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They had no temples, but they had a real living and uninterrupted sense of oneness with
the whole of the universe; they had no creed, but they had a certain knowledge that when
their earthly joy had reached the limits of earthly nature, then there would come for them,
for the living and for the dead, a still greater fullness of contact with the whole of the
universe. They looked forward to that moment with joy, but without haste, not pining

for it, but seeming to have a foretaste of it in their hearts, of which they talked to one

another.

The Dream of a Ridiculous Man - Fyodor Dostoyevsky
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The sum of all currently identified particles accounts for only a small fraction of the mass
within the observable universe. Dark matter makes up a large remaining piece of the
cosmos. Its theoretical origins remain largely unknown. The relatively small amount of
matter that does exist today is known to be a result of a small asymmetry in the early
universe between matter and antimatter. Asymmetric dark matter models consider the
approximate 1 : 5 ratio of matter to dark matter as evidence that the two forms of mat-
ter have connected origins. This class of model requires that the dark matter number
density is generated in the early universe through a process tied directly to the origin of
matter. In order to fully account for this ratio, however, we need to both explain how the
connected origins generate similar abundances of matter and dark matter particles and
explain why dark matter particles have individual masses comparable to the dominant

form of ordinary matter throughout the universe.

In Chapter 1 we review the current picture of the universe and examine the motivations
for grand unified theories that connect the matter content of the Standard Model under
larger symmetries at high energy. We then examine spontaneous symmetry breaking
and the history of mirror matter models which consider a copy of the Standard Model
as an explanation for dark matter. With these we develop in Chapter 2 the mechanism
of asymmetric symmetry breaking which spontaneously breaks mirror symmetric grand
unified theories at a high energy scale. In this SU(5) x SU(5) model we find how the
low energy scale theory contains the Standard Model with minimal interactions to a
dark sector that contains a confining gauge group. The unified UV gauge couplings but
unique fermion masses in the two sectors results in a lightest stable composite state of

the dark sector that is constrained to have a mass comparable to the proton.
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In Chapter 3 we extend the asymmetric symmetry breaking concept to SO(10) models
and explore how unique breaking chains in the two sectors can occur spontaneously. We
use the gauge boson content to modify the running of gauge coupling constants and
show how this can result in low energy scale universes with dark sectors that contain

viable dark matter candidates.

In Chapter 4 we examine how a similar number density of matter and dark matter
can arise in an asymmetric symmetry breaking model with a mirror symmetric theory
using a Standard Model that contains an extra Higgs doublet. With the addition of
right-handed neutrinos we explore how a thermal leptogenesis mechanism can result
in a lepton asymmetry in each sector that is converted into baryon and dark matter
asymmetries at low energy. The result of this is a set of possible models that generate

the approximate 1 : 5 ratio of matter to dark matter in a natural way.

Finally in Chapter 5 we explore how the confinement scale and fermionic content of a
confining gauge theory affects the hadronic spectra of dark SU(3) theories. With this we
can examine the nature of dark matter particles in our unique framework of asymmetric

dark matter models.
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Preface

Chapter 1 is an original introduction to the motivations of this thesis and contains a
review of the literature. Chapter 2 is based on the work in Grand unified dark matter
which investigated ideas developed in collaboration with R. Volkas and was predomi-
nantly written by the author. Chapter 3 is based on the work in Dark matter from
intermediate symmetry breaking scales, written by the author and based on ideas ex-
plored in Chapter 2. Chapter 4 is based on the work in Comprehensive asymmetric dark
matter model which explored ideas developed in collaboration with R. Volkas and was
predominantly written by the author. Chapter 5 is based on the work in Asymmetric
dark matter and the hadronic spectra of hidden (QCD which was based on ideas devel-
oped in collaboration with R. Volkas and M. Schroor. The results are primarily the work
of the author with M. Schroor providing consistency checks and the introduction of the
published paper. An original introduction written by the author is used in Chapter 5.
Chapter 6 is an original summary of the ideas in all of these chapters and how they fit

together to form a cohesive work.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics, together with the theory of general relativ-
ity, has seen extraordinary successes in our ongoing efforts to understand the behaviour
of the universe. Despite these successes, our comprehension of the world we live in is
placed in a substantially smaller framework when we consider that the sum of all cur-
rently identified particles is capable of explaining only a small fraction of the mass within
the observable universe. Dark matter (DM) makes up the large remaining component

of matter in the cosmos. Its nature and origins are almost completely unknown.

The Standard Model is clearly an incomplete theory with the majority of the matter and
energy that make up the observable universe beyond our ken. Dark matter is the term
used to describe the remaining matter, though it may be composed of many different
species of undiscovered particles. There is a large body of evidence for its presence in the
cosmic make-up. A hidden form of matter was hypothesised as far back as 1933 when
Zwicky [1] noticed this discrepancy in the expected velocity distribution of galaxies in
the Coma cluster. While his conjecture of large amounts of unseen mass dominating the
gravitational profile of the cluster was not immediately accepted, history has borne out
that a type of mass that is not in the form of stars or conventional interstellar gas is
responsible for the long list of incongruences in the night sky. Later important evidence
was found in the rotation curves of galaxies, which demonstrated the velocities of stars
and gas in the outer rims to be near consistent with inner systems rather than dropping
off with radius as previously expected. The experimental evidence of dark matter today

comes from many different sources, ranging from observations of the acoustic spectrum
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of the cosmic microwave background (CMB), through gravitational lensing observations,
velocity profiles of stars in galaxies and larger systems in galactic clusters, to simulations

of galaxy formation [2, 3].

While dark matter’s possible origins are myriad, there are some key pieces of evidence
that can allow us to pursue models of dark matter with a degree of confidence. In this
work we will endeavor to explore models of both the origin of matter and dark matter
in a unified way guided by these critical clues. In the pursuit of explaining dark matter
we draw on the work of past dark matter models and experimental constraints from
both astrophysics and high energy physics. We consider the use of theories beyond the
Standard Model that attempt to solve other problems inherent to both cosmology and
particle physics and we explore new ideas that attempt to solve the dark matter problem

in a novel way.

To this end we will pursue in this thesis an explanation for the origin and nature of
dark matter using one of the most firmly established experimental results about its

existence [4], the ratio of matter to dark matter mass densities throughout the universe,

pPDM = 5 M- (1.1)

This seemingly simple relation will serve as a useful guiding principle for developing an
explanation for dark matter as it suggests two key things about dark matter and its
origins. In the absence of any information about dark matter, other than the fact that
it exists, there would be no reason to assume its mass density ought to be comparable
to the ordinary matter density of the universe a priori. One could just as well guess the
ratio of stars in the observable universe to grains of sand on earth or any other pair of

L This motivates the idea that the approximate ratio of five

unrelated large numbers.
to one is not a result of a pure coincidence, but rather the result of a connected origin.
This similarity must however be the result of two different connections, since the mass
density, p = n x m, is the product of the number density, n, and the mass of the particle
species, m. The most natural explanation for the similarity in mass densities is then a

connected origin between matter and dark matter that explains both why ny ~ npy

and mpyr ~ myr. We must first then examine in detail the origin of the density and

'A quick estimate yields at least 7 orders of magnitude difference for stars compared to grains of
sand.
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mass of the species that make up all of the matter that is visible to us. The cosmological
history of the particle species that make up this visible sector (VS) is due to the efforts in
astrophysical theory together with the calculations of Standard Model of particle physics
that combine to make up particle cosmology. In this chapter we will examine the story

of visible matter at length before turning to the implications for dark matter.

1.1 The Standard Model

The Standard Model describes all of the known types of conventional matter and their
interactions. It is based primarily on the language of symmetries, which are encoded
into the Lagrangian. These symmetries can be broken up into three categories. First
we have the Poincaré symmetry which guarantees that all of the interactions among
particles of the SM obey the principles of special relativity, and are translationally
invariant in both space and time. Second we have the local gauge symmetries SU(3). x
SU(2)r x U(1)y which describe the forces of the SM. Finally we have symmetries such
as charge(C), parity(P), and time(7") and their compositions in addition to a number of
global symmetries such as chiral symmetry which is only approximate due to the quark

masses.

The matter of the Standard Model consists of three ’generations’ of fermions. Each
generation consists of two flavours of quark colour triplets, a charged lepton and a
neutrino. Each of these fermions can be further separated according to its left- and right-
handed components. This is a feature of massive Dirac fermions ¢, which are not their
own antiparticles and can be decomposed into two distinct irreducible representations

2 The local symmetry group of the standard model

of the Lorentz group, ¥ and ¥g.
is based on the Yang-Mills theory of renormalisable gauge interactions. Using a Lie
algebra such as that of SU(N) defined through the commutation relations for the group

generators,

[Taﬂ_b} — jpaberc (1.2)

2The exception to this may be the right-handed neutrino, which has not yet been observed. However,
recent experiments that have demonstrated neutrino flavour oscillation indicate that neutrinos do in fact
have extremely small masses. It is at present unknown if neutrino mass generation proceeds through
the involvement of right-handed neutrinos.
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we can consider a set of fermions that transform under a representation of this group,

Vi(z) = Eij(2)Y;(z), (1.3)

where E;; is a group element. In moving from a global symmetry to a local gauge theory
we make the choice to promote F;; from a static operator to a function of space-time,
Eij(x) = (e7%@7),;. The form of the 7@ generator here is representation dependent.
Modifying the covariant derivative d,, of field theory to be truly covariant under the
group of choice adds connection fields, A,(z) = Af(z)7¢, to form D, = 9, — igAy.
Infinitesimally we have the relationship between the local variable 6(x) and gauge field
A, given by :
begb
SA} = —EGMG“ + [0° AL, (1.4)

The commutator of these new covariant derivatives, Fjj,7* = (i/g)[Dy, D,], becomes
the building block with which we can write down the action of a pure Yang-Mills theory

through
S = /d4:n (—;Tr [(F;VTG)Z]) , (1.5)

while the coupling of fermions to our gauge fields can be found through the covariant

action

S = /d%w(up — m). (1.6)

Within the Standard Model, the left-handed components of each of the fermions are
grouped together into doublets of the weak SU(2); gauge symmetry while the right-
handed fermions are SU(2), singlets and thus do not interact through the weak force.
SU(3). groups together the colour triplets of quarks of each flavour and does not in-
clude any interactions among the different flavours. We detail the three generations in

Table 1.1.

The bosons of the Standard Model consist of the vector bosons, GZ,W&,BM, one for
each generator of the symmetries of the gauge groups described above, as well as the
SU(2)r, doublet of complex scalar bosons, ¢, which are responsible for the Higgs mech-
anism. Three of these scalar degrees of freedom will however be removed at the scale
of electroweak symmetry breaking (EWSB) to give mass to three vector bosons of the
SU(2)p x U(1)y electroweak sector. This mechanism generates the masses of both the
quarks and leptons, a process which we will examine in the next section on symmetry

breaking.
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Generation 1 Generation II Generation III | Summary
SU(2)r, doublets includes:

U c t
Qi = [dr,b,g] Q. = [ r,b,g] Qs = [bnb,g] Colour SU(3), triplet quarks
rb,91, Sr.b,gl g, rb,91y, | with hypercharge (1/3),

(& T
L, = [ ] Ly = 'u] L3 = ] SU(3). singlet leptons with
Vel Vuly, Vrlyg, hypercharge (—1).
Up and down type SU(3).
[ur@g}R [Cﬁbag}R [tﬁ@g]R triplets with hypercharges of
(4/3) and (—2/3) respectively.
|:d'l",b,gi| R [ST,b,gi| R [brab7gi| R

Singlets of both SU(3). and

[6} R [,u} " [’7‘] R fU;)?)L, with hypercharge

TABLE 1.1: The fermionic field content of the Standard Model of particle physics. We
list the representations under the Standard Model gauge group, SU(3). x SU(2) X
U(l)y.

1.1.1 Spontaneous symmetry breaking

The renormalisable self-interaction terms of the Higgs field allow for it to gain a nonzero
classical minimum in the Lagrangian and thus acquire a nonzero quantum expectation
value throughout the universe, generally referred to as a vacuum expectation value
(VEV). To see this we examine the case of the Higgs mechanism in the Standard Model.
In this case we have one Higgs SU(2); doublet of complex scalar fields which we can

parameterise as four real scalar fields. The Lagrangian of this doublet is
1 Iz
L, = 5Du6D"0 ~ V(9). (L.7)
The quartic potential can be written as

2
V(g) =~ 6o+ 360, (19)
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with minimum given by

(¢) = : (1.9)

In terms of the original parameters of the potential, the VEV has size given by v = i/ V.
Defining new fields as excitations around this minimum, the Lagrangian is no longer
invariant under SU(2) x U(1) transformations. The broken symmetry has a number of

consequences. Through the couplings of the Higgs doublet to fermions,

L D yLoer + yaQddr + yuQdug + h.c. , (1.10)

we obtain the mass terms of the fermions that couple the original left and right chiral
fields. Secondly, for each broken direction of symmetry, we gain a massive vector boson.
The surviving direction of symmetry forms a U(1) subgroup of SU(2), x U(1)y and this
is identified with electromagnetism with the photon as its associated massless vector
boson. Three of the real fields from the original doublet are consumed in the process of
creating the new massive vector bosons W+, W~and Z°. Finally the remaining degree of
freedom from the original doublet forms a massive neutral scalar, i, known as the Higgs
boson. The discovery of this particle in 2012 [5, 6] was a landmark moment in the history
of physics. The electroweak symmetry breaking process explains how the original gauge
symmetry of the SM evolved at low temperature to the SU(3). x U(1)gy symmetry
of the present day that defines the electric and colour charges of leptons and quarks.
While the fundamental constituents of matter gain mass through EWSB it is important
to note that this is not the primary origin of mys, the mass scale of visible matter that
makes up ~ 1/6th of the matter of the universe. In fact the Higgs mechanism causes
< 0.05% of the visible matter component alone. In order to understand where most of
the VS mass comes from we must examine the SU(3). component of the modern gauge

group and some of the consequences of renormalisation and running coupling constants.

