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They had no temples, but they had a real living and uninterrupted sense of oneness with

the whole of the universe; they had no creed, but they had a certain knowledge that when

their earthly joy had reached the limits of earthly nature, then there would come for them,

for the living and for the dead, a still greater fullness of contact with the whole of the

universe. They looked forward to that moment with joy, but without haste, not pining

for it, but seeming to have a foretaste of it in their hearts, of which they talked to one

another.

The Dream of a Ridiculous Man - Fyodor Dostoyevsky
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The sum of all currently identified particles accounts for only a small fraction of the mass

within the observable universe. Dark matter makes up a large remaining piece of the

cosmos. Its theoretical origins remain largely unknown. The relatively small amount of

matter that does exist today is known to be a result of a small asymmetry in the early

universe between matter and antimatter. Asymmetric dark matter models consider the

approximate 1 : 5 ratio of matter to dark matter as evidence that the two forms of mat-

ter have connected origins. This class of model requires that the dark matter number

density is generated in the early universe through a process tied directly to the origin of

matter. In order to fully account for this ratio, however, we need to both explain how the

connected origins generate similar abundances of matter and dark matter particles and

explain why dark matter particles have individual masses comparable to the dominant

form of ordinary matter throughout the universe.

In Chapter 1 we review the current picture of the universe and examine the motivations

for grand unified theories that connect the matter content of the Standard Model under

larger symmetries at high energy. We then examine spontaneous symmetry breaking

and the history of mirror matter models which consider a copy of the Standard Model

as an explanation for dark matter. With these we develop in Chapter 2 the mechanism

of asymmetric symmetry breaking which spontaneously breaks mirror symmetric grand

unified theories at a high energy scale. In this SU(5) ⇥ SU(5) model we find how the

low energy scale theory contains the Standard Model with minimal interactions to a

dark sector that contains a confining gauge group. The unified UV gauge couplings but

unique fermion masses in the two sectors results in a lightest stable composite state of

the dark sector that is constrained to have a mass comparable to the proton.
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In Chapter 3 we extend the asymmetric symmetry breaking concept to SO(10) models

and explore how unique breaking chains in the two sectors can occur spontaneously. We

use the gauge boson content to modify the running of gauge coupling constants and

show how this can result in low energy scale universes with dark sectors that contain

viable dark matter candidates.

In Chapter 4 we examine how a similar number density of matter and dark matter

can arise in an asymmetric symmetry breaking model with a mirror symmetric theory

using a Standard Model that contains an extra Higgs doublet. With the addition of

right-handed neutrinos we explore how a thermal leptogenesis mechanism can result

in a lepton asymmetry in each sector that is converted into baryon and dark matter

asymmetries at low energy. The result of this is a set of possible models that generate

the approximate 1 : 5 ratio of matter to dark matter in a natural way.

Finally in Chapter 5 we explore how the confinement scale and fermionic content of a

confining gauge theory a↵ects the hadronic spectra of dark SU(3) theories. With this we

can examine the nature of dark matter particles in our unique framework of asymmetric

dark matter models.
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Preface
Chapter 1 is an original introduction to the motivations of this thesis and contains a

review of the literature. Chapter 2 is based on the work in Grand unified dark matter

which investigated ideas developed in collaboration with R. Volkas and was predomi-

nantly written by the author. Chapter 3 is based on the work in Dark matter from

intermediate symmetry breaking scales, written by the author and based on ideas ex-

plored in Chapter 2. Chapter 4 is based on the work in Comprehensive asymmetric dark

matter model which explored ideas developed in collaboration with R. Volkas and was

predominantly written by the author. Chapter 5 is based on the work in Asymmetric

dark matter and the hadronic spectra of hidden QCD which was based on ideas devel-

oped in collaboration with R. Volkas and M. Schroor. The results are primarily the work

of the author with M. Schroor providing consistency checks and the introduction of the

published paper. An original introduction written by the author is used in Chapter 5.

Chapter 6 is an original summary of the ideas in all of these chapters and how they fit

together to form a cohesive work.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics, together with the theory of general relativ-

ity, has seen extraordinary successes in our ongoing e↵orts to understand the behaviour

of the universe. Despite these successes, our comprehension of the world we live in is

placed in a substantially smaller framework when we consider that the sum of all cur-

rently identified particles is capable of explaining only a small fraction of the mass within

the observable universe. Dark matter (DM) makes up the large remaining component

of matter in the cosmos. Its nature and origins are almost completely unknown.

The Standard Model is clearly an incomplete theory with the majority of the matter and

energy that make up the observable universe beyond our ken. Dark matter is the term

used to describe the remaining matter, though it may be composed of many di↵erent

species of undiscovered particles. There is a large body of evidence for its presence in the

cosmic make-up. A hidden form of matter was hypothesised as far back as 1933 when

Zwicky [1] noticed this discrepancy in the expected velocity distribution of galaxies in

the Coma cluster. While his conjecture of large amounts of unseen mass dominating the

gravitational profile of the cluster was not immediately accepted, history has borne out

that a type of mass that is not in the form of stars or conventional interstellar gas is

responsible for the long list of incongruences in the night sky. Later important evidence

was found in the rotation curves of galaxies, which demonstrated the velocities of stars

and gas in the outer rims to be near consistent with inner systems rather than dropping

o↵ with radius as previously expected. The experimental evidence of dark matter today

comes from many di↵erent sources, ranging from observations of the acoustic spectrum

1



Chapter 1. Introduction 2

of the cosmic microwave background (CMB), through gravitational lensing observations,

velocity profiles of stars in galaxies and larger systems in galactic clusters, to simulations

of galaxy formation [2, 3].

While dark matter’s possible origins are myriad, there are some key pieces of evidence

that can allow us to pursue models of dark matter with a degree of confidence. In this

work we will endeavor to explore models of both the origin of matter and dark matter

in a unified way guided by these critical clues. In the pursuit of explaining dark matter

we draw on the work of past dark matter models and experimental constraints from

both astrophysics and high energy physics. We consider the use of theories beyond the

Standard Model that attempt to solve other problems inherent to both cosmology and

particle physics and we explore new ideas that attempt to solve the dark matter problem

in a novel way.

To this end we will pursue in this thesis an explanation for the origin and nature of

dark matter using one of the most firmly established experimental results about its

existence [4], the ratio of matter to dark matter mass densities throughout the universe,

⇢DM ⇡ 5 ⇢M. (1.1)

This seemingly simple relation will serve as a useful guiding principle for developing an

explanation for dark matter as it suggests two key things about dark matter and its

origins. In the absence of any information about dark matter, other than the fact that

it exists, there would be no reason to assume its mass density ought to be comparable

to the ordinary matter density of the universe a priori. One could just as well guess the

ratio of stars in the observable universe to grains of sand on earth or any other pair of

unrelated large numbers.1 This motivates the idea that the approximate ratio of five

to one is not a result of a pure coincidence, but rather the result of a connected origin.

This similarity must however be the result of two di↵erent connections, since the mass

density, ⇢ = n⇥m, is the product of the number density, n, and the mass of the particle

species, m. The most natural explanation for the similarity in mass densities is then a

connected origin between matter and dark matter that explains both why nM ⇠ nDM

and mDM ⇠ mM . We must first then examine in detail the origin of the density and

1A quick estimate yields at least 7 orders of magnitude di↵erence for stars compared to grains of
sand.
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mass of the species that make up all of the matter that is visible to us. The cosmological

history of the particle species that make up this visible sector (VS) is due to the e↵orts in

astrophysical theory together with the calculations of Standard Model of particle physics

that combine to make up particle cosmology. In this chapter we will examine the story

of visible matter at length before turning to the implications for dark matter.

1.1 The Standard Model

The Standard Model describes all of the known types of conventional matter and their

interactions. It is based primarily on the language of symmetries, which are encoded

into the Lagrangian. These symmetries can be broken up into three categories. First

we have the Poincaré symmetry which guarantees that all of the interactions among

particles of the SM obey the principles of special relativity, and are translationally

invariant in both space and time. Second we have the local gauge symmetries SU(3)c ⇥

SU(2)L ⇥ U(1)Y which describe the forces of the SM. Finally we have symmetries such

as charge(C), parity(P ), and time(T ) and their compositions in addition to a number of

global symmetries such as chiral symmetry which is only approximate due to the quark

masses.

The matter of the Standard Model consists of three ’generations’ of fermions. Each

generation consists of two flavours of quark colour triplets, a charged lepton and a

neutrino. Each of these fermions can be further separated according to its left- and right-

handed components. This is a feature of massive Dirac fermions  , which are not their

own antiparticles and can be decomposed into two distinct irreducible representations

of the Lorentz group,  L and  R.2 The local symmetry group of the standard model

is based on the Yang-Mills theory of renormalisable gauge interactions. Using a Lie

algebra such as that of SU(N) defined through the commutation relations for the group

generators,
h
⌧a, ⌧ b

i
= ifabc⌧ c, (1.2)

2The exception to this may be the right-handed neutrino, which has not yet been observed. However,
recent experiments that have demonstrated neutrino flavour oscillation indicate that neutrinos do in fact
have extremely small masses. It is at present unknown if neutrino mass generation proceeds through
the involvement of right-handed neutrinos.
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we can consider a set of fermions that transform under a representation of this group,

 i(x) ! Eij(x) j(x), (1.3)

where Eij is a group element. In moving from a global symmetry to a local gauge theory

we make the choice to promote Eij from a static operator to a function of space-time,

Eij(x) = (e�✓
a
(x)⌧

a
)ij . The form of the ⌧a generator here is representation dependent.

Modifying the covariant derivative @µ of field theory to be truly covariant under the

group of choice adds connection fields, Aµ(x) = Aa
µ(x)⌧

a, to form Dµ = @µ � igAµ.

Infinitesimally we have the relationship between the local variable ✓(x) and gauge field

Aa
µ given by

�Aa

µ = �
1

g
@µ✓

a + fabc✓bAc

µ. (1.4)

The commutator of these new covariant derivatives, F a
µ⌫⌧

a = (i/g)[Dµ, D⌫ ], becomes

the building block with which we can write down the action of a pure Yang-Mills theory

through

S =

Z
d4x

✓
�
1

2
Tr
⇥
(F a

µ⌫⌧
a)2
⇤◆

, (1.5)

while the coupling of fermions to our gauge fields can be found through the covariant

action

S =

Z
d4x  ̄(i /D �m) . (1.6)

Within the Standard Model, the left-handed components of each of the fermions are

grouped together into doublets of the weak SU(2)L gauge symmetry while the right-

handed fermions are SU(2)L singlets and thus do not interact through the weak force.

SU(3)c groups together the colour triplets of quarks of each flavour and does not in-

clude any interactions among the di↵erent flavours. We detail the three generations in

Table 1.1.

The bosons of the Standard Model consist of the vector bosons, Ga
µ,W

i
µ, Bµ, one for

each generator of the symmetries of the gauge groups described above, as well as the

SU(2)L doublet of complex scalar bosons, �, which are responsible for the Higgs mech-

anism. Three of these scalar degrees of freedom will however be removed at the scale

of electroweak symmetry breaking (EWSB) to give mass to three vector bosons of the

SU(2)L ⇥ U(1)Y electroweak sector. This mechanism generates the masses of both the

quarks and leptons, a process which we will examine in the next section on symmetry

breaking.
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Generation I Generation II Generation III Summary
SU(2)L doublets includes:

Q1 =

"
ur,b,g

dr,b,g

#

L

Q2 =

"
cr,b,g

sr,b,g

#

L

Q3 =

"
tr,b,g

br,b,g

#

L

Colour SU(3)c triplet quarks
with hypercharge (1/3),

L1 =

"
e

⌫e

#

L

L2 =

"
µ

⌫µ

#

L

L3 =

"
⌧

⌫⌧

#

L

SU(3)c singlet leptons with
hypercharge (�1).

Up and down type SU(3)ch
ur,b,g

i

R

h
cr,b,g

i

R

h
tr,b,g

i

R
triplets with hypercharges of
(4/3) and (�2/3) respectively.h

dr,b,g

i

R

h
sr,b,g

i

R

h
br,b,g

i

R

Singlets of both SU(3)c andh
e

i

R

h
µ

i

R

h
⌧

i

R
SU(2)L, with hypercharge
(�2).

Table 1.1: The fermionic field content of the Standard Model of particle physics. We
list the representations under the Standard Model gauge group, SU(3)c ⇥ SU(2)L ⇥

U(1)Y .

1.1.1 Spontaneous symmetry breaking

The renormalisable self-interaction terms of the Higgs field allow for it to gain a nonzero

classical minimum in the Lagrangian and thus acquire a nonzero quantum expectation

value throughout the universe, generally referred to as a vacuum expectation value

(VEV). To see this we examine the case of the Higgs mechanism in the Standard Model.

In this case we have one Higgs SU(2)L doublet of complex scalar fields which we can

parameterise as four real scalar fields. The Lagrangian of this doublet is

L� =
1

2
Dµ�D

µ�� V (�). (1.7)

The quartic potential can be written as

V (�) = �
µ2

2
�†�+

�

4
(�†�)2, (1.8)
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with minimum given by

h�i =

2

4 0

vp
2

3

5 . (1.9)

In terms of the original parameters of the potential, the VEV has size given by v = µ/
p
�.

Defining new fields as excitations around this minimum, the Lagrangian is no longer

invariant under SU(2)⇥ U(1) transformations. The broken symmetry has a number of

consequences. Through the couplings of the Higgs doublet to fermions,

L � ylL�eR + ydQ�dR + yuQ�
cuR + h.c. , (1.10)

we obtain the mass terms of the fermions that couple the original left and right chiral

fields. Secondly, for each broken direction of symmetry, we gain a massive vector boson.

The surviving direction of symmetry forms a U(1) subgroup of SU(2)L⇥U(1)Y and this

is identified with electromagnetism with the photon as its associated massless vector

boson. Three of the real fields from the original doublet are consumed in the process of

creating the new massive vector bosons W+,W�and Z0. Finally the remaining degree of

freedom from the original doublet forms a massive neutral scalar, h, known as the Higgs

boson. The discovery of this particle in 2012 [5, 6] was a landmark moment in the history

of physics. The electroweak symmetry breaking process explains how the original gauge

symmetry of the SM evolved at low temperature to the SU(3)c ⇥ U(1)EM symmetry

of the present day that defines the electric and colour charges of leptons and quarks.

While the fundamental constituents of matter gain mass through EWSB it is important

to note that this is not the primary origin of mM , the mass scale of visible matter that

makes up ⇠ 1/6th of the matter of the universe. In fact the Higgs mechanism causes

< 0.05% of the visible matter component alone. In order to understand where most of

the VS mass comes from we must examine the SU(3)c component of the modern gauge

group and some of the consequences of renormalisation and running coupling constants.

1.1.2 Running coupling constants

The coupling constants that define the magnitude of the interactions of the Standard

Model are not actually constant with respect to the energy scale of interactions. The

gauge couplings represent the interaction strengths of the associated forces at a partic-

ular energy scale. The renormalisation group equations (RGEs) tell us how they evolve
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with energy if we measure their value at the interaction energy scale available at mod-

ern collider experiments. These RGEs depend on the field content and other parameters

of the operators in the Lagrangian of our model [7–9]. The coupling constant renor-

malisation of a gauge theory leads to expressing the constants in terms of divergent

multiplicative renormalisation constants, Z, which measure the size of counter terms

added to the bare Lagrangian to kill o↵ divergences, and a factor from dimensional

regularisation, " = d� 4,

g0 = gµ"/2
Z1

Z2

p
Z3

. (1.11)

Solving for the renormalisation constants by calculating the divergences of loop correc-

tions to gauge interactions lets us find expressions of the form

Z1 = 1�
g2
0

8⇡2"

✓
Cad + Cf

N

df

◆
+ ... ,

Z2 = 1�

✓
g2
0
NCf

8⇡2df"

◆
+ ... , (1.12)

Z3 = 1 +
g2
0

8⇡2"

✓
5

3
Cad �

4

3
Cf

◆
+ ... ,

with Cf , Cad the Casimir numbers or Dynkin indexes of the Lie algebra for fundamental

and adjoint representations for our gauge group defined through

Tr ⌧a⌧ b = CR�
ab (1.13)

for the choice of representation R. The number df is the dimension of the representation

and N is the number of generators of the group algebra. These allow us establish the

multiplicative running of g if we know its value at a particular energy scale. We can

then make use of the beta function defined as

�(g) = µ
dg

dµ
. (1.14)

This beta function then contains the dependence on Casimir numbers and can be cal-

culated to n-loop order without any dependence on ". This can be seen by a power

counting argument. Let

Zg =
Z2

p
Z3

Z1

(1.15)
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and consider its expansion in 1/",

Zg = 1 +
X

n

nX

k=1

an
k

g2n

"k
. (1.16)

The beta function with nonzero " can be given by

�"(g) = �
"

2
g +

g

Zg

@Zg

@g
�"(g), (1.17)

which gives the entire second term as �(g) in four dimensions with "! 0. We can then

consider

Zg�(g) = �
"

2
g2
@Zg

@g
+ �(g)

@Zg

@g
g. (1.18)

Inserting the expansion of Zg and comparing powers of "0 we see that

�(g) = �g2
X

n

nan1g
2n�1. (1.19)

This shows that, to any order of perturbation theory, the beta function can be found from

the coe�cient of the first order divergence in the expansion of Zg. It can be explicitly

verified to any order that the higher order divergences in (1/"2, 1/"3...) amazingly cancel

among themselves.

In the case of SU(3)c, the high energy behaviour found a natural explanation when field

theorists in the 1960’s realised that the asymptotically free nature of a non-Abelian gauge

theory could explain the free particle behaviour of quarks at high energy while being

strongly confined into hadrons such as protons and neutrons at low energy. The mass

scale of baryons in quantum chromodynamics (QCD) is now understood to originate from

the confining interactions within baryons. In particular we can reverse this perspective

to consider the original high energy, perturbative theory. In the low energy regime this

theory evolves toward a gauge coupling that becomes large, creating the phenomenon

of confinement. This is sometimes called ’infrared slavery’. The critical result of this is

that an energy scale common to baryons arises at the value of µ when g becomes large,

that is, the scale when QCD can no longer be described by a perturbative field theory.

This is referred to as the confinement scale, ⇤QCD, and it is the dominant contribution

to the mass of protons, neutrons and therefore to the entire periodic table, stars, galaxies

and indeed the dominant source of mM , the mass scale that makes up most of the visible
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matter of the universe. This completes our short review of the Standard Model. From

here we embark on reviewing some of the relevant theories that go beyond the SM that

will prove critical to our work.

1.2 Beyond the Standard Model

While the Standard Model has been very successful, it is an incomplete theory. There are

a number of unexplained problems that extensions beyond the Standard Model typically

attempt to solve. Here we will discuss briefly some of the most pressing issues, some of

which we will explore further in this work:

• The aforementioned question of dark matter, the dominant form of mass in the

universe.

• The baryon and lepton asymmetry. Why is the universe composed of matter rather

than antimatter or some mixture?

• Do the gauge forces unify into a larger grand unified theory at a high energy?

• The unknown nature of dark energy, the source of the universe’s accelerating ex-

pansion.

• The hierarchy problem. If high energy scales directly add mass corrections to the

Higgs mass, why is it so small?

• Experiments show that neutrinos undergo flavour oscillation. This implies that

they have nonzero masses. What is the origin of these masses and why are they

so small compared to the other fermions?

• What is the origin of the three unique generations of fermions and their di↵erent

couplings?

• Does supersymmetry, the unique solution of unifying spacetime symmetries with

gauge symmetries, exist?

• Is quantum field theory a valid description of interactions at high energy or is it

an emergent theory of an underlying structure such as string theory?

• Is there a consistent theory of quantum gravity?
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In this work we are primarily interested in models that solve the dark matter and matter-

antimatter asymmetries together in a natural way. Grand unified theories and ways of

explaining the mass of neutrinos will also play a part. Supersymmetric variants of these

models will be discussed along with discussions of the ways our model a↵ects issues

such as the hierarchy problem. In the next section we review some of these promising

extensions and their motivations.

1.2.1 Grand unified theories

Models that unify the fundamental forces of the Standard Model can be traced back to

the work of Georgi, Pati, Salam and Glashow following the unification of electroweak

theory [10–14]. The unifying of separate forces into singular phenomena can of course

be traced back further in the history of physics to Michael Faraday’s pioneering work in

the connection between electric and magnetic phenomena. Evidence in support of the

unification of the gauge forces of the Standard Model comes from a number of di↵erent

sources. One of these is the observed direction of the running gauge couplings at higher

energies and the fact that the gauge forces seem to approach a common point near a

scale of 1015 GeV. The running of these coupling constants can be seen in Fig. 1.1.
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3
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Figure 1.1: The evolution of the gauge couplings in the Standard Model of particle
physics.

The apparent union of these couplings makes sense if at such an energy scale, a larger

group that contains each of the SM gauge groups as subgroups was spontaneously broken
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such that from this point three independent gauge coupling constants could then run

independently. This larger group then constitutes a grand unified theory (GUT) that

would unite the known forces into a single force in the early universe. That the couplings

do not meet exactly may indicate that there exists new physics between the electroweak

scale and the GUT scale that alters the running for one or more of the gauge forces

such that they do meet precisely. As an example one can consider a model with extra

Higgs doublets as in [15] where a non-supersymmetric model with eight Higgs doublets

leads to gauge coupling unification. The minimal group that can accommodate all three

Standard Model interactions is SU(5) and this was indeed the focus of the earliest work

on gauge unification. It is remarkable that a second piece of evidence then emerges

when we examine how to fit the fermions into representations of SU(5). Taking a single

generation of fermions of the Standard Model we find that there are 15 chiral fermions.

One of the smallest number of representations that SU(5) could accommodate to fit these

only is with just two of dimension 5 and 10. It would then be quite a surprise to find

that the unique decomposition of 5̄+10 under the subgroup SU(3)c ⇥SU(2)L ⇥U(1)Y

is one of [(1, 2) + (3̄, 1)] + [(1, 1) + (3̄, 1) + (3, 2)]. This is exactly the dimensions of the

fermion representations of a single generation of the Standard Model, [L+d]+[e+u+Q],

and we further find a consistent assignment for left and right-handed states as well as

U(1)Y charges.

Furthermore we can observe that the scale of this unification is quite close to the scale

that would be required to su�ciently suppress the proton decay allowed by the unified

theory, in accordance with the observed stability of the proton. The decay is predicted

by interactions that make use of heavy SU(5) gauge boson mediators that can convert

quarks into leptons. Current experimental bounds have a half-life > 1.67 ⇥ 1034 years

while the GUT scale in Fig 1.1 suggests a possible half-life between 1031 and 1036 years.

If we extend the SM to include neutrinos with mass, as seems to be the case based on the

neutrino oscillation experiments, then extending the GUT group to SO(10) becomes a

compelling argument. Aside from requiring representations to accommodate all 16 chiral

fermions, we can observe that the 5̄+ 10 themselves can be unified minimally into the

irreducible spinorial 16 dimensional representation of SO(10). A high Majorana mass

scale for the gauge singlet right-handed neutrino of the seesaw model gains a natural

explanation in these SO(10) models when the right-handed neutrino acquires mass at the

SO(10) symmetry breaking scale while the rest of the 15 fermions continue to have their
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zero mass protected by gauge symmetries until the electroweak (EW) scale. This then

allows for an explanation of neutrino oscillations and the observed neutrinos having such

small masses caused by the seesaw mechanism which we discuss further in section 1.3.2.

1.2.2 Mirror matter

We have seen that the symmetries of the universe at high energy can increase to place

all of the gauge symmetries as subgroups of a single group. One of the other peculiar

features of the SM is the observed fact that it is not completely invariant under the Parity

symmetry (P) which interchanges spatial coordinates (x ! �x). This can be solved

however if the Parity operator interchanges fields with symmetric copies called mirror

fields. Such a theory of a high scale mirror symmetric Lagrangian can be motivated by

some heterotic string theory models which in the low energy limit lead to E8⇥E8 gauge

groups with equal particle content and the same gauge symmetry in two identical sectors

[16]. Models of mirror matter have been used to suggest a dark matter candidate in the

form of the matter of the mirror sector. These theories require that the two sectors

interact only minimally with each other with gravity being the primary indication of its

existence.

These mirror matter models of dark matter, Refs. [17–54], have a long history, however

it is clear from the ratio in Eq. 1.1 that there must be di↵erences between the two sectors

to avoid a 1:1 ratio of matter to dark matter. If there is a hidden sector to the universe, it

cannot be identical to our own and still explain the observed properties of dark matter.3.

As we will see in this work, the theoretical motivations of a hidden mirror sector can still

be satisfied with a unique dark sector if mirror symmetry, like grand unified theories, is

only a symmetry of the Lagrangian at high energy and is spontaneously broken in the

early universe.

1.2.3 Supersymmetry

Supersymmetric theories have their origins in the early attempts to unify gauge symme-

tries with spacetime symmetries. With the no-go theorem of Coleman and Mandula [55]

it was shown that the two symmetry groups could not simply be subgroups of a single

3For exactly mirror symmetric matter at the microscopic level, the necessary asymmetry can be
provided by di↵erent temperatures for the two sectors.
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larger group. A side step to this problem was discovered in that a Z2-graded Lie-algebra

could allow one to write down a theory that connected spacetime and gauge symmetry

generators [56–61]. This theory is based on the algebra,

[Pµ, Q↵] = 0,

[Q↵,M
µ⌫ ] =

1

2
(�µ⌫)

�

↵Q� , (1.20)

[Q↵, Q� ] = (�µ)↵�Pµ,

with Pµ and Mµ⌫ the generators of spacetime symmetries of translations and rotations

plus boosts and Q the generator that transforms between bosons and fermions. The

irreducible representations of this algebra are the supermultiplets of supersymmetric

theories and these fields contain both bosonic and fermionic degrees of freedom [62]. In

fact they have the same number of degrees of freedom for each type.

The consequences of writing down a Lagrangian in terms of supermultiplets is far reach-

ing. Unlike the potentials such as Eq. 1.8, supersymmetric theories are specified by

superpotentials, W , which for the purposes of being renormalisable can only contain

gauge invariant terms up to cubic order in the fields,

W =
X

n

�n �n +
1

2

X

n,m

mnm �n�m +
1

3

X

n,m,p

�nmp �n�m�p. (1.21)

The consequences for symmetry breaking with potentials such as these is examined in

Chapter 2 and Chapter 3.

Supersymmetry is a very appealing extension to the SM for a number of key reasons.

Firstly it provides a potential solution to the gauge hierarchy problem. If the GUT scale

exists, then the quantum corrections to the Higgs mass imply that the EW scale Higgs

that we observe is the result of a fine tuning between the bare mass and a correction that

cancels to one part in ⇠ 1015. With a symmetry between fermionic and bosonic degrees

of freedom however, the loop calculations from boson and fermion loops cancel exactly

and the EW scale becomes protected from GUT scale corrections, or indeed the physics

of any high energy theory. It is further remarkable that restoring supersymmetry near

the EW scale can adjust the running of gauge couplings to unify exactly, as in Fig. 1.2,

making supersymmetric GUT extensions to the SM even better motivated than non-

supersymmetric GUTs.
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Figure 1.2: The evolution of the gauge couplings in the Minimal Supersymmetric
Standard Model (MSSM), one of the simplest phenomenologically viable extensions to

the Standard model that contains the requisite superpartners.

Going back to the early universe, beyond the restoration of the EW symmetry and

possibly SUSY and GUT symmetries another possible unification arises at the Planck

scale where we expect the gauge forces to have a similar strength to gravity. Reversing

this perspective of symmetry restoration at higher energies leads us to consider the

evolution of the universe from the beginning, at a possible moment of maximal symmetry,

and the consequences for each stage of the expansion of the universe as it cooled. This

constitutes the field of early universe cosmology and we will examine the Big Bang model

in detail in the next section.

1.3 Big bang cosmology

The history of the universe is one of change. Since the acceptance of the big bang model

of cosmic expansion, the e↵ort to trace the timeline of the universe and its major epochs

has seen great success in combining the knowledge gained from particle physics with

astrophysical models and observations. This combined area of astroparticle physics has

been able to construct a sequence of events that explains how the chaotic plasma of
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the first moments evolves into the present day expanse of galaxies. It is however an

incomplete picture. Dark matter is just one of the missing pieces.

Edwin Hubble’s observations of far away galaxies receding from our own galaxy formed

the basis of the expansion model which describes the universe as continuously growing

in size. Today the Friedman-Lemâıtre-Robertson-Walker (FLRW) metric is the most

accurate description of the near isotropic and homogeneous spacetime we live in. It

contains an analytic solution to Einstein’s field equations of general relativity, in the

form of the Friedman equations, if the energy-momentum tensor is similarly assumed to

be isotropic and homogeneous. We can write the metric in polar coordinates as

ds2 = dt2 � a2(t)


dr2

1� kr2
+ r2d⌦2

�
, (1.22)

with d⌦2 = d✓2+sin2✓d�2. The value of k parametrises whether the universe is flat(k =

0), spherically curved(k = +1) or hyperbolic(k = �1). The Hubble parameter is defined

by

H =
ȧ

a
. (1.23)

We can calculate this in terms of the energy density, ⇢, and pressure, P , of the universe

and the expansion rate today, measured by Hubble’s constant H0 ⇠ 15km/sec per mega

light year. This allows us to establish the age of the observable universe to be 13.81

billion years [4]. This is the time since all of the matter we can see was localised into a

space smaller than the atom. The first Friedman equation,

H2 =
8⇡G

3
⇢�

k

a2
, (1.24)

removes the dependency on pressure and allows us to quantify the contributions to the

universe’s expansion among radiation, matter, the curvature and the poorly understood

dark energy which contributes to the accelerating expansion. We can label these contri-

butions in terms of their fraction of the critical density, that is the necessary amount to

make up the total energy budget today for a flat universe with k = 0,

⌦i =
⇢i
⇢crit

. (1.25)

The density ratio in Eq. 1.1 can be considered as a comparison of the two fractions of

the critical density, ⌦i, made up by matter and dark matter.
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This FLRW cosmology does not provide a fully satisfactory account for the homogeneity

and isotropy that we observe in the universe today because it involves a severe fine-

tuning of the initial conditions. To explain why the early universe that we observe

seems to have almost exactly the same temperature in all directions we need to add to

the first moments of the universe a period of rapid inflation where a single causal patch

of space was rapidly blown up exponentially in size. Following this period the universe’s

energy density essentially drops to zero and must undergo a period of reheating and

thermalisation. This is explained in ’inflaton’ models of inflation by the decay of a scalar

field, the VEV of which can initially drive the rapid expansion, transferring energy back

into Standard Model fields which then decay and interact until they reach equilibrium

at a reheating temperature Trh [63, 64].

