez-Ruiz-

Mancini-Calbet ( CLMC) defined as52

 CLMC (ρ) = O (ρ) eS(ρ), (78)

 CLMC (γ) = O (γ) eS(γ). (79)

The LMC complexity obeys the bound CLMC ≥ 1.
Recently, the LMC-Renyi complexity of the D-dimensional hydrogenic system has been studied and applied 

to quasi-spherical and highly excited Rydberg states53. The LMC-Renyi complexity is given as54,55.

 C̄LMC (ρ) = e
1
D(Rg(ρ)−Rf (ρ)), 0< g< f <∞. (80) 

 C̄LMC (γ) = e
1
D(Rg(γ)−Rf (γ)), 0< g< f <∞. (81) 

The LMC-Rényi complexity is dimensionless55 and bounded from below as 
−
CLMC (γ ) ≥ 1 provided g < f .

Discussion of results
The analytical bound state solutions of the radial Klein-Gordon equation have been obtained under an exponential 
potential plus Yukawa potential via the parametric Nikiforov-Uvarov approach. Using a Greene-Aldrich 
approximation for the centrifugal barrier, the energy spectra and the wave function were obtained in closed 
form. The Schrödinger equation is obtained as a special case of the Klein-Gordon equation using an appropriate 
transformation. Using the non-relativistic wave functions in position and momentum representations, the ground 
state expectation values and information complexity measures have been investigated with arbitrary parameters 
( R = 1.2,V0 = 0.05,V1 = 0.44, q = 0.1) of the potential and natural units µ = 0.5, ℏ = 1.The 1D uncertainty 
in position space ( ∆ r) is observed to decrease as α  increases (Fig. 1a) However, in Fig. 1b, the momentum 
space uncertainty increases with α . The uncertainty product ( ∆ p× ∆ r) increases monotonically, while 
satisfying the Heisenberg uncertainty inequality. In Fig. 2, the r-space Fisher information increases, while the p
-space Fisher information decreases with increasing α . This implies better localization of the radial probability 
density and a more diffuse momentum probability density function with increasing α . This further implies 
a decrease in the position uncertainty and an increase in momentum uncertainty as α  increases. The Fisher 
product as shown in Fig. 2c shows the same trend as the uncertainty product in Fig. 1c and obeys the inequality 
I (ρ )× I (γ ) ≥ 4. In Fig. 3, the position Shannon entropy is observed to increase as α  increases, while the 
momentum Shannon entropy decreases (Fig. 3a, b). This is in line with the Fisher information result since it 
implies a narrowing of the radial probability density with increasing α  and a broadening of the momentum 
probability density. The Shannon entropy sum shows an identical trend to the Fisher product where the result 
verifies the BBM inequality for the 1D system (see Fig. 3c). Similarly, the Rényi entropy in Fig. 4 shows a similar 
trend to the Shannon entropy where the Rényi sum is found to be bounded above the lowest value thus satisfying 
the relations in Eq.  (65). In Fig.  5, the radial Onicescu information is observed to decrease monotonically, 
while the momentum Onicescu information increases. This is, as expected an opposite trend to the Shannon 
entropy since the Shannon entropy and Onicescu information describe a mutually opposite form of probability 
density47. It is observed that the total Onicescu information decreases sharply as α  increases (Fig. 5c), implying 
an increase in the information content of the system. In Fig. 6, the Shannon power shows a similar trend to the 
Fisher information. In Fig. 7 (a), the product of the Fisher information and Shannon power for both r- and p
- space increase slowly above the lowest bound as α  increases. Figure 7b, shows LMC complexity in r- space 
and p- space increasing with an increase in α . In Fig. 7 (c), the position and the momentum space LMC-Rényi 
complexities increase with an increase in α . In all the cases, the lower bound of the complexities is satisfied as 
expected.