1.1.2 Running coupling constants

The coupling constants that define the magnitude of the interactions of the Standard
Model are not actually constant with respect to the energy scale of interactions. The
gauge couplings represent the interaction strengths of the associated forces at a partic-

ular energy scale. The renormalisation group equations (RGEs) tell us how they evolve
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with energy if we measure their value at the interaction energy scale available at mod-
ern collider experiments. These RGEs depend on the field content and other parameters
of the operators in the Lagrangian of our model [7-9]. The coupling constant renor-
malisation of a gauge theory leads to expressing the constants in terms of divergent
multiplicative renormalisation constants, Z, which measure the size of counter terms
added to the bare Lagrangian to kill off divergences, and a factor from dimensional

regularisation, € = d — 4,
Z
_ /2 1
go = gu° :
ZonN/ Z3

Solving for the renormalisation constants by calculating the divergences of loop correc-

(1.11)

tions to gauge interactions lets us find expressions of the form

2

90 N
Z1=1——=——1|C,4 — s
1 871'26(Cd+cf )—i—

N
@:1—GOC§+W, (1.12)

with C'¢, Cyq the Casimir numbers or Dynkin indexes of the Lie algebra for fundamental

and adjoint representations for our gauge group defined through
Tr 797 = CRro™ (1.13)

for the choice of representation R. The number d is the dimension of the representation
and N is the number of generators of the group algebra. These allow us establish the
multiplicative running of g if we know its value at a particular energy scale. We can
then make use of the beta function defined as

dg

ﬂ@=u@- (1.14)

This beta function then contains the dependence on Casimir numbers and can be cal-
culated to n-loop order without any dependence on . This can be seen by a power

counting argument. Let

_ ZonN/ 3
A

Z, (1.15)
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and consider its expansion in 1/e,
n g2n
Zg:1+zzag€—k. (1.16)

n k=1

The beta function with nonzero € can be given by

€ g 0Z,

ﬂa(g) = _59 + ?gaigﬂa(g% (1'17)

which gives the entire second term as §(g) in four dimensions with € — 0. We can then

consider
€ 4,07 0Z
Z =g —— 1.18
dBl9) = —59 99 + B(9) 99 ¢ (1.18)
Inserting the expansion of Z, and comparing powers of €0 we see that
B(g) = —g* Y nalg® . (1.19)

This shows that, to any order of perturbation theory, the beta function can be found from
the coefficient of the first order divergence in the expansion of Z,. It can be explicitly
verified to any order that the higher order divergences in (1/2,1/e3...) amazingly cancel

among themselves.

In the case of SU(3)., the high energy behaviour found a natural explanation when field
theorists in the 1960’s realised that the asymptotically free nature of a non-Abelian gauge
theory could explain the free particle behaviour of quarks at high energy while being
strongly confined into hadrons such as protons and neutrons at low energy. The mass
scale of baryons in quantum chromodynamics (QCD) is now understood to originate from
the confining interactions within baryons. In particular we can reverse this perspective
to consider the original high energy, perturbative theory. In the low energy regime this
theory evolves toward a gauge coupling that becomes large, creating the phenomenon
of confinement. This is sometimes called ’infrared slavery’. The critical result of this is
that an energy scale common to baryons arises at the value of 4 when g becomes large,
that is, the scale when QCD can no longer be described by a perturbative field theory.
This is referred to as the confinement scale, Aqcp, and it is the dominant contribution
to the mass of protons, neutrons and therefore to the entire periodic table, stars, galaxies

and indeed the dominant source of mj;, the mass scale that makes up most of the visible
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matter of the universe. This completes our short review of the Standard Model. From

here we embark on reviewing some of the relevant theories that go beyond the SM that

will prove critical to our work.

1.2

Beyond the Standard Model

While the Standard Model has been very successful, it is an incomplete theory. There are

a number of unexplained problems that extensions beyond the Standard Model typically

attempt to solve. Here we will discuss briefly some of the most pressing issues, some of

which we will explore further in this work:

The aforementioned question of dark matter, the dominant form of mass in the

universe.

The baryon and lepton asymmetry. Why is the universe composed of matter rather

than antimatter or some mixture?
Do the gauge forces unify into a larger grand unified theory at a high energy?

The unknown nature of dark energy, the source of the universe’s accelerating ex-

pansion.

The hierarchy problem. If high energy scales directly add mass corrections to the

Higgs mass, why is it so small?

Experiments show that neutrinos undergo flavour oscillation. This implies that
they have nonzero masses. What is the origin of these masses and why are they

so small compared to the other fermions?

What is the origin of the three unique generations of fermions and their different

couplings?

Does supersymmetry, the unique solution of unifying spacetime symmetries with

gauge symmetries, exist?

Is quantum field theory a valid description of interactions at high energy or is it

an emergent theory of an underlying structure such as string theory?

Is there a consistent theory of quantum gravity?
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In this work we are primarily interested in models that solve the dark matter and matter-
antimatter asymmetries together in a natural way. Grand unified theories and ways of
explaining the mass of neutrinos will also play a part. Supersymmetric variants of these
models will be discussed along with discussions of the ways our model affects issues
such as the hierarchy problem. In the next section we review some of these promising

extensions and their motivations.

1.2.1 Grand unified theories

Models that unify the fundamental forces of the Standard Model can be traced back to
the work of Georgi, Pati, Salam and Glashow following the unification of electroweak
theory [10-14]. The unifying of separate forces into singular phenomena can of course
be traced back further in the history of physics to Michael Faraday’s pioneering work in
the connection between electric and magnetic phenomena. Evidence in support of the
unification of the gauge forces of the Standard Model comes from a number of different
sources. One of these is the observed direction of the running gauge couplings at higher
energies and the fact that the gauge forces seem to approach a common point near a

scale of 101> GeV. The running of these coupling constants can be seen in Fig. 1.1.

50 —

' 1
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FIGURE 1.1: The evolution of the gauge couplings in the Standard Model of particle
physics.

The apparent union of these couplings makes sense if at such an energy scale, a larger

group that contains each of the SM gauge groups as subgroups was spontaneously broken
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such that from this point three independent gauge coupling constants could then run
independently. This larger group then constitutes a grand unified theory (GUT) that
would unite the known forces into a single force in the early universe. That the couplings
do not meet exactly may indicate that there exists new physics between the electroweak
scale and the GUT scale that alters the running for one or more of the gauge forces
such that they do meet precisely. As an example one can consider a model with extra
Higgs doublets as in [15] where a non-supersymmetric model with eight Higgs doublets
leads to gauge coupling unification. The minimal group that can accommodate all three
Standard Model interactions is SU(5) and this was indeed the focus of the earliest work
on gauge unification. It is remarkable that a second piece of evidence then emerges
when we examine how to fit the fermions into representations of SU(5). Taking a single
generation of fermions of the Standard Model we find that there are 15 chiral fermions.
One of the smallest number of representations that SU(5) could accommodate to fit these
only is with just two of dimension 5 and 10. It would then be quite a surprise to find
that the unique decomposition of 5 + 10 under the subgroup SU(3). x SU(2). x U(1)y
is one of [(1,2) + (3,1)] + [(1,1) + (3,1) + (3,2)]. This is exactly the dimensions of the
fermion representations of a single generation of the Standard Model, [L+d]+[e+u+@Q)],
and we further find a consistent assignment for left and right-handed states as well as

U(1)y charges.

Furthermore we can observe that the scale of this unification is quite close to the scale
that would be required to sufficiently suppress the proton decay allowed by the unified
theory, in accordance with the observed stability of the proton. The decay is predicted
by interactions that make use of heavy SU(5) gauge boson mediators that can convert

034

quarks into leptons. Current experimental bounds have a half-life > 1.67 x 1 years

while the GUT scale in Fig 1.1 suggests a possible half-life between 103! and 1036 years.

If we extend the SM to include neutrinos with mass, as seems to be the case based on the
neutrino oscillation experiments, then extending the GUT group to SO(10) becomes a
compelling argument. Aside from requiring representations to accommodate all 16 chiral
fermions, we can observe that the 5 4+ 10 themselves can be unified minimally into the
irreducible spinorial 16 dimensional representation of SO(10). A high Majorana mass
scale for the gauge singlet right-handed neutrino of the seesaw model gains a natural
explanation in these SO(10) models when the right-handed neutrino acquires mass at the

SO(10) symmetry breaking scale while the rest of the 15 fermions continue to have their
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zero mass protected by gauge symmetries until the electroweak (EW) scale. This then
allows for an explanation of neutrino oscillations and the observed neutrinos having such

small masses caused by the seesaw mechanism which we discuss further in section 1.3.2.

1.2.2 Mirror matter

We have seen that the symmetries of the universe at high energy can increase to place
all of the gauge symmetries as subgroups of a single group. One of the other peculiar
features of the SM is the observed fact that it is not completely invariant under the Parity
symmetry (P) which interchanges spatial coordinates (z — —z). This can be solved
however if the Parity operator interchanges fields with symmetric copies called mirror
fields. Such a theory of a high scale mirror symmetric Lagrangian can be motivated by
some heterotic string theory models which in the low energy limit lead to Eg x Eg gauge
groups with equal particle content and the same gauge symmetry in two identical sectors
[16]. Models of mirror matter have been used to suggest a dark matter candidate in the
form of the matter of the mirror sector. These theories require that the two sectors
interact only minimally with each other with gravity being the primary indication of its

existence.

These mirror matter models of dark matter, Refs. [17-54], have a long history, however
it is clear from the ratio in Eq. 1.1 that there must be differences between the two sectors
to avoid a 1:1 ratio of matter to dark matter. If there is a hidden sector to the universe, it
cannot be identical to our own and still explain the observed properties of dark matter.3.
As we will see in this work, the theoretical motivations of a hidden mirror sector can still
be satisfied with a unique dark sector if mirror symmetry, like grand unified theories, is
only a symmetry of the Lagrangian at high energy and is spontaneously broken in the

early universe.

1.2.3 Supersymmetry

Supersymmetric theories have their origins in the early attempts to unify gauge symme-
tries with spacetime symmetries. With the no-go theorem of Coleman and Mandula [55]

it was shown that the two symmetry groups could not simply be subgroups of a single

3For exactly mirror symmetric matter at the microscopic level, the necessary asymmetry can be
provided by different temperatures for the two sectors.
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larger group. A side step to this problem was discovered in that a Zs-graded Lie-algebra
could allow one to write down a theory that connected spacetime and gauge symmetry

generators [56-61]. This theory is based on the algebra,

[P,ua Qa] = 07
[QOHMNV] = %(Uuu)gQﬁ, (120)

[Qmaﬁ] = (Uu>aﬁpﬂn

with P* and M, the generators of spacetime symmetries of translations and rotations
plus boosts and @ the generator that transforms between bosons and fermions. The
irreducible representations of this algebra are the supermultiplets of supersymmetric
theories and these fields contain both bosonic and fermionic degrees of freedom [62]. In

fact they have the same number of degrees of freedom for each type.

The consequences of writing down a Lagrangian in terms of supermultiplets is far reach-
ing. Unlike the potentials such as Eq. 1.8, supersymmetric theories are specified by
superpotentials, W, which for the purposes of being renormalisable can only contain

gauge invariant terms up to cubic order in the fields,

n7m7p

The consequences for symmetry breaking with potentials such as these is examined in

Chapter 2 and Chapter 3.

Supersymmetry is a very appealing extension to the SM for a number of key reasons.
Firstly it provides a potential solution to the gauge hierarchy problem. If the GUT scale
exists, then the quantum corrections to the Higgs mass imply that the EW scale Higgs
that we observe is the result of a fine tuning between the bare mass and a correction that
cancels to one part in ~ 10'°. With a symmetry between fermionic and bosonic degrees
of freedom however, the loop calculations from boson and fermion loops cancel exactly
and the EW scale becomes protected from GUT scale corrections, or indeed the physics
of any high energy theory. It is further remarkable that restoring supersymmetry near
the EW scale can adjust the running of gauge couplings to unify exactly, as in Fig. 1.2,
making supersymmetric GUT extensions to the SM even better motivated than non-

supersymmetric GUTs.
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FIGURE 1.2: The evolution of the gauge couplings in the Minimal Supersymmetric
Standard Model (MSSM), one of the simplest phenomenologically viable extensions to
the Standard model that contains the requisite superpartners.

Going back to the early universe, beyond the restoration of the EW symmetry and
possibly SUSY and GUT symmetries another possible unification arises at the Planck
scale where we expect the gauge forces to have a similar strength to gravity. Reversing
this perspective of symmetry restoration at higher energies leads us to consider the
evolution of the universe from the beginning, at a possible moment of maximal symmetry,
and the consequences for each stage of the expansion of the universe as it cooled. This
constitutes the field of early universe cosmology and we will examine the Big Bang model

in detail in the next section.

1.3 Big bang cosmology

The history of the universe is one of change. Since the acceptance of the big bang model
of cosmic expansion, the effort to trace the timeline of the universe and its major epochs
has seen great success in combining the knowledge gained from particle physics with
astrophysical models and observations. This combined area of astroparticle physics has

been able to construct a sequence of events that explains how the chaotic plasma of
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the first moments evolves into the present day expanse of galaxies. It is however an

incomplete picture. Dark matter is just one of the missing pieces.

Edwin Hubble’s observations of far away galaxies receding from our own galaxy formed
the basis of the expansion model which describes the universe as continuously growing
in size. Today the Friedman-Lemaitre-Robertson-Walker (FLRW) metric is the most
accurate description of the near isotropic and homogeneous spacetime we live in. It
contains an analytic solution to Einstein’s field equations of general relativity, in the
form of the Friedman equations, if the energy-momentum tensor is similarly assumed to

be isotropic and homogeneous. We can write the metric in polar coordinates as

2

1 — kr2

ds® = dt* — a*(t) [ + TQdQQ} , (1.22)

with d? = d#? +sin?0d¢?. The value of k parametrises whether the universe is flat(k =
0), spherically curved(k = +1) or hyperbolic(k = —1). The Hubble parameter is defined
by
a
H=-. 1.2
" (1.23)

We can calculate this in terms of the energy density, p, and pressure, P, of the universe
and the expansion rate today, measured by Hubble’s constant Hy ~ 15km/sec per mega
light year. This allows us to establish the age of the observable universe to be 13.81
billion years [4]. This is the time since all of the matter we can see was localised into a

space smaller than the atom. The first Friedman equation,

_ 8nG k

- (1.24)

removes the dependency on pressure and allows us to quantify the contributions to the
universe’s expansion among radiation, matter, the curvature and the poorly understood
dark energy which contributes to the accelerating expansion. We can label these contri-
butions in terms of their fraction of the critical density, that is the necessary amount to

make up the total energy budget today for a flat universe with & = 0,

0= (1.25)
Pcrit

The density ratio in Eq. 1.1 can be considered as a comparison of the two fractions of

the critical density, €2;, made up by matter and dark matter.
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This FLRW cosmology does not provide a fully satisfactory account for the homogeneity
and isotropy that we observe in the universe today because it involves a severe fine-
tuning of the initial conditions. To explain why the early universe that we observe
seems to have almost exactly the same temperature in all directions we need to add to
the first moments of the universe a period of rapid inflation where a single causal patch
of space was rapidly blown up exponentially in size. Following this period the universe’s
energy density essentially drops to zero and must undergo a period of reheating and
thermalisation. This is explained in ’inflaton’ models of inflation by the decay of a scalar
field, the VEV of which can initially drive the rapid expansion, transferring energy back
into Standard Model fields which then decay and interact until they reach equilibrium

at a reheating temperature Ty, [63, 64].