If the expansion described by the FLRW metric since this period is slow enough, we can

describe the early universe as being in a state of thermal equilibrium. In this hot dense

early universe we can then write the number density of a species in terms of its degrees

of freedom and the phase space distribution among momentum eigenstates f(p),

n =
g

(2⇡)3

Z
d3pf(p). (1.26)

By combining the assumption of the homogeneity of the universe with the above we can

describe the local thermal equilibrium such that the function f(p) is truly independent

of spatial coordinates. The phase space distribution is then described in terms of the

temperature, T , and the chemical potential, µ, by the entropy maximising Fermi-Dirac

and Bose-Einstein distributions,

f(p) =
1

e(E(p)�µ)/T ± 1
. (1.27)

The energy density is then given by

⇢ =
g

(2⇡)3

Z
d3pf(p)E(p) (1.28)

and the pressure by

P =
g

(2⇡)3

Z
d3pf(p)

p2

3E
. (1.29)

In the early universe when the radiation density dominates the expansion, we can find

the total radiation density in terms of the number of relativistic species in the thermal



Chapter 1. Introduction 17

bath,

⇢r =
X

i

⇢i =
⇡2

30
g⇤(T )T 4, (1.30)

where g⇤(T ) is the total e↵ective number of degrees of relativistic freedom in the universe

at that temperature. This quantity can be calculated by counting the degrees of freedom

of individual species and their respective temperatures according to

g⇤(T ) =
X

i=B

gi

✓
Ti

T

◆
4

+
7

8

X

i=F

gi

✓
Ti

T

◆
4

. (1.31)

The first term of Eq. 1.31 counts bosonic degrees of freedom, while the second term

counts those of fermions. As species become non-relativistic they are removed from

the plasma and disappear from the above summation. This process continues until

only the lightest states consisting of protons, neutrons, electrons, photons and neutrinos

are all that remain. Neutrinos decouple from the plasma when the weak interaction

rate, mediated by W bosons, falls below the Hubble rate. Following this, when the

temperature drops below the mass of electrons, the energy of almost all electrons and

positrons are transferred to photons. Near 0.1MeV the light elements of the periodic

table were formed in the era of big bang nucleosynthesis (BBN). As the temperature

continues to drop we reach a point where photons can no longer ionise electrons that fall

into proton orbits and neutral hydrogen forms, beginning the process of recombination.

As the density of free charged particles drops, photons decouple and the light of this hot

dense early universe is still visible today in the form of the cosmic microwave background

(CMB) radiation, the redshifted photons that travelled unabated from the moment that

the average energy dropped su�ciently to turn the universe transparent.

1.3.1 The matter-antimatter asymmetry

One of the most significant missing pieces in a model of particle cosmology is the origin of

the baryon and lepton asymmetries in the universe. Almost all of the matter we can see

is made up of protons, neutrons and electrons. Since the discovery of antimatter in the

1930s the question of why the universe is composed of one and not the other, or a mixture,

has presented a great challenge. Antimatter is essentially identical to matter except that

it has opposite charge. Our current understanding of the evolution of the universe details

that matter and antimatter must have originated in near equal quantities. Following
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a period that generates an excess of one, the symmetric components annihilate into

radiation leaving a universe composed primarily of matter. The total lepton asymmetry

of the universe is, however, unknown as a significant lepton asymmetry may be stored in

the cosmic neutrino background, the remnant of light neutrinos from the early universe

when the neutrinos decoupled from the thermal bath. This could potentially balance

the asymmetry in charged leptons.

We can see that the present day density of matter is the result of the asymmetry between

the production of matter and antimatter in the early universe. In particular as most

of the mass of the universe comes from baryons such as protons and neutrons, it is

the baryon asymmetry in the early universe that is responsible for the number density,

nM , critical to our exploration of dark matter. The study of how the baryon and

lepton asymmetries originated is known as baryogenesis and leptogenesis, respectively.

Such theories are often directly connected to one another. There are many models of

baryogenesis, but common to all of them are some critical assumptions about generating

asymmetries described by Sakharov [65]. These conditions are:

• Baryon number violation.

• C and CP symmetry violation.

• A departure from thermal equilibrium.

The first condition allows one to have interactions that create a net increase of baryons

over anti-baryons. The second condition allows for these processes to occur at a di↵erent

rate, else the processes that create excesses of anti-baryons over baryons would prevent

an asymmetry from forming. The final condition allows for all of these processes to

occur at di↵erent rates compared to the time reversed interactions. Well known models

of baryogenesis include GUT baryogenesis, electroweak baryogenesis and A✏eck-Dine

baryogenesis. In the next section we will review one of the most appealing models,

baryogenesis via leptogenesis. We focus, in particular, on thermal leptogenesis derived

from the Type-1 seesaw mechanism. We will then review how electroweak sphalerons

can convert the generated lepton asymmetry into the present-day baryon asymmetry.
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1.3.2 Thermal leptogenesis

Thermal leptogenesis using the decays of heavy right-handed neutrino states is one of

the most compelling models of generating a lepton asymmetry in the early universe [66–

75]. This is due in part to the appeal of the seesaw mechanism for generating neutrino

mass [76–78]. In the seesaw model, the mass eigenstates of the RH neutrinos above

EWSB are Ni = NRi + N c

Ri
. The mass scale MN of these gauge singlet states can be

significantly larger than the EW scale as it is not protected by the SM gauge symmetry.

When we couple the lepton doublets to these states through y⌫L�NRi , we acquire Dirac

mass terms between the left and right-handed states in addition to the right-handed

Majorana mass scale MN . The relevant Lagrangian for neutrino mass including both

the Dirac and Majorana mass terms is

� L⌫ = y⌫L�NRi +
1

2
(NR)cMRNR + h.c. (1.32)

Diagonalising this mass matrix after EWSB yields a mass scale for light neutrinos

m⌫ ' �v2y⌫
1

MN

yT⌫ . (1.33)

While this is a remarkable result for models of neutrino mass, it was realised that it

also allows us to naturally fulfil the Sakharov conditions for the creation of a lepton

asymmetry.

The model comes with lepton number violating interactions involving the states Ni.

CP violation can arise due to the complex phases in y⌫ . The departure from thermal

equilibrium can then arise if the decay rate of heavy neutrinos,

�Ni =
(y†⌫y⌫)iiMi

8⇡
, (1.34)

falls below the Hubble expansion rate of the universe. One introduces the CP parameter

✏ to measure the asymmetry in the decays to leptons and anti-leptons. It arises if we

consider the interference between the tree-level and loop-level decays of heavy neutrino

states shown in Fig. 1.3,

✏i↵ =
�(N ! l↵H)� �(N ! l̄↵H⇤)P
↵
�(N ! l↵H) + �(N ! l̄↵H⇤)

. (1.35)
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In the one-flavour case this is

✏i =
1

8⇡

1

(y†⌫y⌫)ii

X

k 6=i

Im[(y†⌫y⌫)
2

ji]l

✓
M2

k

M2

i

◆
, (1.36)

with l(x) a loop function [66] given by

l(x) = x


1� (1 + x2)ln

✓
1 + x2

x2

◆
+

1

1� x2

�
. (1.37)

Figure 1.3: The interference between tree level decay and loop diagrams provides the
CP asymmetry that can explain the origin of a lepton asymmetry in the early universe.

The Boltzmann equations, parametrised in terms of z = M1/T , describe the competing

terms in the evolution of early universe particle densities and in the case of generating

a lepton asymmetry we can consider the two key rates,

dNB�L

dz
=� ✏D(NN1 �N

N
Eq
1
)�WNB�L (1.38)

dN1

dz
=� (D + S)(NN1 �N

N
Eq
1
).

The functions D, S and W measure, respectively, the rates of decays, scattering and

washout processes from both scatterings and inverse decays. For su�ciently heavy right-

handed neutrinos, MN , and complex phases in the Yukawa matrix, y⌫ , one can generate

a net asymmetry, NB�L, in the early universe that survives until to the present day

[69, 70, 72, 79–81]. At that time, this lepton asymmetry can be partially converted into

a baryon asymmetry through a process we will review in the next section.

1.3.3 Electroweak sphalerons

The conversion of an initial lepton asymmetry into a baryon asymmetry through B �L

conserving sphalerons is a natural way to explain the baryon asymmetry in light of a

possible large lepton asymmetry produced by thermal leptogenesis. In the pure gauge
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configuration for SU(2)-Yang Mills theory where

Aµ(x) = @µU(x)U�1(x), (1.39)

the matrices U(x) are elements of SU(2) and x extends over S3. Each U(x) is a di↵erent

vacuum state. Because SU(2) is itself di↵eomorphic to S3, these mappings, and therefore

the distinct vacua, can be classified by ⇧3(S3) = Z, that is, the mappings of the 3-sphere

to itself. The di↵erent mappings can be categorised by their winding number, n(U),

which is distinct for each:

n(U) =
1

24⇡2

Z
d�µ ✏µ⌫⇢� tr[(@⌫U)U�1(@⇢U)U�1(@�U)U�1]. (1.40)

The Cherns-Simons number is

NCS = �
1

16⇡2

Z
d3xK0, (1.41)

where Kµ = �2✏µ⌫⇢�tr(A⌫@⇢A� + 2

3
A⌫A⇢A�). This value is the same as the winding

number for vacuum configurations but varies from integer values away from the true

degenerate vacua. The di↵erent EW field configurations each satisfy the gauge condition

above, however pure infinitesimal gauge transformations cannot transform the fields to

a di↵erent vacuum state. To move from one vacuum state to another we must pass over

an energy barrier since we are passing through non-vacuum states. The change in NCS

is given by

�NCS =
1

16⇡2

Z
t

0

dt

Z
d3x@µK

µ (1.42)

= NCS(t)�NCS(0). (1.43)

Sphalerons are classical solutions to the electroweak equations of motion that describe

the saddle point between two neighbouring minima. These unstable solutions to the

electroweak field equations have a very low probability at the present temperature of

the universe, however at the temperature above the EWPT the rate of such vacuum

configuration transitions is considerably higher. Thermal fluctuations in the early uni-

verse have the potential to carry the system over the energy barrier in the classical

sense. These sphaleron solutions for the interpolation between vacuum states, that pass

through the saddle point, can become much more common in this era in comparison
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to the low probability quantum tunneling rate [82]. Such solutions can spontaneously

appear and decay in a small volume of space of size 1/M2

W
. The anomalous divergence

of the fermion currents coupled to SU(2)L is

@µj
µ

B
= @µj

µ

L
= nf

 
g2

32⇡2
@µK

µ
�

g02

32⇡2
@µk

µ

!
, (1.44)

where nf counts the number of families in the Standard Model and kµ = ✏µ⌫⇢�B⌫⇢B�

is associated with the U(1)Y field strengths. The integral over space for @µkµ yields 0.

However comparing the above expression to Eq. 1.42 shows that the change between

successive vacua is accompanied by a change in baryon and lepton number �B = �L =

nf�NCS , that preserves B�L [83]. If we begin with a lepton asymmetry, rapid sphaleron

processes can take the initial (B � L) and reprocess it to be shared between a baryon

asymmetry and lepton asymmetry,

B =
8nf + 4NH

22nf + 13NH

(B � L), L = �

✓
14nf + 9NH

22nf + 13NH

◆
(B � L), (1.45)

where NH counts the number of Higgs doublets. We can now review the class of models

that approaches the dark matter problem by considering how the dark matter density

might be connected to the origin of the baryon asymmetry.

1.4 Asymmetric dark matter

Asymmetric dark matter (ADM) models seek to unite the e↵orts of understanding the

origin and abundance of dark matter with theories devoted to understanding the origin

of the matter-antimatter asymmetry of the universe [84–102]. Central to these models

is the idea that whichever mechanism generates the matter-antimatter asymmetry in

the visible sector is related to the generation of dark matter through the creation of a

parallel asymmetry between dark matter and dark antimatter. Following the asymmetry

generation in the dark matter species, the symmetric components must annihilate either

into a form of dark radiation or into visible radiation. The dark matter density today

is then the remaining asymmetric component of dark matter, with the dark antimatter

removed from the universe. ADM models thus take the ratio in Eq. 1.1 to be the guiding

principle in the exploration of dark matter’s origins.
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They further fit into the cold dark matter (CDM) hypothesis which suggests that dark

matter is highly non-relativistic in the present day and can seed structure formation

early in the universe as they form over-densities under their self-gravity. This is in

contrast to hot dark matter (HDM) models in which dark matter is relativistic and

structure forms from the fragmentation of the largest superclusters. Current evidence

by the Planck experiment indicates that dark matter is made up of ⇡ 85% CDM [4].

Asymmetric dark matter models of CDM are directly in contrast with other popular dark

matter models such as the weakly-interacting-massive-particle (WIMP) dark matter

paradigm. These are motivated by the WIMP miracle, the observed coincidence that

the DM critical density can result from a population of massive particles with mass ⇠

the electroweak scale and a number density generated by a population that freezes out

from the early universe plasma near the point when a weak scale interaction rate falls

below the Hubble rate [103–105]. These WIMP models assume that dark matter was

in thermal equilibrium with the SM species in the early universe up until the moment

of freeze out when the stable DM particles chemically decoupled as their interaction

rate could not keep up with the expansion. If one accepts the WIMP hypothesis, the

similarity in the mass density of matter and dark matter in Eq. 1.1 remains a pure

coincidence. Other DM models such as keV sterile neutrinos [106–108] and axions [109–

112] have received much attention in the literature, though these too regard Eq. 1.1 as

a coincidence.

For ADM the relation between the visible and dark sectors depends on the interactions

between the sectors that exist within the theory. If one begins with the assumption that

following inflation the two sectors are already in thermal equilibrium (an assumption

which is not essential) then the two sectors will remain in thermal equilibrium so long as

there remains fast interactions between particles of each sector. If we are to consider that

the two sectors decouple at some temperate TDEC then all such equilibrating interactions

must become ine�cient at that point. Reactions can fall below the required e�ciency

for two reasons. Firstly if the temperature of the plasma falls below the mass of one of

the particles taking place in the reaction. Following the Boltzmann suppression of the

number density of such particles the reaction rate falls due to the kinematic constraints

as well as the number density of the suppressed species being less than the equilibrium

number density of all other particles in the reaction. Secondly the reaction can be

suppressed if the interaction rate as a function of temperature falls below that of the
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Figure 1.4: The evolution of the density of dark matter in various models compared to
the baryon mass density. B describes the mass density initially stored in both baryons
and antibaryons. The initial drop accounts for the loss in number density that follows
from the annihilation of symmetric components and must reach a minimum given by
the asymmetry produced by a baryogenesis mechanism. The vertical position of the
matter gradient is then defined according to this observed density of visible matter
today. The thermal history of WIMP models describes a fine-tuning of parameters to
create a density of dark matter that freezes out with a mass density almost identical
to matter. Similarly, axion models of dark matter require an initial abundance that
gains mass at a particular scale in order for the mass density to evolve on the same line.
Unlike the moment of matter-radiation equality, seen at the intersection in the lower
right, the apparent coincidence in scale of Eq. 1.1 is a relationship which must remain
true for the remainder of the universe.4Models of ADM consider a thermal history for

DM that follows that of visible matter.

Hubble rate. In this case the equilibrating reaction cannot on average keep up with

the rate at which the matter component of the universe is expanding and therefore

the reaction is no longer su�cient for maintaining thermal equilibrium in the plasma.

Models of ADM and WIMPS are not compatible as the generation of the DM number

density is di↵erent in each case. Minimal WIMP scenarios further suggest possible direct

and indirect detection signals for DM which as of this work have not been conclusively

observed.

In Fig. 1.4 we compare the WIMP hypothesis with models of axion dark matter and

4An exception to this may arise if one or both of dark matter and the proton prove to have finite
lifetimes.
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asymmetric dark matter [50]. In the WIMP case, the number density scales as radiation

until just after the density begins to drop when it reaches the freeze out point and

stabilises on the matter gradient at almost exactly the path of the baryon density. In

the case of axions, a particular preexisting axion density is produced in the early universe

at the Peccei-Quinn scale. Near the QCD phase transition temperature, a specific axion

mass is switched on to create a mass density for axions that begins to scale as matter at

almost exactly the baryon mass density gradient. In contrast, ADM models have DM

follow the same history as the baryon density. With an asymmetry between dark matter

and dark antimatter, the number density drops to the amount of asymmetry after which

it scales as radiation until it becomes non-relativistic and scales as matter.

The critical goal of this thesis is to utilise the extensions of the SM we have discussed to

develop a new class of asymmetric dark matter models that can simultaneously explain

why the mass scale of DM is similar to that of the proton. In doing so, we produce a

comprehensive model of asymmetric dark matter.

1.5 Summary

This completes our overview of the status of the Standard Model, in addition to the well

motivated extensions of modern physics. GUTs and supersymmetry are the primary

extensions to the symmetry set of the SM Lagrangian along with mirror symmetry.

Dark matter is the known missing piece of our picture and we draw from models of

asymmetric dark matter that seek to explain the observed similarity in the matter and

dark matter mass densities. Thermal leptogenesis and the sphaleron e↵ects above the

EWPT are the primary model we consider with regard to the creation of the matter-

antimatter asymmetry of the visible universe. Table 1.2 summaries the timeline of the

universe including some of the extensions to the SM we have discussed. We are now able

to outline the course of this thesis in incorporating dark matter and its origins into the

timeline of the universe. In Chapter 2 we will show how a mirror GUT theory can cause

mirror symmetry to be spontaneously broken to create a dark sector with a composite

dark matter candidate that has a mass which is naturally similar to the proton. In

Chapter 3 we will examine a larger GUT theory and the possible breaking chains in

the path to a low scale theory of matter and dark matter. In Chapter 4 we will study

the process of generating matter and dark matter simultaneously in a model of broken
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mirror symmetry and in Chapter 5 we examine in detail the mass spectra of possible

confining dark sectors in detail to consider exactly what the properties of dark matter

may be in all of our models. Chapter 6 then concludes with a discussion of all of these

theories and what they could mean for the future of dark matter physics.

Table 1.2: The major epochs of the universe based on our understanding of the SM
and cosmology, including some well motivated extensions. Dark matter, despite making
up the majority of all matter, is absent from this timeline. In Chapter 4 we will see an
example of how this timeline can be modified to provide a picture of the evolution of

both matter and dark matter.

1019 GeV t ⇠ 10�43s • Planck Scale era. The theorised scale where a quantum theory
of gravity is necessary to model early universe dynamics.

1015 GeV t ⇠ 10�38s • Inflation ends, grand unified symmetry breaking scale.

1012 GeV t ⇠ 10�30s • Heavy Majorana neutrino masses.

109 GeV t ⇠ 10�24s • Thermal leptogenesis begins to produce a B � L asymmetry.
• Electroweak Sphalerons convert a fraction of the lepton
asymmetry into a baryon excess.

103 GeV t ⇠ 10�10s • The Universe has cooled to allow the Higgs field to attain
a nonzero vacuum expectation value triggering the
electroweak phase transition.
• Fermions gain mass.

200 MeV t ⇠ 10�3s • The gauge coupling of SU(3)c becomes non-perturbative,
breaking the approximate chiral symmetry
and confining all free quarks into hadrons.

1MeV t ⇠ 180s • Neutrinos decouple from the thermal bath following the weak
interaction rate falling below the Hubble rate.
• The neutron to proton ratio is fixed in place.
• Hadrons combine into nuclei in the era of nucleosynthesis.
• Free electrons and positrons annihilate, reheating photons
above the temperature of the relic neutrinos.
• The universe’s expansion becomes dominated by matter
over radiation.

1 eV t ⇠ 1012s • Electrons and charged nuclei combine in the era
of recombination.
• The universe becomes transparent to photons leaving an
impression of the cosmic microwave background radiation on
the sky that remains today.
• The newly formed atomic matter coalesces in the era of
galaxy formation.
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Grand Unified Dark Matter:

SU(5)⇥ SU(5)

2.1 Introduction

We begin by exploring a class of model that can solve the similarity between the mass

scale of Standard Model nucleons and dark matter. The dependence of the running

coupling constant of QCD, ↵s(µ), on the scale µ can be expressed in two ways. The first

is as a function of a reference scale µ0 which gives an equation of the form

↵s(µ) =
↵s(µ0)

1 + (�0/4⇡)↵s(µ0) ln(µ2/µ0
2)
, (2.1)

where ↵s is known at the reference scale. Alternatively the dependence can be expressed

as

↵s(µ) =
4⇡

�0 ln(µ2/⇤2)
, (2.2)

in which the parameter ⇤ is the confinement scale, the value at which the strong coupling

constant becomes large as the energy scale decreases. This is a distinct feature of

asymptotic freedom in which �0 > 0 . At first order the beta function for SU(3) is

�0 = 11�
2

3
nf , (2.3)

where nf is the number of quark flavours that appear in the loop corrections at a given

energy scale. If one then knows the value of the strong coupling constant at a high

27
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energy scale U , for instance at a GUT scale, it is possible to calculate the value of the

confinement scale by evolving the coupling constant and taking into account quark mass

thresholds. The threshold values are actually at twice the mass of each quark as this is

the amount of energy needed to switch on the relevant loop correction. The resulting

equation is dependent on this high reference scale, U , ↵s at said scale, and the masses

of the fermions in the range between the two scales. One obtains

⇤ = 22/9e�2⇡/9↵s(U)U
7
9m

2
27
c m

2
27
b
m

2
27
t
. (2.4)

where mt,b,c are the top-, bottom-, and charm-quark masses. For a more general theory

the confinement scale is given by

⇤ = 21�
bu
bc e�2⇡/↵s(U)bcU

bu
bc m

bc�bb
bc

1
m

bt�bu
bc

3
m

bb�bt
bc

2
. (2.5)

The terms labelled bx in this form of the equation denote the values of �0 for di↵erent

numbers of contributing quark flavours. For instance, bb is the value above twice the

charm mass but below the bottom mass. We use this notation for the sake of the more

generalised relationship between energy thresholds and the DM confinement scale where

the number of massive quarks and the masses that they have are initially completely

free parameters. Only the masses of quarks larger than ⇤ itself appear explicitly in the

equation. It is important to note that this equation is very sensitive to the value of

the scale U . This sensitivity is avoided, however, in a non-Abelian dark sector if the

confining gauge group is also SU(3), as we explain below. To form the alternate gauge

groups we develop a systematic way of generating di↵erent dark sectors from unified

origins, with both containing an unbroken SU(3) factor.

The intention of this chapter is then to explore the broader possibilities of generating

spontaneous di↵erences in GV ⇥ GD mirror theories to answer why DM could have a

mass of the same order as the proton.

In a model with unified coupling constants, and where at a high energy the gauge groups

of each sector break to SU(3) at the same scale, the two values of the strong coupling

constant ↵s and ↵sD are the same from the GUT breaking scale all the way down to

the scale at which the number of possible fermions in the loop corrections first deviates

between the two sectors or further symmetry breaking occurs. This is highly desirable
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as it allows the equation of the dark confinement scale to be greatly simplified, as the

high reference scale can then be chosen to be at the deviation point when ↵sD has just

the value of the Standard Model ↵s at the scale of either the top quark or the heaviest

of the dark quarks depending on which of these two has greater mass. If we make the

further assumption for the sake of simplicity that all heavy dark quarks have the same

mass, then our equation becomes a function of just one continuous and one discrete

parameter, namely the dark fermion mass scale m and the number of fermions, nf , that

are at such a scale, ⇤(nf ,m). One could devise scenarios in which some of the heavy

fermions attain an intermediate mass scale and adjust the confinement scale accordingly.

The baryons themselves form from the light, or massless, quarks and therefore have mass

either almost or totally dominated by the confinement scale. This is similar to other

models that have explored the idea of dark QCD [113–120]. These dark QCD models

of recent years typically don’t have a direct connection to the visible sector. If one can

build a model of two connected sectors that allows for the dark sector to give masses

to coloured fermions at a low enough energy scale then accordingly one can provide an

explanation for the similarity in mass of visible and dark matter. We now explore fermion

mass generation with a view to having the visible and dark colour SU(3) gauge coupling

constants evolve di↵erently under the renormalisation group. Section 2.2 will introduce

the concept of asymmetric symmetry breaking. Section 2.3 will apply this formalism to

GUT symmetry breaking. Then in Section 2.4 we demonstrate the asymmetry in fermion

mass generation and how this a↵ects confinement. Section 2.5 discusses constraints in

our model and Section 2.6 and Section 2.7 repeat this analysis with a supersymmetric

model.

2.2 Asymmetric symmetry breaking

The journey to a comprehensive model of asymmetric dark matter begins with our

description of asymmetric potentials and the concept of asymmetric symmetry breaking

(ASB). In order to illustrate the range of possible asymmetric symmetry breaking models

and explain the basic features that drive asymmetric symmetry breaking, we examine

in this section a simple toy model that involves all of the most basic terms required and

demonstrate what vacuum expectation value patterns are possible. The simple model
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we use for illustration is based on four real scalars in two Z2 pairs,

�1 $ �2, �1 $ �2. (2.6)

The general potential can be written without loss of generality as

V = ��(�
2

1 + �22 � v2
�
)2 + ��(�

2

1 + �2

2 � v2�)
2

+ �(�
2

1�
2

2) + �(�
2

1�
2

2) + �(�21�
2

1 + �22�
2

2) (2.7)

+ ⇢(�21 + �2

1 + �22 + �2

2 � v2
�
� v2�)

2.

Terms such as �3
1
�2 + �1�32 etc. are taken to be absent because of additional discrete

symmetries. If each of the parameters is positive, then each of the six terms in this

potential is positive definite. Then each is individually minimised if it is equal to zero.

The first four terms are thus minimised by the condition that for each Z2 pair, one

field gains a nonzero VEV while its partner has strictly zero VEV. The fifth term is

minimised by the condition that the two nonzero-valued fields do not share a subscript

(sector). The last term is then already zero by the previous conditions and the entire

potential is minimised by these ’asymmetric’ configurations:

h�1i = v�, h�1i = 0,

h�2i = 0, h�2i = v�. (2.8)

Note that it could have been (�2,�1) that gained nonzero VEVs, i.e. we cannot know a

priori which way the symmetry will break.

A key feature of these asymmetric models is the ability of one asymmetry to induce

further asymmetry in additional Z2-related fields. If we take a second set of four fields

just as in the above case,

⌦1 $ ⌦2, ⌘1 $ ⌘2, (2.9)
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our new general potential can be written in the form,

V = ��(�
2
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These more complex ASB potentials will be discussed further in the next chapter when

we consider larger GUT groups. As before, with each term positive definite, the potential

is minimised for the following pattern of VEVs:

h�1i = v� , h�1i = 0 ,

h�2i = 0 , h�2i = v� ,

h⌦1i = v⌦ , h⌘1i = 0 ,

h⌦2i = 0 , h⌘2i = v⌘ . (2.11)

As usual this vacuum is degenerate with its Z2 transform. The potential has been con-

structed in such a way that the minima are when nonzero �,⌦ VEVs share a sector, and

the same is true for �, ⌘. This associated asymmetry allows us to link together particu-

lar subgroups from gauge symmetry breaking with appropriate Higgs multiplets for that

specific sector to give di↵erent masses to fermions. Large systems of many representa-

tions of scalar fields can take an initially mirrored GUT group and naturally populate

each sector with nonzero VEVs of di↵erent scales which are given to di↵erent represen-

tations thus making the two sectors highly divergent in their features though identical

in their origins. This toy model will serve as a proof of concept for the more involved

scenarios that we move on to, that is, replacing these singlet fields with representations

of GUT groups.
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2.3 GUT symmetry breaking

We now consider how an asymmetric VEV structure allows for separate mechanisms to

generate fermion masses in each sector. This chapter will explore an illustrative model

of asymmetrical symmetry breaking that uses the SU(5) GUT candidate. As noted in

the introduction, SU(5) was one of the first and most promising candidates to unify

the forces and matter of the Standard Model though its promise has waned with little

experimental support. Paired with a discrete symmetry, our SU(5)v ⇥ SU(5)d will be

broken to di↵erent gauge groups in the two sectors but with both featuring unbroken

SU(3) subgroups which have quantitative di↵erences. This then allows a numerical

di↵erence in the value of the dark sector confinement scale. To accomplish this we build

a symmetry breaking potential out of four scalar multiplets making use of two di↵erent

representations of SU(5), namely the 24 and the 10, each of which will have one of two

multiplets become the sole attainer of a nonzero VEV in just one sector thus facilitating

the di↵erent symmetry breaking patterns. In its most basic form this is just an extension

of the simple model of the previous section in which the two sectors are the visible and

dark and the fields �1, �2 are now 24 dimensional multiplets while �1, �2 become two

copies of the 10 representation of SU(5),

�v ⇠ (24, 1) , �v ⇠ (10, 1) ,

�d ⇠ (1, 24) , �d ⇠ (1, 10) . (2.12)

Consider firstly the 10 representation of SU(5) which one uses to spontaneously break

SU(5)d ! SU(3) ⇥ SU(2) (2.13)

by appropriate choice of the sign of parameters in a general quartic scalar potential.

The general renormalisable potential for a scalar multiplet � ⇠ 10 is ,

V10 = �µ2

t�ij�
ji + �t1(�ij�

ji)2 + �t2�ij�
jk�kl�

li. (2.14)

Note that i, j = 1, ..., 5 are SU(5) gauge indices with �ij = ��ji, and the subscript t

denotes ‘ten’. Choosing the parameter �t2 to be negative produces a VEV that breaks

SU(5) to SU(3)⇥ SU(2) [121].
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In the other sector the method of breaking SU(5) to the Standard Model is to use scalar

fields in the adjoint representation. The quartic potential is

V24 = �µ2

a�
i

j�
j

i
+ �a1(�

i

j�
j

i
)2 + �a2�

i

j�
j

k
�k
h
�hi , (2.15)

where the subscript a is for ‘adjoint’, and � is Hermitian traceless. Choosing �a2 to be

positive gives us the breaking

SU(5)v ! SU(3) ⇥ SU(2) ⇥ U(1). (2.16)

In this model we have four representations of scalar fields in the two Z2 pairs of Eqs. 2.14

and 2.15. The complete, general fourth-order, gauge-invariant scalar potential invariant

under the discrete symmetry is written in Appendix A. It contains two copies of each of

the above two potentials for the multiplets in each sector as well as all possible gauge-

invariant contractions between the 24 and 10 in each individual sector, that is, of the

style �v�v�v�v.

We can take these basic potentials written above and use them to write a simple outline

of the full potential. We first duplicate each of the above potentials to accommodate

each one’s dark counterpart, and add in the cross terms such as Tr(�2v)Tr(�
2

d
). We term

these

VA = V24 + V 0
24 + aTr[�

2

v]Tr[�
2

d
] (2.17)

and

VT = V10 + V 0
10 + t�vij�v

ji�dnm�d
mn. (2.18)

To this there are five remaining contractions that we must add to write the general

renormalisable potential. A portion of this potential, displayed in full in Appendix A,

can then be written as

V = VA + VT + C0(�dnm�d
mnTr[�2v] + �vij�v

jiTr[�2
d
]) + . . . (2.19)
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Extending the analysis of Section 2.2 we find that for a particular region of parameter

space in this potential, the global minimum is at

h�vi = vv

0

BBBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 �3/2 0

0 0 0 0 �3/2

1

CCCCCCCCCA

,

h�vi = 0,

h�di = 0,

h�di = vd

0

BBBBBBBBB@

0 1 0 0 0

�1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCCCCA

. (2.20)

By using the principles of the simple model and its parameter space from Section 2.2,

this potential is seen to induce the two SU(5) gauge groups to indeed break di↵erently

in each sector. In one sector the 10 representation attains a VEV breaking SU(5) to

SU(3)⇥SU(2) and the positive definite contraction terms push the 24 in that sector to

attain a VEV of zero. In the other sector, the 10 representation is driven to have a VEV

of zero by contraction terms with its counterpart and this forces the 24 to attain a VEV

that breaks this second SU(5) to the Standard Model gauge group. There is once again

no way of knowing which is the visible and which is the dark sector prior to symmetry

breaking. Once the symmetry is broken to the lowest state it shall simply be that we

label the SU(5) which is broken to the Standard Model group the gauge symmetry of

the visible sector and the alternatively broken symmetry is then the dark sector gauge

group.