The 2D eigenenergy solutions can be obtained by mapping the quantum numbers ( m = l + 1/2). However, 
to obtain the momentum space wave function, the Fourier transform for the cylindrical polar coordinate has 
been applied in Eq. (38). Evaluating the Fourier transform is a difficult task owing to the nature of the position 
space wave function. In this case, we applied an asymptotic approximation of the Bessel function in Eq. (41) 
inside the Fourier integral to obtain an approximate solution of the 2D momentum wave function. In Fig. 8 
(a-d) we graphed the exact and the asymptotic Bessel function of the first kind for the magnetic quantum 
numbers (m = 0− 3). It can be seen that the ground state m = 0, is a fair approximation.
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Using the eigenfunctions, the ground state 2D mean values for ⟨p2⟩00 and ⟨r2⟩00 have been obtained numerically 
in Table 1. The momentum space expectation value obtained with the asymptotic approximation (Eq.  (59a)) 
is fairly accurate for small α  compared to the results obtained from the (Eq. (59b)) in radial representation. 
The expectation value for ⟨p2⟩ increases with an increase in the screening parameter while ⟨r2⟩ decreases as 
the screening parameter increases. Consequently, the 2D Fisher information in position space increases as α  
increases but in momentum representation, the Fisher entropy decreases with increasing α  parameter. The 
Fisher product obeys the inequality I (ρ ) I (γ ) ≥ 16. Also, the Heisenberg-type product ⟨p2⟩00 × ⟨r2⟩00 is 
bounded above the lowest bound. In Table 2, the 3D expectation values ⟨p2⟩000 and ⟨p⟩000 increase with the 
screening parameter but ⟨p−2⟩000 and ⟨p−1⟩000 decrease as the screening parameter increases. The mean values 
of ⟨p2⟩000 and ⟨p−1⟩000 play a vital role in accessing the kinetic energy of a particle and the Compton profile. The 
3D Fisher information in position space increases with α , while in momentum coordinate, it decreases as α  
increases. The Fisher product obtained in Table 2 is greater than the lowest bound and satisfies the inequality 
I (ρ ) I (γ ) ≥ 36. In Table  3, the Shannon entropy in position space decreases as the screening parameter 
increases but in the momentum space, the Shannon entropy increases steadily. The Shannon sum is bounded 
above the minimum value and obeys the global inequality S (ρ ) + S (γ ) ≥ 6.43419. The Rényi entropies 
variations with the screening parameter follow a similar trend as the Shannon entropies. The Rényi sums are 
bounded above the lowest bound. In Table 4, the Onicescu information and Shannon entropic power follow a 
similar trend where the entropies in position space decrease with the screening parameter but increase with the 
increase in the screening parameter for momentum coordinate. The Shannon entropic power and the Fisher-
Shannon Complexity measures obey the inequality J (ρ ) J (γ ) ≥ 1

4  and I (ρ ) J (ρ ) ≥ 3. The total Onicescu 
information entropy obeys the inequality O (ρ )O (γ ) ≤ 1

(2π )3
. However, as α become large, the total Onicescu 

information is bounded above the minimum value. It is worth stating that the 1D expectation values for ⟨p±z⟩ 
( z =odd integers) vanish due to symmetry but are finite for 2D and 3D spaces.

Conclusion
The bound state solutions of the radial Klein-Gordon equation have been obtained under an exponential-
type and Yukawa potential functions using the parametric Nikiforov-Uvarov approach. The Greene-Aldrich 
approximation was used to replace the centrifugal term to allow for the analytical solution of the energy and 
wave function in closed form. The Schrödinger equation bound states were obtained as a special case by using 

Fig. 1. (a-c). Uncertainties for ∆ r, ∆ p and Heisenberg uncertainty product.
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an appropriate transformation. The wave functions have been utilized to obtain expectation values and entropic 
densities in both position and momentum in D-dimensional spaces. In addition, the information measurements 
for the system are analogous to the Heisenberg uncertainty principle and satisfy the entropic inequalities. Also, 
the 1D momentum expectation value ⟨p2⟩00 coincides with the 3D ⟨p2⟩000 values which is an indication of 
degeneracy. The total energy of a particle in both 1D and 3D space may degenerate due to the inter-dimensional 
degeneracy of the quantum numbers. However, in this present result, the degeneracy in 1D and 3D occurred 
for fixed quantum states at different momentum intervals. Thus in 1D, a particle may transit an entire space 
( −∞ < p < ∞ ) with a certain kinetic energy which must be equal to the kinetic energy of the same particle 
which moves through the interval 0 < p < ∞  in 3D space.

Fig. 2. (a-c). Fisher information in position and momentum coordinates and Fisher uncertainty product.
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Fig. 3. (a-c). Shannon entropies in position and momentum coordinates and Shannon sum.
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Fig. 4. (a-c). Rényi entropies in position and momentum coordinates and Renyi sum.
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Fig. 5. (a-c). Onicescu information entropies in position and momentum coordinates and total Onicescu 
information entropies.
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Fig. 6. (a-c). Shannon power complexities measures in position and momentum spaces.
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Fig. 7. (a). Fisher-Shannon complexities measures in position and momentum spaces (b) Lopez-Ruiz-
Mancini-Calbet ( CLMC). (c) Lopez-Ruiz-Mancini-Calbet-Rényi ( CLMCR) complexities measures.
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α ⟨p2⟩00 Eq. (59a) Approx. ⟨p2⟩00 Eq. (59b) ⟨r2⟩00 ⟨p2⟩00 × ⟨r2⟩00 ≥ 1 I (ρ ) I (γ ) I (ρ ) I (γ ) ≥ 16