If the expansion described by the FLRW metric since this period is slow enough, we can
describe the early universe as being in a state of thermal equilibrium. In this hot dense
early universe we can then write the number density of a species in terms of its degrees

of freedom and the phase space distribution among momentum eigenstates f(p),

n= g [ Er). (1.26)

By combining the assumption of the homogeneity of the universe with the above we can
describe the local thermal equilibrium such that the function f(p) is truly independent
of spatial coordinates. The phase space distribution is then described in terms of the
temperature, T', and the chemical potential, p, by the entropy maximising Fermi-Dirac

and Bose-Einstein distributions,

1
)= G- L1 (1.27)
The energy density is then given by
p= ot [ s wEW) (1.28)
(2m)?
and the pressure by
Pt | Ppin) L (1.29)
(2m)3 3E

In the early universe when the radiation density dominates the expansion, we can find

the total radiation density in terms of the number of relativistic species in the thermal
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bath,
7T2 * 4
pr=>_pi=559"(T)T" (1.30)

where ¢*(T') is the total effective number of degrees of relativistic freedom in the universe
at that temperature. This quantity can be calculated by counting the degrees of freedom

of individual species and their respective temperatures according to

g*(T) :;gi (?>4+;;gi <§>4 (1.31)

The first term of Eq. 1.31 counts bosonic degrees of freedom, while the second term
counts those of fermions. As species become non-relativistic they are removed from
the plasma and disappear from the above summation. This process continues until
only the lightest states consisting of protons, neutrons, electrons, photons and neutrinos
are all that remain. Neutrinos decouple from the plasma when the weak interaction
rate, mediated by W bosons, falls below the Hubble rate. Following this, when the
temperature drops below the mass of electrons, the energy of almost all electrons and
positrons are transferred to photons. Near 0.1 MeV the light elements of the periodic
table were formed in the era of big bang nucleosynthesis (BBN). As the temperature
continues to drop we reach a point where photons can no longer ionise electrons that fall
into proton orbits and neutral hydrogen forms, beginning the process of recombination.
As the density of free charged particles drops, photons decouple and the light of this hot
dense early universe is still visible today in the form of the cosmic microwave background
(CMB) radiation, the redshifted photons that travelled unabated from the moment that

the average energy dropped sufficiently to turn the universe transparent.

1.3.1 The matter-antimatter asymmetry

One of the most significant missing pieces in a model of particle cosmology is the origin of
the baryon and lepton asymmetries in the universe. Almost all of the matter we can see
is made up of protons, neutrons and electrons. Since the discovery of antimatter in the
1930s the question of why the universe is composed of one and not the other, or a mixture,
has presented a great challenge. Antimatter is essentially identical to matter except that
it has opposite charge. Our current understanding of the evolution of the universe details

that matter and antimatter must have originated in near equal quantities. Following
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a period that generates an excess of one, the symmetric components annihilate into
radiation leaving a universe composed primarily of matter. The total lepton asymmetry
of the universe is, however, unknown as a significant lepton asymmetry may be stored in
the cosmic neutrino background, the remnant of light neutrinos from the early universe
when the neutrinos decoupled from the thermal bath. This could potentially balance

the asymmetry in charged leptons.

We can see that the present day density of matter is the result of the asymmetry between
the production of matter and antimatter in the early universe. In particular as most
of the mass of the universe comes from baryons such as protons and neutrons, it is
the baryon asymmetry in the early universe that is responsible for the number density,
npr, critical to our exploration of dark matter. The study of how the baryon and
lepton asymmetries originated is known as baryogenesis and leptogenesis, respectively.
Such theories are often directly connected to one another. There are many models of
baryogenesis, but common to all of them are some critical assumptions about generating

asymmetries described by Sakharov [65]. These conditions are:

e Baryon number violation.
e C and C'P symmetry violation.

e A departure from thermal equilibrium.

The first condition allows one to have interactions that create a net increase of baryons
over anti-baryons. The second condition allows for these processes to occur at a different
rate, else the processes that create excesses of anti-baryons over baryons would prevent
an asymmetry from forming. The final condition allows for all of these processes to
occur at different rates compared to the time reversed interactions. Well known models
of baryogenesis include GUT baryogenesis, electroweak baryogenesis and Affleck-Dine
baryogenesis. In the next section we will review one of the most appealing models,
baryogenesis via leptogenesis. We focus, in particular, on thermal leptogenesis derived
from the Type-1 seesaw mechanism. We will then review how electroweak sphalerons

can convert the generated lepton asymmetry into the present-day baryon asymmetry.
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1.3.2 Thermal leptogenesis

Thermal leptogenesis using the decays of heavy right-handed neutrino states is one of
the most compelling models of generating a lepton asymmetry in the early universe [66—
75]. This is due in part to the appeal of the seesaw mechanism for generating neutrino
mass [76-78]. In the seesaw model, the mass eigenstates of the RH neutrinos above
EWSB are N; = Ng, + Np.. The mass scale My of these gauge singlet states can be
significantly larger than the EW scale as it is not protected by the SM gauge symmetry.
When we couple the lepton doublets to these states through y, L& Ng,, we acquire Dirac
mass terms between the left and right-handed states in addition to the right-handed
Majorana mass scale Mpy. The relevant Lagrangian for neutrino mass including both

the Dirac and Majorana mass terms is

— 1
— L, =y, LoNpg, + §(NR)CMRNR + h.c. (1.32)
Diagonalising this mass matrix after EWSB yields a mass scale for light neutrinos

1

2 T

v = — v . 133
e e (1.33)
While this is a remarkable result for models of neutrino mass, it was realised that it

also allows us to naturally fulfil the Sakharov conditions for the creation of a lepton

asymmetry.

The model comes with lepton number violating interactions involving the states IV;.
CP violation can arise due to the complex phases in y,. The departure from thermal
equilibrium can then arise if the decay rate of heavy neutrinos,

()M

I'y = —F—— 1.34
Nz 87T ’ (3)

falls below the Hubble expansion rate of the universe. One introduces the C'P parameter
€ to measure the asymmetry in the decays to leptons and anti-leptons. It arises if we
consider the interference between the tree-level and loop-level decays of heavy neutrino
states shown in Fig. 1.3,

o I'(N = IoH) —T(N — I,H*)
S T(N = I H) +T(N — 1, H*)

(1.35)
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In the one-flavour case this is

M2
€ = Zlm yhy) ]l (M2> (1.36)

1
8 (l/zxyu)m k#i

with [(z) a loop function [66] given by

Z(a;>:x[1_(1+x2)1n<1”2> +1_1x2]. (1.37)

12

FIGURE 1.3: The interference between tree level decay and loop diagrams provides the
CP asymmetry that can explain the origin of a lepton asymmetry in the early universe.

The Boltzmann equations, parametrised in terms of z = M; /T, describe the competing
terms in the evolution of early universe particle densities and in the case of generating

a lepton asymmetry we can consider the two key rates,

dNp_p,

5 = — ED(j\/N1 — /\/’Nf:q) —WANg_1, (1.38)
W D+ )W~ Nypo)

The functions D, S and W measure, respectively, the rates of decays, scattering and
washout processes from both scatterings and inverse decays. For sufficiently heavy right-
handed neutrinos, My, and complex phases in the Yukawa matrix, y,, one can generate
a net asymmetry, Ng_r, in the early universe that survives until to the present day
[69, 70, 72, 79-81]. At that time, this lepton asymmetry can be partially converted into

a baryon asymmetry through a process we will review in the next section.

1.3.3 Electroweak sphalerons

The conversion of an initial lepton asymmetry into a baryon asymmetry through B — L
conserving sphalerons is a natural way to explain the baryon asymmetry in light of a

possible large lepton asymmetry produced by thermal leptogenesis. In the pure gauge



Chapter 1. Introduction 21

configuration for SU(2)-Yang Mills theory where
Ay(x) = 0,U(2)U (), (1.39)

the matrices U(x) are elements of SU(2) and x extends over S3. Each U(z) is a different
vacuum state. Because SU (2) is itself diffeomorphic to S3, these mappings, and therefore
the distinct vacua, can be classified by I13(S%) = Z, that is, the mappings of the 3-sphere
to itself. The different mappings can be categorised by their winding number, n(U),

which is distinct for each:

1

nU) =5, / oy, €uwpo tr[(0,U) U1 (0,U) U1 (0,U)U]. (1.40)

The Cherns-Simons number is

Neg = — 3 KO 1.41
cs 167r2/d zK", (1.41)

where K* = —2eMP7tr(AYOP A% + %A” APA?). This value is the same as the winding
number for vacuum configurations but varies from integer values away from the true
degenerate vacua. The different EW field configurations each satisfy the gauge condition
above, however pure infinitesimal gauge transformations cannot transform the fields to
a different vacuum state. To move from one vacuum state to another we must pass over
an energy barrier since we are passing through non-vacuum states. The change in N¢gg

is given by

1 t
ANgg = o2 /0 dt / d>x0, K" (1.42)

= Nes(t) — Nes(0). (1.43)

Sphalerons are classical solutions to the electroweak equations of motion that describe
the saddle point between two neighbouring minima. These unstable solutions to the
electroweak field equations have a very low probability at the present temperature of
the universe, however at the temperature above the EWPT the rate of such vacuum
configuration transitions is considerably higher. Thermal fluctuations in the early uni-
verse have the potential to carry the system over the energy barrier in the classical
sense. These sphaleron solutions for the interpolation between vacuum states, that pass

through the saddle point, can become much more common in this era in comparison
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to the low probability quantum tunneling rate [82]. Such solutions can spontaneously
appear and decay in a small volume of space of size 1 /M%V The anomalous divergence

of the fermion currents coupled to SU(2)y, is

2 12
8}1]% = 8#«]5 = Tlf (3277_28“_[{“ — 327T2 8Mkll> , (144)

where ny counts the number of families in the Standard Model and k* = e**?? B, ,Bg
is associated with the U(1)y field strengths. The integral over space for 0,k* yields O.
However comparing the above expression to Eq. 1.42 shows that the change between
successive vacua is accompanied by a change in baryon and lepton number AB = AL =
nfANcs, that preserves B—L [83]. If we begin with a lepton asymmetry, rapid sphaleron
processes can take the initial (B — L) and reprocess it to be shared between a baryon

asymmetry and lepton asymmetry,

B 14nf + 9NH
~ 22ny + 13Ny

B-1), L=—(——1""1
( ) (22nf+13NH

> (B - L), (1.45)

where Ny counts the number of Higgs doublets. We can now review the class of models
that approaches the dark matter problem by considering how the dark matter density

might be connected to the origin of the baryon asymmetry.

1.4 Asymmetric dark matter

Asymmetric dark matter (ADM) models seek to unite the efforts of understanding the
origin and abundance of dark matter with theories devoted to understanding the origin
of the matter-antimatter asymmetry of the universe [84-102]. Central to these models
is the idea that whichever mechanism generates the matter-antimatter asymmetry in
the visible sector is related to the generation of dark matter through the creation of a
parallel asymmetry between dark matter and dark antimatter. Following the asymmetry
generation in the dark matter species, the symmetric components must annihilate either
into a form of dark radiation or into visible radiation. The dark matter density today
is then the remaining asymmetric component of dark matter, with the dark antimatter
removed from the universe. ADM models thus take the ratio in Eq. 1.1 to be the guiding

principle in the exploration of dark matter’s origins.
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They further fit into the cold dark matter (CDM) hypothesis which suggests that dark
matter is highly non-relativistic in the present day and can seed structure formation
early in the universe as they form over-densities under their self-gravity. This is in
contrast to hot dark matter (HDM) models in which dark matter is relativistic and
structure forms from the fragmentation of the largest superclusters. Current evidence

by the Planck experiment indicates that dark matter is made up of ~ 85% CDM [4].

Asymmetric dark matter models of CDM are directly in contrast with other popular dark
matter models such as the weakly-interacting-massive-particle (WIMP) dark matter
paradigm. These are motivated by the WIMP miracle, the observed coincidence that
the DM critical density can result from a population of massive particles with mass ~
the electroweak scale and a number density generated by a population that freezes out
from the early universe plasma near the point when a weak scale interaction rate falls
below the Hubble rate [103-105]. These WIMP models assume that dark matter was
in thermal equilibrium with the SM species in the early universe up until the moment
of freeze out when the stable DM particles chemically decoupled as their interaction
rate could not keep up with the expansion. If one accepts the WIMP hypothesis, the
similarity in the mass density of matter and dark matter in Eq. 1.1 remains a pure
coincidence. Other DM models such as keV sterile neutrinos [106-108] and axions [109—
112] have received much attention in the literature, though these too regard Eq. 1.1 as

a coincidence.