2.4 Fermion masses

In SU(5) theories the fermions of the Standard Model are assigned to the 5 and 10 rep-

resentations. The product of these allows for mass generation through Yukawa couplings

to Higgs fields in 5, 10, 45 or 50 dimensional representations. As an example, we aim
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to have two di↵erent representations for our mass generation, a 5 to accommodate the

Standard Model Higgs doublet in the visible sector and another representation which

attains a nonzero VEV in the dark sector to give a di↵erent form of mass generation for

the dark sector quarks.1

The 10 representation already employed in the symmetry breaking only gives mass to

leptons and is thus unsuitable. We therefore choose to examine how a 5 and a 45 in

each sector can allow for a di↵erence in the scale of quark and dark-quark masses. The

45 has the interesting property of automatically leaving one dark quark massless [122],

which is a very useful feature for our application. The fermion multiplets are the same

in each sector, again respecting our initial mirror symmetry:

 v5 ⇠ (5, 1) ,  d5 ⇠ (1, 5) ,

 v10 ⇠ (10, 1) ,  d10 ⇠ (1, 10) , (2.21)

and the Higgs multiplets which take the place of the fields ⌦, ⌘ from Section 2.2 are

Hv5 ⇠ (5, 1) , Hd5 ⇠ (1, 5) ,

Hv45 ⇠ (45, 1) , Hd45 ⇠ (1, 45) . (2.22)

The Yukawa Lagrangian is

LF = y1 v5H
⇤
v5
 v10 + y2 v10Hv45 v10 + y1 d5H

⇤
d5
 d10 + y2 d10Hd45 d10 + h.c. (2.23)

The methodology of Section 2.3 can be extended to include the Z2 scalar pairs respon-

sible for fermion mass generation. The asymmetric symmetry breaking described in

Section 2.2 can induce consecutive asymmetries in more sets of fields. The dependence

for which way the asymmetry in the second set will fall is entirely dependent on the

weighting of the cross terms between the two sets.

It is in this manner that we arrange for the H45 in the visible sector to have a zero VEV,

while in the dark sector it gives mass to five of the six quarks at an indeterminate scale

1The idea of a non-Abelian gauge sector responsible for confining DM has been detailed in a number
of di↵erent works such as [115] in which the range of SU(N) groups and ultraviolet boundary conditions
of the coupling constants that allow for TeV-scale-confined DM were investigated. In [118] the scale of
gluinos and glueballs in an SU(N) hidden sector was seen to be adjustable to produce TeV scale glueball
DM that could agree with a number of astrophysical constraints of self-interacting DM.
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vd and reduces the dark sector symmetry from SU(3)⇥ SU(2) to SU(3). The invariant

component of Hd45 is

hHd45i
b5

a
= vd

0

BBBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 �3 0

0 0 0 0 0

1

CCCCCCCCCA

. (2.24)

On the other hand the H5 has a VEV of zero in the dark sector and a nonzero VEV in

the visible sector as per the minimal SU(5) model of giving mass to the fermions:

hHvi = vv(0, 0, 0, 0, 1), hHdi = 0. (2.25)

The scale vd can then be compared to the top line in Fig. 2.1 from Section 2.4 in which

we have five heavy dark quarks and a single massless dark quark. In such a scenario,

if the masses of the quarks are less than 1000 TeV then they produce dark confinement

scales less than 14 GeV. The remaining massless quark, a dark up-quark, forms a set of

neutral �(uuu) baryon-like states, lighter than all other possible dark colour singlets and

with mass completely dominated by the confinement scale. We will discuss such states

further in Chapter 5. This forms a dark analogue of the visible sector nucleon but with

mass that is an order of magnitude greater. If we consider minimal di↵erences in the

magnitude of the mass generating VEVs, which is quite natural to obtain if parameters

are of similar order, then at around the electroweak scale, ⇠246 GeV, a confinement

scale of 2.1 GeV is generated in the dark sector. This is around an order of magnitude

higher than the Standard Model QCD scale of 0.217 GeV.

2.5 Phenomenological issues

It is important to note that we merely assumed in the previous analysis that the gauge

coupling constants of the sectors unify at a high GUT scale. While the scenario of a

non-supersymmetric asymmetric model that we have described does not automatically

have gauge coupling unification, it is possible to bring the three coupling constants of

the Standard Model together at the GUT scale by the addition of extra Higgs mul-

tiplets. One must also consider the constraints from the experimental lower bounds
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Figure 2.1: The confinement scale of a dark sector as a function of the common mass
scale, mQ, for 1,2,3,4 or 5 dark quarks. This assumes a common origin of the gauge
coupling of the dark SU(3) theory and QCD at the UV scale. The vast range of possible
mass scales for fermions leads to only small changes in the dark confinement scale and
a reason why dark matter, consisting of dark baryons, should have a mass that is so

near that of the proton.

of proton decay. Decay modes from minimal SU(5) models have quite high bounds,

⌧(p ! ⇡0e+) & 1034 years [123] and the order of magnitude estimation for the width

� ⇡ ↵2
m5

p

M4

X

, (2.26)

demands that we must have at least MX ⇡ 4 ⇥ 1015. In [124] it was shown that con-

sistent proton decay limits and unification could be obtained with the addition of Higgs

multiplets in a non-supersymmetric SU(5).

Bounds on the dark baryons as DM from the bullet cluster observation are similar to

that in [125] where the self-interaction cross section of these nucleons � ⇠ 10�26 cm2

is compared to the upper bound of the DM self-interaction cross section  10�23 cm2

[125–127]. The scale that vd can take is something that we have not followed in full detail

opting to simply take as a guide the range of scale di↵erences that we can accommodate

in the simple model in Section 2.2. These lead us to see that the scale of vd for a factor

of five di↵erence between ordinary and dark baryons would need to be between ⇠ 30

GeV to 104 TeV depending on how many of the heavy quarks are given mass. The 45

representation of SU(5) would observe the lower bound of ⇠ 30 GeV as the mass scale
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would give this exact ratio. If, on the other hand, one only gave mass to a single quark

in the dark sector then a very high mass would be compatible with a confinement scale

of order the Standard Model.

Since the achievement of gauge coupling constant unification in non-SUSY GUT models

is somewhat ad hoc and, more importantly, su↵ers from the gauge hierarchy problem,

we now turn to SUSY models where these problems are absent.

2.6 Supersymmetric asymmetric symmetry breaking

We now develop a supersymmetric analogue of the model in Section 2.3, that is an SU(5)

theory with scalar fields in the 10 and 24. In building the supersymmetric potential we

will have to introduce another chiral supermultiplet in the 10 representation, Y , to make

it possible to include gauge invariant terms containing X ⇠ 10 in the superpotential.

We must of course also introduce a counterpart field Yd for the sake of the discrete

symmetry.

This allows for the construction of a potential including all of the fields from the non-

SUSY case. However, in order to facilitate asymmetric symmetry breaking it is key that

we have both terms that mix the fields under di↵erent representations in each sector

and cross terms between the two sectors. This is not possible with the set of fields as

they are. To achieve this we add a singlet scalar superfield S which transforms into

itself under the discrete symmetry. Doing so allows for the superpotential to generate

all of the necessary cross terms for asymmetric symmetry breaking through the F-terms

of the scalar potential. The chiral supermultiplets involved are then

�v ⇠ (24, 1), Xv ⇠ (10, 1), Yv ⇠ (10, 1),

�d ⇠ (1, 24), Xd ⇠ (1, 10), Yd ⇠ (1, 10), (2.27)

and

S ⇠ (1, 1). (2.28)
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The general superpotential

W = s1(XvYv +XdYd) + s2(�v�v + �d�d) + s3(�v�v�v + �d�d�d)

+ s4(Xd�dYd +Xv�vYv) + s5(�v�vS + �d�dS) + s6(XvYvS +XdYdS) (2.29)

+ s7S + s8SS + s9SSS

satisfies SU(5)v⇥SU(5)d gauge invariance and the Z2 discrete symmetry. The symmetry

breaking possibilities with this potential are discussed in more detail in Appendix A.

The complete potential has contributions from the F-terms of the superpotential, the

D-terms from those fields which are charged under one of the SU(5) symmetries and

soft mass and trilinear terms. Since we have a complete singlet S, the non-holomorphic

trilinear terms are taken to be absent [62]. The equation is

V = W i⇤Wi +
1

2

X

a

(g�iTa�
i)2 �mX(XvijXv

ji +XdijXd
ji)

� mY (YvijYv
ji + YdijYd

ji)�m�(�v�v + �d�d)�mSS
2

� a1(�d�d�d + �v�v�v)� a2(XdYd�d +XvYv�v), (2.30)

where

W i =
@W

@�i
(2.31)

and each �i is one our fields. There are nine parameters from the superpotential (s1,...,

s9), six parameters from the soft terms m�, mX , mY , mS , a1, a2 as well as the SU(5)

coupling constant present in the D-terms. With this field content we find that the scalar

potential then has the capacity to display asymmetric symmetry breaking by appropriate

choice of the parameters. The singlet field S is important here. Without it we could

not arrive at a scalar potential that has terms such as �v�v�d�d, that is, terms which

mix the two sectors. Without these it is not possible to create the necessary dependence

between sectors for VEV development to be opposing. There are non-minimal choices

one could make for the additional fields that would allow for these terms but for now

we choose to simply focus on the simplest case.

Consider a parameter choice with s4 and s5 large compared to the other superpotential

parameters, and with nonzero values of mX , mY and m�. F-terms of the style (�2
v�

2

d
)

or (XvXv�v�v) can then serve as the cross terms that create the asymmetric acquisition
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of VEVs. With largely positive quartic terms coming from the D-terms and negative

quadratic terms in the form of the soft masses, these cross terms can drive one variety

of each multiplet of a given dimensionality to zero in the same manner as the non-SUSY

case. It is however the case that many other W terms can spoil this pattern and so

many of the other superpotential parameters must be kept relatively small, at least an

order of magnitude. The parameter s9 we can allow to be large, as it will serve to bring

the value of S to zero. In one scenario one can generate a nonzero VEV for �v in the

visible sector, again breaking

SU(5)v ! SU(3)⇥ SU(2)⇥ U(1), (2.32)

and in the dark sector we have �d developing a VEV of zero. Then the multiplets Xd

and Yd together acquire nonzero VEVs which break

SU(5)d ! SU(3)⇥ SU(2). (2.33)

Being a pair of conjugate representations, they will induce breaking to the maximal

stability group of SU(5) according to Michel’s conjecture [128, 129] which states that

this is the case for a potential containing only a real representation or a pair of conjugate

representation. This does not strictly apply in this scenario, of course, because we

have other fields involved in the potential. However, we invoke it as numerical analysis

shows that symmetry breaking of this type occurs within the parameter space that gives

asymmetric VEV patterns. Appendix A contains further details of this parameter space.

For the 10 dimensional representation, the maximal stability group, or maximal little

group, is SU(3)⇥SU(2) as it is the only maximal group which observes a singlet within

the 10 of SU(5).

The supersymmetric case is more constrained in its ability to display asymmetric con-

figurations, though with suitable additions in particle content we have found that it is

a feature that a unified supersymmetric theory can have. Many of the parameters in

the superpotential must be kept quite small so as to not overpower the terms essential

for guaranteeing asymmetric VEV arrays. It would be interesting to explore this is-

sue further in developing a complete theory and examining more of the possibilities for

asymmetric SUSY sectors, however that is beyond the scope of this chapter.
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We now discuss the dependence of the confinement scale with various parameters in a

general supersymmetric theory.

2.7 Supersymmetric confinement

In the case of supersymmetric theories, the running coupling is modified by the additional

particle content. For SU(3) we are however only interested in those particles with colour

charge. Note that this analysis is not dependent on any particular choice of GUT group,

relying only on an SU(3)v ⇥ SU(3)d structure after GUT breaking.

In the MSSM the one-loop beta function for SU(3) is altered by the addition of the

gluinos and sfermions as per

�0 = 11�
2

3
nf � Cg �

2

6
ns, (2.34)

where nf (ns) is the number of quarks (squarks) and Cg = 2 is due to the gluinos. The

calculation of the dependence of confinement scale is more model dependent here as one

must first of all take into account the mass that visible sector gluinos and squarks take

to consider what value the coupling will take at the GUT or high reference scale µ0.

This will alter the precise calculation of the value of ↵3d at the scale at which the visible

and dark sector couplings unify. One can also consider in the dark sector how we might

separate the scales of the quarks and squarks. If we take the assumption that the SUSY

breaking scale is no higher than the mass scale of the dark quarks in the dark sector then

this provides a rough upper bound on the scale at which we place the supersymmetric

partners in that sector. This assumption is favourable also as it allows for a similar

analysis as before in that, if the two sectors have SU(3) gauge symmetry with the same

number of particles of each kind all the way down in energy to the mass of the heaviest

dark quark, then we can choose this as our high reference scale and take the value of

the coupling at this scale to be the same in both supersymmetric sectors. Then we can

establish a range of possible confinement scales that supersymmetric dark QCD could

have. We will examine the relationship between the confinement scale and these mass

scales as we did in the non-SUSY case. In this case we take the squarks and gluinos of

the dark sector to be quite light (under a TeV) and in such a scenario the dependence

is similar to the non-SUSY case but with a larger confinement scale, shown in Fig. 2.2
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Figure 2.2: Confinement scale dependence on fermion masses, in simple SUSY case,
almost identical to non-SUSY, but with the confinement scale axis multiplied by ⇠ 10.
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Figure 2.3: Confinement scale dependence on SUSY breaking scale for fixed dark-
quark mass scale of 100 GeV. The number of heavy quarks at the dark-quark mass

scale ranges from five at the top to one at the bottom.

We now examine the dependence of the dark confinement scale on the dark SUSY

breaking scale for a range of di↵erent dark-quark masses.

The scale of dark-quark masses is taken to be higher than the SUSY breaking scale

in each case. It must be noted however that the superpartners of heavy dark quarks

with masses above the SUSY breaking scale have the same masses as these dark quarks
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Figure 2.4: As for Fig. 2.3 but with a dark-quark mass scale of 1000 GeV.
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Figure 2.5: As for Fig. 2.3 but with a dark-quark mass scale of 104 GeV.

and therefore switch o↵ in the running prior to the other superpartners. This has

the additional e↵ect of a more pronounced change in the running at these quark mass

thresholds as multiple bosonic degrees of freedom are switching o↵ at the same energy

scale. Figures 4-6 show this dependence for di↵erent numbers of heavy dark quarks.

The value of the confinement scale is in general higher than the non-SUSY case though

we do have additional parameters to contend with in the form of the mass scales of the

squarks and gluinos.
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2.8 Summary

We have demonstrated in this chapter that asymmetric symmetry breaking can take

a mirror symmetric grand unified theory and spontaneously break it to form distinct

sectors that generate masses for fermions at di↵erent energy scales. We have further

examined how the mass scales of particle species in a dark sector can alter the running of

the gauge coupling constant of a confining non-Abelian gauge group. Critically we have

shown that if the gauge coupling of a dark confining group is constrained to equal that

of SU(3)c at the Planck scale, then the variation of a dark confinement scale compared

to that of QCD is very insensitive to the mass scales of fermions in the dark sector. This

provides a compelling explanation for why dark matter, in the form of composite states

of a dark confining group, must have a mass similar to that of the proton. We have

also shown that asymmetric symmetry breaking is compatible with supersymmetry and

explored how the confinement scale of a dark sector is a↵ected by the scale at which

supersymmetry is broken. In the next section we will examine how we can extend this

idea of generating a dark sector with a confinement scale similar to that of QCD.
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Breaking Chains of SO(10) ⇥

SO(10)

In this chapter we explore the ability of spontaneous symmetry breaking to generate

similar results from di↵erent GUT breaking chains in the two sectors in an SO(10) ⇥

SO(10) theory. These di↵erent gauge symmetry breaking chains can result from a

simple extension of the mechanism of ASB and allows one to create regions where the

coupling evolution di↵ers in the two sectors without considering fermion mass generation.

The models that we explore here are larger extensions to mirror symmetric models

which have been explored in many contexts [17–24, 26, 29, 30, 32–34, 36–38, 47], where

in this chapter the mirror symmetry serves only at high energy and the low energy

features of the two sectors can be vastly di↵erent. We use this to develop a new way

of explaining the similarity of DM mass. The next section will review the motivation

for such models by examining how the running of coupling constants in gauge theories

with unification can be used to link the colour confinement scales of the two sectors.

From there, Section 3.2 will discuss SO(10) models and their appeal as the choice of

GUT group to be implemented with this method. Following this, Section 3.3 will discuss

the paths of symmetry breaking that we can take within SO(10) models and how these

can be used in asymmetric symmetry breaking models to create the SM in one sector

with an SU(3) group in the dark sector. We will then move on to Section 3.5 where

we will explore similar models within the supersymmetric framework, while Section 3.6

will examine the results from a broad range of these possible scenarios and their e↵ect

45
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on the dark QCD scale. Finally in Section 3.7 we will discuss the constraints on some

of these models and the outlook for such theories.

3.1 Dimensional transmutation

Our objective is to develop SO(10)⇥SO(10) models that can account for the similarity

in mass of visible and dark matter. We have seen that the overwhelming majority of

the mass of visible matter comes from dimensional transmutation where a dimensionful

parameter is created at the scale at which a coupling begins to diverge and the theory

becomes non-perturbative. The masses of the protons and neutrons which dominate the

visible sector in the present universe come from the confinement scale of QCD where the

coupling constant of the colour force becomes large at low energy. As in the previous

chapter, this feature of asymptotically free theories presents an elegant way to introduce

mass scales into a theory. The capacity to yield such scales at low energy comes from the

negative sign of the beta function of a non-Abelian gauge theory. The running coupling

evolution is again described by the logarithmic dependence on energy scale,

↵s(µ) =
↵s(µ0)

1� (b0/4⇡)↵s(µ0) ln(µ2/µ0
2)
, (3.1)

such that at low energy scales the value of ↵s grows exponentially. This asymptote

sets the energy scale of the proton mass after chiral symmetry breaking when coloured

particles are confined to bound states. We can now consider a general non-Abelian gauge

theory for a group G where the full beta function at one-loop is given by

�(g)(1 Loop) =
g3

16⇡2

✓
�
11

3
RGauge +

4

3
RDirac +

2

3
RMajorana

+
2

3
RWeyl +

1

3
RC.Scalar +

1

6
RScalar

◆
, (3.2)

where �(g)(1 Loop) = g
3

16⇡2 b0 and the factors of R are the indices for the choice of

multiplet(m) defined as

Tr(⌧a⌧ b) = �ab ⇥R(m), (3.3)

and are calculated for each copy of the gauge fields, which are necessarily in the adjoint

representation of G, followed by the Dirac, Majorana, and Weyl fermions and finally

complex and real scalars. For the familiar QCD group SU(3), the beta function becomes
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the original

b0 = �11 +
2

3
nf , (3.4)

with nf the number of flavours. In the following sections we will continue to seek

explanations for the similarity of visible and dark matter masses by assuming that DM

similarly gains its mass by dimensional transmutation and that the confinement scales

of the two sectors are linked to each other by their di↵erent symmetry evolution from

a common starting point at the GUT scale. These di↵erences can occur spontaneously

from a completely mirror symmetric model thanks to asymmetric symmetry breaking

where the absolute minima of the potential are such that the vacuum structure of each

sector is necessarily di↵erent. The goal of this chapter is to construct a broad outline of

the possible models in which a GUT theory with a discrete Z2 symmetry can naturally

explain the similarity of visible and dark matter masses by spontaneously breaking the

symmetries of the two sectors through di↵erent subgroups while ending with at least

one copy of SU(3) in each sector. In this manner the confining scale of the dark QCD is

related to that of the Standard Model through the unified couplings at high scale, but

within intermediate symmetry breaking scales the coupling constants run di↵erently due

to the contribution from the gauge bosons of their respective groups. It thus becomes

e↵ectively the first term in Eq. 3.2 that changes at particular mass scales allowing for

the generation of di↵erent confinement scales rather than the second term in Eq. 3.2

at the quark mass thresholds as in the previous chapter. In this chapter we will not

examine any di↵erences resulting from quark mass thresholds though of course the two

e↵ects could be utilised in a single theory. We will focus on those cases where, after the

altered running of the two QCDs is established, the dark QCD coupling will confine at

a higher energy scale as this is more suited to ADM where mass scales of around one

order of magnitude higher are compatible. Figure 3.1 shows the divergence of the two

SU(3) theories after running at di↵erent rates for a segment of the high energy regime.

A number of other models have explored similar concepts of generating the confinement

scale of a dark QCD in order to explain the DM mass coincidence. In particular this

work is related to that of [130–133] where Z2 symmetric SU(5) and SO(10) GUTs were

explored for generating confined states at low scales. The present chapter however seeks

to expand the technique of asymmetric symmetry breaking beyond SU(5) theories to

the SO(10) gauge group and so we move on to a discussion of its features.
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Figure 3.1: The confinement of the dark sector QCD occurs at a higher scale than its
visible counterpart after asymmetric symmetry breaking. The top line shows ↵D after
running as SU(4) for two orders of magnitude at a high energy scale while ↵V remains

SU(3).

3.2 SO(10)⇥ SO(10) models

The group SO(10) presents an appealing avenue for GUT extensions to the Standard

Model beyond the minimal cases. It has the benefit of allowing each generation of

fermions to fit within a single SO(10) multiplet including the right hand neutrino. Most

SO(10) models require at least two Higgs multiplets to break the full symmetry down to

the Standard Model. Typical choices include one set of fields in 45 or 54 representations

and another in 10, 16 or 126 dimensional representations [122]. The choice of 126 for

the second is appealing as it allows the generation of fermion masses by Yukawa coupling

to the 3 copies of 16f which contain the fermions of the Standard Model. Since there are

two multiplets required to break SO(10) to the Standard Model gauge group, the work

of Chapter 2 can be naturally extended to SO(10) where the visible and dark sectors

required two Higgs representations in each sector to carry out asymmetric symmetry

breaking. By giving a nonzero VEV to all four representations in such a manner that

representations paired under the Z2 symmetry gain VEVs of di↵erent sizes, the gauge

group of each sector will be di↵erent for small segments of the range between the GUT

scale and the low energy theory. The parameter space of this particular type of model

can be quite small and therefore leads us to consider non-minimal multi-step breaking

chains in SO(10)V ⇥ SO(10)D models for more than four Higgs multiplets. We are

chiefly concerned with paths that can break SO(10) to a gauge sector containing SU(3)
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in the dark sector while breaking to the SM gauge group in the VS. Since our primary

goal is to generate dark confinement scales only slightly above that of the visible sector,

we will limit ourselves to models where this is the result, that is ⇤DM > ⇤QCD. The

case of ⇤DM = ⇤QCD can also appear, often in the limiting cases where the intermediate

scales approach the GUT scale.

To illustrate the concept consider the case where

SO(10)V !
MX

SU(4)⇥ SU(2)⇥ SU(2) !
MI

SU(3)⇥ SU(2)⇥ U(1), (3.5)

while in the dark sector

SO(10)D !
MX

SU(5) !
MI

SU(3)⇥ SU(2)⇥ U(1). (3.6)

In the visible sector this could be done with a Higgs multiplet which transforms as a

54 and which gains a VEV at the scale MX while in the dark sector we have a 45.

Then a pair of 16 + 16 or 126 + 126 representations could gain VEVs in both sectors

at the scale MI where each sector becomes Standard Model-like. The use of a pair of

conjugate representations allows for such fields to be included in the superpotential in

supersymmetric theories and also allows us to invoke Michel’s conjecture which states

that for conjugate pairs such as these, or for real irreducible representations, the symme-

try breaking must be to a maximal little group [128, 129]. This pair of breaking chains

is a particularly simple example where we have only two scales, MX and MI , however

in general it is possible for the intermediate scales of the two sectors to be independent.

In such a scenario we have only the distance between the two scales MX and MI that

determines the size of the di↵erence between the confinement scales between the two

sectors. This di↵erence can be approximately determined by calculating the value of the

dark sector’s ⇤ after running upward in energy from ⇤QCD to the lowest breaking scale

MI and then to the second, MX , before evolving back down in energy until we reach

the confinement regime. Using this it can be calculated that at one-loop the ratio of the

confinement scales is given by

⇤DM

⇤QCD

=
MX

MI

bD�bV
b0

, (3.7)

where the beta functions here are for the intermediate gauge groups in the intermediate
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range MI  M  MX for the two sectors, and b0 is the SU(3) beta function given in

Eq. 3.4. This calculation allows us to see that similar but di↵erent confinement scales

can be generated from a model with di↵erent gauge symmetries at high energy, and for

this reason we wish to consider the full set of possible symmetry breaking scenarios. In

the next section we will examine what breaking chains are possible in each sector.

3.3 Multi-step breaking chains

We wish to systematically explore all the possibilities for the di↵erent breaking chains

that can occur in each sector for an SO(10) model in order to examine which chains allow

for realistic models of both sectors. There are a number of paths through which SO(10)

can break down to a gauge theory containing the SM with two of the most notable being

through the Pati-Salam SU(4) ⇥ SU(2) ⇥ SU(2)[134] and the Georgi-Glashow SU(5)

[135] subgroups. For the visible sector we are mostly concerned with these particular

models, however for the dark sector we are free to choose any breaking which leaves

unbroken an SU(3) theory at low energy. This opens up a large number of choices of

Higgs multiplet representations in the dark sector. We will limit ourselves to the cases of

one and two intermediate scales as additional scales add complexity without necessarily

o↵ering more insight into possible outcomes. Below we list all of the possible breaking

chains we can consider for the colour force in the dark sector. We consider first of all

chains with just one intermediate scale, MI , between the confinement scale, ⇤DM , and

the GUT scale MX . These are

SO(10) ! SO(9) ! SU(3) (I)

SO(10) ! SO(8) ! SU(3) (II)

SO(10) ! SO(7) ! SU(3) (III)

SO(10) ! SU(5) ! SU(3) (IV )

SO(10) ! SU(4) ! SU(3) (V )

(3.8)
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and secondly we consider models with two intermediate scales, MI and MJ , between

MX and the low energy theory, with MJ � MI . These are

SO(10) ! SO(9) ! SO(8) ! SU(3) (V I)

SO(10) ! SO(9) ! SO(7) ! SU(3) (V II)

SO(10) ! SO(9) ! SU(4) ! SU(3) (V III)

SO(10) ! SO(8) ! SO(7) ! SU(3) (IX)

SO(10) ! SO(8) ! SU(4) ! SU(3) (X)

SO(10) ! SO(7) ! SU(4) ! SU(3) (XI)

SO(10) ! SU(5) ! SU(4) ! SU(3) (XII).

(3.9)

The chains we consider in the visible sector are most often IV and V as well as the

case where the two intermediate scales are close enough that the symmetry breaking

e↵ectively happens at one scale, as per SO(10) ! SU(3). We consider this variety as

the limiting case for the magnitude of the di↵erence between the two groups’ one-loop

beta functions and is useful for cases where the symmetry breaking chains of the two

sectors are in fact the same except for the scales at which breaking occurs. This can be

seen as delayed symmetry breaking where at one or more of the scales, MX ,MI and MJ ,

one sector breaks to a subgroup but the other does not. The analysis is no di↵erent than

other examples, it is simply that we contrast some intermediate gauge group’s running

with that of, for instance, the group SO(10) itself. In examining results we choose a

breaking chain for each sector from the list, but we will limit ourselves to only those

choices for which the dark scale runs faster in the intermediate range of the running

for the case of one intermediate scale. These cases demonstrate the key aspect of these

theories, that the gauge group of the intermediate energy scale can change the final scale

of dimensional transmutation in two SU(3) theories that originate from an originally Z2

symmetric G⇥G theory.

For the sake of proton decay limits the intermediate scale of the visible sectorMI must be

above experimental constraints. Additionally it is important for consideration of gauge

coupling constant unification in the visible sector which we will return to in Section 3.7.

The scale at which the dark sector becomes SU(3) is not so constrained, however if it

is significantly lower the confinement scales will distance themselves beyond the desired

amount. It may also have consequences for the stability of dark matter depending on
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other features of the hidden sector. It is also natural to consider the models mentioned

where Higgs multiplets that gain the same VEV in each sector allow for the lower

intermediate scale to be the same in the two sectors. Beyond this, the next highest

intermediate scale MJ is constrained only from above in that MJ < MX < MPlanck. In

the next section we present a proof that for non-SUSY models asymmetric symmetry

breaking can be realised in potentials that give minima which describe any of the model

types we discussed above.

3.4 Multi-Step asymmetric symmetry breaking

We will now outline how a Higgs sector can accommodate a large variety of symmetry

breaking chains in a GUT model of two sectors. As in Chapter 2, asymmetric symmetry

breaking can induce nonzero VEVs in Higgs multiplets which have Z2 partners in the

opposing sector that retain a VEV of zero. We consider again the simplest example that

has just two pairs of scalar singlet fields that transform under the Z2 symmetry as

�1 $ �2, �1 $ �2. (3.10)

We can then write down the general potential without loss of generality as

V = ��(�V
2 + �D

2
� v2

�
)2 + �(�V

2�D
2)

+ ��(�V
2 + �D

2
� v2�)

2 + �(�V
2�D

2)

+ �(�V
2�V

2 + �D
2�D

2) (3.11)

+ ⇢(�V
2 + �V

2 + �D
2 + �D

2
� v2

�
� v2�)

2,

where cubic terms are initially taken to be absent by additional discrete symmetries. If

all of the parameters in Eq. 3.11 are positive then each term in the potential is positive

definite and thus minimised if it is equal to zero. The total potential is then minimised

by VEVs that break the Z2 symmetry in such a way that

h�1i = v�, h�1i = 0,

h�2i = 0, h�2i = v�. (3.12)
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This minimum is also degenerate with its Z2 partner where it is �2 and �1 that gain

nonzero VEVs. We can then extend this idea to larger representations of gauge groups by

replacing the singlet fields with Higgs multiplets. The set of Higgs multiplets responsible

for symmetry breaking in each sector can thus be entirely independent for an arbitrary

number of representations we add to the theory. Let us firstly take the case of a set of

2n singlet scalar fields, HV 1, HD1, ..., HV n, HDn, where under the Z2 symmetry,

HV $ HD. (3.13)

We then consider general potentials where again all of the parameters are positive and

each individual term is positive definite and cubic terms are taken to be absent by

discrete symmetries. For the case of n = 3 we have

V = �H1(HV
2

1 +HD
2

1 � v2H1
)2 + �H2(HV

2

2 +HD
2

2 � v2H2
)2 + �H3(HV

2

3 +HD
2

3 � v2H3
)2

+ H2(HV
2

2HD
2

2) + H1(HV
2

1HD
2

1) + H3(HV
2

3HD
2

3)

+ �1(HV
2

1HV
2

2 +HD
2

1HD
2

2) + ⇢1(HV
2

1 +HV
2

2 +HD
2

1 +HD
2

2 � v2H1
� v2H2

)2 (3.14)

+ �3(HV
2

1HD
2

3 +HD
2

1HV
2

3) + ⇢3(HV
2

1 +HV
2

3 +HD
2

1 +HD
2

3 � v2H1
� v2H3

)2

+ �2(HV
2

3HV
2

2 +HD
2

3HD
2

2) + ⇢2(HV
2

3 +HV
2

2 +HD
2

3 +HD
2

2 � v2H3
� v2H2

)2.

In this case the minimum is given by

hHV 1i = vH1 , hHD1i = 0,

hHV 2i = 0, hHD2i = vH2 , (3.15)

hHV 3i = vH3 , hHD3i = 0.