0.01 0.002541326 0.002493106 4306.091 10.73554 0.009972424 17224.36284 171.7686499

0.02 0.005416421 0.005238612 1123.629 5.886256 0.020954447 4494.515626 94.18008973

0.03 0.008594540 0.008217203 520.585 4.277753 0.032868811 2082.340161 68.44404455

0.04 0.012050080 0.011410387 304.9067 3.479103 0.04564155 1219.626988 55.66566564

0.05 0.015759959 0.014800603 202.9748 3.004149 0.059202413 811.8990658 48.06638395

0.06 0.019702921 0.018371273 146.4707 2.690853 0.073485090 585.8826394 43.05363872

0.07 0.023859253 0.022106823 111.7205 2.469785 0.088427292 446.8819182 39.51655791

0.08 0.028210634 0.025992683 88.72661 2.306243 0.103970733 354.9064311 36.89988165

0.09 0.032740034 0.030015260 72.66152 2.180954 0.120061041 290.6460934 34.89527259

0.10 0.037431630 0.034161906 60.95576 2.082365 0.136647626 243.8230578 33.31784190

Table 1. Expectation values and Fisher information entropies for 2D space. 
n = 0,m = 0, R = 1.2,V0 = 0.05,V1 = 0.44, µ = 0.5, ℏ = 1, q = 0.1.

 

Fig. 8. (a-d). Variations of exact and asymptotic Bessel function of the First Kind with position for magnetic 
quantum numbers (m = 0− 3).
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Table 4. 3D Onicescu information, Shannon entropic power and Fisher-Shannon Complexity 
measures. n = 0,m = 0, l = 0, R = 1.2,V0 = 0.05,V1 = 0.44, µ = 0.5, ℏ = 1, q = 0.1.

 

α R0.6(p) R3(y) R0.6(p) + R3(y) ≥ 6.173744 S (ρ ) S (γ ) S (T ) ≥ 6.434190

0.01 14.76874936 −8.415297133 6.353452231 14.57817873 −6.911968880 7.666209847

0.02 13.06233682 −6.808638692 6.253698132 12.82435864 −5.643282433 7.181076212

0.03 12.07605317 −5.861777412 6.214275759 11.79475897 −4.856932613 6.937826357

0.04 11.38499951 −5.189378532 6.195620979 11.06402118 −4.275872265 6.788148914

0.05 10.85592632 −4.669577504 6.186348820 10.49850146 −3.810191189 6.688310271

0.06 10.42941595 −4.247517107 6.181898847 10.03844178 −3.419013050 6.619428725

0.07 10.07372514 −3.893610348 6.180114794 9.651803320 −3.080509593 6.571293727

0.08 9.769869444 −3.590001096 6.179868347 9.319343666 −2.781742896 6.537600770

0.09 9.505575272 −3.325047789 6.180527482 9.028562946 −2.514390161 6.514172785

0.10 9.272440305 −3.090719539 6.181720766 8.770859478 −2.272719558 6.498139920

Table 3. 3D Shannon and Rényi entropies in position and momentum representations. 
S (T ) = S (ρ ) + S (γ ). n = 0,m = 0, l = 0, R = 1.2,V0 = 0.05,V1 = 0.44, µ = 0.5, ℏ = 1, q = 0.1.

 

α ⟨p2⟩000 ⟨p⟩000 ⟨p−1⟩000 ⟨p−2⟩000 I (ρ ) I (γ ) I (ρ ) I (γ ) ≥ 36

0.01 0.002557668 0.041048813 40.29226729 2951.243435 0.010230672 17225.98229 176.2333747

0.02 0.005511269 0.061135394 24.49862082 1006.471427 0.022045076 4496.239144 99.11993364

0.03 0.008860647 0.078472725 18.15693933 536.3398048 0.035442588 2084.154132 73.86781623

0.04 0.012603270 0.094563538 14.63353808 343.8326318 0.05041308 1221.518272 61.58049837

0.05 0.016734504 0.109921196 12.36364785 244.1424676 0.066938016 813.8550516 54.47784247

0.06 0.021247872 0.124773449 10.76962459 185.0247736 0.084991488 587.8912648 49.96575338

0.07 0.026135322 0.139234858 9.584729196 146.7095098 0.104541288 448.9316680 46.93189480

0.08 0.031387480 0.153367334 8.667544367 120.2624856 0.12554992 356.9863285 44.81960499
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