For ADM the relation between the visible and dark sectors depends on the interactions
between the sectors that exist within the theory. If one begins with the assumption that
following inflation the two sectors are already in thermal equilibrium (an assumption
which is not essential) then the two sectors will remain in thermal equilibrium so long as
there remains fast interactions between particles of each sector. If we are to consider that
the two sectors decouple at some temperate Tpgc then all such equilibrating interactions
must become inefficient at that point. Reactions can fall below the required efficiency
for two reasons. Firstly if the temperature of the plasma falls below the mass of one of
the particles taking place in the reaction. Following the Boltzmann suppression of the
number density of such particles the reaction rate falls due to the kinematic constraints
as well as the number density of the suppressed species being less than the equilibrium
number density of all other particles in the reaction. Secondly the reaction can be

suppressed if the interaction rate as a function of temperature falls below that of the
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FIGURE 1.4: The evolution of the density of dark matter in various models compared to
the baryon mass density. B describes the mass density initially stored in both baryons
and antibaryons. The initial drop accounts for the loss in number density that follows
from the annihilation of symmetric components and must reach a minimum given by
the asymmetry produced by a baryogenesis mechanism. The vertical position of the
matter gradient is then defined according to this observed density of visible matter
today. The thermal history of WIMP models describes a fine-tuning of parameters to
create a density of dark matter that freezes out with a mass density almost identical
to matter. Similarly, axion models of dark matter require an initial abundance that
gains mass at a particular scale in order for the mass density to evolve on the same line.
Unlike the moment of matter-radiation equality, seen at the intersection in the lower
right, the apparent coincidence in scale of Eq. 1.1 is a relationship which must remain
true for the remainder of the universe.*Models of ADM consider a thermal history for
DM that follows that of visible matter.

Hubble rate. In this case the equilibrating reaction cannot on average keep up with
the rate at which the matter component of the universe is expanding and therefore
the reaction is no longer sufficient for maintaining thermal equilibrium in the plasma.
Models of ADM and WIMPS are not compatible as the generation of the DM number
density is different in each case. Minimal WIMP scenarios further suggest possible direct
and indirect detection signals for DM which as of this work have not been conclusively

observed.

In Fig. 1.4 we compare the WIMP hypothesis with models of axion dark matter and

4An exception to this may arise if one or both of dark matter and the proton prove to have finite
lifetimes.
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asymmetric dark matter [50]. In the WIMP case, the number density scales as radiation
until just after the density begins to drop when it reaches the freeze out point and
stabilises on the matter gradient at almost exactly the path of the baryon density. In
the case of axions, a particular preexisting axion density is produced in the early universe
at the Peccei-Quinn scale. Near the QCD phase transition temperature, a specific axion
mass is switched on to create a mass density for axions that begins to scale as matter at
almost exactly the baryon mass density gradient. In contrast, ADM models have DM
follow the same history as the baryon density. With an asymmetry between dark matter
and dark antimatter, the number density drops to the amount of asymmetry after which

it scales as radiation until it becomes non-relativistic and scales as matter.

The critical goal of this thesis is to utilise the extensions of the SM we have discussed to
develop a new class of asymmetric dark matter models that can simultaneously explain
why the mass scale of DM is similar to that of the proton. In doing so, we produce a

comprehensive model of asymmetric dark matter.

1.5 Summary

This completes our overview of the status of the Standard Model, in addition to the well
motivated extensions of modern physics. GUTs and supersymmetry are the primary
extensions to the symmetry set of the SM Lagrangian along with mirror symmetry.
Dark matter is the known missing piece of our picture and we draw from models of
asymmetric dark matter that seek to explain the observed similarity in the matter and
dark matter mass densities. Thermal leptogenesis and the sphaleron effects above the
EWPT are the primary model we consider with regard to the creation of the matter-
antimatter asymmetry of the visible universe. Table 1.2 summaries the timeline of the
universe including some of the extensions to the SM we have discussed. We are now able
to outline the course of this thesis in incorporating dark matter and its origins into the
timeline of the universe. In Chapter 2 we will show how a mirror GUT theory can cause
mirror symmetry to be spontaneously broken to create a dark sector with a composite
dark matter candidate that has a mass which is naturally similar to the proton. In
Chapter 3 we will examine a larger GUT theory and the possible breaking chains in
the path to a low scale theory of matter and dark matter. In Chapter 4 we will study

the process of generating matter and dark matter simultaneously in a model of broken
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mirror symmetry and in Chapter 5 we examine in detail the mass spectra of possible
confining dark sectors in detail to consider exactly what the properties of dark matter
may be in all of our models. Chapter 6 then concludes with a discussion of all of these

theories and what they could mean for the future of dark matter physics.

TABLE 1.2: The major epochs of the universe based on our understanding of the SM

and cosmology, including some well motivated extensions. Dark matter, despite making

up the majority of all matter, is absent from this timeline. In Chapter 4 we will see an

example of how this timeline can be modified to provide a picture of the evolution of
both matter and dark matter.

1019 GeV |t ~ 10*3s | e Planck Scale era. The theorised scale where a quantum theory
of gravity is necessary to model early universe dynamics.

10" GeV |t ~ 107385 | e Inflation ends, grand unified symmetry breaking scale.
10'2 GeV |t ~ 10735 | @ Heavy Majorana neutrino masses.

10° GeV |t ~ 107245 | @ Thermal leptogenesis begins to produce a B — L asymmetry.
e Electroweak Sphalerons convert a fraction of the lepton
asymmetry into a baryon excess.

10% GeV |t ~ 107'%s | e The Universe has cooled to allow the Higgs field to attain
a nonzero vacuum expectation value triggering the
electroweak phase transition.

e Fermions gain mass.

200 MeV [t~ 1073s |e The gauge coupling of SU(3). becomes non-perturbative,
breaking the approximate chiral symmetry
and confining all free quarks into hadrons.

1 MeV t ~ 180s e Neutrinos decouple from the thermal bath following the weak
interaction rate falling below the Hubble rate.

e The neutron to proton ratio is fixed in place.

e Hadrons combine into nuclei in the era of nucleosynthesis.

e Free electrons and positrons annihilate, reheating photons
above the temperature of the relic neutrinos.

e The universe’s expansion becomes dominated by matter

over radiation.

leV t ~ 10'2s |e Electrons and charged nuclei combine in the era

of recombination.

e The universe becomes transparent to photons leaving an
impression of the cosmic microwave background radiation on
the sky that remains today.

e The newly formed atomic matter coalesces in the era of
galaxy formation.




Chapter 2

Grand Unified Dark Matter:
SU(5) x SU(D)

2.1 Introduction

We begin by exploring a class of model that can solve the similarity between the mass
scale of Standard Model nucleons and dark matter. The dependence of the running
coupling constant of QCD, as(u), on the scale p can be expressed in two ways. The first

is as a function of a reference scale ug which gives an equation of the form

_ as (ko)
) = T o) (o) G2 ic?) @1)

where a; is known at the reference scale. Alternatively the dependence can be expressed

as
4r

as(p) = o n(u2/A2)’ (2.2)
in which the parameter A is the confinement scale, the value at which the strong coupling
constant becomes large as the energy scale decreases. This is a distinct feature of
asymptotic freedom in which Sy > 0 . At first order the beta function for SU(3) is

2
fo=11— 3" (2.3)

where n; is the number of quark flavours that appear in the loop corrections at a given

energy scale. If one then knows the value of the strong coupling constant at a high

27
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energy scale U, for instance at a GUT scale, it is possible to calculate the value of the
confinement scale by evolving the coupling constant and taking into account quark mass
thresholds. The threshold values are actually at twice the mass of each quark as this is
the amount of energy needed to switch on the relevant loop correction. The resulting
equation is dependent on this high reference scale, U, ay at said scale, and the masses

of the fermions in the range between the two scales. One obtains

A= 22/96—2w/9a5(U)Ugm%m%m% (2.4)
= FmgTmi". .

where my p, . are the top-, bottom-, and charm-quark masses. For a more general theory

the confinement scale is given by

- _— be=bp  by—bu  bp—by
A =2 ke e 2/ asObefr by Pe g P my, b (2.5)

The terms labelled b, in this form of the equation denote the values of Sy for different
numbers of contributing quark flavours. For instance, by is the value above twice the
charm mass but below the bottom mass. We use this notation for the sake of the more
generalised relationship between energy thresholds and the DM confinement scale where
the number of massive quarks and the masses that they have are initially completely
free parameters. Only the masses of quarks larger than A itself appear explicitly in the
equation. It is important to note that this equation is very sensitive to the value of
the scale U. This sensitivity is avoided, however, in a non-Abelian dark sector if the
confining gauge group is also SU(3), as we explain below. To form the alternate gauge
groups we develop a systematic way of generating different dark sectors from unified

origins, with both containing an unbroken SU(3) factor.

The intention of this chapter is then to explore the broader possibilities of generating
spontaneous differences in Gy X Gp mirror theories to answer why DM could have a

mass of the same order as the proton.

In a model with unified coupling constants, and where at a high energy the gauge groups
of each sector break to SU(3) at the same scale, the two values of the strong coupling
constant oy and «y,, are the same from the GUT breaking scale all the way down to
the scale at which the number of possible fermions in the loop corrections first deviates

between the two sectors or further symmetry breaking occurs. This is highly desirable
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as it allows the equation of the dark confinement scale to be greatly simplified, as the
high reference scale can then be chosen to be at the deviation point when «, has just
the value of the Standard Model a; at the scale of either the top quark or the heaviest
of the dark quarks depending on which of these two has greater mass. If we make the
further assumption for the sake of simplicity that all heavy dark quarks have the same
mass, then our equation becomes a function of just one continuous and one discrete
parameter, namely the dark fermion mass scale m and the number of fermions, nyz, that
are at such a scale, A(ny,m). One could devise scenarios in which some of the heavy
fermions attain an intermediate mass scale and adjust the confinement scale accordingly.
The baryons themselves form from the light, or massless, quarks and therefore have mass
either almost or totally dominated by the confinement scale. This is similar to other
models that have explored the idea of dark QCD [113-120]. These dark QCD models
of recent years typically don’t have a direct connection to the visible sector. If one can
build a model of two connected sectors that allows for the dark sector to give masses
to coloured fermions at a low enough energy scale then accordingly one can provide an
explanation for the similarity in mass of visible and dark matter. We now explore fermion
mass generation with a view to having the visible and dark colour SU(3) gauge coupling
constants evolve differently under the renormalisation group. Section 2.2 will introduce
the concept of asymmetric symmetry breaking. Section 2.3 will apply this formalism to
GUT symmetry breaking. Then in Section 2.4 we demonstrate the asymmetry in fermion
mass generation and how this affects confinement. Section 2.5 discusses constraints in
our model and Section 2.6 and Section 2.7 repeat this analysis with a supersymmetric

model.

2.2 Asymmetric symmetry breaking

The journey to a comprehensive model of asymmetric dark matter begins with our
description of asymmetric potentials and the concept of asymmetric symmetry breaking
(ASB). In order to illustrate the range of possible asymmetric symmetry breaking models
and explain the basic features that drive asymmetric symmetry breaking, we examine
in this section a simple toy model that involves all of the most basic terms required and

demonstrate what vacuum expectation value patterns are possible. The simple model
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we use for illustration is based on four real scalars in two Zo pairs,

¢1 <> P2, X1 4 X2 (2.6)

The general potential can be written without loss of generality as

V =7 + 03 — v3)” + M (xF +x3 —v2)?
+ Ko (0383) + R (XIX3) + o (d1xT + 93X3) (2.7)

+ p(¢F + X7+ d5 + x5 — v5 —v3).

Terms such as ¢3¢s + @143 etc. are taken to be absent because of additional discrete
symmetries. If each of the parameters is positive, then each of the six terms in this
potential is positive definite. Then each is individually minimised if it is equal to zero.
The first four terms are thus minimised by the condition that for each Zo pair, one
field gains a nonzero VEV while its partner has strictly zero VEV. The fifth term is
minimised by the condition that the two nonzero-valued fields do not share a subscript
(sector). The last term is then already zero by the previous conditions and the entire

potential is minimised by these ’asymmetric’ configurations:

<¢1> = Vg, <X1> =0,
(¢2) =0, (x2) = vy (2.8)

Note that it could have been (¢, x1) that gained nonzero VEVs, i.e. we cannot know a

priori which way the symmetry will break.

A key feature of these asymmetric models is the ability of one asymmetry to induce
further asymmetry in additional Zso-related fields. If we take a second set of four fields
just as in the above case,

Ql <_> QQ; 771 <_> 7727 (29)



Chapter 2. SU(5) x SU(5) 31

our new general potential can be written in the form,

V=267 + 03 — v3)” + M (T + X3 — v3)° + ro(9763) + Ry (XTX3)
+ o ($1XT + ¢3x3) + (67 + X3 + 05 + x5 — v3 — v})?
+A0(QF + Q5 — 03) + Ay (1] + 15 — v7)? + K(QF03) + Ky (73)+
+ o1 (0] + Qan3) + pL(QF + nf + Q5 + 15 — vh — v))? (2.10)
o2 (QUXT + 5x3) + P2 + x5 + 5+ xF —vg — 0v})?

1400+ 03+ ¢3 — v —v3)* + 0u(Q 5 + Q397)

(
oa(
+ o3(¢TnT + 0515) + p3(7 + m3 + &5 + i — vp — v3)?
+ pa(Q
(

+ 506G +m5 + xT 0 — vh —v2)? + os(xant + Xin)-

These more complex ASB potentials will be discussed further in the next chapter when
we consider larger GUT groups. As before, with each term positive definite, the potential

is minimised for the following pattern of VEVs:

(p1) =0, () =0,

(¢2) =0,  (x2) = vy,

() =va, (m)=0

(Q2) =0, (n2) = vy . (2.11)

As usual this vacuum is degenerate with its Zo transform. The potential has been con-
structed in such a way that the minima are when nonzero ¢, ) VEVs share a sector, and
the same is true for x, . This associated asymmetry allows us to link together particu-
lar subgroups from gauge symmetry breaking with appropriate Higgs multiplets for that
specific sector to give different masses to fermions. Large systems of many representa-
tions of scalar fields can take an initially mirrored GUT group and naturally populate
each sector with nonzero VEVs of different scales which are given to different represen-
tations thus making the two sectors highly divergent in their features though identical
in their origins. This toy model will serve as a proof of concept for the more involved
scenarios that we move on to, that is, replacing these singlet fields with representations

of GUT groups.
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2.3 GUT symmetry breaking

We now consider how an asymmetric VEV structure allows for separate mechanisms to
generate fermion masses in each sector. This chapter will explore an illustrative model
of asymmetrical symmetry breaking that uses the SU(5) GUT candidate. As noted in
the introduction, SU(5) was one of the first and most promising candidates to unify
the forces and matter of the Standard Model though its promise has waned with little
experimental support. Paired with a discrete symmetry, our SU(5), x SU(5)y will be
broken to different gauge groups in the two sectors but with both featuring unbroken
SU(3) subgroups which have quantitative differences. This then allows a numerical
difference in the value of the dark sector confinement scale. To accomplish this we build
a symmetry breaking potential out of four scalar multiplets making use of two different
representations of SU(5), namely the 24 and the 10, each of which will have one of two
multiplets become the sole attainer of a nonzero VEV in just one sector thus facilitating
the different symmetry breaking patterns. In its most basic form this is just an extension
of the simple model of the previous section in which the two sectors are the visible and
dark and the fields ¢, ¢2 are now 24 dimensional multiplets while x1, x2 become two

copies of the 10 representation of SU(5),

¢v ~ (24, ]-) ) Xv ™~ (]-07 1) 3

¢a~(1,24),  xa~(1,10). (2.12)
Consider firstly the 10 representation of SU(5) which one uses to spontaneously break
SU(5)qg — SU(3) x SU(2) (2.13)

by appropriate choice of the sign of parameters in a general quartic scalar potential.