The above minima could have been the reverse where the V and D subscripts are inter-

changed of course. This potential demonstrates the general procedure by which we can

generate non-supersymmetric asymmetric symmetry breaking multi-step chains. The

first two sets of fields form an asymmetric set as in Eq. 3.11 and for any additional field,

such as H3 we can choose for it to align with either the visible or dark sector based on

these choices: For coupling between fields that we want to break similarly we set � to

couple fields in opposing sectors and the ⇢ term to be that which allows for same sector

terms. In this case we choose for H3 to break the same as H1 so �3 couples fields of

di↵erent sectors. Then for mixing between H3 and fields that break di↵erently we set �
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to couple the same sector fields, where in Eq. 3.14 we have �2 coupling same sector fields

since H2 is aligned with the opposite sector to H1. Following this simple prescription

allows us to add an arbitrary number of multiplets to each sector with the asymmetry

determining which sectors will gain the symmetry breaking aspects of that multiplet.

We can then consider representations of SO(10) where now each HV n ⇠ (Rn, 1) and its

Z2 partner transforms as HDn ⇠ (1, Rn). The general potential will contain additional

couplings, however it will always contain an analogous set of terms to those above for

which we can always generate an asymmetric array of VEVs. These will then drive the

symmetry breaking of the two sectors to be completely di↵erent.

As we mentioned earlier the simplest variety of SO(10) model is one where the asym-

metry in the VEVs of the potential is not limited to distinguishing between zero and

nonzero, but rather creates an asymmetry in the size of the VEVs which are all nonzero.

Consider a potential of just two pairs as in Eq. 3.11 but with each of �,� < 0. In this

scenario we can create asymmetries of the form

h�1i = h�2i , h�1i = h�2i . (3.16)

We found it possible to generate a ratio of h�1i / h�1i ⇡ 103 for a very constrained

region of parameter space. Such a potential can minimally accommodate exactly the

number of Higgs multiplets necessary to break two copies of SO(10) to the same final

gauge group but with di↵erent gauge groups in the intermediate range depending on the

choice of Higgs multiplet. While simple in the number of multiplets, this minimal theory

su↵ers from a much smaller allowed parameter space than the previously discussed ASB

mechanisms. In particular the size of parameters must be fine-tuned slightly such that

we very nearly have � ' � and �� � � ' �. If we remove the condition of having

just two breaking scales and allow each of the four fields to attain di↵erent VEVs then

a much broader range of the parameter space is compatible.

We can also develop models in which additional pairs of multiplets that transform under

the Z2 symmetry are added as in Eq. 3.14 but break in such a way that they both gain

nonzero VEVs and thus both contribute to the symmetry breaking in each sector. This

is in fact the simplest method in select cases where the same dimensional representation

is useful for the symmetry breaking needed in each sector. This can be always be accom-

plished by, for example, having these added fields couple only weakly to the previously
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added fields.

We illustrate this asymmetric breaking with a particular SO(10) ⇥ SO(10) potential

which breaks the mirror symmetric GUT group to [SU(4)⇥SU(2)⇥SU(2)]V ⇥ [SU(5)⇥

U(1)]D. Within the context of the Standard Model, such a theory would need at least one

more Higgs multiplet in order to break the Pati-Salam group to SU(3)⇥SU(2)⇥U(1).

Within our variety of models we would require at least one additional mirror symmetric

pair of representations to break the symmetry in each sector to one containing SU(3).

Since the important results from this chapter are the generation of di↵erent symmetries

in the intermediate range we focus on constructing a potential that asymmetrically

generates the first step of the breaking chain. We consider a set of fields transforming

as

�V ⇠ (45, 1), �V ⇠ (54, 1),

�D ⇠ (1, 45), �D ⇠ (1, 54). (3.17)

With these we can follow the procedure detailed in the toy model and construct an

asymmetric potential. Each of the terms in the toy model has a direct analogue and

in addition to these there will be new terms from unique contractions of the Higgs

multiplets. The general renormalizable fourth order potential is

�
µ2

�

2
(�V ij�V ji + �Dij�Dji) +

��
4
((�V ij�V ji)

2 + (�Dij�Dji)
2)

+
↵�

4
(�V ij�V jk�V kl�V li + �Dij�Djk�Dkl�Dli) + �(�Dij�Dji�V kl�V lk)

�
µ2
�

2
(�V ij�V ji + �Dij�Dji) +

��
4
((�V ij�V ji)

2 + (�Dij�Dji)
2)

+
↵�

4
(�V ij�V jk�V kl�V li + �Dij�Djk�Dkl�Dli) + �(�Dij�Dji�V kl�V lk) (3.18)

+
�µ�

3
(�V ij�V jk�V ki + �Dij�Djk�Dki)

+ c1(�Dij�Dji�V kl�V lk + �V ij�V ji�Dkl�Dlk)

+ c2(�Dij�Dji�Dkl�Dlk + �V ij�V ji�V kl�V lk)

+ c3(�Dij�Djk�Dkl�Dli + �V ij�V jk�V kl�V li)

+ c4(�Dij�Djk�Dki + �V ij�V jk�V ki)

+ c5(Tr[(�V ik�V km � �V il�V lm)2] + Tr[(�Dik�Dkm � �Dil�Dlm)2]).
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The addition of the cubic term is necessary for the pattern of symmetry breaking we have

chosen. This di↵ers from the toy model cases where an additional Z2 symmetry protected

the potentials from such cubic terms. Relaxing this condition still allows for asymmetric

solutions for the VEVs of the two sectors however as discussed in Appendix B. For the

sake of simplicity we also set the parameters c3, c4, c5 to be zero as large values will

remove the asymmetric VEV structure. The analysis can be simplified by transforming

the fields into a simplified VEV form. For the adjoint representation this becomes a

block diagonal matrix with each block being a 2 ⇥ 2 antisymmetric matrix. For the

54 we have a traceless diagonal matrix. For the region of parameter space discussed in

Appendix B the potential is minimised with VEVs

h�V i = Mi

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

0 a 0 0 0 0 0 0 0 0

�a 0 0 0 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0 0

0 0 �a 0 0 0 0 0 0 0

0 0 0 0 0 a 0 0 0 0

0 0 0 0 �a 0 0 0 0 0

0 0 0 0 0 0 0 a 0 0

0 0 0 0 0 0 �a 0 0 0

0 0 0 0 0 0 0 0 0 a

0 0 0 0 0 0 0 0 �a 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

h�Di = 0

h�V i = 0

h�Di = Mj

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

b 0 0 0 0 0 0 0 0 0

0 b 0 0 0 0 0 0 0 0

0 0 b 0 0 0 0 0 0 0

0 0 0 b 0 0 0 0 0 0

0 0 0 0 b 0 0 0 0 0

0 0 0 0 0 b 0 0 0 0

0 0 0 0 0 0 c 0 0 0

0 0 0 0 0 0 0 c 0 0

0 0 0 0 0 0 0 0 c 0

0 0 0 0 0 0 0 0 0 c

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

. (3.19)
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In the above, SO(10)V breaks by the VEV of the 54 to SO(6) ⇥ SO(4) ⇠ SU(4) ⇥

SU(2)⇥SU(2) and the 45 serves to break SO(10)D to SU(5)⇥U(1) [136, 137]. Following

this symmetry breaking we would then need additional Higgs multiplets to break each

of the gauge groups to SU(3) colour theories after which the running couplings will

be parallel. Due to the complexity of analysing potentials with increasing numbers

of large dimensional Higgs multiplets we leave such detailed models to more specific

theories. We have however completed our stated objective of constructing an SO(10)

asymmetric potential, built according to the principles of ASB, and showing that by

choosing the breaking scales in the two sectors and the breaking chains listed previously,

asymmetric potentials can be constructed such that exactly that scenario is the minimum

of the potential. In the next section we attempt to generalise such possibilities for

supersymmetric models. We specifically look at the general case of real representations

which we can examine in an illustrative model.

3.5 Supersymmetric theories

As in Chapter 2 this analysis is predicated on the unification of coupling constants

and for this, among other reasons such as the gauge hierarchy problem, we will explore

supersymmetric varieties of these models in this section. Supersymmetric ASB requires

more fields than the non-SUSY case, specifically gauge singlets. Here we will outline a

general scheme to create asymmetric symmetry breaking chains from the superpotential.

In general, additional fields are required to allow for the scalar potential to have the

necessary terms that drive ASB since only including non-singlet Higgs multiplets does

not allow us to couple fields from the di↵erent sectors at all in the scalar potential.

The method that we outline below is not necessarily the simplest way to generate such

breaking for any specific choice of representations or breaking chains; indeed for many

simple models as few as one additional singlet is required. The purpose of this discussion

is to provide an existence proof that for any symmetry breaking chain we may consider

in Section 3.6, a scalar potential can be created which allows for such a vacuum solution.

We wish to consider a supersymmetric extension to the argument of the previous sec-

tion wherein pairs of Higgs multiplets can be added one at a time to a model in a Z2

symmetric manner while allowing us to choose which sector its VEVs will favor by appro-

priate choice of couplings. Take the case of the fields H1V , H1D, H2V , H2D, H3V , H3D,
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X1, X2, Y1, Y2, Z1, Z2,�, ✓, where under the Z2 symmetry

X1 $ X2, Y1 $ Y2, Z1 $ Z2,

�$ �, ✓ $ ✓. (3.20)

We then consider the general, renormalizable, gauge invariant superpotential that re-

spects the Z2 symmetry between the sectors. In this case we are assuming that the Higgs

multiplets form real representations though a similar argument likely exists for complex

representations as well. We do not write down all of the terms in such a superpotential,

only those which directly contribute to the asymmetric symmetry breaking terms as in

Eq. 3.14:
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The scalar potential then comes from the sum of soft terms and W i⇤Wi where we ignore

the D-terms for this analysis, though in general such terms will add positive definite

quartic interactions among those fields which are non-singlets which will not negatively

a↵ect the results discussed here. We examine the extreme case of the parameter space

where the terms shown dominate and all other parameters in the superpotential are at

or very close to zero. In this case the scalar potential minimally contains only those

terms that would exist without the purely singlet fields, as in Eq. 3.14 and which are

necessary for ASB, in addition to a number of other terms which contain the purely

singlet fields. If the sum of the soft mass terms and mass terms from the superpotential

F-terms for the singlet fields X,Y, Z, ✓,� is positive then these fields can maintain a VEV

of zero at the minimum. In this case the dependencies among the remaining fields is

entirely that of N pairs of fields under the Z2 symmetry exactly like that of the previous

section where the symmetry breaking of added fields can be chosen by the couplings to

the previously added fields and we only have quartic and quadratic terms to deal with.

Again we have that the symmetry breaking of an added multiplet such as H3 can be

chosen by its coupling strength to previously added fields, in this case the X and Y
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fields. In Eq. 3.21 we have chosen to include the couplings for which, upon taking the

derivatives with respect to X1, Y1, X2, Y2 create the terms that follow the prescription

discussed in Chapter 2. If one wished to have the field H3 break similarly to H2 instead

of H1 we simply reduce the magnitude of the parameters ⇢12,13 and replace them with

larger couplings for the terms (H3
2

V
X1 + H3

2

D
X2) and (H3

2

V
Y2 + H3

2

D
Y1) which were

previously among the omitted terms. Z1 and Z2 set the initial asymmetry between the

first two pairs of fields H1V,D and H2V,D while the F-terms from ✓ and � create the

remaining couplings in the ⇢ terms from Eq. 3.14. The magnitude of the VEVs of the

Higgs multiplets will however depend on the size of the soft mass terms that we add

and so it may be di�cult to construct models with very di↵erent mass scales. This may

however work to our benefit as large di↵erences in the values of ⇤QCD can be generated

in short ranges if the di↵erence in the beta functions is large. One can take this example

as a proof of concept that asymmetric models of any number of Higgs multiplets can be

built in SUSY with the addition of singlet fields. Now that we have demonstrated such

possible models in both supersymmetric and non supersymmetric cases we will move on

to displaying the numerical results for the dark confinement scale for di↵erent choices

of representations of the Higgs multiplets.

3.6 Dark QCD scale from asymmetric symmetry breaking

We firstly consider the set of models with just one intermediate scale which allows just

one energy range over which the beta functions of the two SU(3) groups di↵er. In this

case we are thus only considering models where the group in the dark sector has a larger

beta function. We consider both SUSY and non-SUSY models here since for this part

of the analysis the only discerning feature is the size of the beta functions which for the

SUSY case contains supersymmetric partners to consider as per Eq. 3.2. We take the

unification point to be where both sectors become SO(10), the GUT scale MX in our

context. We can however have cases where the dark sector remains as an SO(10) for

the range between MX and the intermediate scale MI while the visible sector changes

group. The analysis is the same with the intermediate gauge group of the dark sector

being simply SO(10).

There are three possibilities for the visible sector’s QCD parent group. It can remain

SU(3) up until MX while the dark sector changes at MI or it can become SU(4) or
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SU(5) at the MI and continue to the unification point. For the dark sector group we

examined the cases of the chains from Section 3.3. For the case of just two scales MX

and MI we plot the ratio of confinement scales by using Eq. 3.7. We look at the scale

MI and the di↵erence between the two scales �M = MX �MI . We display in Figure 3.2

and Figure 3.3 the minimal and maximal cases in terms of group choice, that is the

largest and smallest di↵erence in beta functions for each of the possible breaking chains

in the VS. The colour scale of each graph gives the ratio ⇠ = ⇤DM
⇤QCD

. We see in these

figures that quite a large range in the distance between the breaking scales is acceptable

if the beta functions are not very di↵erent in size, for example in the case of SU(3)

and SU(4). The magnitude of this di↵erence may be smaller depending on the particle

content of a specific theory though the Z2 symmetry between the sectors prevents these

matter terms in Eq. 3.2 from generating large di↵erences. For the limiting case of SU(3)

and SO(10), on the other hand, we have a much more constrained parameter space for

the choice of breaking scales.

In these cases the results follow from that of the one intermediate scale case, that is, the

final di↵erence in the confinement scales is a function of length of the range over which

the couplings run at di↵erent rates, and the magnitude of the di↵erence between the

beta functions. Because of this it is possible to create a dark sector with an acceptable

confinement scale for any breaking chain that is needed to satisfy visible sector GUT

constraints. For example, if a specific model requires a large range between the SO(10)

scale MX and the SU(5) scale MI in a theory like that of breaking chain IV, then we

can choose the scale that the dark sector breaks to SU(5) to be similar to MX and run

as SU(5) down to a lower scale than MI . We have seen that there are a large number

of possible cases for the breaking chains in each sector where the confinement scale in

the dark sector is just larger than that of the visible sector. We have however been

treating our GUT scale MX and intermediate scaleMI as free parameters and so in the

next section we will look to constraining the realistic models and look towards possible

future work in this area.

3.7 Phenomenological constraints

The methods detailed here for generating dark sectors with baryons of a mass scale just

above that of the proton are generalisable to many breaking chains and GUT models,



Chapter 3. SO(10)⇥ SO(10) 61

14.5 15.0 15.5 16.0 16.5 17.0
0

2! 1016

4! 1016

6! 1016

8! 1016

1! 1017

Log10!
MI

GeV
"

∆
M
#G

eV
$

Ξ

5

10

15

20

14.0 14.5 15.0 15.5 16.0 16.5 17.0
0

2! 1015

4! 1015

6! 1015

8! 1015

1! 1016

Log10!
MI

GeV
"

∆
M
#G

eV
$

Ξ

10

20

30

14.0 14.5 15.0 15.5 16.0 16.5 17.0
0

2! 1016

4! 1016

6! 1016

8! 1016

Log10!
MI

GeV
"

∆
M
#G

eV
$

Ξ

10

20

30

16.4 16.5 16.6 16.7 16.8 16.9 17.0
0

2! 1016

4! 1016

6! 1016

8! 1016

Log10!
MI

GeV
"

∆
M
#G

eV
$

Ξ

5

10

15

20

25

Figure 3.2: The ratio of confinement scales ⇠ = ⇤DM/⇤QCD in the two sectors for a
sample of non-supersymmetric breaking chains. The top left figure is generated from
SU(3)V and SU(4)D as the groups above the scale MI . The top right features SU(3)V
and SU(5)D above MI while the bottom left has SU(4)V and SU(5)D followed by the
bottom right with SU(3)V and SO(10)D. In each graph the vertical scale is �M while

the horizontal scale is MI below which both sectors contain SU(3) subgroups.

not all of which will satisfy phenomenological constraints such as current proton decay

limits. Here we briefly review some of the recent SO(10) GUT models which can satisfy

proton decay constraints in the visible sector. Proton decay bounds typically push the

scale of unification in SU(5) theories up to energy regimes consistent with the unification

of the gauge coupling constants. In some works such as [124] the SU(5) scale is as low

as MX ⇡ 4 ⇥ 1015GeV after the addition of extra Higgs multiplets. In particular we

examine some of the recent work on proton decay constraints in GUT models from

[123], [138] where while minimal SU(5) theories are ruled out, supersymmetric SU(5)

theories may still be viable while both supersymmetric and non-supersymmetric SO(10)

models can generate cases where proton decay is within experimental limits. We have

not gone into any depth on any specific choice of representations in this chapter so it

remains an open question how a particular model of ASB can work in the context of
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Figure 3.3: The ratio of confinement scales ⇠ = ⇤DM/⇤QCD in the two sectors for
a sample of supersymmetric breaking chains. The top left figure is generated from
SU(3)V and SU(4)D as the groups above the scale MI . The top right features SU(3)V
and SU(5)D above MI while the bottom left has SU(4)V and SU(5)D followed by the

bottom right with SU(5)V and SO(10)D.

these phenomenological constraints. The construction of realistic models also requires

the unification of the coupling constants which places strict constraints on the scale at

which the visible sector’s QCD parent group starts. We examine such examples for the

MSSM running and a non-SUSY case. Below we examine the development of a dark QCD

in an extension of this model where the SM gauge couplings unify at an intermediate

scale and the two sectors unify closer to the Planck scale. Figure 3.4 shows the case

where we have chain IV in the VS and chain X in the DS. This could be accomplished

with 45 and 16 or 126 Higgs multiplets in the VS, together with a 54 or 210’ and 16

or 126 in the DS. Figure 3.5 shows the direct breaking SO(10) ! SU(3) for the colour

force in the VS and chain XII in the DS which was discussed in Section 3.2.

In the MSSM, once we have fixed the scale at which the VS SU(3) is absorbed into

SU(5), MX and any intermediate scale of the dark sector can then be treated as free
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Figure 3.4: Supersymmetric model with one and two intermediate scales. In the
top plot we have SU(5) in the visible sector and SO(8) in the dark above the scale
MX ⇡ 1016 GeV while the bottom plot shows SU(5) in the visible sector and SO(8)
breaking to SU(4) at the scale MJ ⇡ 1017 GeV in the dark sector. Each graph displays
the running coupling of the SM forces (↵1,↵2,↵V ) from top to bottom and that of the
colour force in the dark sector(the lowest line). The value of the dark confinement scale

is 4.1 GeV and 1.9 GeV for the top and bottom cases, respectively.

parameters to generate the dark confinement scale. For the non-SUSY case we examine

the work of [139] in which a non-SUSY SO(10) model with a colour sextet allows for the

unification of the gauge coupling constants. In this case we can also examine a two step

process which has one segment working to diverge the couplings after SO(10) breaking,
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while the next part of the breaking regime brings the couplings closer again to result in

a dark QCD scale just one order of magnitude greater than the SM for breaking scales

which span over four orders of magnitude.
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Figure 3.5: Non-supersymmetric model with one and two intermediate scales. In the
top plot we have SU(3) in the visible sector and SU(5) in the dark sector above the
scale MX ⇡ 1015 GeV while the bottom plot shows SU(3) in the visible sector and
SU(5) breaking to SU(4) at a scale MJ > MI in the dark sector. Each graph displays
the running coupling of the SM forces (↵1,↵2,↵V ) from top to bottom and that of the
colour force in the dark sector(the lowest line). The value of the dark confinement scale

is 3.2 GeV and 2.5 GeV respectively.

One could examine a limitless number of such models in this context, extending the
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number of breaking scales, however we can see that for almost any choice in the number

of such scales and breaking chains in the VS, a model can be constructed which allows

a dark confinement scale through the e↵ect of asymmetric symmetry breaking. In this

sense it would be interesting to move on to developing a detailed model which resolves

a significant number of other issues associated with GUTs in the VS and then adapt

it to an ASB model in the pursuit of explaining dark matter also. A full theory of

baryogenesis in the two sectors can also place strict limits on the size of these intermedi-

ate scales particularly in the case of baryogenesis via leptogenesis or GUT baryogenesis

where the symmetry breaking scale can a↵ect the amount of baryon number violation

in the early universe. In addition to these constraints we must also consider the cur-

rent DM constraints on self-interaction where the bullet cluster observation sets results

on self-interaction for nucleon-nucleon like scattering in [125]. As we mentioned in the

previous chapter, nucleon-like scattering has a cross section of � ⇠ 10�26 cm2 and can

be compared to the upper bound of the DM self-interaction cross section  10�23 cm2

[125–127]. In the cases we have considered we were only concerned with maintaining

an SU(3) symmetry in the DS and so in many of these models the DM candidate only

interacts with itself through short range strong forces and gravity. Such neutral baryon

dark matter particles are thus compatible with current detection limits. We will discuss

these dark baryons in more detail in Chapter 5.

3.8 Summary

We have shown in this chapter that independent breaking chains for a mirror symmetric

GUT can lead to two distinct sectors that each have a confining gauge theory at low

energy. Asymmetric symmetry breaking allows us to build potentials which break the

symmetry in exactly this way, and furthermore, allow for multi-step breaking chains

where the intermediate gauge groups can be di↵erent and the intermediate symmetry

breaking scales of the two sectors can di↵er by orders of magnitude. Ultimately the mass

scale of dark matter, coming from the confinement scale of the dark sector, is constrained

to be similar to the mass scale of the proton by the insensitivity of the confinement scale

to these symmetry breaking scales and the small changes in the beta function that come

from the number of vector bosons of di↵erent gauge symmetries. We have shown that

these potentials are compatible with supersymmetry, as in Chapter 2.
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The combined results of Chapter 2 and Chapter 3 demonstrate a large parameter space

for mirror symmetric grand unified theories that allow for a composite dark matter

candidate which naturally solves the mass coincidence of the asymmetric dark matter

paradigm. We can now turn to a comprehensive model of asymmetric dark matter in

the next chapter that will use the previous ideas and combine them with a model that

can generate a similar number density of matter and dark matter.



Chapter 4

Comprehensive Asymmetric Dark

Matter

4.1 Introduction

That our universe appears to consist almost entirely of matter rather than antimatter

is a remarkable state of a↵airs. And yet it is this asymmetry that allows for the rich

structure in our observable domain of space, for without this asymmetry, all particles

and antiparticles might have annihilated into photons in the early stages of the universe

when all degrees of freedom were coupled together in the thermal plasma. We examined

in Chapter 1 how thermal leptogenesis is an ideal way to generate the matter-antimatter

asymmetry of the universe. In our mirror model paradigm, following the violation of

lepton number in each sector, a baryon asymmetry can be generated at low energy

through the sphaleron processes all the way down to the electroweak phase transition. If

a lepton number asymmetry exists, it can be partially converted to a baryon asymmetry.

If the lepton asymmetry generation takes place above the scale at which mirror parity is

broken we can then have a model that provides both critical pieces of the dark matter

puzzle, the number density and the mass.

We explore in this chapter a model of mirror sectors with two Higgs doublets in each

sector where we can utilise the ASB mechanism to see just one of the two Higgs doublets

responsible for mass generation in each sector. Critically, these doublets responsible for

EWSB in each sector will not however be mirror partners. We then have that the Yukawa

67
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couplings that generate mass for fermions in the two sectors will also be independent of

each other while, above the scale of EWSB, the mirror symmetry imposes that any CP

violation from the Yukawa Lagrangian will be the same. This results in equal lepton

asymmetries being created in the visible and dark sectors and following the EW phase

transitions in each sector the result is near-equal baryon asymmetries following the end

of rapid sphaleron processes.

In the context of mirror GUT groups we follow the work in the previous chapters,

though in this model, mirror symmetry remains following any GUT breaking phase

transitions. We thus focus in this chapter on both of the stated aims of generating

a similar abundance of visible and dark matter and explaining how the mass of dark

matter has a similar mass scale to the proton. For the first task, we use baryogenesis

via leptogenesis resulting from the decay of heavy Majorana neutrino states to realise a

lepton asymmetry generating mechanism. For the second task we use ASB to explain

the similarity of confinement scales.

In these two approaches our work follows from past theories of leptogenesis in a mirror

matter context. In particular, the use of a set of three right-handed neutrinos and

mirror partners was explored in [140] with temperature di↵erence between the sectors

generated after electroweak symmetry breaking. In that work the temperature di↵erence

is brought about by the asymmetric reheating of the universe with the Higgs, mirror

Higgs and a pure singlet scalar after they settle into the vacuum state. In Ref. [141] a

mirror model that relied on explicit breaking in di↵erent Yukawa couplings between the

sectors was considered. Similar models have considered simply a common set of singlet

neutrinos shared between the sectors [125, 142, 143]. In [125], thermal contact between

the sectors is maintained indefinitely by the Higgs portal term and kinetic mixing in

U(1) gauge bosons and their mirror counterparts. In such equal temperature scenarios,

one must remove relativistic degrees of freedom from the mirror sector prior to the scale

of BBN to be consistent with the constraints on �Ne↵. Recently [144] suggested that

in such models as the above, the two sectors could maintain thermal equilibrium down

to a temperature range with a large enough di↵erence in the degrees of freedom of the

two sectors, after which the subsequent rate of cooling in each sector would generate a

temperature di↵erence su�cient to allow for some relativistic species in the dark sector to

remain while being consistent with constraints from BBN. This can be seen by entropy

conservation. While the two sectors maintain equilibrium, if one sector undergoes a
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sudden drop in the number of degrees of freedom, much of its entropy density will be

transferred to the opposite sector.

After breaking mirror symmetry and thermally decoupling the two sectors we examine

how this type of model can allow for two distinct sectors that explain both the mass

and number density of dark matter. The chapter is structured as follows. In Section 4.2

we outline the field content of the model and Yukawa structure. In Section 4.3 we

examine the scalar potential and symmetry breaking of the model. Then in Section 4.5

we examine the neutrino mass matrix and comment on the ordering of massive neutrino

states before and after mirror parity is broken. In Section 4.6 we analyse the generation

of lepton and baryon asymmetries from the CP violating decays of the heavy right-

handed neutrinos. Finally in Section 4.7 we see the evolution of temperature in each of

the two sectors and examine the constraints on this model from astrophysical sources and

high energy physics. This includes a discussion of the thermal history of all species in

both sectors and an examination of possible sources of indirect detection of dark matter

in this model. We consider the details of nucleosynthesis in each sector and examine the

timeline of early universe cosmology in our combined model of matter and dark matter.

4.2 The model

Previous chapters have explored asymmetric symmetry breaking with mirror symmetric

GUT groups such as SU(5)⇥SU(5) and SO(10)⇥SO(10). In this work we will start with

a high energy scale mirror symmetric [SU(3)⇥SU(2)⇥U(1)]⇥ [SU(3)0⇥SU(2)0⇥U(1)0]

theory that duplicates the content of the Standard Model. A discrete Z2 symmetry inter-

changes visible sector (VS) particles with dark sector (DS) counterparts. For fermions,

left-handed fields are interchanged with right-handed fields of the dark sector and vice

versa,

�$ �0, Gµ
$ G0

µ, fL $ f 0
R, (4.1)

where �, Gµ and f refer to scalar, gauge and fermion fields. This requires a mirror

counterpart for every fermion of the Standard Model. In addition to these we have three

right-handed singlet neutrinos, N i

R
, and the corresponding left-handed states of the DS

sector, (N i

L
)0. We also add a second Higgs doublet, �2, with its own Z2 partner, �0

2
. This

second Higgs doublet allows us to use the mechanism of asymmetric symmetry breaking



Chapter 4. Comprehensive Asymmetric Dark Matter 70

to spontaneously break mirror symmetry and have �0
2
be the instigator of EWSB in the

dark sector while �1 takes on the usual role in our sector. While �1 and �2 carry the

same quantum numbers, their self couplings and the size of their couplings to fermions

will di↵er. In this respect our model is significantly di↵erent to [125] and [140] where

there existed only a VS Higgs and a mirror counterpart. We will examine in Section 4.6

how this second doublet also allows for successful thermal leptogenesis without potential

concerns from heavy neutrino mass corrections to the squared Higgs boson mass. The

principle motivation for the two Higgs doublets is however our decision to implement the

ASB mechanism into a complete model of ADM. By using ASB we can break the mirror

parity symmetry and give discernible di↵erences to each of the sectors. The absolute

minimum breaks the symmetry of the two sectors in di↵erent ways and we switch from a

theory of two identical sectors to a model composed of a visible sector, which carries the

observable properties of the Standard Model, and a dark sector with a phenomenology

of its own that yet retains an origin which guarantees that the mass content of the dark

universe will ultimately be highly similar. The total field content of the two sectors is

listed in Table 4.1.

Table 4.1: Field content and their representations under the mirror symmetric gauge
group, [SU(3) ⇥ SU(2) ⇥ U(1)] ⇥ [SU(3)0 ⇥ SU(2)0 ⇥ U(1)0]. In addition to a mirror
counterpart to all of the SM fields listed in Chapter 1, both sectors contain an additional

Higgs doublet to facilitate asymmetric symmetry breaking.

Li

L
⇠ (1, 2,�1

2
)(1, 1, 0) (Li

R
)0 ⇠ (1, 1, 0)(1, 2,�1

2
)

ei
R
⇠ (1, 1,�1)(1, 1, 0) (ei

L
)0 ⇠ (1, 1, 0)(1, 1,�1)

Qi

L
⇠ (3, 2, 1

6
)(1, 1, 0) (Qi

R
)0 ⇠ (1, 1, 0)(3, 2, 1

6
)

ui
R
⇠ (3, 1, 2

3
)(1, 1, 0) (ui

L
)0 ⇠ (1, 1, 0)(3, 1, 2

3
)

di
R
⇠ (3, 1,�1

3
)(1, 1, 0) (di

L
)0 ⇠ (1, 1, 0)(3, 1,�1

3
)

N i

R
⇠ (1, 1, 0)(1, 1, 0) (N i

L
)0 ⇠ (1, 1, 0)(1, 1, 0)

�1 ⇠ (1, 2, 1
2
)(1, 1, 0) (�1)0 ⇠ (1, 1, 0)(1, 2, 1

2
)

�2 ⇠ (1, 2, 1
2
)(1, 1, 0) (�2)0 ⇠ (1, 1, 0)(1, 2, 1

2
).

4.2.1 Yukawa couplings

The use of additional Higgs doublets in extensions to the SM has a history ranging from

minimal extensions of a single extra Higgs doublet to larger extensions in which the

observed Higgs state discovered at the LHC is the lightest state of a largely decoupled

Higgs sector [145]. Models such as supersymmetry require at least two Higgs doublets

to generate mass for the fermions. In this work we will explore the implications of
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having two Higgs doublets in the VS and associated mirror partners in the DS. Models

of just two Higgs doublets are typically separated into three generic types based on the

discrete symmetries they impose. Type-I has just one of the doublets coupling to all

fermions while Type-II models have one couple to the up-type quarks and the other the

down-type. Type-III, which is the model that matches our own within the context of

the visible sector, gives both doublets the same quantum numbers and therefore allows

each of them to couple to all flavours of quarks and leptons. In Type-III models the

fields can be expressed in a basis where only one doublet gains a nonzero VEV while

the second doublet retains a vanishing VEV. This is known as the Higgs basis [145].