The general renormalisable potential for a scalar multiplet x ~ 10 is ,
Vio = —pixigx + A (xigx®)? + Maxiix” xx"- (2.14)

Note that i,j = 1,...,5 are SU(5) gauge indices with x;; = —Xji, and the subscript ¢
denotes ‘ten’. Choosing the parameter A\ to be negative produces a VEV that breaks

SU(5) to SU(3) x SU(2) [121].
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In the other sector the method of breaking SU(5) to the Standard Model is to use scalar

fields in the adjoint representation. The quartic potential is
V24 = —Mz¢;¢g + )\al(ﬁﬁ;(ﬁg)Q + )\a2¢3¢£¢;€1¢?7 (215)

where the subscript a is for ‘adjoint’, and ¢ is Hermitian traceless. Choosing A\g2 to be

positive gives us the breaking
SU(5), — SU(3) x SU(2) x U(1). (2.16)

In this model we have four representations of scalar fields in the two Zs pairs of Egs. 2.14
and 2.15. The complete, general fourth-order, gauge-invariant scalar potential invariant
under the discrete symmetry is written in Appendix A. It contains two copies of each of
the above two potentials for the multiplets in each sector as well as all possible gauge-

invariant contractions between the 24 and 10 in each individual sector, that is, of the

style XuvXv®Pu®ou-

We can take these basic potentials written above and use them to write a simple outline
of the full potential. We first duplicate each of the above potentials to accommodate
each one’s dark counterpart, and add in the cross terms such as Tr(¢2)Tr(¢2). We term

these

Vi = Vag + Vyy + ko Tr[¢2] Tr[¢?] (2.17)

and

Vi =Vio+ Vip + HtXm‘ijjiandemn~ (2.18)

To this there are five remaining contractions that we must add to write the general
renormalisable potential. A portion of this potential, displayed in full in Appendix A,

can then be written as

V = Va + Vi + Co(XdpmXa™" Tr[02] + xvijxo” Tr[F]) + . .. (2.19)
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Extending the analysis of Section 2.2 we find that for a particular region of parameter

space in this potential, the global minimum is at

100 0 0
010 0 0
(o) = w0 0 1 0 0o |
000 —=3/2 0
000 0 —3/2
Xo) = 0,
(pa) = 0,
0 1000
100 0 0
(Xa) = val 0 0000 (2.20)
0 0000
0 0000

By using the principles of the simple model and its parameter space from Section 2.2,
this potential is seen to induce the two SU(5) gauge groups to indeed break differently
in each sector. In one sector the 10 representation attains a VEV breaking SU(5) to
SU(3) x SU(2) and the positive definite contraction terms push the 24 in that sector to
attain a VEV of zero. In the other sector, the 10 representation is driven to have a VEV
of zero by contraction terms with its counterpart and this forces the 24 to attain a VEV
that breaks this second SU(5) to the Standard Model gauge group. There is once again
no way of knowing which is the visible and which is the dark sector prior to symmetry
breaking. Once the symmetry is broken to the lowest state it shall simply be that we
label the SU(5) which is broken to the Standard Model group the gauge symmetry of

the visible sector and the alternatively broken symmetry is then the dark sector gauge

group.

2.4 Fermion masses

In SU(5) theories the fermions of the Standard Model are assigned to the 5 and 10 rep-
resentations. The product of these allows for mass generation through Yukawa couplings

to Higgs fields in 5, 10, 45 or 50 dimensional representations. As an example, we aim
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to have two different representations for our mass generation, a 5 to accommodate the
Standard Model Higgs doublet in the visible sector and another representation which
attains a nonzero VEV in the dark sector to give a different form of mass generation for

the dark sector quarks.!

The 10 representation already employed in the symmetry breaking only gives mass to
leptons and is thus unsuitable. We therefore choose to examine how a 5 and a 45 in
each sector can allow for a difference in the scale of quark and dark-quark masses. The
45 has the interesting property of automatically leaving one dark quark massless [122],
which is a very useful feature for our application. The fermion multiplets are the same

in each sector, again respecting our initial mirror symmetry:

¢v5 ~ (5> 1) ) ¢d5 ~ (1>5) 5

Yy ~ (10,1) Yy, ~ (1,10) , (2.21)

and the Higgs multiplets which take the place of the fields €2, n from Section 2.2 are

Hvs ~ (57 1) ’ Hd5 ~ (175) s

HU45 ~ (455 ]-) ) Hd45 ~ (1745) . (222)
The Yukawa Lagrangian is

EF = yl%H;ﬂ%m + wa’Ulovamelo + yl%H§5wd10 + y2¢d10Hd45¢d10 + h.c. (223)

The methodology of Section 2.3 can be extended to include the Zs scalar pairs respon-
sible for fermion mass generation. The asymmetric symmetry breaking described in
Section 2.2 can induce consecutive asymmetries in more sets of fields. The dependence
for which way the asymmetry in the second set will fall is entirely dependent on the

weighting of the cross terms between the two sets.

It is in this manner that we arrange for the Hys in the visible sector to have a zero VEV,

while in the dark sector it gives mass to five of the six quarks at an indeterminate scale

IThe idea of a non-Abelian gauge sector responsible for confining DM has been detailed in a number
of different works such as [115] in which the range of SU(N) groups and ultraviolet boundary conditions
of the coupling constants that allow for TeV-scale-confined DM were investigated. In [118] the scale of
gluinos and glueballs in an SU(N) hidden sector was seen to be adjustable to produce TeV scale glueball
DM that could agree with a number of astrophysical constraints of self-interacting DM.
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vg and reduces the dark sector symmetry from SU(3) x SU(2) to SU(3). The invariant

component of Hg,, is

100 0 0
010 0 0

(Has) =valo 01 0 0 (2.24)
000 30
000 0 0

On the other hand the Hs has a VEV of zero in the dark sector and a nonzero VEV in

the visible sector as per the minimal SU(5) model of giving mass to the fermions:
<HU> = UU(Oa Oa Oa 07 1)7 <Hd> = 0. (225)

The scale vy can then be compared to the top line in Fig. 2.1 from Section 2.4 in which
we have five heavy dark quarks and a single massless dark quark. In such a scenario,
if the masses of the quarks are less than 1000 TeV then they produce dark confinement
scales less than 14 GeV. The remaining massless quark, a dark up-quark, forms a set of
neutral A(uuu) baryon-like states, lighter than all other possible dark colour singlets and
with mass completely dominated by the confinement scale. We will discuss such states
further in Chapter 5. This forms a dark analogue of the visible sector nucleon but with
mass that is an order of magnitude greater. If we consider minimal differences in the
magnitude of the mass generating VEVs, which is quite natural to obtain if parameters
are of similar order, then at around the electroweak scale, ~246 GeV, a confinement
scale of 2.1 GeV is generated in the dark sector. This is around an order of magnitude

higher than the Standard Model QCD scale of 0.217 GeV.

2.5 Phenomenological issues

It is important to note that we merely assumed in the previous analysis that the gauge
coupling constants of the sectors unify at a high GUT scale. While the scenario of a
non-supersymmetric asymmetric model that we have described does not automatically
have gauge coupling unification, it is possible to bring the three coupling constants of
the Standard Model together at the GUT scale by the addition of extra Higgs mul-

tiplets. One must also consider the constraints from the experimental lower bounds
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FIGURE 2.1: The confinement scale of a dark sector as a function of the common mass

scale, mq, for 1,2,3,4 or 5 dark quarks. This assumes a common origin of the gauge

coupling of the dark SU(3) theory and QCD at the UV scale. The vast range of possible

mass scales for fermions leads to only small changes in the dark confinement scale and

a reason why dark matter, consisting of dark baryons, should have a mass that is so
near that of the proton.

of proton decay. Decay modes from minimal SU(5) models have quite high bounds,
7(p — met) > 103 years [123] and the order of magnitude estimation for the width
5
2 M
demands that we must have at least My =~ 4 x 10'°. In [124] it was shown that con-

sistent proton decay limits and unification could be obtained with the addition of Higgs

multiplets in a non-supersymmetric SU(5).

Bounds on the dark baryons as DM from the bullet cluster observation are similar to
that in [125] where the self-interaction cross section of these nucleons o ~ 10726 ¢cm?
is compared to the upper bound of the DM self-interaction cross section < 10~2% c¢m?
[125-127]. The scale that v4 can take is something that we have not followed in full detail
opting to simply take as a guide the range of scale differences that we can accommodate
in the simple model in Section 2.2. These lead us to see that the scale of vy for a factor
of five difference between ordinary and dark baryons would need to be between ~ 30

GeV to 10* TeV depending on how many of the heavy quarks are given mass. The 45

representation of SU(5) would observe the lower bound of ~ 30 GeV as the mass scale
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would give this exact ratio. If, on the other hand, one only gave mass to a single quark
in the dark sector then a very high mass would be compatible with a confinement scale

of order the Standard Model.

Since the achievement of gauge coupling constant unification in non-SUSY GUT models
is somewhat ad hoc and, more importantly, suffers from the gauge hierarchy problem,

we now turn to SUSY models where these problems are absent.

2.6 Supersymmetric asymmetric symmetry breaking

We now develop a supersymmetric analogue of the model in Section 2.3, that is an SU(5)
theory with scalar fields in the 10 and 24. In building the supersymmetric potential we
will have to introduce another chiral supermultiplet in the 10 representation, Y, to make
it possible to include gauge invariant terms containing X ~ 10 in the superpotential.
We must of course also introduce a counterpart field Y, for the sake of the discrete

symmetry.

This allows for the construction of a potential including all of the fields from the non-
SUSY case. However, in order to facilitate asymmetric symmetry breaking it is key that
we have both terms that mix the fields under different representations in each sector
and cross terms between the two sectors. This is not possible with the set of fields as
they are. To achieve this we add a singlet scalar superfield S which transforms into
itself under the discrete symmetry. Doing so allows for the superpotential to generate
all of the necessary cross terms for asymmetric symmetry breaking through the F-terms

of the scalar potential. The chiral supermultiplets involved are then

D, ~ (24,1), X, ~ (10,1), Y, ~ (10,1),

By~ (1,24), Xy~ (1,10), Yy~ (1,10), (2.27)

and

S~ (1,1). (2.28)
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The general superpotential

W = 51(XuYs + Xg¥y) + 52(Bu®y + Bydy) + 55(0y By By + Bydydy)
+ 84(qu)de + XU(I)UYL) + 85((I)Uq)v5 + q)dq)dS) + 56(XUY;)S + XdeS) (2.29)

+ 575 + 5855 + 595855

satisfies SU(5), x SU(5)4 gauge invariance and the Zy discrete symmetry. The symmetry

breaking possibilities with this potential are discussed in more detail in Appendix A.

The complete potential has contributions from the F-terms of the superpotential, the
D-terms from those fields which are charged under one of the SU(5) symmetries and
soft mass and trilinear terms. Since we have a complete singlet .S, the non-holomorphic

trilinear terms are taken to be absent [62]. The equation is

. 1 , y y
Vo= W'Wi+ 9 Z(gq)iTaq)z)Q —mx (Xoi Xo”" + Xay Xa')
a

— my (Yo Yo' + Y, Yi'') — me (2,0, + ©q®q) — mgS?

— al(@dq)dfbd + (pv@vq)v) —ag (Xde‘I)d + XUY0¢)11>7 (230)
where
. OW
W' = 2.31
99, (2.31)

and each ¢; is one our fields. There are nine parameters from the superpotential (sq,...,
S9), six parameters from the soft terms mg, mx, my, mg, a1, az as well as the SU(5)
coupling constant present in the D-terms. With this field content we find that the scalar
potential then has the capacity to display asymmetric symmetry breaking by appropriate
choice of the parameters. The singlet field S is important here. Without it we could
not arrive at a scalar potential that has terms such as ®,9,9;94, that is, terms which
mix the two sectors. Without these it is not possible to create the necessary dependence
between sectors for VEV development to be opposing. There are non-minimal choices
one could make for the additional fields that would allow for these terms but for now

we choose to simply focus on the simplest case.

Consider a parameter choice with s4 and ss5 large compared to the other superpotential
parameters, and with nonzero values of mx, my and mg. F-terms of the style (@%@3)

or (X, X,®,®,) can then serve as the cross terms that create the asymmetric acquisition
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of VEVs. With largely positive quartic terms coming from the D-terms and negative
quadratic terms in the form of the soft masses, these cross terms can drive one variety
of each multiplet of a given dimensionality to zero in the same manner as the non-SUSY
case. It is however the case that many other W terms can spoil this pattern and so
many of the other superpotential parameters must be kept relatively small, at least an
order of magnitude. The parameter sg we can allow to be large, as it will serve to bring
the value of S to zero. In one scenario one can generate a nonzero VEV for ®, in the

visible sector, again breaking

SU(5), — SU(3) x SU(2) x U(1), (2.32)

and in the dark sector we have ®,4 developing a VEV of zero. Then the multiplets Xy

and Y, together acquire nonzero VEVs which break

SU(5)q — SU(3) x SU(2). (2.33)

Being a pair of conjugate representations, they will induce breaking to the maximal
stability group of SU(5) according to Michel’s conjecture [128, 129] which states that
this is the case for a potential containing only a real representation or a pair of conjugate
representation. This does not strictly apply in this scenario, of course, because we
have other fields involved in the potential. However, we invoke it as numerical analysis
shows that symmetry breaking of this type occurs within the parameter space that gives
asymmetric VEV patterns. Appendix A contains further details of this parameter space.
For the 10 dimensional representation, the maximal stability group, or maximal little
group, is SU(3) x SU(2) as it is the only maximal group which observes a singlet within
the 10 of SU(5).

The supersymmetric case is more constrained in its ability to display asymmetric con-
figurations, though with suitable additions in particle content we have found that it is
a feature that a unified supersymmetric theory can have. Many of the parameters in
the superpotential must be kept quite small so as to not overpower the terms essential
for guaranteeing asymmetric VEV arrays. It would be interesting to explore this is-
sue further in developing a complete theory and examining more of the possibilities for

asymmetric SUSY sectors, however that is beyond the scope of this chapter.
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We now discuss the dependence of the confinement scale with various parameters in a

general supersymmetric theory.

2.7 Supersymmetric confinement

In the case of supersymmetric theories, the running coupling is modified by the additional
particle content. For SU(3) we are however only interested in those particles with colour
charge. Note that this analysis is not dependent on any particular choice of GUT group,

relying only on an SU(3), x SU(3)q4 structure after GUT breaking.

In the MSSM the one-loop beta function for SU(3) is altered by the addition of the

gluinos and sfermions as per

2
Zns, (2.34)

2
Bozll—fnf—C’g—6

3

where ny (ns) is the number of quarks (squarks) and Cy = 2 is due to the gluinos. The
calculation of the dependence of confinement scale is more model dependent here as one
must first of all take into account the mass that visible sector gluinos and squarks take
to consider what value the coupling will take at the GUT or high reference scale py.
This will alter the precise calculation of the value of ag, at the scale at which the visible
and dark sector couplings unify. One can also consider in the dark sector how we might
separate the scales of the quarks and squarks. If we take the assumption that the SUSY
breaking scale is no higher than the mass scale of the dark quarks in the dark sector then
this provides a rough upper bound on the scale at which we place the supersymmetric
partners in that sector. This assumption is favourable also as it allows for a similar
analysis as before in that, if the two sectors have SU(3) gauge symmetry with the same
number of particles of each kind all the way down in energy to the mass of the heaviest
dark quark, then we can choose this as our high reference scale and take the value of
the coupling at this scale to be the same in both supersymmetric sectors. Then we can
establish a range of possible confinement scales that supersymmetric dark QCD could
have. We will examine the relationship between the confinement scale and these mass
scales as we did in the non-SUSY case. In this case we take the squarks and gluinos of
the dark sector to be quite light (under a TeV) and in such a scenario the dependence

is similar to the non-SUSY case but with a larger confinement scale, shown in Fig. 2.2
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FIGURE 2.2: Confinement scale dependence on fermion masses, in simple SUSY case,
almost identical to non-SUSY, but with the confinement scale axis multiplied by ~ 10.
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F1GURE 2.3: Confinement scale dependence on SUSY breaking scale for fixed dark-
quark mass scale of 100 GeV. The number of heavy quarks at the dark-quark mass
scale ranges from five at the top to one at the bottom.

We now examine the dependence of the dark confinement scale on the dark SUSY

breaking scale for a range of different dark-quark masses.

The scale of dark-quark masses is taken to be higher than the SUSY breaking scale
in each case. It must be noted however that the superpartners of heavy dark quarks

with masses above the SUSY breaking scale have the same masses as these dark quarks
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FIGURE 2.4: As for Fig. 2.3 but with a dark-quark mass scale of 1000 GeV.
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FIGURE 2.5: As for Fig. 2.3 but with a dark-quark mass scale of 10* GeV.

and therefore switch off in the running prior to the other superpartners.

squarks and gluinos.

This has

the additional effect of a more pronounced change in the running at these quark mass
thresholds as multiple bosonic degrees of freedom are switching off at the same energy
scale. Figures 4-6 show this dependence for different numbers of heavy dark quarks.
The value of the confinement scale is in general higher than the non-SUSY case though

we do have additional parameters to contend with in the form of the mass scales of the
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2.8 Summary

We have demonstrated in this chapter that asymmetric symmetry breaking can take
a mirror symmetric grand unified theory and spontaneously break it to form distinct
sectors that generate masses for fermions at different energy scales. We have further
examined how the mass scales of particle species in a dark sector can alter the running of
the gauge coupling constant of a confining non-Abelian gauge group. Critically we have
shown that if the gauge coupling of a dark confining group is constrained to equal that
of SU(3). at the Planck scale, then the variation of a dark confinement scale compared
to that of QCD is very insensitive to the mass scales of fermions in the dark sector. This
provides a compelling explanation for why dark matter, in the form of composite states
of a dark confining group, must have a mass similar to that of the proton. We have
also shown that asymmetric symmetry breaking is compatible with supersymmetry and
explored how the confinement scale of a dark sector is affected by the scale at which
supersymmetry is broken. In the next section we will examine how we can extend this

idea of generating a dark sector with a confinement scale similar to that of QCD.
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Breaking Chains of SO(10) x
SO(10)

In this chapter we explore the ability of spontaneous symmetry breaking to generate
similar results from different GUT breaking chains in the two sectors in an SO(10) x
SO(10) theory. These different gauge symmetry breaking chains can result from a
simple extension of the mechanism of ASB and allows one to create regions where the
coupling evolution differs in the two sectors without considering fermion mass generation.
The models that we explore here are larger extensions to mirror symmetric models
which have been explored in many contexts [17-24, 26, 29, 30, 32-34, 36-38, 47|, where
in this chapter the mirror symmetry serves only at high energy and the low energy
features of the two sectors can be vastly different. We use this to develop a new way
of explaining the similarity of DM mass. The next section will review the motivation
for such models by examining how the running of coupling constants in gauge theories
with unification can be used to link the colour confinement scales of the two sectors.
From there, Section 3.2 will discuss SO(10) models and their appeal as the choice of
GUT group to be implemented with this method. Following this, Section 3.3 will discuss
the paths of symmetry breaking that we can take within SO(10) models and how these
can be used in asymmetric symmetry breaking models to create the SM in one sector
with an SU(3) group in the dark sector. We will then move on to Section 3.5 where
we will explore similar models within the supersymmetric framework, while Section 3.6

will examine the results from a broad range of these possible scenarios and their effect

45
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on the dark QCD scale. Finally in Section 3.7 we will discuss the constraints on some

of these models and the outlook for such theories.

3.1 Dimensional transmutation

Our objective is to develop SO(10) x SO(10) models that can account for the similarity
in mass of visible and dark matter. We have seen that the overwhelming majority of
the mass of visible matter comes from dimensional transmutation where a dimensionful
parameter is created at the scale at which a coupling begins to diverge and the theory
becomes non-perturbative. The masses of the protons and neutrons which dominate the
visible sector in the present universe come from the confinement scale of QCD where the
coupling constant of the colour force becomes large at low energy. As in the previous
chapter, this feature of asymptotically free theories presents an elegant way to introduce
mass scales into a theory. The capacity to yield such scales at low energy comes from the
negative sign of the beta function of a non-Abelian gauge theory. The running coupling

evolution is again described by the logarithmic dependence on energy scale,

_ s (po)
1 — (bo/4m)as(po) In(p?/10?)’

s (1) (3.1)

such that at low energy scales the value of ag grows exponentially. This asymptote
sets the energy scale of the proton mass after chiral symmetry breaking when coloured
particles are confined to bound states. We can now consider a general non-Abelian gauge

theory for a group G where the full beta function at one-loop is given by

3
g 11 4 2
B(g)(l Loop) — @ <_3RGauge + gRDiraC + gRMajorana
2 1 1
o € o calar ~ calar | » 2
+ g Rweyt + g Rescatar + ¢ Rscal ) (3:2)
where 5(9)(1 Loop) = lg.%bo and the factors of R are the indices for the choice of
multiplet(m) defined as
Tr(r%7%) = 6% x R(m), (3.3)

and are calculated for each copy of the gauge fields, which are necessarily in the adjoint
representation of G, followed by the Dirac, Majorana, and Weyl fermions and finally

complex and real scalars. For the familiar QCD group SU(3), the beta function becomes
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the original

2
by = 11+ 2y, (3.4)

with n; the number of flavours. In the following sections we will continue to seek
explanations for the similarity of visible and dark matter masses by assuming that DM
similarly gains its mass by dimensional transmutation and that the confinement scales
of the two sectors are linked to each other by their different symmetry evolution from
a common starting point at the GUT scale. These differences can occur spontaneously
from a completely mirror symmetric model thanks to asymmetric symmetry breaking
where the absolute minima of the potential are such that the vacuum structure of each
sector is necessarily different. The goal of this chapter is to construct a broad outline of
the possible models in which a GUT theory with a discrete Zo symmetry can naturally
explain the similarity of visible and dark matter masses by spontaneously breaking the
symmetries of the two sectors through different subgroups while ending with at least
one copy of SU(3) in each sector. In this manner the confining scale of the dark QCD is
related to that of the Standard Model through the unified couplings at high scale, but
within intermediate symmetry breaking scales the coupling constants run differently due
to the contribution from the gauge bosons of their respective groups. It thus becomes
effectively the first term in Eq. 3.2 that changes at particular mass scales allowing for
the generation of different confinement scales rather than the second term in Eq. 3.2
at the quark mass thresholds as in the previous chapter. In this chapter we will not
examine any differences resulting from quark mass thresholds though of course the two
effects could be utilised in a single theory. We will focus on those cases where, after the
altered running of the two QCDs is established, the dark QCD coupling will confine at
a higher energy scale as this is more suited to ADM where mass scales of around one
order of magnitude higher are compatible. Figure 3.1 shows the divergence of the two

SU(3) theories after running at different rates for a segment of the high energy regime.

A number of other models have explored similar concepts of generating the confinement
scale of a dark QCD in order to explain the DM mass coincidence. In particular this
work is related to that of [130-133] where Zs symmetric SU(5) and SO(10) GUTs were
explored for generating confined states at low scales. The present chapter however seeks
to expand the technique of asymmetric symmetry breaking beyond SU(5) theories to

the SO(10) gauge group and so we move on to a discussion of its features.
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FIGURE 3.1: The confinement of the dark sector QCD occurs at a higher scale than its
visible counterpart after asymmetric symmetry breaking. The top line shows ap after
running as SU(4) for two orders of magnitude at a high energy scale while ay remains

SU(3).

3.2 SO(10) x SO(10) models

The group SO(10) presents an appealing avenue for GUT extensions to the Standard
Model beyond the minimal cases. It has the benefit of allowing each generation of
fermions to fit within a single SO(10) multiplet including the right hand neutrino. Most
SO(10) models require at least two Higgs multiplets to break the full symmetry down to
the Standard Model. Typical choices include one set of fields in 45 or 54 representations
and another in 10, 16 or 126 dimensional representations [122]. The choice of 126 for
the second is appealing as it allows the generation of fermion masses by Yukawa coupling
to the 3 copies of 16 which contain the fermions of the Standard Model. Since there are
two multiplets required to break SO(10) to the Standard Model gauge group, the work
of Chapter 2 can be naturally extended to SO(10) where the visible and dark sectors
required two Higgs representations in each sector to carry out asymmetric symmetry
breaking. By giving a nonzero VEV to all four representations in such a manner that
representations paired under the Zs symmetry gain VEVs of different sizes, the gauge
group of each sector will be different for small segments of the range between the GUT
scale and the low energy theory. The parameter space of this particular type of model
can be quite small and therefore leads us to consider non-minimal multi-step breaking
chains in SO(10)y x SO(10)p models for more than four Higgs multiplets. We are
chiefly concerned with paths that can break SO(10) to a gauge sector containing SU(3)
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in the dark sector while breaking to the SM gauge group in the VS. Since our primary
goal is to generate dark confinement scales only slightly above that of the visible sector,
we will limit ourselves to models where this is the result, that is Apy > Aqep. The
case of Apm = Aqcep can also appear, often in the limiting cases where the intermediate

scales approach the GUT scale.

To illustrate the concept consider the case where

SO(10)y —» SU(4) x SU(2) x SU(2) - SU(3) x SU(2) x U(1), (3.5)

Mx

while in the dark sector

SO(10)p = SU(5) = SU(3) x SU(2) x U(1). (3.6)

Mx

In the visible sector this could be done with a Higgs multiplet which transforms as a
54 and which gains a VEV at the scale Mx while in the dark sector we have a 45.
Then a pair of 16 + 16 or 126 + 126 representations could gain VEVs in both sectors
at the scale M; where each sector becomes Standard Model-like. The use of a pair of
conjugate representations allows for such fields to be included in the superpotential in
supersymmetric theories and also allows us to invoke Michel’s conjecture which states
that for conjugate pairs such as these, or for real irreducible representations, the symme-
try breaking must be to a maximal little group [128, 129]. This pair of breaking chains
is a particularly simple example where we have only two scales, Mx and M, however
in general it is possible for the intermediate scales of the two sectors to be independent.
In such a scenario we have only the distance between the two scales Mx and M that
determines the size of the difference between the confinement scales between the two
sectors. This difference can be approximately determined by calculating the value of the
dark sector’s A after running upward in energy from Aqcp to the lowest breaking scale
M7 and then to the second, Mx, before evolving back down in energy until we reach
the confinement regime. Using this it can be calculated that at one-loop the ratio of the

confinement scales is given by

bp—by

Ao _ My
Agecp My ’

(3.7)

where the beta functions here are for the intermediate gauge groups in the intermediate
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range M; < M < Mx for the two sectors, and by is the SU(3) beta function given in
Eq. 3.4. This calculation allows us to see that similar but different confinement scales
can be generated from a model with different gauge symmetries at high energy, and for
this reason we wish to consider the full set of possible symmetry breaking scenarios. In

the next section we will examine what breaking chains are possible in each sector.