This variety of model with a second Higgs doublet introduces highly constrained flavour

changing neutral currents (FCNC) at tree level due to the fact that couplings between the

fermions and multiple Higgs doublets cannot in general be simultaneously diagonalised.

Our work can be compared to other models of additional Higgs fields in addressing

the nature of dark matter such as Inert Higgs doublet models [146, 147]. In this work

however we gain a dark matter candidate from the stable baryons of a dark sector with

the additional Higgs fields facilitating the mirror parity breaking of the two sectors

and the associated asymmetric gauge symmetry breaking. The second doublet is also

a second source of CP violating decays for heavy neutrino states in each sector at the

scale of thermal leptogenesis. The leptonic Yukawa couplings are

LLepton = ⌘L1 ij
Li

L
ej
R
�1 + ⌘L1ij L

i

R

0
ej
L

0
�0
1 + y1ij L

i

L
N j

R
�̃1 + y1ij L

i

R

0
N j

L

0
�̃0
1

+ ⌘L2 ij
Li

L
ej
R
�2 + ⌘L2 ij

Li

R

0
ej
L

0
�0
2 + y2ij L

i

L
N j

R
�̃2 + y2ij L

i

R

0
N j

L

0
�̃0
2 (4.2)

+ f1ij L
i

L
N j

L

c0
�̃1 + f1ij L

i

R

0
N j

R

c

�̃0
1 + f2ij L

i

L
N j

L

c0
�̃2 + f2ij L

i

R

0
N j

R

c

�̃0
2 + h.c.

Mirror parity enforces that the coupling of the doublets is the same as their mirror

counterparts however terms such as y1, and y2 will not be the same and may di↵er by

orders of magnitude. In addition to these we have the ordinary Majorana mass terms

along with a cross-sector mass term,

Mij

⇣
(N i

R
)cN j

R
+ (N i

L
)c

0
N j

L

0⌘
+ PijN i

R
N j

L

0
+ h.c. (4.3)
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For the quark Yukawas we have,

LQuark = ⌘u1 ij Q
i

L
uj
R
�1 + ⌘u1 ij Q

i

R

0
uj
L

0
�0
1 + ⌘d1ij Q

i

L
dj
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�̃1 + ⌘d1 ij Q

i

R

0
dj
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0
�̃0
1

+ ⌘u2 ij Q
i

L
uj
R
�2 + ⌘u2 ij Q

i

R

0
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0
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2 + ⌘d2 ij Q

i

L
dj
R
�̃2 + ⌘d2 ij Q

i

R

0
dj
L

0
�̃0
2 + h.c. (4.4)

We also consider the various other ways that the two sectors can interact. The photon-

mirror photon kinetic mixing term,

✏��0Fµ⌫Fµ⌫
0, (4.5)

allows for visible sector states to have dark U(1) millicharges. This parameter is con-

strained by orthopositronium decay experiments [148] to the degree of ✏��0  1.55⇥10�7.

Such terms are naturally absent in GUT contexts where they could only be generated

by scalars that provide a mediating interaction between the sectors that persists in the

mirror GUT regime. We also consider Higgs portal interactions. These will be explored

further in the next section and later in the discussion of the thermal history. Neutrino

interactions that mix the two sectors will also be present, which we will further discuss

in Section 4.5. As we elaborate on in Section 4.7, the two sectors can only maintain any

rapid interactions until a temperature TDEC. This limits the size of any portal terms in

our model and these individual limits will depend on the interaction rate’s scaling with

temperature. This means that no interaction between the sectors can maintain thermal

equilibrium indefinitely. This further constrains the kinetic mixing term ✏��0 due to the

scaling of photon-mirror photon interactions with temperature.

While many models of dark sectors consider the possibility of the dark sector at a lower

temperature from the outset, for example in [149], this work has the benefit that the

separate Higgs doublets which facilitate EWSB in each sector can spontaneously break

mirror symmetry which later causes a separation in the temperature of the visible and

dark sectors. This and the other di↵erences between the two sectors is accomplished

without the need for any soft symmetry breaking mass terms.1

1The domain wall problem caused by the existence of our Z2 symmetry may ultimately require a
solution such as soft breaking terms. A soft breaking that gives some separation in the squared mass
terms of �i and �0

i could be considered. Another possibility is a small di↵erence between the Majorana
masses of NR and N 0

L as in [140]. Other solutions include non-restoration of one or both EW symmetries
[150], embedding the Z2 symmetry within a continuous symmetry, or the possibility of breaking mirror
symmetry prior to inflation in order to make the typical domain wall separation larger than the horizon
distance[151].
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4.3 Higgs potentials

The scalar potential of our model consists of our four Higgs doublets �1,�0
1
,�2,�0

2
. In

the simplest model of asymmetric symmetry breaking, only one Higgs multiplet gains a

nonzero vacuum expectation value for each copy of the SU(2)⇥U(1) gauge group. Such

a potential can be constructed using the minimal asymmetric potential,

VASB = �1
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.

In this simplest potential, the condition of asymmetric breaking is given by requiring

that each of the parameters, [�1,�2,1,2,�1,�2], are real and positive definite. In this

case the potential is minimised when each of the terms in the potential is zero which is

given by the vacuum state,

h�1i =

2

4 0

vp
2

3

5 , h�0
1i = 0,

h�2i = 0, h�0
2i =

2

4 0

wp
2

3

5 . (4.7)

In the unitary gauge we can then introduce the definitions,

�1 =

2

4 0

1p
2
(v + h)

3

5 , �0
1 =

2

4 H+

D

1p
2
(HD + iAD)

3

5 ,
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2

4 H+

1p
2
(H + iA)

3

5 , �0
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2

4 0

1p
2
(w + hD)

3

5 , (4.8)

and obtain a 2⇥ 2 mass matrix

1

2

⇣
h , hD

⌘
2

4 2(�1 + �2)v2 �2vw

�2vw 2(�2 + �2)w2

3

5

0

@ h

hD

1

A . (4.9)
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We can see that the eigenstate fields are admixtures of visible and dark states. For the

remaining eigenvalues we have,

mH = mA = mH± =

r
1

2
2w2 +

1

2
�1v2, (4.10)

mHD = mAD = m
H

±
D
=

r
1

2
1v2 +

1

2
�1w2. (4.11)

We can see in Eq. 4.9 that we recover a Standard Model physical Higgs mass formula

in the limit that �2 ! 0 as the matrix becomes diagonal and the Standard Model

Higgs boson loses the extra term. This is the same limit that switches o↵ the only

o↵-diagonal mass term that couples the two sectors, ⇠ vw�2hhD). If the EW scales

of the two sectors are di↵erent, it is necessary to take the limit that �2 does not mix

the two energy scales. In this limit, the asymmetric VEV is still the minimum and we

can see that the massive states besides h all have mass terms that are proportional to

w. This is significant in that the scale w, in the asymmetric configuration, can raise

the masses of all the scalars of both sectors except for the SM Higgs boson in the case

that w > v. We now consider this feature in the context of a full mirror symmetric

potential with two Higgs doublets in each sector. In contrast with previous chapters,

which dealt exclusively with potentials that made use of the fact that the multiplets in

each sector were in two di↵erent sized representations of the gauge group, in this work

we are considering identical representations. The most general potential in this case,

VM2HDM = +m2
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i
,

features a large number of new terms which we must consider carefully. While such a

potential increases the possible minima configurations, we can always perform individual
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basis rotations of the doublets in each sector to return the doublets to a ’Higgs Basis’

where only one doublet has a nonzero VEV. What we then require in the context of

asymmetric symmetry breaking is that the mixing in the two sectors are asymmetric.

In other words, applying the Higgs basis transformation to each pair of doublets simul-

taneously will only put one sector in the Higgs basis. In this context we will consider

the above general mirror 2HDM where the global minimum is given by

h�ii =

2

4 0

vip
2

3

5 , h�0
ii =

2

4 0

wip
2

3

5 . (4.13)

We then define

v =
p
|v1|2 + |v2|2, w =

p
|w1|

2 + |w2|
2, ⇢ =

w

v
. (4.14)

We can then form what we term the dual Higgs basis starting with ,

H1 =
v⇤
1
�1 + v⇤

2
�2

v
, H2 =

�v2�1 + v1�2

v
, (4.15)

and then consider new fields in the dark sector H 0
i
formed from VEVs w1, w2,

H 0
1 =

w⇤
1
�0
1
+ w⇤

2
�0
2

w
, H 0

2 =
�w2�0

1
+ w1�0

2

w
. (4.16)

The fields H1 and H 0
1
have nonzero VEVs given by v and w, respectively, while the

orthogonal combinations have vanishing VEVs. The two field rotations result in a po-

tential that is not obviously mirror symmetric prior to symmetry breaking. The obvious

mirror symmetry would however re-appear if we expand back to the original � basis.

After symmetry breaking we will have in this new basis fields H1 and H 0
1
which break

the mirror symmetry in each sector. They are not mirror partners and have di↵erent

VEVs, masses and Yukawa couplings to fermions. What we then require is a vacuum

configuration which was previously discussed in Chapter 3 where the asymmetry is given

by the conditions

v1 � v2, w2 � w1, (4.17)

which breaks mirror symmetry. In general we will also be considering the case that

w2 � v1 such that the VEVs in the dual Higgs basis obey w � v and ⇢ � 1. The

mirror symmetry is broken in such a way that not only is the EW scale of the dark
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sector at a higher energy scale, but the fermion Yukawa couplings relevant to mass

generation are independent. This is due to the fact that H1 is mostly �1 while H 0
1
is

mostly �0
2
. We can consider this as asymmetric symmetry breaking promoting the ratio

of the two quantities tan(�) = v2/v1 and tan(�0) = w2/w1 to a relevant quantity. The

Yukawa terms relevant to quark masses, and those relevant to FCNC, in the Higgs basis

are given by diagonal and non-diagonal matrices,
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1
V Q
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†
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†
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†
,

where Q = u, d and V Q

L,R
are the left- and right-handed diagonalisation matrices. For

couplings in the dark sector we have the di↵erent set of a diagonal and non-diagonal

matrix,
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†
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†
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L
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2
WQ

R

†
,

with Q0 = u0, d0 referring to quark flavours of the dark sector, and with W denoting

the unique diagonalisation matrices. We can then see that in the limit of asymmetric

VEVs in Eq. 4.17 that we have four di↵erent ⌘ terms for each of the up and down

type couplings. In particular the mass eigenvalues of the two sectors are almost entirely

independent. The leptonic sector follows the same procedure. The presence of the non-

diagonal matrix for H2 in the visible sector is the origin of FCNC, as in the visible

sector, the model resembles that of the Type-III 2HDM. This is a necessary part of

our model as we use the mirror partner of the second doublet to play a similar role

to the SM Higgs doublet in the dark sector. The current constraints on such Type-

III 2HDM impose significant restrictions on the masses of the additional scalars of the

visible sector and the ⌘2 Yukawa matrix. The decoupling of the additional scalars in

the VS from their coupling to the scale w seen in the minimal asymmetric model will

occur in the full potential as well and this will be critical in suppressing the size of these

FCNC. We can see already that it is the parameters z8 and z9 that play the role of

1,2 from the minimal model. These terms will decouple the second doublet in the VS

while the parameter z12 must be small in this basis to prevent the Standard Model Higgs

from coupling to the higher mass scale just as the parameter �2 was kept small. It is
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important to note that these terms are cross-sector couplings. Because of this the limit

that these couplings approach zero may be technically natural due to the enhancement

of symmetry originating in the two sectors gaining independent Poincaré groups as in

Ref. [152]. Some of these cross-sector terms are however necessarily nonzero if we wish

that the asymmetric VEV pattern should be the guaranteed global minimum and so

the naturalness of such models is a delicate issue. In this potential this term is already

necessarily small to ensure the asymmetric configuration. We can now examine how

the mass scales of such a potential form. We label the fields within the doublets in the

original basis as

�1 =

2

4 G+

1

1p
2
(v1 + �1 + iG1)

3

5 , �2 =

2

4 I+
2

1p
2
(v2 + �2 + ia2)

3

5 (4.20)

and
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4 I+
1

1p
2
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3
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2

1p
2
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2
+ iG2)

3
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The label G denotes the states that dominate the admixtures defining the Goldstone

bosons. We then consider the 6⇥ 6 symmetric neutral mass matrix in Appendix C and

six neutral mass eigenstates. In the limit of no mixing between the sectors, in a 2HDM

one typically labels these as h0, H0, A0 and H± in the visible sector as in the minimal

asymmetric model. In the mirror sector one would then have A0

D
, H0

D
, h0

D
and H±

D
. In

our model however these are not mirror partners. Some of these mirror partners have in

fact been been absorbed via the Higgs Mechanism into the massive gauge boson states.

Since we make use in the VS of the decoupling limit of the second Higgs doublet, we

have that all other physical scalars would acquire masses much larger than the SM Higgs

state, mH± ,mA0 ,mH0 � mh0 . In this case the physics at low energy approaches that of

just the SM Higgs state. Our approach to the decoupling limit is di↵erent from both this

minimal asymmetric case and the typical Type-III model in a number of key ways. First,

while a typical method in Type-III would be to flip the sign of the m2

22
mass squared

parameter in order to give positive masses to all other scalars, in our model we are

constrained to keep the sign the same as m2

11
by the principles of asymmetric symmetry

breaking and our mirror symmetry. Second, the additional cross-sector terms in the

full potential in Eq. 4.12 will generate mixing between scalars of the two sectors and in
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general mass eigenstates may be composed of visible and dark interaction eigenstates. In

this work decoupling follows from the minimal model in that w2 lifts the mass eigenstates

of all scalars except for one of the mass eigenstates which we identify with the physical

Higgs. This decoupling limit also generates the alignment limit in that this lowest mass

eigenstate has couplings which align with SM values.

We will label the six neutral mass eigenstates as h0
1
, h0

2
, A0

1
, A0

2
, J0

1
, J0

2
. We note that

the first two have minimal cross-sector mixing. It is important here that the field

corresponding to the Standard Model Higgs boson not mix heavily with mirror states,

however we find it possible to have minimal visible-dark mixing in the low mass Higgs

state with SM couplings while the heavy additional scalars do mix. This comes from

terms such as

z10�
†
1
�2�

0†
1
�

0
2 (4.22)

which in the limit of Eq. 4.17 only contains large mass terms of the form

v1w2

2

�
Im[z10](�a1�2 + a2�

0
1) + Re[z10](a1a2 + �2�

0
1)
�
. (4.23)

Making this term large also does not interfere with the asymmetric minimum. In Ta-

ble 4.2 we list a set of parameters and the EW scales and masses they give for the mass

eigenstates of the theory. Since in this region of parameter space the asymmetric VEV

configuration is the global minimum, we have positive masses at the new minima and

indeed we find for a region of the parameter space in Table 4.2 that the couplings of �2

to the mirror sector EW scale w can make these positive mass terms su�ciently large

while keeping the SM Higgs boson light at tree level and separating the EW scales of

the two sectors, v and w. An estimate of the necessary mass scale for avoiding FCNC

Table 4.2: Higgs Potential parameter sample and associated masses of physical scalars
in each sector. Masses are in units of GeV.

m2

11
= �872 m2

22
= �26002 m2

12
= �902 z1 = 0.13 z2 = 0.13

z3 = 0.8 z4 = .01 z5 = .01 z6 = .01 z7 = .01
z8 = .8 z9 = 0.8 z10 = 0.8 z11 = .01 z12 = 10�8

z13 = .01 z14 = .01 mh = 125 mhD = 3696 mA1 = 5965
mA2 = 6912 mJ1 = 5965 mJ2 = 6512 mH+ = 5965 m

H+0 = 6512
v = 246 w = 7276 tan(�) = 4⇥ 10�5 tan(�0) = 18190 ⇢ = 30

is given by [145] where K �K oscillations are avoided if m
H

0
2
> 150TeV. This assumes

however that all Yukawas are similar to that of the top quark. In our case the coupling
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of the second Higgs doublet, H2, may have Yukawa couplings that are much smaller

than the SM Higgs coupling to the top. The size of these Yukawas are constrained by a

number of sources in the model. Among them are the Higgs portal term that maintains

thermal equilibrium and the relevant scattering terms in the era of leptogenesis. In par-

ticular as we will see in Fig. 4.1 the necessary confinement scale of the dark sector may

require that the most massive dark quark has a mass such that it’s Yukawa coupling

may be comparable to the SM up and down quarks, which are at least 104 smaller than

the top coupling. This constraint then directly limits the size of the couplings to H 0
1

and therefore to H2 in the asymmetric limit such that FCNC bounds are satisfied.

We consider the mixing of neutral states by examining the rotation matrix U in, UTM2U =

D2. This transforms the (�0
1
, a1,�02,�2, a2,�1) basis into the (J2, A2, J1, A1, h2, h1) mass-

basis. For the numerical sample in Table 4.2 we have,

UII =

0

BBBBBBBBBBBB@

�0.999996 0 �0.00265105 0 0.000447771 0

0 �0.999997 0 �0.00260254 0 0

�0.000447834 0 0 0 �1. 0

�0.00265104 0 0.999996 0 0 0

0 �0.00260254 0 0.999997 0 0

0 0 0 0 0 1.

1

CCCCCCCCCCCCA

, (4.24)

which shows how the mixing U�1h1 can be 1, while the remaining states have larger

mixing between the sectors. This mixing can also allow for a Higgs portal term without

a↵ecting the couplings of the Standard Model Higgs boson and maintaining the decou-

pling limit for the additional scalar degrees of freedom. We will return to this possible

connection between the two sectors in Section 4.7.2. In Table 4.3 we list a set of param-

eters for another section of parameter space with a larger ratio of the EW scales of the

two sectors.

Table 4.3: Higgs Potential parameter sample and associated masses of physical scalars
in each sector. Masses are in units of GeV. This example point in parameter space for

⇢ = 3000 will be used throughout this work to exemplify the large ⇢ case.

m2

11
= �6.72 m2

22
= �1831502 m2

12
= �6.72 z1 = 0.13 z2 = 0.13

z3 = 0.8 z4 = .01 z5 = .01 z6 = .01 z7 = .01
z8 = .01 z9 = 0.8 z10 = 0.8 z11 = .01 z12 = 10�9

z13 = .01 z14 = .01 mh = 125 mhD = 366300 mA1 = 590729
mA2 = 645018 mJ1 = 590729 mJ2 = 645018 mH+ = 590729 m

H+0 = 645018
v = 246 w = 738000 tan(�) = 10�4 tan(�0) = 107 ⇢ = 3000
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The mixing matrix in the case of 4.3 is then given by

UIII =

0

BBBBBBBBBBBB@

�1. 0 0 0 0.000184443 0

0 1. 0 0 0 0

�0.000184443 0 0 0 �1. 0

0 0 �1. 0 0 �0.000147143

0 0 0 1. 0 0

0 0 �0.000147143 0 0 1.

1

CCCCCCCCCCCCA

. (4.25)

We can see that these potentials allow for ASB that can give significant di↵erences to

the two sectors while beginning with a mirror symmetry. In the next section we will

focus on how the independent Yukawa couplings and the dark EW scale w can vary

without significantly changing the confinement scale of the SU(3)0 gauge group when

compared to that of the visible SU(3).

4.4 Dark confinement

As in Chapter 2, at high energy the mirror symmetry between the sectors imposes the

condition that the gauge coupling of the SU(3) and SU(3)0 groups are the same above

the dark electroweak scale, after which the mirror symmetry is broken and the couplings

may become di↵erentiated.

In particular we have very di↵erent masses for the dark quarks, which result from a

combination of the larger electroweak VEV of H 0
1
and Yukawa couplings which are

independent almost entirely independent of the couplings to H1. This will in turn set

the scale of quark mass threshold corrections in the running of ↵0
3
such that it will

become non-perturbative at an energy scale above that of the Standard Model. This

follows the analysis in Chapter 2. The reason for this is to leave two dark quarks with

small masses to form our dark baryons, a point we will return to in Section 4.7. The

principle goal of examining the quark Yukawa hierarchies is to examine which cases will

allow for a dark confinement scale, ⇤DM, that is approximately five times that of the

Standard Model value, ⇤QCD. As Section 4.6 will explore how to obtain near equal

number densities of visible and dark baryons, this di↵erence between confinement scales

will be the cause of dark matter’s larger role in the universe’s mass density.
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Figure 4.1: The confinement scale as a function of ⇢, the ratio of EW scales, for a
variety of Yukawa coupling hierarchies. The SM Yukawa range is shown for reference in
the black curve. Each of the sets of Yukawa couplings is divided into ranges where one
common coupling for one, two or three dark quark flavours varies between a maximum
at the SM Yukawa coupling constant listed first and a minimum at the SM Yukawa
coupling constant listed last. Yukawa coupling constants vary from left to right in
each colour band in ten even divisions. For example, C-XX-S indicates that the largest
coupling is equal in magnitude to the SM charm Yukawa, then there are two identical
Yukawa couplings that vary between the SM charm and strange Yukawas, and a fourth
Yukawa with a magnitude equal to that of the SM strange quark. Each of these exam-
ples includes two light quarks which have masses far below the confinement scale. The
red- and green-dashed cases have a Yukawa coupling constant upper value set equal to
that of the SM top quark. The blue shaded region indicates the divide between two
di↵erent regions of parameter space that we explore, one with light mirror neutrinos in
the present day (left of vertical line), and one without. The grey shaded region indicates
the desired range for the dark confinement scale to explain the similarity between dark

matter and proton mass scales.

We consider in this work the case of variations on the mass hierarchy of quarks in the

DS. This extends the work in Chapter 2, where a common mass scale for heavy quarks

was considered for the sake of simplicity. Now that we have a model with independent

Yukawa couplings, it is useful to consider the larger parameter space involved in moving

all six dark quarks independently. This approach of completely free dark quark mass

parameters and the possible e↵ects will be considered further in Chapter 5. The critical

result is that we can see as a function of the ratio of the VEVs in each sector what,

for instance, the mirror bottom Yukawa would need to be in divisions between the SM
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charm and top Yukawa couplings to result in a dark confinement scale ⇠ 5 times that

of ordinary QCD. Figure 4.1 shows a sample of which Yukawa hierarchies can give a

⇠ 5GeV dark baryon. As the size of the dark EW scale a↵ects the entire dark quark

mass spectrum, we see what the dark confinement scale is for a variety of hierarchies at

each value of ⇢, the ratio of dark to visible electroweak scales. Also shown in Fig. 4.1

is the SM Yukawa hierarchy for reference. As we will discuss in Section 4.7, depending

on the assumptions of the model with regard to the thermal history, di↵erent limits

on ⇢ come from constraints on the abundance of charged dark baryons as well as from

constraints on VS flavour physics and successful leptogenesis.

4.5 Neutrino masses

The neutrinos of our model consist of the left-handed states of the visible sector, heavy

right-handed states with Majorana mass terms along with all of the associated mirror

counterparts. These are heavy left-handed states of the DS and light right-handed

states. Above the mirror breaking scale we have only the mixing between the heavy

Majorana states given by Eq. 4.3. The cross-sector mixing, given by the parameter P ,

must be suppressed in order to prevent too much mixing between light neutrinos in each

sector once the heavy degrees of freedom are integrated out. This aligns with technical

naturalness from independent Poincaré symmetries discussed in Section 4.3. If P is

the product of a small dimensionless cross-sector coupling and a right-handed neutrino

mass scale ⇠ M that develops near the GUT scale, then we expect M � P . However

it must be noted that any nonzero value of P will induce maximal mixing for the heavy

mass eigenstates as mirror parity commutes with the Hamiltonian. The heavy states

that undergo CP violating decays to produce the lepton asymmetry of both sectors are

equal admixtures of visible and mirror matter states. This follows the case in [142] of an

SO(10) ⇥ SO(10) model. Below the scale of symmetry breaking we can consider both

the heavy and light neutrino states of the theory. For the Lagrangian given by Eqs. 4.3
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and 4.2, we have mass terms in the basis (⌫
L
, ⌫c

R

0
, N c

R
, NL

0
) given by

M =

0

BBBBBB@

0 0 y1v f1v

0 0 f⇤
2
w y⇤

2
w

y†
1
v fT

2
w M P

f †
1
v yT

2
w P T M

1

CCCCCCA
. (4.26)

Above the scale at which parity is broken, where the mass eigenstates must also be parity

eigenstates, the matrix only contains the lower right 2⇥ 2 matrix and we can write the

heavy Majorana states as linear combinations of visible and dark sector flavour states

[153–155].

N± =
1
p
2

�
(N 0

L)
C
±NR

�
. (4.27)

These have masses M±
N

= M±P however by taking the cross-sector mass P to be small,

they become near degenerate at a scale MN ' M . For each generation we gain two near

degenerate mass eigenstates with masses MN = (M1,M2,M3). We see directly that

taking this cross-sector mass to be small also sets the mixing of light visible and mirror

neutrinos to be minimal once the heavy neutrinos are integrated out. In the three

generational case, above the scale of mirror symmetry breaking, the heavy Majorana

mass eigenstates, Ni will be divided into parity-even and parity-odd states,

N+

1,2,3
= ↵+

i
(NR1 +N 0

L1
) + �+

i
(NR2 +N 0

L2
) + �+

i
(NR3 +N 0

L3
) (4.28)

N�
1,2,3

= ↵�
i
(NR1 �N 0

L1
) + ��

i
(NR2 �N 0

L2
) + ��

i
(NR3 �N 0

L3
),

with |↵i|
2 + |�i|

2 + |�i|
2 = 1 and i = (1, 2, 3). We will consider a hierarchical case of

thermal leptogenesis where the near equal masses M1±
P

2
of the lightest heavy states will

be relevant to the temperature where out of equilibrium CP violating decays generate

a lepton asymmetry in each sector.

4.5.1 Small cross-sector coupling case

We first consider the case where the cross-sector Yukawa couplings satisfy yi � fi.

Below the scale of symmetry breaking, where mirror parity has been broken, the mass

eigenvalues e↵ectively result in two independent seesaw mechanisms [156] with masses
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given by

m⌫ '
(y1v)2

MN

✓
1 +O

✓
P

MN

◆◆
, m⌫0 '

(y2w)2

MN

✓
1 +O

✓
P

MN

◆◆
. (4.29)

The light neutrino states of the dark sector will gain a mass larger than the VS coun-

terparts from the Dirac mass term while being suppressed by the same Majorana mass

scale. The Dirac mass will di↵er on two accounts. Firstly, the larger electroweak scale w

and secondly the di↵erent couplings of y2 compared to y1. The limit on the number of

e↵ective relativistic degrees of freedom will limit how many dark neutrino flavours can

be relativistic.

As we have two seesaw mechanisms, one in each sector, that rely on di↵erent Yukawa

couplings we now turn to parameterising the couplings and masses of the three light

flavours. Following the Casas-Ibarra [157] parametrisation, the visible sector has mass

matrix m⌫ = v2y1D
�1

M
yT
1

while in the dark sector we have m⌫0 = w2y2D
�1

M
yT
2
. Each

of these is independently diagonalised into Dm and Dm0 by di↵erent matrices which

we will label U and U 0 respectively. We then have in the exact asymmetric vacuum

configuration,

y1 =
1

v
UD

1
2
mRD

1
2
M

, y2 =
1

w
U 0D

1
2
m0R

0D
1
2
M
. (4.30)

Here R and R0 are orthogonal matrices and are independent as U and U 0 are. In

particular U 0 will contain phases from the rotation of charged mirror leptons which gain

mass from H2 such that

U 0 = (W l

L)
†U⌫

0
, (4.31)

where U⌫
0
diagonalises the low energy m⌫0 . W l

L
also depends strongly on the texture of

⌘l
2
. In solving the Boltzmann equations for the related Yukawa couplings above, sample

⌘l
2
matrices are chosen such that the mass eigenstates are in accordance with the thermal

history assumptions for dark lepton masses in that region of parameter space while U⌫
0

is an unconstrained unitary matrix as the PMNS matrix of the dark sector is not known.

At the scale of thermal leptogenesis y2 can be the dominant coupling for the creation of

a population of heavy neutrino states and the subsequent decay when T < M1. It can

also be the major contribution to the lepton asymmetry created in both the visible and

the dark sector. We can see that successful thermal leptogenesis may ultimately impose

more constraints on the dark sector’s low temperature light neutrino parameter space

in contrast with ordinary thermal leptogenesis. In the next section we will examine how
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this L asymmetry can form in both sectors within the mirror symmetric temperature

regime.

4.5.2 Significant cross-sector coupling case

We now consider the case where the cross-sector terms, fi, are comparable to the other

Yukawa couplings. These will create Dirac mass terms that induce some mixing be-

tween light neutrinos of the two sectors. We will see in the next two sections that the

requirements on the number of e↵ective relativistic degrees of freedom in the dark sec-

tor require one of two possibilities. First the dark EW scale, w, can be small enough

that any relativistic neutrino species of the dark sector remain in thermal equilibrium

until the temperature drop of the dark sector, and therefore fall to a lower temperature

along with the dark photon. The second possibility is that the dark EW scale is large

enough such that any dark neutrinos become non-relativistic and subsequently decay

from the plasma prior to any temperature shift. In this latter case we will require that

the neutrinos of the dark sector are heavy enough that they decay to SM species with

a short enough lifetime. We examine the masses and mixing in this case. Points in the

parameter space such as

⇥
f1 = 0.05, f2 = 0.0005, ⇢ = 3000, y2 = .005, y1 = 10�6, M1 = 1⇥ 107GeV

⇤
(4.32)

allow for heavy states that are still approximately even admixtures of N and N 0 and

there now exists a small amount of mixing between the light states of the two sectors.

With the much larger EW scale of the dark sector we can have all three flavours of

dark neutrino in the 100MeV range and mixing between the two light species of order

�⌫⌫0 = 10�3 where ⌫̃ = ⌫ + �⌫⌫0⌫ 0. This is similar to that of Ref. [125], except that in

this case it is mixing between the light neutrinos of one sector with the heavy states

of the opposing sector. The light neutrinos of the dark sector then decay to visible

sector species via (⌫ 0 ! ⌫e+e�) just prior to BBN and the only remaining light degree

of freedom in the dark sector will be the dark photon. With these larger fi couplings

we can examine the subsequent additional terms in the Boltzmann equations in there

era of thermal leptogenesis. Since we will consider at that temperature a population of

mass eigenstates N±, this will amount to an extra pair of terms to the total decay rate,
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�(N ! �l), in each sector and modify the washout rates and CP asymmetry parameter.

We explore this and the first case in detail in the next section.

4.6 Symmetric leptogenesis

We now consider how the visible and dark sectors generate a comparable amount of

baryon asymmetry. As with all models of Baryogenesis we require the fulfilment of

the Sakharov conditions, that is, a B violating mechanism, C and CP violation, and a

departure from thermal equilibrium. Mirror symmetry can then provide an associated

mechanism in the DS though the exact process will di↵er once mirror symmetry is

broken. Ultimately it is necessary for the two sectors to be di↵erent to explain why

there is more dark matter than visible matter in the universe. Either DM is more

massive than the proton or the dark sector contains a higher concentration, or it is a

combination of each, to such a slight degree that the mass densities remain within the

same order of magnitude. The dark sector must also have a mechanism for the symmetric

components of the plasma to annihilate, for example through dark photons. In order

to create this B and B0 asymmetry we consider the creation of a baryon asymmetry

through sphaleron e↵ects that partially convert a lepton asymmetry generated through

high scale thermal leptogenesis. As most of the lepton asymmetry will develop at a scale

above the mirror parity breaking scale, the generation of the mirror lepton asymmetry

will proceed almost identically. Following this the sphaleron e↵ects in each sector will

convert these lepton asymmetries into similar amounts of B and B0 asymmetry in each

sector. The amount of B and B0 will not be identical as sphaleron e↵ects will take place

at di↵erent temperatures when the sectors are no longer connected by mirror parity and

may therefore have di↵erent thermal populations.

Since the second Higgs doublet in the visible sector can provide a way to generate a suf-

ficient amount of lepton asymmetry while not contributing to the squared Higgs mass

corrections usually seen in the thermal leptogenesis case, the associated naturalness

bound might be avoided. This can be compared to recent work in [158] which examined

how the tension between Higgs mass corrections and the requirements of vanilla lepto-

genesis can be solved with a second Higgs doublet. The squared mass correction from
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the right-handed neutrino mass scale can be written as

�µ2
⇡

1

4⇡
y21M

2

N . (4.33)

The mass corrections to the heavier bosons will be larger if y2 is, however since the mass

scale of the dark Higgs, dark EW scale, and the other decoupled scalars is orders of

magnitude larger also, the quantum corrections have the capacity to still be natural if

one adopts the criteria that such corrections should be no larger than of order 1TeV2

[159] for the SM Higgs. Then this translates to an upper bound of ⇠ 3 ⇥ 107GeV for

the Majorana mass in a single flavour case.

In the simplest case of leptogenesis from the decay of heavy right-handed neutrinos the

amount of asymmetry produced can be expressed in terms of the CP asymmetry ✏ and

the e�ciency factor f , which measures the asymmetry destroying processes during the

era of leptogenesis. For the case of a single doublet, the CP asymmetry factor for the

lightest right-handed state N1 is

✏1 =
�(N1 ! l�⇤)� �(N1 ! lc�)

�(N1 ! l�⇤) + �(N1 ! lc�)
. (4.34)

Adding a second doublet allows for two relevant CP factors from y1 and y2. Including

the mirror sector adds a decay channel through f1 and f2 that can generate asymmetry

in the opposite sector. In a standard seesaw model, with the CP parameter calculated,

the decay parameter is defined as

K =
�D(z = 1)

H(z = 1)
, (4.35)

where z = M1/T and �D is the decay width. This is typically done in order to set

bounds on the mass of light neutrinos in most models however in this case some of the

CP asymmetry is being generated by the coupling of heavy neutrino states to �2 and

�0
2
and so in the visible sector, the Yukawa coupling relevant to mass is not important

in terms of the generation of a lepton asymmetry. The factor K can still serve as a

useful parameter in measuring the ratio of relevant parameters, that of the CP violating

couplings and the heavy neutrino mass scale M1.

We consider in this work the generation of a B�L asymmetry in the one-flavour approxi-

mation. While this approximation is typically only completely accurate at temperatures
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of lepton asymmetry generation above the scale at which the tau charged lepton Yukawa

interactions are in equilibrium, so that the value of M1 violates the Vissani bounds on

naturalness, in this case the role of flavour e↵ects will be more complicated. In par-

ticular the thresholds for when charged lepton Yukawa interactions are in equilibrium

will depend on the couplings to �2, as well as to �1. Additionally the charged lep-

ton Yukawa coupling matrices to �1 and �2, which contribute to the thermal masses,

cannot in general be simultaneously diagonalised. A full analysis of possibly significant

flavour e↵ects in this case would need to carefully consider the relative rates among six

interactions of lepton doublets l involving (N�1, N�2, N 0�1, N 0�2,�1eR,�2eR) as well

as the Hubble rate at each temperature range in order to determine the coherent state

evolution. For the present analysis, we make the simplifying assumption that the com-

bination of y1, y2, f1, f2 channels for washout is similar in magnitude for each individual

flavour and so the unflavoured approximation may yield a more accurate result for the

total B � L asymmetry with T < 1012GeV in this case than ordinary Type-1 seesaw

thermal leptogenesis models.

We will consider two separate regions of parameter space that are compatible with all of

the other features in the model. We can classify these as the small ⇢ regime with ⇢ < 200

and the large ⇢ regime. These di↵erent cases require di↵erent treatments for a number of

key reasons. In the small ⇢ regime, dark EW interactions are still in equilibrium at the

time of the temperature decoupling of the two sectors. This will allow the light neutrinos

of the dark sector to undergo a temperature change along with the dark photon as they

have not yet decoupled. Because of this, it is possible to have light neutrinos in the dark

sector and still satisfy the constraints on Ne↵ as we will discuss in the next section.

4.6.1 Small cross-sector coupling case

We first consider the case with yi � fi and a hierarchical relationship among the Ma-

jorana masses, M2,M3 � M1. The heavy states decay to visible and dark leptons with

equal rates and their asymmetry in these rates is also the same. We must also account

for the fact that each of �1 and �2 can appear in the self-energy and vertex diagrams.

We then obtain the expression for the CP parameters ✏�1
1

and ✏�2
1

from decays, N1 ! l�1

and N1 ! l�2. These can be expressed as functions of the form
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✏�2
1

'

X

i=1,2

X

k 6=1

1

16⇡

M1

Mk

2

4
Im
h
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Note that there is an additional term proportional to M2

1
/M2

k
which is neglected in

this hierarchical case. Such terms are ordinarily exactly zero after summing over lepton

flavours however y2 allows one of these to survive [80]. The lepton asymmetry can be

generated through the out of equilibrium decays of heavy neutrinos, N. From the Yukawa

couplings we have CP violating decays both in (N ! �1l), (N ! �2l) and in the mirror

sector (N ! �0
1
l0) and (N ! �0

2
l0).

The tree level total decay rate of the heavy states, including cross-sector decay in this

visible sector channel is given by

�Ni =
1

8⇡

h
(y†

1
y1)ii + (y†

2
y2)ii + (f †

1
f1)ii + (f †

2
f2)ii

i
Mi. (4.37)

In order for these decays to take place out of equilibrium we can consider each of the

strong and weak washout cases. In the weak regime (K < 1), inverse decays will create an

abundance of heavy neutrino states which surpasses the equilibrium number density and

the subsequent out of equilibrium decays will produce an asymmetry which depends on

the initial conditions. The size of the initial population will determine the opposite sign

asymmetry produced during inverse decays as the equilibrium density is reached. The

final asymmetry will then be a combination of the asymmetry produced in each phase.

In the strong washout regime (K > 1) the high coupling will bring an initial population

of heavy N states quickly to the equilibrium density. The strong coupling leads to a

high rate of decays and inverse decays that washes out any initially formed asymmetry

after which a final asymmetry is produced when inverse decays become suppressed as

T < M1 and non-relativistic heavy neutrinos undergo CP violating decays. We make

use of the variable z = M1
T

and write [D,S,W ] = �[D,S,W ]/Hz.

It is useful to consider the limiting case by taking the contribution from y1 terms to be

small enough that the dominant contribution to the CP violating decays comes from

just y2. In this case we can take the usual strong washout e�ciency factor f , defined
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by

NB�L = �
3

4
f ✏

�2
1
, (4.38)

where this has an approximate analytical expression in terms of K in the limit that y2

dominates [160],

f '
2

zBK


1� exp

✓
�
1

2
zBK

◆�
, (4.39)

zB(K) ' 1 +
1

2
ln

"
1 +

⇡K2

1024

✓
ln

✓
3125⇡K2

1024

◆◆5
#
. (4.40)

This is a useful check for the numerical solutions in the limit that y2 dominates however in

the general numerical solutions later we do not neglect the role of y1. In the more general

case we will write the Boltzmann equations for the generation of a lepton asymmetry

for one sector in the following and take N1 to be the combined population of states N+

1

and N�
1

at mass scale M1. With light neutrinos in the dark sector, yi � fi, and two

seesaw mechanisms we can have an orthogonal complex matrix R0 such that the scale

of (y†
2
y2)11 is not so large that the N1 mediated scattering l�$ l̄�̄ destroys the created

lepton asymmetry. The light neutrinos of the DS have their masses constrained by the

requirement that they do not significantly contribute as a hot dark matter candidate.

This imposes limits on the size of y2 in this case. These constraints will also depend

on the temperature of these light mirror neutrino states which will be lower than VS

neutrinos. In the next section we see these limits on mv0 in the low ⇢ case depend

on the thermal history assumptions. We consider the cases of the heaviest dark light

neutrino limited by upper bounds of 1.1 eV, 3.2 eV, 5.6 eV. Sample R and R0 matrices

for the two seesaw mechanisms are then explored in cases A and B in Fig. 4.2 for the

first two bounds while the largest temperature di↵erence that allows 5.6 eV has three

sample pairs of matrices R and R0 for C � E.

4.6.2 General cross-sector coupling case

The previous case can be contrasted with the model for large ⇢ case. This scenario has

fewer constraints from FCNC however above ⇢ = 200 the neutrinos of the dark sector

decouple prior to the sectors thermally decoupling, such that all of the light neutrinos

of the dark sector must be non-relativistic. Clearly multiple things must change. In this

large ⇢ case, the requirements on the dark confinement scale will necessitate smaller �2
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Figure 4.2: Evolution for the N1 number density (the sum of the densities of N+
1

and N�
1 divided by two) and the B � L asymmetry for the small ⇢ case for di↵erent

choices of the mass of the heaviest dark light neutrino. The left panel has zero initial
N1 abundance, while the right panel has an initial thermal abundance. In all cases,
the observationally required B�L asymmetry is produced at the low temperature end,
and is independent of the initial abundance because we work in the strong washout
regime. Case A corresponds to 1.1 eV, case B to 3.2 eV, while cases C � E have 5.6
eV for the dark neutrino mass upper limit. Each curve illustrates an allowed choice
for the Casas-Ibarra R and R0 matrices with ⇢ = 30 and M1 = 109 GeV. The small ⇢
case allows for larger quark scattering rates to �2 and is comparable to past works in
thermal leptogenesis. The limits on the CP parameters ✏A�E come from limiting the

amount of dark matter composed of hot dark neutrinos.

quark couplings than the SM in general. In the case that all three of the light neutrinos

are ⇠ 100MeV and ⇢ > 200, the constraints on parameters such as in Eq. 4.32 on

washout require that the CP parameter be much larger. At the same time with fi and

yi comparable and P nonzero such an enhancement is immediate. We consider the CP

parameter now in the case of individual populations of N+ and N�. Rewriting in terms

of Yi = yi + fi, Fi = yi � fi we have
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5 , (4.41)
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The CP parameters for the ✏1� terms can easily be found by interchanging F and Y .

The relevant diagrams for these CP parameters are in Fig. 4.3. Note that the sum can

now extend to k = 1 and we have a nonzero CP parameter for some of these terms.

This can be compared to the case of the double seesaw mechanism of leptogenesis [161].

However in this case again we have a symmetric asymmetry generated in the dark sector.

Similar to double seesaw mechanisms we have in this case the fact that P , the cross-

sector masses, being small automatically places us in a parameter space near resonance

between N+

1
and N�

1
. This comes with the nonzero CP violation originating from the

interference of diagrams that involve both N+ and N�. With P/MN ⇡ 10�9 we are

within the range of resonant e↵ect through the interference in the self-energy diagram

with N+

1
and N�

1
for the Yukawas in Eq. 4.32. In Figure 4.4 we see that resonant

increase in the CP parameter for this large ⇢ case.

Note that this di↵ers from [125] in that the resonance comes from adjusting the single

small parameter P which was previously constrained to be small rather than adjusting

M1 and M2 to bring their di↵erence close to the decay width. The resonant boost can

allow for a smaller value of MN such that in the high ⇢ case we bring MN down to

⇠ 107GeV.

In Fig. 4.5 we can examine the scattering rate and total washout rate in the di↵erent

cases of quark mass hierarchies in the dark sector. With general cross-sector couplings

we can examine the more complex set of decays, scatterings and inverse decays. We
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Figure 4.3: The interference of all diagrams in the left column for a fixed final state
�1 and initial state i = 1+ contributes to ✏�1

1+ while fixing �2 and i = 1+ allows us

to calculate ✏�2

1+ . Choosing i = 1� yields ✏
�1,2

1� . Likewise the right column gives the
interference among mirror counterpart diagrams in the dark sector.
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consider simultaneously the variables, N+

1
and N

�
1

and asymmetries of both sectors,

NB�L and N
0
B�L

. The considered interactions of the decay and inverse decay type are

N±
1

$ �⇤1l,

N±
1

$ �1l
c,

N±
1

$ �⇤2l,

N±
1

$ �2l
c,

and their mirror analogues

N±
1

$ �01
⇤l0,

N±
1

$ �01l
0c,

N±
1

$ �02
⇤l0,

N±
1

$ �02l
0c.

For scattering processes, it is known that the dominant ones in the standard leptogenesis

case are leptons with top quarks, so in our situation we must consider if the Yukawa

couplings to quarks of the second Higgs doublet are in a similar range. We thus consider
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the following processes into the Boltzmann equations:

N±
1
lc $ tq̄,

N±
1
q $ tl,

driven by virtual �1 exchange in the s- and t-channels, and the �2-driven counterparts,

N±
1
lc $ uiq̄,

N±
1
q $ uil,

where q = d, s, b and ui is any charge +2/3 quark flavour that has a significant Yukawa

coupling to �2. The mirror analogues of these processes also must be included. For the

strong-washout regime, processes such as �1l $ �⇤
1
lc and the like can be small due to the

large mass of the exchanged virtual heavy neutral lepton compared to the temperature

at which the asymmetries are generated.

If we again consider the case of the strong washout regime where gauge scattering can

be ignored, due to only being e↵ective in the T > M1 era, then the relevant Boltzmann

equations only contain washout from inverse decays and quark scattering [74],

dNB�L

dz
=� (✏�1

1+
D�1

+
+ ✏�2

1+
D�2

+
)(N

N
+
1
�N

N
Eq
1
)

� (✏�1

1�D
�1
� + ✏�2

1�D
�2
� )(N

N
�
1
�N

N
Eq
1
)�WTNB�L,

dNB0�L0

dz
=� (✏�1

1+
D�1

+
+ ✏�2

1+
D�2

+
)(N

N
+
1
�N

N
Eq
1
)

� (✏�1

1�D
�1
� + ✏�2

1�D
�2
� )(N

N
�
1
�N

N
Eq
1
)�WTNB0�L0 ,

dN
N

+
1

dz
=� (D+ + S+)(NN

+
1
�N

N
Eq
1
), (4.44)

dN
N

�
1

dz
=� (D� + S�)(NN

�
1
�N

N
Eq
1
).

The scaled decay, scattering and washout rates are detailed in Appendix C. We consider

the large ⇢ case with strong washout and with both a vanishing and a thermal population

of heavy neutrino states as initial conditions in Fig. 4.6. The di↵erent cases (F � J)

describe di↵erent sample points in parameter space of the matrix in Eq. 4.26 that satisfy

the condition that non-relativistic light neutrinos of the dark sector have masses of order

100MeV and decay into SM species prior to BBN. In Section 4.7 we will see that the



Chapter 4. Comprehensive Asymmetric Dark Matter 96

WID

D

S!D

WT

S

.01 .1 1 10 100
.001

.01

.1

1

10

102

103

104

105

z"
M1

T

#
!"
H

z
#

WID

D

S!D

WT

S

.01 .1 1 10 100
.1

1

10

102

103

104

105

106

107

z"
M1

T

#
!"
H

z
#

Figure 4.5: Scaled Rates (D+, S+,WID,WT , S++D+) in the Boltzmann equations for
the cases of small (left panel) and large (right panel) ⇢. The parameter points are as for
Fig. 4.2 and Fig. 4.6, respectively. As the quark Yukawa couplings to the second doublet
�2 can be smaller than those to �1 in the large ⇢ case, the (qt $ �2l) scattering rates
in the Boltzmann equations can be minimal. In the strong washout regime, (K > 1) we
see in the large ⇢ case significant washout rates, the natural resonance that can arise
in the CP parameter can allow the necessary asymmetry to survive at the point the

washout rates become ine↵ective.
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Figure 4.6: B � L asymmetry and N abundance in the visible sector for the large ⇢
case for the parameter point of Eq. 4.32. The N+

1 and N�
1 number densities are almost

indistinguishable. Each graph displays five distinct choices for the matrices y1, y2, f1
and f2, labelled F � J . These solutions gain an enhanced B � L from the resonance
e↵ect between the N+ and N� mass eigenstates. The CP parameter additionally varies
from the coupling to both Higgs doublets. Each case has di↵erent initial abundances

for N1: vanishing (left panel) and thermal (right panel).

bounds on Ne↵ from BBN can easily accommodate the dark photon that remains as the

only relativistic degree of freedom in this regime.
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4.7 Cosmological history

We now focus on examining the consequences of this type of model on the thermal

history of both the visible and dark sectors. In particular we examine how the two

sectors can be consistent with the current evidence of BBN and the constraints on the

number of relativistic degrees of freedom. In the dark sector we consider how, after the

breaking of mirror parity, a clear dark matter candidate can form which satisfies all of

the current astrophysical evidence of dark matter.

4.7.1 Baryogenesis in the visible and dark sector

The lepton asymmetry of each sector is converted to a baryon asymmetry beginning at

the temperature at which the B � L asymmetry is produced by thermal leptogenesis.

Immediately after this, the relation between the B, L and B � L asymmetries of each

sector can be related by

NB =
24 + 4NH

66 + 13NH

NB�L , (4.45)

NL = �
42 + 9NH

66 + 13NH

NB�L ,

where NH is the number of Higgs doublets that remain in equilibrium [162]. Following

the EWPT of the dark sector, sphaleron processes of the dark sector are no longer rapid

and the relation between B0, L0 and B0
� L0 is fixed at the values as in Eq. 4.45 with

NH = 2. At this point, one of the Higgs doublets of the visible sector gains a large

positive squared mass value su�cient to decouple one the doublets of the visible sector

while sphaleron e↵ects of the visible sector are still rapid. The B �L asymmetry in the

visible sector is then reprocessed to satisfy Eq. 4.45 with NH = 1 and this will be the

value that remains when visible sphaleron processes are no longer rapid following the

visible sector’s EWPT. The modern baryon asymmetries are therefore given by

NB =
28

79
CNB�L , N

0
B =

8

23
CN 0

B�L (4.46)

where C = g⇤(T0)/g⇤(T ) accounts for the variation in photon density between the onset

of leptogenesis and now. We therefore have an abundance ratio from the symmetric

leptogenesis phase that is slightly less than 1 which still suggests a mass ratio of dark



Chapter 4. Comprehensive Asymmetric Dark Matter 98

baryons that are ⇠ 5.57 that of the proton. In Fig. 4.1 this is considered as a range for

the dark confinement scale with the exact mass of any heavy baryons having a range

depending on the dark coloured quark masses. Further discussion of such hidden QCD

models and the exact relationship between confinement scale and baryon masses will be

explored in Chapter 5. We can now consider some of the broader consequences of the

dark sector.

4.7.2 Thermal decoupling

As discussed previously we will examine the case that the two sectors should decouple

within the temperature region between the confinement scales of the two sectors. By

doing so, we can reduce the number of degrees of freedom in the DS while the two

sectors are still in thermal contact and thus transfer the majority of the entropy density

of the universe to the visible sector. This allows for the DS to cool at a faster rate and

acquire a lower temperature at the time of BBN when constraints on the number of

e↵ective neutrino species are stringent. This idea was explored in past works on dark

QCD models and in particular Ref. [144]. In models of two sectors the exact relationship

between the temperature of each sector has important limits imposed by the e↵ect of

additional radiation components of the universe on the BBN and acoustic oscillations in

the CMB. This is usually quantified through an e↵ective excess neutrino number defined

by

Ne↵ = 3

✓
11

4

◆
4/3
✓
T⌫

T�

◆
4

+
8

7

✓
11

4

◆
4/3 g⇤

D

2

✓
TD

T�

◆
4

, (4.47)

with the entire second term constituting �Ne↵ . The terms g⇤
D
and TD are the degrees of

freedom of the dark sector and their temperature. Recent measurements have obtained

the bound �Ne↵ = 0.11 ± 0.23 at the 68% confidence limit level[4]. The ratio of the

temperatures of the two sectors at the scale of BBN is a function of the degrees of

freedom in each sector compared to the value at the time of decoupling,

T 3

V

T 3

D

=
gD
gV

✓
gV
gD

◆

DEC

. (4.48)

In mirror symmetric models where the two sectors remain in thermal contact such as

[125] the constraints on the dark degrees of freedom are strong enough that it is neces-

sary that all mirror relativistic particles must be removed prior to the era of big bang
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nucleosynthesis (BBN). If the temperature of the DS sector is less than the VS then the

BBN constraint may be satisfied with at least a massless photon and possibly additional

species still present in the dark sector.

In order to decouple to the two sectors in the energy range between ⇤QCD and ⇤DM

we require a particle interaction that proceeds fast enough at high energy and becomes

ine↵ective shortly after the DS becomes confining. We then require that either one

or more of the species involved must become Boltzmann suppressed or the rate of the

reaction as a function of temperature must drop below the Hubble rate. There are

multiple distinct cases in which this can work in our model, depending on the value of

⇢ and the masses of the particle species in the DS.

4.7.2.1 Large ⇢

In the first case all three of the dark sector’s light neutrino species have non-relativistic

masses, which is possible in this work given the independent y2 and with w su�ciently

larger than v such that m⌫
0
1
,m⌫

0
2
,m⌫

0
3
⇠ 100MeV. We thus consider the first case of only

a relativistic dark photon in the region of parameter space where ⇢ > 200 as mentioned

previously. From the temperature di↵erence generated by the drop in degrees of freedom

between the confinement scales we obtain

�Ne↵ =
2

0.45

✓
TD

TV

◆
4

' 0.17, (4.49)

where the factor of 2 counts the degrees of freedom of the single dark photon. This is

well within the observationally allowed limits. The thermal history of the universe in

this case is summarised in Table 4.4 at the end of the chapter. Figure 4.7 shows the

degrees of freedom in each sector in this timeline.

4.7.2.2 Small ⇢

The other case keeps all three dark neutrinos relativistic and has a su�cient temperature

di↵erence to allow for all four of these species. In order for neutrinos to undergo the

temperature change from the above mechanism, it is critical that the lightest neutrino

population not decouple from the dark plasma prior to the thermal decoupling of the

two sectors. As the dark weak interaction rate scales down with the increasing mass of
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the dark electroweak gauge bosons, an upper bound of ⇢ < 200 can be placed assuming

that the maximum value of TDEC is just below the dark confinement scale. While in

Ref. [144] the large change in g⇤ following the dark QHPT is only large enough to allow

for one light neutrino species of the dark sector, the independent Yukawa couplings of

the dark sector allows for a more complex thermal history. In particular any asymmetry

between the two sectors in whether a species annihilates into photons before or after

TDEC can further the temperature di↵erence.

• Consider in particular the µ+0+µ�0
$ �0+ �0 annihilations after the temperature

of the plasma drops below the dark muon mass, but at a temperature above TDEC.

The energy density is shared between the two sectors. After TDEC when TV falls

below the mass of SM muons the visible plasma is heated but the dark plasma is

not. This asymmetry in muon annihilation together with the entropy shift between

the confining phase transitions, and with three light mirror neutrinos leads directly

to �Ne↵ = 0.50.

• We can take this further by considering the dark pions. If these have a mass

that is above ⇤QCD and above TDEC then they too will share the entropy density.

The scaling of pion mass will depend more significantly on the bare masses of the

lightest dark quarks and in particular will increase with more massive bare dark

quarks. With the asymmetric photon injection from both dark pions and dark

muons one obtains �Ne↵ = 0.387.

• If in addition to dark muons and pions we also have that all of the dark electron

energy is shared between the sectors, this yields�Ne↵ = 0.229, which is well within

the current constraints. We can also have a thermal portal that decouples the two

sectors when the temperature falls below the mass of dark electrons, due to dark

electrons being reactants in the portal term. In this case only a fraction of dark

electron energy will be transferred to SM species while the thermal portal is still

active, so that �Ne↵ will therefore be between 0.229 and 0.387

Each of these thermal histories for relativistic light dark neutrinos sets a di↵erent final

temperature for the dark neutrino species and therefore contributes a di↵erent limit to

how massive the light neutrinos of the dark sector can be before contributing too much

hot dark matter to the model. Taking the limit that ⌦HDM < .011 we obtain for the
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Figure 4.7: The degrees of freedom in the two sectors as a function of T. Initially they
constitute one sector. After the thermal decoupling the two sectors are independent
and the degrees of freedom have separate histories. For ⇤QCD < TDEC < ⇤DM the
ratio of temperatures after decoupling can fall to TD < 0.5TV as the entropy density
of the dark sector is shifted to the visible sector in the shaded region. The e↵ective g⇤D
contributing to the expansion rate is then suppressed by this temperature di↵erence.
The arrangement of dark quark masses is not significant to this picture. Any dark
quarks that become suppressed prior to ⇤DM will contribute to the di↵erence in g⇤,
however any that are still in equilibrium will hadronise at ⇤DM and thus their degrees
of freedom will be removed in any case. The temperature shift can be a↵ected by mass

scales of dark leptons and the dark pion mass scale.

above three cases a limit of
P

mv0 < 1.1 eV, 3.2 eV, 5.6 eV respectively. This sets a limit

on how large a role y2 can take in the low ⇢ regime of thermal leptogenesis.

4.7.2.3 Decoupling mechanism

In the relativistic decoupling case it is natural to examine the e↵ective interactions

between the sectors that our model contains to observe if any of these can maintain

contact until the appropriate region. Since the scaling of the Hubble rate is of the form

H(T ) =

r
4⇡3

45

p
g⇤T 2

Mpl

, (4.50)

we require that such reactions scale with temperature at a faster rate. It would be

preferable to have a portal that naturally switched o↵ at the appropriate energy scale.

One appealing possibility is a dimension-9 quark interaction, that constitutes a neutron

portal operator,
1

M5
udd u0d0s0 + h.c. (4.51)
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The u0, d0 and s0 states here could in fact be other quark flavours, what is important is

that the two flavours that make up the dark neutron are involved and a third with mass

below 1 GeV. This ensures that dark neutrons do not decay into ordinary neutrons.

Studying such an operator within the regime where one sector has become confining

and the other has not becomes di�cult due to the chaotic nature of the quark hadron

phase transition. It is possible however that the QHPT itself can be held responsible

for breaking the thermal contact between the sectors. In such a scenario once the dark

quarks of the DS have formed bound neutron states, these can then decay into VS

quarks, which are still unconfined, transferring a su�cient amount of entropy density

from the DS to the VS. Since the dark neutrons have a mass greater than than the dark

confinement scale they immediately begin being suppressed in their numbers following

the chiral phase transition, and at the time of confinement in the VS, when quarks of

the SM form bound baryonic states, the abundance of reactants is su�ciently small that

thermal equilibrium between the sectors has ended. While this argument contains a

natural explanation for a lower temperature DS, it is speculative. We can also consider

a six-fermion leptonic interaction between the sectors that could accomplish a similar

goal.
1

M5
llec l0l0ec0 + h.c. (4.52)

This type of operator can become ine↵ective at the temperature when the dark charged

lepton e0 becomes Boltzmann suppressed. This requires that the mass of this species is

tuned to be in the specific range between the confinement scales. In the large ⇢ case we

will see that we require an electron like species to have mass much smaller than this scale

and so we can again consider a particular flavour structure for the operator in Eq. 4.52

such as l0l0µc0 for the dark sector. This allows us to choose dark muons to be the species

that becomes suppressed between ⇤QCD and ⇤DM. If, however, we are in the low ⇢

regime, the original portal involving electrons can be involved which can allow all three

light dark neutrinos and a dark photon to be consistent with the extra radiation bounds

during BBN and the CMB formation. Such an operator could fall below the Hubble

rate due to the lightest charged leptons becoming Boltzmann suppressed at the requisite

temperature range. E�cient weak interactions of the dark sector can then remove the

remaining asymmetric component of dark electrons along with the more massive dark

protons and store the lepton asymmetry of the dark sector in the dark cosmic neutrino

background.
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Figure 4.8: Higgs mediated four fermion interaction rate as a function of temperature
falling below the Hubble rate between the confinement scales (Green) of the two sectors.
The rate uses [⌘1 = 0.6, ⌘2 = 0.6, z10 = 0.1,mA1 = 3525GeV, v1 = 246GeV, w2 =

7380GeV]

We can also consider the Higgs mediated interaction that survives below our EWSB

scales consisting of the mixing between heavy neutral scalars of the two sectors. The

four fermion interaction rate can be written as

�AA0 ' ⌘2
2⌘1

2z10
v2
1
w2

2
T 5

m8

A1

. (4.53)

This term can provide a way to couple the two sectors without altering the global minima

of the potential and removing the asymmetric configuration or mixing the weak scales

of the two sectors. Additionally, such a Higgs mediated interaction can thermally couple

the two sectors down to ⇠ 1GeV in a way that an ordinary mixing of a Higgs with a

mirror partner cannot. In our model, using a typical Higgs mediated interaction in order

to maintain thermal equilibrium to a low enough temperature, the Yukawa couplings

would need to be su�ciently large. However if these same Yukawa coupling give mass

to the fermions involved in the cross-sector interaction, then they will be Boltzmann

suppressed prior to T ⇠ 1GeV and hence the interaction cannot remain above the

Hubble rate at this low a temperature range. In our model, since the interaction utilises

those Higgs doublets that are not responsible for mass generation in their respective

sectors, such a coupling can work if the mass hierarchies permit some low mass fermions

of the SM to have heavy mirror partners in the dark sector and vice versa. In Fig. 4.8
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we examine the scaling of such a Higgs mediated interaction with temperature in the

small ⇢ regime. Other portal operators have been explored. Setting the ZZ 0 mixing

to a suitable value forces the photon kinetic mixing to keep the two sectors in thermal

contact to the present day which is unacceptable for our theory.

4.7.3 Dark big bang nucleosynthesis

In the dark sector, the confinement scale is approximately five times higher than its

visible sector counterpart while the electroweak scale can span a much broader allowed

parameter space given by ⇢. With the larger EW scale in the dark sector we also have

larger masses for the W 0 and Z 0 bosons. The independence of the Yukawa couplings

that generate mass for fermions in each sector also allows for the lightest baryon of the

dark sector to be neutral under U(1)0
Q
. For ordinary baryons, the mass di↵erence of the

proton and neutron, �m = mn �mp, can be considered as the sum of two components.

The first is from QCD which can be approximated by the mass di↵erence of the up

and down quarks �QCD ' md � mu ⇡ 2.51 MeV. The second is from EM interactions

and is given by �EM ⇡ �1.00 MeV. We then have �m = �QCD + �EM ⇡ 1.51 MeV. By

reducing the di↵erence in mass of the lightest of up and down type dark quarks, we can

reduce the QCD contribution until |�QCD| < |�EM| for dark baryons. The variation of

the dark electroweak scale does impact the size of the QED correction to the proton

through the change in ↵EM, however this correction is insignificant. This can be seen

by the matching condition 1

↵EM
= 1

↵1
+ 1

↵2
, and the fact that the U(1) and SU(2) gauge

couplings run in opposing directions such that variations in the symmetry breaking scale

only minimally alter the value of ↵EM.