3.3 Multi-step breaking chains

We wish to systematically explore all the possibilities for the different breaking chains
that can occur in each sector for an SO(10) model in order to examine which chains allow
for realistic models of both sectors. There are a number of paths through which SO(10)
can break down to a gauge theory containing the SM with two of the most notable being
through the Pati-Salam SU(4) x SU(2) x SU(2)[134] and the Georgi-Glashow SU(5)
[135] subgroups. For the visible sector we are mostly concerned with these particular
models, however for the dark sector we are free to choose any breaking which leaves
unbroken an SU(3) theory at low energy. This opens up a large number of choices of
Higgs multiplet representations in the dark sector. We will limit ourselves to the cases of
one and two intermediate scales as additional scales add complexity without necessarily
offering more insight into possible outcomes. Below we list all of the possible breaking
chains we can consider for the colour force in the dark sector. We consider first of all
chains with just one intermediate scale, M, between the confinement scale, Apys, and

the GUT scale Mx. These are

SO(10) — SO(9) — SU(3) (I
SO(10) — SO(8) — SU(3) (II

)

)

SO(10) — SO(7) — SU(3) (I11) (3.8)

SO(10) — SU(5) — SU(3) (IV)
)

SO(10) — SU(4) — SU(3) (V
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and secondly we consider models with two intermediate scales, M; and M, between

Mx and the low energy theory, with Mj; > M. These are

SO(10) — SO(9) — SO(8) — SU(3) (VI
SO(10) — SO(9) — SO(T) — SU(3) (VII

50(10) = SO(8) — SO(7) — SU(3) (IX (3.9)

)

)

SO(10) — SO(9) — SU(4) — SU(3) (VIII)
)

SO(10) — SO(8) — SU(4) — SU(3) (X)
SO(10) — SO(7) — SU(4) — SU(3) (XI)

SO(10) — SU(5) — SU(4) — SU(3) (XII).

The chains we consider in the visible sector are most often IV and V as well as the
case where the two intermediate scales are close enough that the symmetry breaking
effectively happens at one scale, as per SO(10) — SU(3). We consider this variety as
the limiting case for the magnitude of the difference between the two groups’ one-loop
beta functions and is useful for cases where the symmetry breaking chains of the two
sectors are in fact the same except for the scales at which breaking occurs. This can be
seen as delayed symmetry breaking where at one or more of the scales, Mx, M; and M,
one sector breaks to a subgroup but the other does not. The analysis is no different than
other examples, it is simply that we contrast some intermediate gauge group’s running
with that of, for instance, the group SO(10) itself. In examining results we choose a
breaking chain for each sector from the list, but we will limit ourselves to only those
choices for which the dark scale runs faster in the intermediate range of the running
for the case of one intermediate scale. These cases demonstrate the key aspect of these
theories, that the gauge group of the intermediate energy scale can change the final scale
of dimensional transmutation in two SU(3) theories that originate from an originally Z

symmetric G X G theory.

For the sake of proton decay limits the intermediate scale of the visible sector M; must be
above experimental constraints. Additionally it is important for consideration of gauge
coupling constant unification in the visible sector which we will return to in Section 3.7.
The scale at which the dark sector becomes SU(3) is not so constrained, however if it
is significantly lower the confinement scales will distance themselves beyond the desired

amount. It may also have consequences for the stability of dark matter depending on
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other features of the hidden sector. It is also natural to consider the models mentioned
where Higgs multiplets that gain the same VEV in each sector allow for the lower
intermediate scale to be the same in the two sectors. Beyond this, the next highest
intermediate scale M is constrained only from above in that M; < Mx < Mpianck- In
the next section we present a proof that for non-SUSY models asymmetric symmetry
breaking can be realised in potentials that give minima which describe any of the model

types we discussed above.

3.4 Multi-Step asymmetric symmetry breaking

We will now outline how a Higgs sector can accommodate a large variety of symmetry
breaking chains in a GUT model of two sectors. As in Chapter 2, asymmetric symmetry
breaking can induce nonzero VEVs in Higgs multiplets which have Zs partners in the
opposing sector that retain a VEV of zero. We consider again the simplest example that

has just two pairs of scalar singlet fields that transform under the Zy symmetry as

¢1 < P2, X1 4> X2 (3.10)

We can then write down the general potential without loss of generality as

V = X(ov> + op” — v3)* + kp(dv’odn?)
+ A (xv? + xp” — 03)? + ki (xvxn?)
+o(ovixv? + ¢p’xp?) (3.11)

+ p(ov? + xv? + ép® + xp* — vz, — vi)Q,

where cubic terms are initially taken to be absent by additional discrete symmetries. If
all of the parameters in Eq. 3.11 are positive then each term in the potential is positive
definite and thus minimised if it is equal to zero. The total potential is then minimised

by VEVs that break the Zy symmetry in such a way that

(¢1) = vy, (x1) =0,

(P2) =0,  (x2) =0y (3.12)
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This minimum is also degenerate with its Zo partner where it is ¢o and x; that gain
nonzero VEVs. We can then extend this idea to larger representations of gauge groups by
replacing the singlet fields with Higgs multiplets. The set of Higgs multiplets responsible
for symmetry breaking in each sector can thus be entirely independent for an arbitrary
number of representations we add to the theory. Let us firstly take the case of a set of

2n singlet scalar fields, Hy 1, Hp1, ..., Hyv,, Hp,,, where under the Zs symmetry,
HV < Hp. (313)

We then consider general potentials where again all of the parameters are positive and
each individual term is positive definite and cubic terms are taken to be absent by

discrete symmetries. For the case of n = 3 we have

V = Ap, (HyT + Hpi —vip,)® + A, (Hv + Hps — viy,)” + Auy (Hvs + Hpj — vf, )
+ ki, (Hy3Hp3) + km, (HyTHp?) + kg, (Hy3Hp3)
+o1(HviHvi + HpiHp3) + p1(Hy? + Hvs + Hpi + Hps — vy, —vf,)?  (3.14)
+o3(HviHp3 + HpiHv3) + ps(Hvi + Hv3 + Hpt + Hp3 — vy, —vip,)”

+ UQ(HV%HV% + HD§HD%) + /32(va + va + Hpg + HDg — ’U%{S — 0%2)2.

In this case the minimum is given by

(Hyg) =0, (Hps) = va,, (3.15)

(Hys) = vi;, (Hps) = 0.

The above minima could have been the reverse where the V and D subscripts are inter-
changed of course. This potential demonstrates the general procedure by which we can
generate non-supersymmetric asymmetric symmetry breaking multi-step chains. The
first two sets of fields form an asymmetric set as in Eq. 3.11 and for any additional field,
such as Hs we can choose for it to align with either the visible or dark sector based on
these choices: For coupling between fields that we want to break similarly we set o to
couple fields in opposing sectors and the p term to be that which allows for same sector
terms. In this case we choose for H3 to break the same as Hy so o3 couples fields of

different sectors. Then for mixing between Hj3 and fields that break differently we set o
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to couple the same sector fields, where in Eq. 3.14 we have o9 coupling same sector fields
since H» is aligned with the opposite sector to H;. Following this simple prescription
allows us to add an arbitrary number of multiplets to each sector with the asymmetry
determining which sectors will gain the symmetry breaking aspects of that multiplet.
We can then consider representations of SO(10) where now each Hy,, ~ (R,,1) and its
Zs partner transforms as Hp,, ~ (1, R,,). The general potential will contain additional
couplings, however it will always contain an analogous set of terms to those above for
which we can always generate an asymmetric array of VEVs. These will then drive the

symmetry breaking of the two sectors to be completely different.

As we mentioned earlier the simplest variety of SO(10) model is one where the asym-
metry in the VEVs of the potential is not limited to distinguishing between zero and
nonzero, but rather creates an asymmetry in the size of the VEVs which are all nonzero.
Consider a potential of just two pairs as in Eq. 3.11 but with each of kg, s, < 0. In this

scenario we can create asymmetries of the form

(91) = (x2), (x1) = (#2) - (3.16)

We found it possible to generate a ratio of (¢1) /(x1) ~ 10® for a very constrained
region of parameter space. Such a potential can minimally accommodate exactly the
number of Higgs multiplets necessary to break two copies of SO(10) to the same final
gauge group but with different gauge groups in the intermediate range depending on the
choice of Higgs multiplet. While simple in the number of multiplets, this minimal theory
suffers from a much smaller allowed parameter space than the previously discussed ASB
mechanisms. In particular the size of parameters must be fine-tuned slightly such that
we very nearly have k, ~ k4 and —ky — Ky ~ 0. If we remove the condition of having
just two breaking scales and allow each of the four fields to attain different VEVs then

a much broader range of the parameter space is compatible.

We can also develop models in which additional pairs of multiplets that transform under
the Zo symmetry are added as in Eq. 3.14 but break in such a way that they both gain
nonzero VEVs and thus both contribute to the symmetry breaking in each sector. This
is in fact the simplest method in select cases where the same dimensional representation
is useful for the symmetry breaking needed in each sector. This can be always be accom-

plished by, for example, having these added fields couple only weakly to the previously
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added fields.

We illustrate this asymmetric breaking with a particular SO(10) x SO(10) potential
which breaks the mirror symmetric GUT group to [SU(4) x SU(2) x SU(2)]y x [SU(5) x
U(1)]p. Within the context of the Standard Model, such a theory would need at least one
more Higgs multiplet in order to break the Pati-Salam group to SU(3) x SU(2) x U(1).
Within our variety of models we would require at least one additional mirror symmetric
pair of representations to break the symmetry in each sector to one containing SU(3).
Since the important results from this chapter are the generation of different symmetries
in the intermediate range we focus on constructing a potential that asymmetrically
generates the first step of the breaking chain. We consider a set of fields transforming

as

QSV ~ (457 1)5 Xv ~ (547 1)7

With these we can follow the procedure detailed in the toy model and construct an
asymmetric potential. Each of the terms in the toy model has a direct analogue and
in addition to these there will be new terms from unique contractions of the Higgs

multiplets. The general renormalizable fourth order potential is

2

W A
- ?(b@vz'jéﬁvg'i + épi9Dji) + f((@bvijgﬁvjiy + (¢Dij¢Dji)2)
a
+ f(¢Vij¢ij¢Vkl¢Vli + 90Dk PDKPDI) + K (PDi;PDji OV PV ik)
i A 2 2
- %(XVinVji + XDijXDji) + ZX((XVinVji) + (XDijXDji)7)
(6%
+ ZX(XVinijXVleVli + XDijXDjkXDRXDIi) T kx(XDijXDjiXviXvie) — (3.18)
Bu
+ TX(XVinijXVm‘ + XDijXDjkXDki)

1(PDiPDjiXV XV ik + PVijPV jiX DX Dik)
2(BDijPDjiX DX Dk T PV i PV ji XV XV k)

+ 1 (
+ cof
+ ¢3(9DijPDjkXDRIXDIi + PVijOV 1 XV XV 13)
+ ca(9DiPD kX Dki + PVijOV i XV ki)

(

+ (T (v ie XV km — XVit®Vim)?] + T [(6DirXDkm — XDit®Dim)’])-
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The addition of the cubic term is necessary for the pattern of symmetry breaking we have
chosen. This differs from the toy model cases where an additional Zs symmetry protected
the potentials from such cubic terms. Relaxing this condition still allows for asymmetric
solutions for the VEVs of the two sectors however as discussed in Appendix B. For the
sake of simplicity we also set the parameters cs3,cq, c5 to be zero as large values will
remove the asymmetric VEV structure. The analysis can be simplified by transforming
the fields into a simplified VEV form. For the adjoint representation this becomes a
block diagonal matrix with each block being a 2 x 2 antisymmetric matrix. For the
54 we have a traceless diagonal matrix. For the region of parameter space discussed in

Appendix B the potential is minimised with VEVs

0O ¢ O O O O O O O O
—a 0 O O O O O O O O
0O 0 0 e O O O O O O
0O 0 —a 0O 0 O O O O O
o) = M, 0O 0 0 0 0 a O O O O
0O 0 0 0 —a 0O O O O O
0O 0 0 0 0 0 0 a 0 O
O 0 0o 0 0 0 —a 0 0 O
O 0 0 0 0O 0 0O 0 0 a
0O 0 0 0 0 0 0 0 —a O
(pp) = 0
(xv) =0
b 0000 O0OO0O0O0DO
O b 0O0OOO0OO0OOT OO
0O 0b O0OO0OO0OO0OOTO0OO
0 00O b 0OO0OO0OO0OO0OTGO
o) = M 0O 00O0DbO0OO0OO0O0OO (3.19)
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000 00O ¢ O0O0O 0
000 0 O0O0O0 ¢ 0O
0000 O0O0O0OTO0OTZ €O
000 0O O0OO0O0OTO0OTUO0 c
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In the above, SO(10)y breaks by the VEV of the 54 to SO(6) x SO(4) ~ SU(4) x
SU(2)xSU(2) and the 45 serves to break SO(10)p to SU(5)xU(1) [136, 137]. Following
this symmetry breaking we would then need additional Higgs multiplets to break each
of the gauge groups to SU(3) colour theories after which the running couplings will
be parallel. Due to the complexity of analysing potentials with increasing numbers
of large dimensional Higgs multiplets we leave such detailed models to more specific
theories. We have however completed our stated objective of constructing an SO(10)
asymmetric potential, built according to the principles of ASB, and showing that by
choosing the breaking scales in the two sectors and the breaking chains listed previously,
asymmetric potentials can be constructed such that exactly that scenario is the minimum
of the potential. In the next section we attempt to generalise such possibilities for
supersymmetric models. We specifically look at the general case of real representations

which we can examine in an illustrative model.

3.5 Supersymmetric theories

As in Chapter 2 this analysis is predicated on the unification of coupling constants
and for this, among other reasons such as the gauge hierarchy problem, we will explore
supersymmetric varieties of these models in this section. Supersymmetric ASB requires
more fields than the non-SUSY case, specifically gauge singlets. Here we will outline a
general scheme to create asymmetric symmetry breaking chains from the superpotential.
In general, additional fields are required to allow for the scalar potential to have the
necessary terms that drive ASB since only including non-singlet Higgs multiplets does
not allow us to couple fields from the different sectors at all in the scalar potential.
The method that we outline below is not necessarily the simplest way to generate such
breaking for any specific choice of representations or breaking chains; indeed for many
simple models as few as one additional singlet is required. The purpose of this discussion
is to provide an existence proof that for any symmetry breaking chain we may consider

in Section 3.6, a scalar potential can be created which allows for such a vacuum solution.