The lightest baryon of the dark sector is then the dark neutron n0 and the decay rate of

the dark proton p0 into the dark neutron is suppressed by the larger mass of the dark

sector W 0 bosons. If the dark weak interaction rate now falls below the Hubble rate

at an earlier point, it is possible to find a situation in which the dark BBN produces a

maximal amount of dark helium, by contrast with the visible sector, despite the dark

neutron being the most stable baryon. This is because the n0-p0 ratio will be sensitive

to the interactions that are still in equilibrium in the dark sector as well as the mass

di↵erence between them. However, the formation of nuclei through primordial synthesis

may not take place at all if the dark deuteron is unbound. It is a well known feature of
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conventional BBN that the deuteron, the bound state of one proton and neutron, is only

very weakly bound [163]. Its function in BBN is essential, however, in that it forms the

intermediate step between hydrogen and heavier elements such as helium. A su�cient

abundance of deuterium only appears at temperatures lower than 2.2 MeV due to its

low binding energy. The binding energy of the deuteron can be related to the ratio of

m⇡
mp

which has been estimated to need to be < 0.16 for the deuteron to be stable. We can

reconsider this ratio in terms of the factor xD = (mu+md)

⇤QCD
. In Ref. [164], a conservative

estimate of the required ratio to make the deuteron unstable was found to be that xD

should increase by a factor of 2.5. Such an increase can be readily achieved in our model

provided that the low mass dark quark masses are larger than ⇠ 35 MeV, where ⇤DM

is ⇠ 5 times the SM value. If the dark deuteron were to be unbound, its absence in the

primordial era of statistical nuclear equilibrium would disallow the formation of helium

and heavier elements. The makeup of dark matter is then dependent on a number of

free parameters in our theory. We summarise these distinct cases below.

4.7.3.1 Large ⇢

In this case, with ⇢ > 200, we have the fact that dark weak interactions are suppressed by

the time of the dark QHPT and the light dark neutrinos have a mass scale ⇠ 100MeV.

The dark lepton and baryon asymmetries are fixed at their values following the sphaleron

conversion and dark weak interactions prior to 1 GeV similar to [141]. This yields the

initial relations N
0
B

= (8/23)N 0
B�L

and N
0
L
= �(15/23)N 0

B�L
. If we assume that the

lepton asymmetry in this phase is evenly divided among relativistic lepton flavours then

the distribution between charged and neutral leptons can be found by solving the series

of equations that relate the chemical potentials after the dark EWPT until dark EW

interactions freeze. Using the conservation of lepton and baryon number, conservation of

charge and the enforced relations from weak interactions such as µd = µu + µe � µµe we

solve these equations at the point just prior to when this last weak interaction condition

is removed and the charge distribution between the baryon and lepton sectors is set

[165]. This is dependent on how many fermion species have been removed from the

plasma when the dark weak freeze-out occurs. For all dark fermions in the plasma at

freeze-out we have that the ratio of the asymmetry stored in charged leptons compared

to neutral leptons of 82 : 83, while removing the two heaviest quarks yields 13 : 17.

Additionally removing a third quark and a single charged lepton yields 2 : 3. Dark
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QED charge conservation guarantees that the dark proton asymmetry equals the dark

charged lepton asymmetry. This yields an abundance of charged leptons equal to that

of charged protons such that we have a mix of dark neutral hydrogen atoms and dark

neutrons after the dark QHPT. This asymmetry is then equal to the value of the lepton

asymmetry stored in charged leptons just above the dark weak freeze-out temperature.

The lepton asymmetry stored in the light neutrinos of the dark sector at the point

of dark weak freeze-out will ultimately be transferred to the visible sector’s neutrino

background following the decays of these states to visible species. We can then write

the number densities of dark species in terms of the B0, L0 and B0
�L0 number densities

with n0
p = n0

e and n0
p + n0

n = (8/23)n0
B�L

such that n0
n = (8/23)n0

B�L
� n0

p. The cases

listed above then give neutral atoms and dark neutrons in ratios of 15:31, 13:29 and 3:7

respectively. This assumes that the dark charged-lepton that is part of dark atoms has

both a small enough mass to survive to low temperatures and to not be an important

contributor to the overall dark matter mass density. We can thus have a component of

mirror atoms among the dark neutrons.

The later distribution between dark atoms and dark neutrons depends significantly on

a number of further assumptions we make for dark sector parameters. If the mass

di↵erence between dark protons and dark neutrons, Q = m0
p � m0

n, is larger than the

sum of the masses of dark electrons and dark neutrinos, dark protons may decay with

a lifetime dependent on both the increased EW scale of the dark sector and a phase

space factor which can be compared to that of the SM neutron. We can consider the

case where the value of Q becomes larger than 100MeV, while keeping the dark electron

mass negligible and the dark neutrino mass fixed at 100MeV [166]. Dark protons can

then all decay prior to the matter-dominated era. Increasing ⇢ necessitates larger values

of Q to achieve this as the weak suppression increases the lifetime by a factor of ⇠ ⇢4.

In the case that dark protons are stable due to m0
e + m0

⌫ exceeding Q we must also

ensure that by the onset of structure formation at matter-radiation equality, TV ⇡ 1 eV,

the dark matter is no longer undergoing long range interactions and can form the early

inhomogeneities. This requires that the dark matter-radiation decoupling have taken

place prior to the moment of matter-radiation equality. While the lower temperature of

the dark sector can bring the moment that free-streaming charged dark particle numbers

are suppressed by recombination earlier in time, the dynamic temperature ratio we con-

sidered in the large ⇢ timeline is insu�cient alone. However matter-radiation decoupling
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in the dark sector may take place at a higher value of TD compared to the visible sector

case. With the Saha equation’s exponential dependence on the binding energy of hydro-

gen we can see that raising the ionisation energy of dark hydrogen through the increased

mass of dark electrons directly increases the temperature at which dark hydrogen is no

longer ionised [30, 32, 100]. The ratio of TD/TV then satisfies the condition that dark

matter-radiation decoupling takes place in the radiation dominated era of the universe

provided that TD/TV < 0.336 r where r is the ratio of photon decoupling temperatures

r = T �
0

D
/T �

V
and is dependent on the ratio of binding energies r ' B0

H
/BH = m0

e/me if

one uses the same condition for su�ciently small fractional ionisation in each sector.

While protons may be stable in this latter case it remains possible for the dark hydrogen

atoms to undergo electron capture and decay via e0 + p0 ! n0 + e+ + e� + ⌫ due to

the mixing in the neutrino sector considered in Eq. 4.32. This can be compared to

muon capture in protons in short-lived µ-hydrogen atoms. Such decays are suppressed

by the electron capture probability and the large dark EW scale and have lifetimes

approximated by

⌧(e0 + p0 ! n0 + e+ + e� + ⌫) ⇠

 
| (0)|2

G0
F

2
|V 0

ud
|
2

2⇡

E2

VS

M2
(M �m0

n)
2

!�1

, (4.54)

where | (0)|2 = m3
r↵

03/⇡ measures the wave function at the origin with mr the reduced

mass [167, 168]. The Fermi constant, G0
F
, scales with W 0, EVS is the combined energy

of visible sector decay products, V 0
ud

is a dark-sector CKM element and M is the mass

of the dark hydrogen atom. With a dark electron ⇠ 10 times the SM electron, and

dark protons and dark neutrons at ⇠ 5 GeV, this suggests a lifetime for these dark

atoms between ⇠ 1014 seconds for ⇢ = 200, that is around the time of reionisation in

the visible sector, to beyond the current age of the universe for ⇢ > 2500. The decays

of such states could be a promising source of indirect detection for dark matter if their

lifetime is between these values. The above formula holds for an on-shell dark neutrino

⌫ 0, and thus is an approximate lower bound on the lifetime for the general case where

⌫ 0 is o↵-shell.
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4.7.3.2 Small ⇢

In this regime with e�cient dark weak interactions, a light relativistic species of neutrino

and a su�ciently light associated dark charged lepton we would have charged baryons of

the dark sector all decay into neutral single baryon states, due to mp0 > mn0 , which are

then the dark matter component of our universe and so we have a complete population

of dark neutrons. In order to calculate the relative abundance of n0 to p0 in the dark

sector during BBN we begin by taking the initial abundance of these species after the

dark QHPT to be near equal, given the small mass di↵erence between them. The value

of ⇢ will determine the ratio of dark protons to neutrons. With the mass di↵erence,

Q = m0
p �m0

n, we can write

Xp = n0
p/(n

0
p + n0

n) = e�Q/T
0
/(1 + e�Q/T

0
). (4.55)

The thermal freeze-out of dark protons occurs when dark weak interactions freeze-out

at a temperature of TDWF ⇠ 0.8⇢4/3MeV. Figure 4.9 shows the how close the ratio is

to 1:1 as ⇢ increases.
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Figure 4.9: The ratio of dark protons to dark neutrons, Xp, as a function of ⇢ for a
given mass di↵erence, Q = m0

p �m0
n. In the large ⇢ limit Xp ! 0.5.

The lifetime of any remaining dark protons will depend on the mass di↵erence Q and

the value of ⇢. Assuming a light charged lepton mass and a value of Q ⇠ 1MeV we have
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that in the limiting case of ⇢ = 200 the remaining dark protons will have a lifetime of

⇠ 1012 s such that Xp will approach zero at the time of structure formation.

4.7.4 Dark matter self-interaction constraints

The possibility of self-interacting dark matter is constrained by a number of sources. In

particular, ellipticity, substructure mergers and cluster collisions [2, 126] impose upper

bounds ranging from 0.7� 2.0 cm2/g. On the other hand, issues in simulations of ellip-

ticity of galaxy structures, and the core-cusp problem can be solved by interacting dark

matter, though the required cross section may in some cases be in conflict with upper

bounds [169]. If dark matter interacts according to nucleon scattering where the cross

section is set approximately by the size of the nucleon itself, then we can consider this

model in the context of other models of dark neutron dark matter. As noted in [169],

if the length scale and mass, mn, of the nucleonic state is scaling with increasing ⇤DM

then the dark self-interaction per unit mass can be considered as

�/m ⇠ 3 cm2/g ⇥

✓
⇤DM

mn

◆✓
⇤DM

a�1

◆
2
✓
100MeV

⇤DM

◆
3

, (4.56)

where a is the scattering length which should obey a ⇠ ⇤�1

DM
. If the dark sector is made

up of both dark neutrons and neutral dark atoms we can consider the dark neutron-

atom interactions and dark atom-atom interactions as well. Since these are neutral we

can consider possible magnetic self-interactions, to be discussed later in the analysis in

Chapter 5 where we show that dipole-dipole interactions can be below the self-interaction

bounds for a dark ↵0
EM

= ↵EM and dark matter particles of mass 1 GeV. Compact object

formation such as dark stars may also reduce the density of objects in galaxy clusters

such that the di↵use gas assumptions which set limits on cross sections are not applicable.

The details of dark first generation star formation will depend on the thermal history

assumptions and critically on the composition of the dark sector, i.e. the ratio of dark

hydrogen to dark helium to stable dark neutrons. In the case of a pure population of

dark neutrons, we expect that with small self-interactions compact object formation will

not take place. With a mixture of neutral dark atoms and dark neutrons, it is likely

that with an unbound deuteron dark stars would not be able to survive without this link
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in the nucleosynthesis chain and so would still not be able to achieve the production of

heavier dark elements just as in the BBN era.

4.8 Summary

We have demonstrated a class of models that can both solve the number density sim-

ilarity and provide an explanation for the similar confinement scales of the visible and

dark sectors. In this model of dark matter, we have considered the possibility that

the gauge group and fermionic content that we observe govern the dynamics in one of

two similar sectors. In particular, drawing on the concept of a Z2 mirror symmetry

connecting two copies of the SM gauge group we have seen how symmetric potentials

can break mirror symmetric GSM ⇥G0
SM

to create two markedly di↵erent sectors. One

which sets the abundance of visible matter in the universe, and a dark copy with a high

EW scale, slightly higher confinement scale and unique fermion flavour mass hierarchy

which together sets the larger abundance of dark matter mass in the universe, made up

of stable dark baryons. A summary of the universe’s timeline that includes both matter

and dark matter is shown in Table 4.4 and can be compared to the timeline in Table 1.2.

In the next section we will examine in detail the hadronic physics of the dark composite

theories we have been discussing throughout this thesis.
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Table 4.4: The major epochs of the universe including dark matter.

1019 GeV t ⇠ 10�43s • Planck scale era. Mirror symmetric sectors. E8 ⇥ E8?

1015 GeV t ⇠ 10�38s • Inflation ends, Grand unified symmetry breaking scale.

1012 GeV t ⇠ 10�30s • Majorana neutrinos begin to populate both sectors.

109 GeV t ⇠ 10�24s • Thermal leptogenesis produces a B � L asymmetry in the
visible and dark sector.
• Visible and dark sphalerons create the baryon asymmetries.

105 GeV t ⇠ 10�10s • Universe has cooled to allow the Higgs fields
of the dark sector to attain a nonzero
vacuum expectation value, triggering the dark electroweak
phase transition. Dark fermions gain mass.
• Mirror symmetry is broken. Thermal interactions
between the two sectors are maintained.
• One of the visible doublets gains a large positive
squared mass term from the cross-sector couplings.

102 GeV t ⇠ 10�10s • Asymmetric symmetry breaking VEV breaks
the EW symmetry of the visible sector.
• Visible fermions gain mass.

1 GeV t ⇠ 10�3s • The gauge coupling of the dark SU(3) becomes
non-perturbative, breaking
chiral symmetry and confining all free dark quarks into hadrons.
• The di↵erence in degrees of freedom creates a
transfer of entropy to the visible sector.

⇠ 500 MeV t ⇠ 10�3s • Thermal decoupling. The interactions between the two sectors
fall below the expansion rate. Each sector evolves independently.

200 MeV t ⇠ 10�3s • Visible quarks form nucleons following the QHPT.

1MeV t ⇠ 180s • Dark hadrons persist as individual nucleons.
• Dark protons decay into dark neutrons.
• The universe’s expansion becomes dominated
by matter over radiation.

1 eV t ⇠ 1012s • Dark neutrons dominate the hadrons of the
dark sector forming dark matter and
seeding visible structure formation.
• Visible atoms coalesce into stars.



Chapter 5

Hadronic Spectra of Dark QCD

5.1 QCD bound states

We have seen that a dark analogue of QCD provides a compelling candidate for the

nature of dark matter. In this chapter we will examine more closely the properties that

such a dark SU(3) theory might possess. As seen in the previous chapter, the number

of quarks and the mass hierarchy among them can be di↵erent to that of the Standard

Model with asymmetric symmetry breaking. The implications of this freedom and its

impact on the possible spectra of dark hadrons will be explored in this chapter.

The study of QCD can be traced back to the hypothesis of the colour quantum numbers

in the work of Gell-Mann and Zweig [170]. The wavefunctions of QCD can be expressed

as the product

⌦ =  space  spin �flavour ⌘colour. (5.1)

The total wavefunction must be totally antisymmetric due to the fermion constituents.

In the development of the quark model and QCD it was the observation of the symmetric

form of the neutron wavefunction without colour that led to the theory of colour charge.

As the colour wavefunction is taken to be the antisymmetric colour singlet, the remaining

components must combine to be symmetric. We take the ground states of the theory

to be symmetric in space leaving the combination of spin and flavour to be symmetric.

This forms the famous baryon octet and decuplet of QCD describing the lowest lying

states composed of the u, d and s quarks. The states of a QCD-like theory in a hidden

sector will follow a similar logic, though the flavour structure will depend on some key

112
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assumptions. For our purposes it will be useful to list these states by the number of

flavours. One can imagine a formulation of QCD with only two light quarks, containing

only those states that possess an up and a down quark, a down and a strange quark or

an up and a charm quark.

In order to calculate the details of these exotic SU(3) theories, we consider in this chapter

the zeroth order approach to the hyperspherical non-relativistic constituent quark model

for calculating the hadronic spectra, namely the hypercentral model [171–174].

In this case we take the masses of light quarks to be approximately equal at a scale ml.

As such the constituent masses of these quarks will be expressed as mq. This constituent

quark mass can be taken, in the approximation that ml ⌧ ⇤, to be one third of the

degenerate baryon mass scale E0. The mass scale is in turn proportional to ⇤ which we

treat as a free parameter of the theory. In the case of G⇥G symmetric theories it is a

function of the running of ↵3 and the heavy quark mass thresholds at scales above ⇤. In

the hypercentral approach the inter-quark potential is a function only of the hyperradius

x =
p
⇢2 + �2, where ⇢ and � are the Jacobi coordinates. The spatial wavefunction is

factorised as

 �n(⇢,�) =  �n(x)Y[�]l⇢l�(⌦⇢,⌦�,�), (5.2)

where the angular part is written in hyperspherical harmonics and � = tan�1(⇢/�).

Y[�]l⇢l�(⌦⇢,⌦�,�) = Yl⇢,m⇢(⌦⇢)Yl�,m�
(⌦�)P

l⇢,l�

N
(t). (5.3)

For the hyperradial part we can write down the Schrödinger equation for a given inter-

action potential V (x),

[
d2

dx2
+

5

x

d

dx
�
�(� + 4)

x2
] �n(x) = �2mq[E � V (x)] �n(x). (5.4)

In the next section we will discuss how these methods for ordinary QCD can be adapted

to solve for composite theories of the dark sector.

5.2 Hadronic spectra

While the constituent quark model has achieved considerable success in replicating the

ground states of the baryon spectrum, in adapting this method to the exploration of a



Chapter 5. Dark QCD 114

hidden QCD we have to deal with the fact that the parameters of the theory are taken

from the experimental spectra, which are unavailable in the dark sector. In the case of

hyperspherical potential models we adopt a method of exploring the possible dark mat-

ter spectra by considering simplified models that depend on only a few parameters, and

then deducing how those parameters change for the dark QCD case. In particular we

consider models in which the lightest dark quarks have near degenerate mass and where

the baryon mass scale E0 ⇠ ⇤DM is a free parameter. This is based on our treatment

of ⇤DM itself as a free parameter of the theory following the work in previous chapters.

In such models of asymmetric dark matter the UV value of ↵DM was fixed by the Z2

symmetry imposed on the G ⇥ Gmirror theory. ⇤DM will then vary from ⇤QCD by the

location of mass thresholds of dark quarks with mass greater than ⇤DM, making the lat-

ter parameter di↵erent from the SM value, ⇤QCD ⇠ 200MeV, following the mechanism

of asymmetric symmetry breaking in Chapter 2 and Chapter 3. In these models, the

heavy dark quarks may have masses significantly larger than the dark confinement scale:

mq � ⇤DM. As these very massive degrees of freedom have no e↵ect, except through

their production of a given ⇤DM, on the ground state of the dark SU(3) theory, the

locations of the thresholds can be made to produce a given low scale value of ⇤DM and

thus E0. The lightest dark quarks with negligible bare mass then have a dressed mass

of ⇠ E0/3.

With the variation of ⇤DM we also vary accordingly the length scale of the inter-quark

potential and any other dimensional parameters associated with ⇤DM in the theory. One

of the simplest quark interaction forms is described by the Cornell-type potential,

V (x) = �
⌧

x
+ kx, (5.5)

consisting of a hyperCoulombic and a linear term. As in the bag model of QCD, where

the length scale of confinement scales inversely with the energy scale, we will vary the

length scale of the potential and constituent quark masses with ⇤DM. The parameters

of the reference potential will be fitted to the Standard Model’s ordinary QCD spectra

and a number of di↵erent potential forms will be used for comparison. We will focus on

the ratio of confinement scales in the two sectors used previously,

⇠ =
⇤DM

⇤QCD

. (5.6)
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In a model with high scale mirror symmetry, large values of ⇠ are less likely since mass

thresholds only vary the rate of running slightly and so similar QCD mass scales for the

two sectors are well motivated by the insensitivity of the scale of dimensional transmuta-

tion to higher mass scales in the theory. In such models, the Yukawa couplings of the two

sectors are also independent despite the high scale mirror symmetry. This can be seen

as an e↵ect of both the di↵erent running couplings and the fact that the Higgs mecha-

nisms responsible for mass generation in the two sectors can involve scalar states that

are not mirror partners. In this work we similarly take the Yukawa coupling constants of

the dark quarks to be e↵ectively unrelated to those of the corresponding ordinary quarks.

If ⇠ > 1 and the lightest dark quark bare masses are comparable to the up and down

quark of the SM, then the approximate chiral flavour symmetry becomes more exact as ⇠

increases. This can be compared with our own QCD where it is the small quark masses

relative to the confinement scale that generates the isospin symmetry. No symmetry

connecting the bare up and down quark masses is necessary for strong isospin, only

that they are small enough to be insignificant compared to the near equal constituent

masses the quarks gain from chiral symmetry breaking within the bound states in the

constituent quark model. It is in this sense that a dark QCD with nl light flavours

with masses ml ⌧ ⇤DM can form an SU(nl) analogue of strong isospin. The assump-

tion of near degenerate dark quarks is then seen to refer to constituent masses. This

dark isospin is then a consequence of any hidden QCD where fermions gain mass via a

Higgs-like mechanism and the product of the hidden sector Higgs VEV vD and any dark

quark Yukawa couplings are small in relation to the dark confinement scale. As the light

dark quarks form the lightest bound states of a dark QCD, any coloured fermions more

massive than the confinement scale will decay to lighter states of the theory and only

be produced in small numbers following the dark quark hadron phase transition. We

also consider states analogous to the strange quark of QCD which have a mass which

can be less than ⇤QCD but can still contribute a significant amount to hadronic masses.

There also exists the limiting case of when all of the dark quarks have mass above ⇤DM,

which has been explored in models such as [175–177] where the possibility of glueball

dark matter is examined. In the case of six massless quarks and a baryonic mass scale

E0 ⇠ ⇤DM, 1 the meson states will have zero mass as genuine Goldstone bosons. The

1The e↵ects of the strange quark as a virtual state contributing to the mass of the proton has a long
history. It is estimated that a massless strange quark may lower the nucleon mass scale of QCD by
between ⇠ 1� 20% [178].
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exception is the Goldstone Boson associated with the breaking of the anomalous U(1)

axial symmetry. In QCD it is the ⌘0. Importantly, in one flavour QCD, the only meson of

the theory will gain an anomalous mass and so even in a dark QCD model with a single

massless quark, there will be no massless Goldstone bosons. We will briefly discuss this

particular case in the next section.

To compute the mass spectra of a dark QCD, we apply the hCQM and scale relevant

parameters with the confinement scale. In the simplest potential model with an inter-

quark interaction as in Eq. 5.5, the size of the bound state can be compared to the radius

at which the potential transitions from Coulomb-like to linear. This follows directly from

our treatment of the confinement scale as a free parameter, in that we are adjusting the

scale at which the hidden QCD theory transitions from perturbative to non-perturbative.

This transition radius then decreases inversely with ⇠. This can be seen directly in the

case of Eq. 5.5 where k has units of (E)2 and so becomes ⇠2k in a scaled potential. The

crossing point is then rc =
p

⌧

k

1

⇠
. This relationship can be seen in Fig. 5.1. The shape of
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Figure 5.1: The variation of an example hypercentral potential V(x) with ⇠ (left) and
the value of rc, an estimate of the radius of confinement, as a function of ⇠ (right). By
scaling the dimensionful parameters of the interaction potential with confinement scale,
we are directly scaling the range at which the interaction transitions from perturbative

to non-perturbative.

the potential directly a↵ects the masses of bound states and in particular has important

consequences for resonance states and the size of the hyperfine corrections. We now

turn to the computation of the dark hadron spectra of di↵erent cases of a hidden QCD.

The masses also depend on the reference potential that we can scale from and which is

taken from past work on potential models of QCD in order to replicate the masses of

the hadrons of the Standard Model.
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5.2.1 Baryon spectra

We distinguish the cases by the number of light dark quarks in the theory and examine

how the spectra change with the confinement scale. Including electromagnetic e↵ects we

can consider that as ⇤DM increases and rc decreases the size of the EM mass contribution

to neutral and charged states will be more significant. In particular, if we consider the

simple expression for the scaling of the EM self-energy of a neutron as [179]

�EM ⇠ �
↵

hx2i1/2
, (5.7)

then this term will scale upwards with ⇠ as the distance becomes smaller. The proton by

comparison has a positive mass contribution that also scales with ⇠ and the di↵erence

between these will push charged states above the masses of neutral states for the case of

light quarks of equal mass. Such contributions are not however to be subtracted from

the calculated neutral ground states in the hypercentral analysis as they are in theory

already factored in by the Coulombic term scaling of the potential and the fact that the

potential was fitted to the experimental neutral masses from the PDG for ⇠ = 1. For

this reason, our work is most applicable to theories of a dark QCD with an EM U(1)

coupling strength the same as that of ordinary electromagnetism. In models of broken

mirror symmetries the value of the dark sector’s EM coupling constant is constrained to

be very close to that of the SM value due to the opposite direction of the running of U(1)Y

and SU(2)W and so the model in this work is directly applicable to the QCD spectra

of these models. In a theory without an EM gauge group, the EM mass contribution

to the e↵ective potential must be separated in order to remove its e↵ect from the mass

ordering.

For larger confinement scales the e↵ect of EM U(1) force in the theory will create mass

di↵erences pushing any charged states well above any light neutral ground states if the

set of light quarks allows for them. The only counter to this is if the bare dark quark

mass di↵erences compensate for the EM mass di↵erence as in the case of the proton-

neutron mass splitting of ordinary QCD. This can be contrasted with the e↵ect of ⇠ on

the chromomagnetic spin-spin interactions that we employ and which scale inversely with

the dark confinement scale and thus increase the degeneracy between the doublet and

quartet in two flavour dark isospin, and between the octet and decuplet in three flavour

dark isospin. This term crucially depends on the spatial wavefunction and the contact
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term for overlapping quark coordinates h�(3)i = | (0)|2. The spin-spin interaction in the

form of the chromomagnetic contact term is [180]

Vss =
X

i<j

4

9⇡

↵s

mimj

�(3)(rij)�i.�j . (5.8)

Note the inverse scaling with constituent masses mimj which will increase degeneracy

between the mixed symmetry and totally symmetric baryon multiplets. This term is

analogous to the magnetic spin-spin contact interaction that gives rise to the hyperfine

splittings in atomic theory however in this case is motivated by the colour-magnetic

moments. This term is important in understanding the ⇤0
� ⌃0 and �0

� N mass

di↵erences in QCD where the flavour composition is identical and the spin-flavour wave-

function is di↵erent, a unique feature for baryon wavefunction ground states when the

number of flavours exceeds two. They are then similarly important for the present work

as they contribute to the mass splitting between the di↵erent ground state wavefunctions

allowed in the constituent quark model. One could also consider the spin-flavour and

spin-orbit interactions and depending on the choice of potential these may contribute

more or less significantly. We discuss these possibilities further in Appendix D. In this

work we consider models where the spin-spin interaction is the dominant source of these

mass di↵erences. In the hypercentral assumption with only one hyperradius we lose the

ability to directly calculate the full value of the contact term h�(3)i for the full coordi-

nate system of three quark wavefunction. The Gaussian-smeared contact term with a

functional form

�(3)(x) =  ex
2
/r

2
0 , (5.9)

that is treated perturbatively, is an approximation which has been applied successfully

to fitting the light baryons in [171, 181] among others and we similarly use it in this

work for the extrapolation to dark QCD states.

In fitting the form of the potential we compare parameter fits done in similar models for

standard hadronic spectra. We consider primarily potentials generalising that of Eq. 5.5,

V (x) = �
⌧

x
+ kx⇢, (5.10)

as well as a perturbative hyperfine interaction given by Eq. 5.8. The eigenstates are

then given by EN� . This follows the work on visible QCD in [181–183] as well as [184].

The masses of the baryons are then given by MB = E0+ENL where E0 = 3mq, i.e. it is
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the quantity that scales directly with ⇠ along with the dressed light quark masses. With

these di↵erent potentials, which all fit the experimental spectra to varying degrees, we

can examine the variation of dark baryon masses with the choice of potential. Following

the potentials given in [181–184] we list in Table 5.1 three sets of parameters that with

Eq. 5.10 provide a good fit to the hadronic spectra. While our starting point was these

potentials, our exact choice of parameters prioritises the fit to the ground states over the

resonances as these are the most relevant to this work. We are then assuming that such

a potential, when scaled, provides the more accurate prediction of dark QCD ground

states.

Table 5.1: Parameter sets of the three choices of potentials in the fitting to ground
states of QCD. The three parameter sets (P1, P2, P3) are taken from the works in
[181–183] respectively. The choice of units reflects the units used in the original works.

Model ⌧ k ⇢  mq r0 E0

P1 102.67MeV.fm 940.95MeV/fm 1 616.02MeV.fm 337MeV 0.45fm 913.5MeV

P2 0.5069 0.1653GeV
2

1 1.8609 0.315GeV 2.3GeV
�1

0.8321GeV

P3 0.4242 0.3898GeV
5/3

2/3 1.8025 0.277GeV 2.67GeV
�1

1.1313GeV

We can then calculate the same states for a dark QCD model as a function of the num-

ber of light quarks and a value of ⇠. The parameters (⌧, k, ⇢,,mq, r0, E0) then all scale

appropriately according to the mass dimensions of the chosen potential as discussed in

Fig. 5.1. Figure 5.2 shows the fit to ground states of the N and � baryons in QCD while

Fig. 5.3 shows a scaled version for a value of ⇠ = 5, chosen for the sake of example.

In the one flavour quark case, the baryon spectrum consists of a lightest stable � baryon

with ground state spin 3/2. In the case of dark electromagnetic U(1)Q symmetry con-

sistent with the SM it would have EM charge +2 in the case of a single up type quark.

It could also be a single down type and so be singly charged with opposite sign. For

the mass of this state we can compare with standard QCD in that we calculate the

mass from the constituent quarks and the potential energy from the scaled potential

including the spin interactions that lifts the ground state according to the chromomag-

netic hyperfine interaction in Eq. 5.8. The mesonic states will likewise contain only one

state however this lightest meson will be unique in that it has the feature of an anoma-

lous mass from the breaking of the anomalous axial U(1). The size of this anomalous

mass in these models of dark QCD with one light flavour is beyond the scope of this work.

In the two flavour quark case, with an isospin symmetry among the light states, the

baryon sector will have a spin-flavour SU(4) symmetry. The spectrum then consists of a
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Figure 5.2: The resonances of the N and �0 states compared to PDG. The spin 1/2
ground state of the neutron and spin 3/2 ground state of the �0 are fitted to match the
experimental ground states exactly in each case. These values serve as the reference for

dark QCD calculations.
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� quartet of spin 3/2 states as well as a spin 1/2 pair (N,P ). However we can also con-

sider the cases where this doublet and quartet have charges that follow the possibility of

the two light dark quarks being both up type or both down type. The splitting between

the doublet and quartet in any scenario is modelled again with the spin-spin contribu-

tion which gives the spin 3/2 states larger mass than similar spin 1/2 states while EM

e↵ects will make the neutral states lighter in general. For su�ciently light quarks with

near equal masses we can consider the spin 1/2 (N,P ) doublet as the lightest states

in the first case, and with U(1)Q corrections selecting the neutral state as the lightest

ground state. In the case of two up-like or down-like dark quarks, we have degenerate

states with equal EM contributions which we label (⌃++
c ,⌅++

c ) and (⌅�,⌃�) following

the naming conventions of standard QCD where in this case the flavour content of the

theory is taken to consist of near degenerate (u,c) or (d,s) dark quarks.

In the three flavour case we can compare directly with QCD, however again we can

distinguish the cases according to other quantum numbers. With three flavours we re-

cover the familiar octet and decuplet however with near degenerate quark masses the

spectrum will be near degenerate in flavour unlike the strange quark mass splitting seen

in QCD. Again we can consider EM mass di↵erences where flavour content allows for

neutral and charged states. In the case of three or more flavours we gain two ways

of forming a spin 1/2 wavefunction for ground states as in the case of the ⌃,⇤. The

di↵erences in terms of Eq. 5.8 are the values of the �.� terms. It remains true however

that in the degenerate u, d, s case that N,⌃,⇤ have the same mass and share the place

of the lightest state.

In Figure 5.4 we show as a function of ⇠ the lightest spin parity states for each of the

lightest baryons in the cases of only one light quark and two light quarks. The case of

two light quarks however provides the mass scale of the lightest state for any number of

light quarks greater or equal to two.

By observing the spin and flavour symmetries of a given set of light quarks one can

construct an equation with a functional form similar to that of the Gell-Mann-Okubo

equation which was used to make sense of the mass splittings of ground state hadrons

in the quark model. For a dark variant of such an equation, the unknown parameters

cannot be extracted from experiment though we can consider how these parameters

change from ordinary QCD for a choice of dark QCD. We introduce the additional free
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Figure 5.3: Spin 1/2 and spin 3/2 for a confinement scale ratio ⇠ = 5 and three light
quarks. Dimensional parameters scale with ⇠ displayed in the upper left. The PDG
values for the experimental spectra are shown for reference to the scale of the ⇠ = 1
case. Each of the results (P1,P2,P3) corresponds to a choice of parameters for the ⇠ = 1

potential given in Table 5.1.

parameter �ms as the mass di↵erence between the constituent quark mass of the light

states and the constituent mass of a semi-light state, analogous to the position of the

strange quark in QCD. In particular we consider the spin, and hypercharge symmetries

of the set given by the SUS(2) and UY (1) groups. We also include the generalisation

of isospin, SUI(nl) where nl is the number of light flavours. This leads us to the form

of the Gürsey-Radicati mass formula, which was used to explain the Gell-Mann-Okubo
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Figure 5.5: Baryon states in our model for visible QCD compared to PDG values
[185]. Parameters for the Gürsey-Radicati formula are fitted from the baryon mass

results of the hypercentral Schrödinger equation.

mass relations [186], which is written as

M = M0+C C2 [SUS(2)]+DC1 [UY (1)]+E

✓
C2 [SUI(nl)]�

1

4
(C1 [UY (1)])

2

◆
, (5.11)

where C1, C2 are the quadratic Casimirs for each group. In the case of QCD this becomes

M = M0 + C S(S + 1) +DY + E


T (T + 1)�

1

4
Y 2

�
(5.12)
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Figure 5.6: The top two plots shows the masses of the dark sector ⇤0 and ⌃ states
for a range of values of the semi-light mass splitting �ms and ⇠. The lower plots display
the mass di↵erences for the ⌃ and ⌃⇤ baryons as well as the mass splitting of the two

di↵erent 3-quark spin-flavour wavefunctions (⇤, ⌃) for a range of �ms and ⇠.

and works quite well in reproducing the masses of the octet and decuplet, of ground states

in QCD, as shown in Fig. 5.5. In Eq. 5.12 M0 is a new scale that places the energy of

the full baryon spectrum rather than being E0 itself. However from the hypercentral

analysis to find the ground state of a confining theory with nl light flavours and a given

E0 we can predict the mass of the ground state and working from this result determine

the value ofM0. This idea follows the applications to the experimental QCD spectrum in

[187] where the SU(6) spin-flavour symmetric Hamiltonian is solved numerically to find

the central values for the Gürsey-Radicati formula. The experimental states typically



Chapter 5. Dark QCD 125

chosen to fit the parameters are, in terms of ground states,

⌃⇤
� ⌃ = 3C (5.13)

⌃�N =
3

2
E �D

⇤�N = �D �
1

2
E.

We can then use Eq. D5 to obtain a minimal number of baryon ground states and refit

the above parameters, for a choice of ⇠ and �ms, based on our calculated eigenvalues

instead of the experimental spectrum. Figure 5.6 shows the masses of the ⇤0 and

⌃ ground states, as well as the mass di↵erences in spin 1/2 and spin 3/2 ⌃ ground

states, needed to find the parameters of such a formula for a choice of ⇠ and �ms

while Figure 5.4 shows the lightest 1

2

+
,1
2

�
and 3

2

+
values needed in order to fit the mass

di↵erence parameters that use the neutral N and � states. Note that as �ms approaches

zero, the dimensional parameters D, E also approach zero, as we expect. This is relevant

to the limit of maximum degeneracy. It is through this method that the mass di↵erences

within the baryon multiplet for a dark QCD model can then be explored by solving for

the Gürsey-Radicati formula parameters each time we generate the resonance spectrum

for dark QCD states. Figure 5.7 examines the cases with only two light flavours and in

Fig. 5.8 we examine how the spectra of lightest spin-flavour states changes depending

on the value of ⇠ and whether there are any non-degenerate light quarks. Applying this

methodology to a dark QCD inherently comes with the caveats that the exact scaling

of these parameters in, for instance, one flavour dark QCD may be more complicated

than the scaling we employ. In particular the relationship between bare quark mass and

constituent quark mass is non-trivial and has been explored in lattice studies such as

[188].

5.2.2 Meson spectra

For mesons we are mostly interested in the scaling with confinement scale as their masses

can have significant consequences on the stability of baryons. They may additionally

impact the cross sections of strong interactions and thus the self-interaction strength of

dark matter. In QCD, the application of the constituent quark model meson formula
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Figure 5.7: Gürsey Radicati states for a hidden QCD with two flavours, ⇠ = 5 and
degenerate light quark masses in increasing mass values in four flavour combination

cases.

[189],

Mmeson = m1 +m2 +
1

3

✓
8⇡

3

◆
4⇡↵s

m1m2

S1.S2| meson(0)|
2, (5.14)

works surprisingly well, where S.S is 1/4 for vector mesons and -3/4 for pseudoscalars.

Taking the up and the down to have constituent mass 310 MeV and the strange quark

to have 483 MeV reproduces the results in Fig. 5.9. One approach we can then take

in exploring a dark analogue is to simply consider the inter-quark potential from the

baryon spectrum and solve for the two body wavefunction to find | meson(0)|2. This

follows the work in [181–183] where the potential and parameter space considered was

specifically designed to fit both the baryon and meson spectra.

While Eq. 5.14 is not particularly accurate in the chiral limit as mq ! 0, we observed

that the pion scaling with ⇠ is consistent with the Gell-Mann, Oakes, Renner relation,

m2

⇡ =
(mu +md)⇢

f2
⇡

, (5.15)

if one assumes a pion decay constant that does not vary with ⇠. The parameter ⇢ is

the condensate, ⇢ = hq̄qi, that scales directly with ⇠. This suggests that the model

we employ is taking the degree of explicit chiral symmetry breaking to be of the same

magnitude as ordinary QCD as we increase ⇠. In other words, while the bare light

dark quark masses remain small compared to ⇤DM, we are able to analyse the meson

spectrum for models where the ratio of light dark quark current masses to ⇤DM is similar

to standard QCD. This is consistent with models of broken mirror symmetries where the
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Figure 5.8: Spin 1/2 and spin 3/2 baryon ground states for a factor of ⇠ = 5 in the
case of three light quarks where one quark may have additional mass. The more massive

state is then labelled as the c or s dark quark depending on its quantum charges.

dark EW scale can be a free parameter. This limits the amount of parameter space we

can explore in this particular approach to dark hadronic spectra to models of dark QCD

with a similar degree of chiral symmetry breaking. We additionally know that in the

chiral limit the mesons approach zero mass and so Eq. 5.14 is applied in the context of

increasing ⇠ with meson spectra fitted dressed masses now scaling with ⇠ along with the
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inter-quark potential. We can also factor in a value of �ms to observe the splitting with

a semi-light dressed state. The meson spectra are much more sensitive to the masses

of the bare dark quarks, which are all free parameters, and thus the spectra and the

comparison between meson and baryon mass will depend on the exact model. As noted

in [120], choosing a semi-light mass for bare quark masses and a hidden QCD without

flavour violating dark electroweak forces, one can make states similar to the ⇤ baryon

stable as Kaons may be too heavy for kinematics to allow decay to lighter baryons.

Figure 5.10 shows the light meson spectra for a small set of di↵erent dark QCD cases.

As the dark confinement scale is large, we take the anomalous meson to be su�ciently

heavy that it is not part of the light set as discussed previously. In Figure 5.11 we

examine how a sample of the meson spectra in this model varies with ⇠. In particular we

see the variation of the mass between the pseudoscalar and vector mesons as ⇠ increases.

As we are assuming a consistent value of the pion decay constant it must be the case

that the bare quark masses are similarly increasing with ⇠. This reiterates the previous

statement that this model is not well suited to exploring the chiral limit and, indeed,

exploring the full parameter space of varying the bare quark mass and confinement scale

independently for a dark QCD is a task that chiral perturbation theory or lattice QCD

studies may have the capacity to accomplish.
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Figure 5.11: Scaling of the meson spectra with ⇠ for a given value of �ms shown
in upper left. The value of the pion decay constant, and thus the strength of chiral

symmetry breaking is taken to remain constant.

5.3 Cosmological history of dark QCD

We have seen that asymmetric dark matter models position dark matter as the remaining

abundance of matter in a dark sector following the annihilation of near equal amounts

of dark matter and dark antimatter, similar to the baryon asymmetry in our own sector

[101]. We then require from an asymmetric dark matter model with a dark QCD a

number of key features. The first is that dark matter is stable and so a conserved global

quantum number is necessary. Dark QCD can provide this in the form of a dark baryon

number, however this must be present in the model of the dark quarks themselves, as
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is the case in models with a mirror symmetry. Secondly, in order for the dark sym-

metric matter-antimatter components to be annihilated a form of dark radiation such

as dark electromagnetism U(1)D is needed or annihilation into ordinary radiation must

occur. If dark photons fulfil that role this has direct implications as discussed in the

previous chapter on the ordering of the hadronic spectra as well as the self-interaction

cross section for dark matter. If the dark EM coupling is of the same scale as the SM

value, the self-interaction rate for purely charged DM may be above the current bounds.

For a recent analysis of constraints see [190] where DM with an U(1) gauge charge was

considered and constraints from triaxiality and galaxy cluster mergers were compared to

the significant bounds, in particular that for ⇠ 10 GeV scale DM the dark EM coupling

↵D < 10�4. Note that these bounds assume no compact object formation in the dark

sector. The strength of the dark gauge coupling in this case allows for di↵erent fractions

of DM to be charged. If the set of light quarks allows for neutral states then we have

seen that degenerate quark masses motivate models in which the neutral states are the

lightest stable composites and if nuclear forces are su�ciently weak then dark matter can

satisfy these constraints. In the case of dark glueball dark matter Ref. [191] considers

the relationship derived from the suspected glueball state of QCD that mGB ⇠ 5.5⇤DM

and estimates a self-interaction cross section � ⇠ 4⇡/⇤2

DM
.

In order to find a natural explanation for the observed components of the universe,

⇢DM ' 5⇢M, we require both a reason for the similar abundance of baryons and dark

baryons as well as the similarity in mass. The relationship in the abundance can be for-

mulated in a large number of di↵erent ways and Chapter 4 gives just one fully-worked

example. In the case of mass, Section 5.2 has demonstrated how the lightest stable

baryon may scale with a dark confinement scale.

In the cases where there is a large mass gap between the lightest baryon and the rest

of the spectra we can take the dark matter candidate to be this stable state if dark

weak interactions are not suppressed and dark quarks masses are light. If however the

mass di↵erences between two or more of the lightest dark QCD states are small then the

dark QCD phase transition will produce similar numbers of these states. This can be

compared to standard cosmology where the near degeneracy of the neutron and proton

produces roughly equal numbers following the quark hadron phase transition. In that

case the near equal numbers allows for the process of nucleosynthesis where an array
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of stable states of multiple nucleons can be formed. This is in the case where the dark

sector has n + ⌫e $ p + e� interactions that maintain near equal n, p densities prior

to the freeze out of weak interactions. This allows for helium to make up a significant

fraction (⇠ 26%) of the visible mass density. One can then consider dark sectors where

two or more near degenerate composite states, that is where �m ⌧ ⇤DM, are bound by

dark nuclear forces into a complex arrangement of nuclei like objects. The complexity

may be far greater than standard nuclear theory where there is an approximately lin-

ear relationship between the number of protons and neutrons in nuclear bound states,

for example; three near degenerate baryons, as in the case of degenerate u,d,s have six

possible dibaryon states and the mass hierarchy among these will depend non-trivially

on the dark nuclear-like interactions. Compact objects in the form of neutron star-like

bodies could also manifest ultimately depending on the model and the self-interaction

strength from strong-like interactions.

5.4 Summary

In this chapter we have considered the hypercentral approximation of the constituent

quark model and the possible properties of a dark sector with a QCD analogue. In

particular we have examined the dependence of the hadron spectra on the number of

light chiral fermions and the resulting phenomenology of dark QCD with a confinement

scale in the GeV range. As a class of theories to explain the nature of dark matter we

have seen that larger confinement scales result in higher degrees of degeneracy in the

spectra while the number of flavours has a significant impact on the mass and nature

of the lightest baryon and meson for SU(3) theories. Constituent quark models have

provided insight into the nature of QCD and while many frameworks for advancing

these calculations have sought to better replicate the experimental signatures, potential

models still allow us to probe the ground state spectra in a simple manner with fewer

parameters and a direct relationship to the confinement scale. By incorporating such

descriptions of dark QCD into the asymmetric dark matter models of this work, where

the gauge couplings of the SM and hidden sectors are connected in the UV, the similarity

in mass scale of DM and the proton finds a natural explanation. The higher confinement

scale motivates theories with a neutral ground state in addition to higher degeneracy

among the baryons with di↵erent total spin and charge. The spin and charge of the
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ground state is further dependent on the number of light dark quarks in the theory and

the quantum numbers of these quarks that make up the dark matter candidate.



Chapter 6

Conclusion

Common to much of the dark matter literature are models that consider the addition

of a single new particle species to fulfil the role of dark matter, in order to explain the

majority of mass in the universe. These models assume that the present day knowledge

of forces and fields that play a role in the modern universe, despite making up just one

sixth of the mass of the universe, is close to complete.

If we consider however that the Standard Model is merely an e↵ective field theory then

the possibility is clear that not only is there much more to be found at higher energy

scales, but also that the Standard Model could be just one of a number of low energy

sets of states that primarily interact gravitationally with each other. The Standard

Model does remain however our greatest roadmap for developing theories that seek to

explain the currently unexplained features of the cosmos. In this theory of dark matter

we have considered the possibility that the gauge group and fermionic content that we

observe, governs the dynamics in one of two similar sectors. In particular, drawing on

the concept of a Z2 mirror symmetry connecting two copies of the SM gauge group we

have seen how symmetric potentials can break mirror symmetry to create two markedly

di↵erent sectors.

This type of model can proceed with mirror GUT SU(5)⇥SU(5) theories that break this

GUT symmetry asymmetrically to give rise to very di↵erent mass scales for fermions in

the two sectors. The di↵erent fermion masses which result from this symmetry breaking

can then alter the running of the gauge coupling constants giving rise to similar confine-

ment scales. We demonstrated that this can work with a supersymmetric potential and

133
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a wide range of mass scales for dark fermions. This model can be extended to SO(10)

theories, where in the case of SO(10)⇥ SO(10) we constructed symmetric Lagrangians

that induce the mirror GUT group to break asymmetrically through di↵erent intermedi-

ate gauge theories. This can then generate low energy scale visible and dark sectors that

can be similar with respect to the mass scales of matter but have very di↵erent thermal

histories and forces. In particular, for a wide array of intermediate breaking scales and

gauge groups that may have existed along the two sectors’ histories, the confining gauge

theories at low energy can have very similar confinement scales and thus explain the

similar masses of dark matter and the proton.

The similar abundances of matter and dark matter can be explained if the number

density asymmetries are generated above the scale of mirror symmetry breaking. This

naturally leads us to consider high scale leptogenesis models. We demonstrated models

where one sector sets the abundance of visible matter in the universe and a dark copy,

with a much higher EW scale, slightly higher confinement scale, and unique fermion

flavour mass hierarchy sets the larger density of dark matter mass, made up entirely of

dark baryons. Thermal leptogenesis is an ideal model to use for this high scale theory as

it also explains the small masses of light neutrinos. In these models of asymmetric sym-

metry breaking, a lepton asymmetry is generated in each sector by CP violating decays

of Majorana neutrinos above the mirror breaking scale after which the two sectors can

independently reprocess equal lepton asymmetries into near equal baryon asymmetries.

Once antibaryons in our sector and dark antimatter in the hidden sector annihilate away

we then have an explanation for a unique dark sector which naturally has a density of

dark matter particles near that of the visible baryons and with a mass scale for these

particles that is naturally explained to be close to the proton mass. These models can

then completely explain the approximate 1:5 ratio of Eq. 1.1.

Lastly we explored the more complicated possibilities of a hidden composite SU(3) the-

ory. Using the hyperspherical constituent quark model of hadronic physics, we explored

the spectra of baryons and mesons in a model with a higher energy confinement scale

and dark quarks with independent mass scales. In this model we found how the order-

ing of the hadronic spectra can change depending on whether electromagnetic forces are

relevant as well as the e↵ect of the value of the confinement scale and the mass splitting

among the dark quarks themselves. This model shows how neutral states are naturally

favoured over charged states and how the spin and mass of the lightest stable baryon is
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dependent on the number of light dark quarks. This also opened up the discussion to the

complexity of possible dark sectors in terms of nuclear binding forces and the possible

number of near degenerate dark matter candidates that may co-exist, leading to a rich

field of dark matter physics that the hidden sector in our models could be described by.

This thesis has investigated how to solve the fundamental mystery of the matter to dark

matter ratio. To that end we have developed the mechanism of asymmetric symmetry

breaking and shown in the first five chapters how this can solve the ratio problem in a

natural way. The breaking of these high scale mirror symmetries can produce the visible

sector, governed by the SM at low energies, and a dark sector with vastly di↵erent

properties but a similar mass contribution to the universe. These dark sectors are then

a compelling explanation for dark matter and o↵er the possibility that the dark sector

itself may be a fascinating landscape of new physics that is eerily similar to the world

we know.
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Appendix A

SU(5)⇥ SU(5) Potentials

A.1 Scalar potential for non-supersymmetric SU(5)⇥SU(5)

model

In Chapter 2 we outlined the construction of an SU(5)⇥SU(5) potential with asymmetric

minima. Here we discuss its features in more detail and explore some of the possibilities

in regard to breaking to various subgroups. The full SU(5) ⇥ SU(5) potential can be

written as
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The parameters are �t1, µt,�t2 as well as �a1, µa,�a2, a and t. In addition to these

there are five cross terms arising from nontrivial contractions between our representa-

tions, with parameters (C0, C1, C2, C3, C4). In general the asymmetry required can be

attained by making these additional cross term parameters smaller than C0 and the

other parameters of the model. In minimising this potential we can reduce the total

number of parameters by placing all of our fields in a simplified VEV form. The adjoint
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can be represented by the traceless matrix

h�vi = vv

0

BBBBBBBBB@

↵1 0 0 0 0

0 ↵2 0 0 0

0 0 ↵3 0 0

0 0 0 ↵4 0

0 0 0 0 ↵5

1

CCCCCCCCCA

, (A.2)

with ↵1 + ↵2 + ↵3 + ↵4 + ↵5 = 0. For the 10 we have

h�di = vd

0

BBBBBBBBB@

0 ⇢1 0 0 0

�⇢1 0 0 0 0

0 0 0 ⇢2 0

0 0 �⇢2 0 0

0 0 0 0 0

1

CCCCCCCCCA

, (A.3)

with ⇢1,2 complex. The 24 and 10 are both reduced to just four total di↵erent degrees

of freedom each in this form. Working numerically we can however quickly compare the

results of using just these 16 degrees of freedom or the full 68; they were found to agree

in all cases. The parameter space is directly comparable to that of the simple model of

Sec. 2.3. The positive definite terms act exactly like collections of additional fields that

one could add to that previous model with the same-sector and cross-sector couplings

needed to generate asymmetric VEVs that di↵erentiate entire sets of fields within these

multiplets. That is, if a is large enough then if all (�v
i

j) fields gain a nonzero VEV, all

of the fields (�d
i

j) are encouraged to become zero. Together with (C1, C2, C3, C4) there is

a greater variability for the signs of quartic terms of the potential. Scaling any of these

additional quartics too high may alter the VEV pattern from the desired asymmetric

pattern. A larger value of C0 will however ensure the breaking is the extension of that

in Sec. 2.3. To be concrete, we display an example of some parameters set along these

guidelines and the VEVs that are produced. The parameters

�a1 ' 0.4, a ' 0.4, t ' 0.4, �t1 ' 0.8,

µt ' 0.2, µa ' 0.1, �a2 ' 0.1, �t2 ' �0.1,

C0 ' 0.5, C1 ' �0.1, C2 ' �0.1, C3 ' �0.1, C4 ' �0.1 (A.4)



Appendix A 155

give rise to the VEVs

h�vi ' 0.24
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A.2 Scalar potential for supersymmetric SU(5) ⇥ SU(5)

model

In this section we will discuss further the results of the supersymmetric version of asym-

metric symmetry breaking. The analysis here only serves to demonstrate that such

asymmetric patterns are possible within the constraints inherent in supersymmetric

theories.

Positive definite couplings between fields of di↵erent sectors are required to create the

anti-correlation between sectors. This is what necessitates a field which transforms into

itself under the discrete symmetry. An alternative to this could be to arm the theory

with a pair of complete singlets under the discrete symmetry, i.e. Sv, Sd. Without such

additions we are unable to create gauge invariant terms in the superpotential which

can allow for cross-sector couplings to appear in the F-terms. The other addition we

made of the multiplet Y was based on our choice of complex representations.1 We wish,

however, to demonstrate that the theory which we used previously can be adopted into

a supersymmetric form with the same gauge group breaking chains. The terms that we

wish to highlight that are derived from the superpotential are the contractions of the

form

s24(�v�vXvXv + �v�vYvYv + �d�dXdXd + �d�dYdYd). (A.6)

It is clear that the parameter s4 being larger can help lead to asymmetric VEVs. The

other important parameter is s5 which a↵ects the term

s25(�d�d�v�v). (A.7)

With just these terms and the additional soft masses one can generate an asymmetric

VEV pattern. For the parameter example

s4 = s5 ' 0.02, g5 ' 0.037, s9 ' 0.001,

mX = mY ' 0.001, m� ' 0.1, mS = 0, (A.8)

1This may of course not be necessary, if one was working with two di↵erent real representations
to facilitate di↵erent symmetry breaking in each sector. In that case the procedure would be more
straightforward.
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and all trilinear terms and other parameters set at or close to zero, we obtain nonzero

VEVs for the adjoint in one sector and for the fields Xv and Yd in the other sector

which serve to break SU(5)v to the Standard Model gauge group and SU(5)d to the

dark sector gauge group with VEVs

h�vi ' 2.1

0
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0 1 0 0 0
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0 0 0 �3/2 0
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1
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0 0 1.5 + 2.1i 0 0

0 0 0 0 0

1
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,
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0
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0 1.2� 2.9i 0 0 0

�1.2 + 2.9i 0 0 0 0

0 0 0 �1.53 + 2.1i 0

0 0 1.5i� 2.1i 0 0

0 0 0 0 0

1

CCCCCCCCCA

. (A.9)

This demonstrates the capacity for supersymmetric models to display the same asym-

metric symmetry breaking as non-SUSY models. There are other terms which can

contribute to the asymmetric pattern, i.e. contractions of the style (XdXdXvXv), but

scaling these up to be larger also scales upwards terms that we would need to contend

with to maintain the asymmetry.
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SO(10)⇥ SO(10) Potentials

In this appendix we expand on the potential discussed in Section 3.4. We firstly consider

the two representations of SO(10) independently. These are the adjoint 45, denoted by

�ij which can be formed from the antisymmetric product of two fundamental represen-

tations, and the 54 which we label �ij which is formed from the completely symmetric

product of two fundamentals. The most general quartic potential for a rank two anti-

symmetric tensor in SO(10) is

�
µ2

2
�ij�ji +

�

4
(�ij�ji)

2 +
↵

4
�ij�jk�kl�li. (B.1)

For this potential the symmetry breaking pattern is as follows. For � > 0 and ↵ > 0 we

have

SO(10) ! SU(5)⇥ U(1), (B.2)

while for � > 0 and ↵ < 0 we find

SO(10) ! SO(8)⇥ U(1). (B.3)

In the case of the symmetric rank two representation we have a similar equation but

with the added cubic term Tr(�3) so that the potential reads

�
µ2

2
�ij�ji +

�

4
(�ij�ji)

2 +
↵

4
�ij�jk�kl�li +

�µ

3
�ij�jk�ki. (B.4)
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For this potential the parameter space is such that without the cubic term the possible

breaking chains are, for � < 0 and ↵ < 0,

SO(10) ! SO(9), (B.5)

while for � > 0 and ↵ > 0 we have

SO(10) ! SO(5)⇥ SO(5). (B.6)

For the parameter space where � > 0 and ↵ > 0 and the cubic term is nonzero we have

SO(10) ! SO(10� n)⇥ SO(n), (B.7)

where for values of � = 0 we recover the above result in Eq. B6 and for � > 0, n

increases as � does until the breaking chain of Eq. B5 is recovered. The generation of

the potential in Eq. 3.18 then results from the addition of the two potentials given above

in Eq. B1 and Eq. B4, as well as the analogue terms of the toy potential that mix the

fields of the two sectors and the new non-trivial same-sector contractions a↵orded by

the choice of the 45 and 54 representations. Using this potential our numerical results

align with the expected minima from the above potentials in the case where the cross

terms and the additional cubic terms are su�ciently small. For the choice of parameter

space where �� > 0,↵� > 0,�� > 0,↵� > 0,� > 0,� > 0,� > 0, c2 > c1 > 0, c3 ⌧

c2, c4 ⌧ c2, c5 ⌧ c2 we will obtain a potential which breaks asymmetrically with the

specific choice of breaking chain for each sector. This agrees with our numerical analysis

where for a sample choice of parameters,

�� ' 1, � ' 0.75, � ' 0.75, �� ' 1.6,

µ� ' 1, µ� ' 1, ↵� ' 0.5, ↵� ' 1,

�� ' 0.35, c1 ' 0.25, c2 ' 0.75, c3 ' 0, c4 ' 0, c5 ' 0,
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we find that minimum preserves the VEVs
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,

h�Di = 0,

h�V i = 0,

h�Di = 0.3

0
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, (B.8)

which breaks the symmetry according to

SO(10)V ⇥ SO(10)D ! [SU(4)⇥ SU(2)⇥ SU(2)]V ⇥ [SU(5)⇥ U(1)]D. (B.9)

The analysis discussed here describes just the first step in asymmetrically breaking an

SO(10) mirror symmetric potential to di↵erent subgroups for each sector and at di↵erent

energy scales. While many other possible breaking chains that have been discussed in this

work could be analysed, we leave such work to future e↵orts to create a detailed model

of an SO(10) GUT model where the choice of representations aligns with choices for

fermion mass generation models and considerations of minimality. Due to the complexity
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in analysing such Higgs potentials for large gauge groups we content ourselves at the

present juncture with the demonstration of the versatility of such asymmetric symmetry

breaking in the context of GUT models. With this specific example and the principles

given in the toy model, many of the other breaking chains could be realised in potentials

constructed in a like manner.



Appendix C

Leptogenesis Rates and Mass

Eigenstates of a Mirror 2HDM

C.1 Interaction rates in mirror leptogenesis

The decay terms in Eq 4.44 are given by

D�1
+

= z
(Y †

1
Y1)11

H(z = 1)

K1(z)

K2(z)
, D�2

+
= z

(Y †
2
Y2)11

H(z = 1)

K1(z)

K2(z)
, (C.1)

D�1
� = z

(F †
1
F1)11

H(z = 1)

K1(z)

K2(z)
, D�2

� = z
(F †

2
F2)11

H(z = 1)

K1(z)

K2(z)
,

with K1, K2 modified Bessel functions of the second kind with order one and two respec-

tively. For scatterings and washout we also have additional terms from the additional

decay channels to each sector and via the second Higgs doublet,

Ss,t

± =
�s,t±
Hz

, (C.2)

with S± = 2(Ss
± + 2St

±). The scattering rate is

�s,t± =
M1

24⇣(3)gN⇡2
Is,t±

K2(z)z3
, (C.3)
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where

Is,t± =

Z 1
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p
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 ),
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i
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The functions �s,t are the same as in [74] and the ⌘t is the top Yukawa coupling. The

washout from inverse decays is then given by

WID =
1

2
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and the total washout rate by
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C.2 Mirror Higgs potentials

In Chapter 4 we examined the general Higgs potential of a mirror symmetric model with

two Higgs doublets in each sector. In the asymmetric limit where neutral states G1 and

G2 are massless Goldstone bosons following the breaking to QED in each sector we can

examine the mixing among all six neutral bosons. The neutral squared mass matrix in

the mirror symmetric � basis among states, (�1,�2, a2,�01,�
0
2
, a1), is
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This consists of the 21 elements, which in the asymmetric limit become
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In the dual Higgs basis we can express a new set of six fields that are in terms of

only v and w. We can then move to the mass eigenstate basis by rotating these fields

or, working from the initial basis, rotate the 8 ⇥ 8 matrix including G1 and G2. This

results in two zero eigenvalues for the solutions in Table 4.2 and Table 4.3 as expected.

Either case yields the same physical mass eigenstates which we find numerically. These

solutions to the mass eigenstates, in terms of the parameters of the mirror symmetric

basis, are given in Table 4.2 and Table 4.3 for particular choices of the parameter space

that produce asymmetric symmetry breaking.
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C.3 Feynman diagrams in mirror leptogenesis

We list here the relevant �L = 1 scattering interaction channels in the case of mirror

leptogenesis considered in Chapter 4.

Figure C.1: Scattering channels considered in the Boltzmann equations of Chapter
4.
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Figure C.2: Decay and scattering channels considered in the Boltzmann equations of
Chapter 4.
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Hypercentral Schrödinger

Equation

The full potential including additional spin-spin interactions, isospin-isospin and spin-

isospin interactions has the form

HV = V ( ~rij) + VSS( ~rij)~�1 · ~�2 + VII ( ~rij)~t1 · ~t2 + VSI ( ~rij)(~t1 · ~t2)(~�1 · ~�2) (D.1)

and the full non-relativistic Hamiltonian is then [173, 174]

H =
X

i

mi +H0 +HV (D.2)

withH0 =
P

i

p
2
i

2mi
. As the spin-spin interaction has a larger contribution to the potential

than the remaining hyperfine interactions and the spin-orbit term is taken to be negligible

as in [171] we similarly focus on a model with the spin-spin e↵ect contributing the most

important e↵ects to mass di↵erences. It has the form [180]

H ij

HI
= A


(
8⇡

3
) ~Si ·

~Sj �
3(rij)

�
, (D.3)

where A = 2↵s
3mimj

. In the case of the confining potentials of Eq. 5.10 where analytic

solutions are not obtainable we use the matrix methods of [172]. This then uses the

expansion of the 6D hyperspherical Schrodinger equation using the Fourier expansion of

the spatial wavefunctions over the hyperradius x. Following the matrix methods converts
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this to a scaled coordinate y = x

x+r0
where r0 remains as a scaling estimate of the radius

of the spatial wavefunction. We can then express the hypercentral wavefunctions as

 (y) =
NX

i=1

ai sin(i⇡y). (D.4)

This reduces the di↵erential equation to a matrix eigenvalue problem that gives the first

N levels for a given value of �,
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This can be compared to the numerical solution of the case without the hypercentral

approximation. In that calculation, a similar change of variables allows for the calcula-

tion of the complete set of coupled hyperspherical di↵erential equations. In our case we

apply it to a variety of non-analytic potentials that scale to dark sector parameters and

that use the hypercentral approach.
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