We wish to consider a supersymmetric extension to the argument of the previous sec-
tion wherein pairs of Higgs multiplets can be added one at a time to a model in a Zo
symmetric manner while allowing us to choose which sector its VEVs will favor by appro-

priate choice of couplings. Take the case of the fields Hyv, Hip, Hoy, Hop, Hsy, Hsp,
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X1,X0,Y1,Ys, Z1, Zs, ¢, 0, where under the Zo symmetry

X1 < XQ, Y1 < YQ, Z1 < ZQ,

b < o, 0 < 0. (3.20)

We then consider the general, renormalizable, gauge invariant superpotential that re-
spects the Zo symmetry between the sectors. In this case we are assuming that the Higgs
multiplets form real representations though a similar argument likely exists for complex
representations as well. We do not write down all of the terms in such a superpotential,
only those which directly contribute to the asymmetric symmetry breaking terms as in

Eq. 3.14:

W = p1(Haot ¢ + Hopo) + p2(Hot Y1 + HobYo) + ps(Hiy Zo + Hi1$Z1)
+ P4(H2%/ZZ + Hyh 7)) + P5(H1%/9 + H1%0) + P6(H1%/X1 + H1 %5 Xo)
+ p1(Z13 + Z93) 4 ps0® + pod® + pro(X1® + X2%) + p11 (V12 + 1o3) (3.21)
+ pr2(Hsi Xo + H3h X1) + pi3(Hsi Y1 + H3pYa) + pra(Hsi0 + Hzho)

+ p15(Hs? ¢ + Hs2) ) + ...

The scalar potential then comes from the sum of soft terms and W** W; where we ignore
the D-terms for this analysis, though in general such terms will add positive definite
quartic interactions among those fields which are non-singlets which will not negatively
affect the results discussed here. We examine the extreme case of the parameter space
where the terms shown dominate and all other parameters in the superpotential are at
or very close to zero. In this case the scalar potential minimally contains only those
terms that would exist without the purely singlet fields, as in Eq. 3.14 and which are
necessary for ASB, in addition to a number of other terms which contain the purely
singlet fields. If the sum of the soft mass terms and mass terms from the superpotential
F-terms for the singlet fields X, Y, Z, 0, ¢ is positive then these fields can maintain a VEV
of zero at the minimum. In this case the dependencies among the remaining fields is
entirely that of IV pairs of fields under the Zs symmetry exactly like that of the previous
section where the symmetry breaking of added fields can be chosen by the couplings to
the previously added fields and we only have quartic and quadratic terms to deal with.
Again we have that the symmetry breaking of an added multiplet such as Hsz can be

chosen by its coupling strength to previously added fields, in this case the X and Y
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fields. In Eq. 3.21 we have chosen to include the couplings for which, upon taking the
derivatives with respect to X7, Y7, Xo,Y5 create the terms that follow the prescription
discussed in Chapter 2. If one wished to have the field Hs break similarly to Hs instead
of Hy we simply reduce the magnitude of the parameters p1213 and replace them with
larger couplings for the terms (H3%/X1 + H32DX2) and (H3%/Y2 + H32DY1) which were
previously among the omitted terms. Z; and Z5 set the initial asymmetry between the
first two pairs of fields Hyy p and Hay p while the F-terms from 6 and ¢ create the
remaining couplings in the p terms from Eq. 3.14. The magnitude of the VEVs of the
Higgs multiplets will however depend on the size of the soft mass terms that we add
and so it may be difficult to construct models with very different mass scales. This may
however work to our benefit as large differences in the values of Agcp can be generated
in short ranges if the difference in the beta functions is large. One can take this example
as a proof of concept that asymmetric models of any number of Higgs multiplets can be
built in SUSY with the addition of singlet fields. Now that we have demonstrated such
possible models in both supersymmetric and non supersymmetric cases we will move on
to displaying the numerical results for the dark confinement scale for different choices

of representations of the Higgs multiplets.

3.6 Dark QCD scale from asymmetric symmetry breaking

We firstly consider the set of models with just one intermediate scale which allows just
one energy range over which the beta functions of the two SU(3) groups differ. In this
case we are thus only considering models where the group in the dark sector has a larger
beta function. We consider both SUSY and non-SUSY models here since for this part
of the analysis the only discerning feature is the size of the beta functions which for the
SUSY case contains supersymmetric partners to consider as per Eq. 3.2. We take the
unification point to be where both sectors become SO(10), the GUT scale My in our
context. We can however have cases where the dark sector remains as an SO(10) for
the range between My and the intermediate scale M; while the visible sector changes
group. The analysis is the same with the intermediate gauge group of the dark sector

being simply SO(10).

There are three possibilities for the visible sector’s QCD parent group. It can remain

SU(3) up until Mx while the dark sector changes at M; or it can become SU(4) or



Chapter 3. SO(10) x SO(10) 60

SU(5) at the My and continue to the unification point. For the dark sector group we
examined the cases of the chains from Section 3.3. For the case of just two scales My
and M; we plot the ratio of confinement scales by using Eq. 3.7. We look at the scale
M7 and the difference between the two scales M = Mx — M;. We display in Figure 3.2
and Figure 3.3 the minimal and maximal cases in terms of group choice, that is the
largest and smallest difference in beta functions for each of the possible breaking chains
in the VS. The colour scale of each graph gives the ratio £ = IQ‘;T%. We see in these
figures that quite a large range in the distance between the breaking scales is acceptable
if the beta functions are not very different in size, for example in the case of SU(3)
and SU(4). The magnitude of this difference may be smaller depending on the particle
content of a specific theory though the Zs symmetry between the sectors prevents these
matter terms in Eq. 3.2 from generating large differences. For the limiting case of SU(3)

and SO(10), on the other hand, we have a much more constrained parameter space for

the choice of breaking scales.

In these cases the results follow from that of the one intermediate scale case, that is, the
final difference in the confinement scales is a function of length of the range over which
the couplings run at different rates, and the magnitude of the difference between the
beta functions. Because of this it is possible to create a dark sector with an acceptable
confinement scale for any breaking chain that is needed to satisfy visible sector GUT
constraints. For example, if a specific model requires a large range between the SO(10)
scale My and the SU(5) scale M in a theory like that of breaking chain IV, then we
can choose the scale that the dark sector breaks to SU(5) to be similar to Mx and run
as SU(5) down to a lower scale than M;. We have seen that there are a large number
of possible cases for the breaking chains in each sector where the confinement scale in
the dark sector is just larger than that of the visible sector. We have however been
treating our GUT scale Mx and intermediate scaleM as free parameters and so in the
next section we will look to constraining the realistic models and look towards possible

future work in this area.

3.7 Phenomenological constraints

The methods detailed here for generating dark sectors with baryons of a mass scale just

above that of the proton are generalisable to many breaking chains and GUT models,
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FIGURE 3.2: The ratio of confinement scales £ = Apm/Aqep in the two sectors for a

sample of non-supersymmetric breaking chains. The top left figure is generated from

SU(3)y and SU(4)p as the groups above the scale M;. The top right features SU(3)y

and SU(5)p above M while the bottom left has SU(4)y and SU(5)p followed by the

bottom right with SU(3)y and SO(10)p. In each graph the vertical scale is 6 M while
the horizontal scale is M below which both sectors contain SU(3) subgroups.

not all of which will satisfy phenomenological constraints such as current proton decay
limits. Here we briefly review some of the recent SO(10) GUT models which can satisfy
proton decay constraints in the visible sector. Proton decay bounds typically push the
scale of unification in SU(5) theories up to energy regimes consistent with the unification
of the gauge coupling constants. In some works such as [124] the SU(5) scale is as low
as My ~ 4 x 10" GeV after the addition of extra Higgs multiplets. In particular we
examine some of the recent work on proton decay constraints in GUT models from
[123], [138] where while minimal SU(5) theories are ruled out, supersymmetric SU(5)
theories may still be viable while both supersymmetric and non-supersymmetric SO(10)
models can generate cases where proton decay is within experimental limits. We have
not gone into any depth on any specific choice of representations in this chapter so it

remains an open question how a particular model of ASB can work in the context of
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FIGURE 3.3: The ratio of confinement scales & = Apm/Aqcep in the two sectors for

a sample of supersymmetric breaking chains. The top left figure is generated from

SU(3)y and SU(4)p as the groups above the scale M. The top right features SU(3)y

and SU(5)p above M while the bottom left has SU(4)y and SU(5)p followed by the
bottom right with SU(5)y and SO(10)p.

these phenomenological constraints. The construction of realistic models also requires
the unification of the coupling constants which places strict constraints on the scale at
which the visible sector’s QCD parent group starts. We examine such examples for the
MSSM running and a non-SUSY case. Below we examine the development of a dark QCD
in an extension of this model where the SM gauge couplings unify at an intermediate
scale and the two sectors unify closer to the Planck scale. Figure 3.4 shows the case
where we have chain IV in the VS and chain X in the DS. This could be accomplished
with 45 and 16 or 126 Higgs multiplets in the VS, together with a 54 or 210’ and 16
or 126 in the DS. Figure 3.5 shows the direct breaking SO(10) — SU(3) for the colour
force in the VS and chain XII in the DS which was discussed in Section 3.2.

In the MSSM, once we have fixed the scale at which the VS SU(3) is absorbed into

SU(5), Mx and any intermediate scale of the dark sector can then be treated as free
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FIGURE 3.4: Supersymmetric model with one and two intermediate scales. In the

top plot we have SU(5) in the visible sector and SO(8) in the dark above the scale

Mx =~ 10 GeV while the bottom plot shows SU(5) in the visible sector and SO(8)

breaking to SU(4) at the scale My ~ 10'7 GeV in the dark sector. Each graph displays

the running coupling of the SM forces (aq, ag, @y ) from top to bottom and that of the

colour force in the dark sector(the lowest line). The value of the dark confinement scale
is 4.1 GeV and 1.9 GeV for the top and bottom cases, respectively.

parameters to generate the dark confinement scale. For the non-SUSY case we examine
the work of [139] in which a non-SUSY SO(10) model with a colour sextet allows for the
unification of the gauge coupling constants. In this case we can also examine a two step

process which has one segment working to diverge the couplings after SO(10) breaking,
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while the next part of the breaking regime brings the couplings closer again to result in
a dark QCD scale just one order of magnitude greater than the SM for breaking scales

which span over four orders of magnitude.
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FIGURE 3.5: Non-supersymmetric model with one and two intermediate scales. In the

top plot we have SU(3) in the visible sector and SU(5) in the dark sector above the

scale Mx =~ 10'® GeV while the bottom plot shows SU(3) in the visible sector and

SU(5) breaking to SU(4) at a scale M; > My in the dark sector. Each graph displays

the running coupling of the SM forces (a1, as, ay) from top to bottom and that of the

colour force in the dark sector(the lowest line). The value of the dark confinement scale
is 3.2 GeV and 2.5 GeV respectively.

One could examine a limitless number of such models in this context, extending the
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number of breaking scales, however we can see that for almost any choice in the number
of such scales and breaking chains in the VS, a model can be constructed which allows
a dark confinement scale through the effect of asymmetric symmetry breaking. In this
sense it would be interesting to move on to developing a detailed model which resolves
a significant number of other issues associated with GUTs in the VS and then adapt
it to an ASB model in the pursuit of explaining dark matter also. A full theory of
baryogenesis in the two sectors can also place strict limits on the size of these intermedi-
ate scales particularly in the case of baryogenesis via leptogenesis or GUT baryogenesis
where the symmetry breaking scale can affect the amount of baryon number violation
in the early universe. In addition to these constraints we must also consider the cur-
rent DM constraints on self-interaction where the bullet cluster observation sets results
on self-interaction for nucleon-nucleon like scattering in [125]. As we mentioned in the

0726 ¢cm? and can

previous chapter, nucleon-like scattering has a cross section of o ~ 1
be compared to the upper bound of the DM self-interaction cross section < 10723 c¢m?
[125-127]. In the cases we have considered we were only concerned with maintaining
an SU(3) symmetry in the DS and so in many of these models the DM candidate only
interacts with itself through short range strong forces and gravity. Such neutral baryon

dark matter particles are thus compatible with current detection limits. We will discuss

these dark baryons in more detail in Chapter 5.

3.8 Summary

We have shown in this chapter that independent breaking chains for a mirror symmetric
GUT can lead to two distinct sectors that each have a confining gauge theory at low
energy. Asymmetric symmetry breaking allows us to build potentials which break the
symmetry in exactly this way, and furthermore, allow for multi-step breaking chains
where the intermediate gauge groups can be different and the intermediate symmetry
breaking scales of the two sectors can differ by orders of magnitude. Ultimately the mass
scale of dark matter, coming from the confinement scale of the dark sector, is constrained
to be similar to the mass scale of the proton by the insensitivity of the confinement scale
to these symmetry breaking scales and the small changes in the beta function that come
from the number of vector bosons of different gauge symmetries. We have shown that

these potentials are compatible with supersymmetry, as in Chapter 2.
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The combined results of Chapter 2 and Chapter 3 demonstrate a large parameter space
for mirror symmetric grand unified theories that allow for a composite dark matter
candidate which naturally solves the mass coincidence of the asymmetric dark matter
paradigm. We can now turn to a comprehensive model of asymmetric dark matter in
the next chapter that will use the previous ideas and combine them with a model that

can generate a similar number density of matter and dark matter.



Chapter 4

Comprehensive Asymmetric Dark

Matter

4.1 Introduction

That our universe appears to consist almost entirely of matter rather than antimatter
is a remarkable state of affairs. And yet it is this asymmetry that allows for the rich
structure in our observable domain of space, for without this asymmetry, all particles
and antiparticles might have annihilated into photons in the early stages of the universe
when all degrees of freedom were coupled together in the thermal plasma. We examined
in Chapter 1 how thermal leptogenesis is an ideal way to generate the matter-antimatter
asymmetry of the universe. In our mirror model paradigm, following the violation of
lepton number in each sector, a baryon asymmetry can be generated at low energy
through the sphaleron processes all the way down to the electroweak phase transition. If
a lepton number asymmetry exists, it can be partially converted to a baryon asymmetry.
If the lepton asymmetry generation takes place above the scale at which mirror parity is
broken we can then have a model that provides both critical pieces of the dark matter

puzzle, the number density and the mass.

We explore in this chapter a model of mirror sectors with two Higgs doublets in each
sector where we can utilise the ASB mechanism to see just one of the two Higgs doublets
responsible for mass generation in each sector. Critically, these doublets responsible for

EWSB in each sector will not however be mirror partners. We then have that the Yukawa

67
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couplings that generate mass for fermions in the two sectors will also be independent of
each other while, above the scale of EWSB, the mirror symmetry imposes that any C'P
violation from the Yukawa Lagrangian will be the same. This results in equal lepton
asymmetries being created in the visible and dark sectors and following the EW phase
transitions in each sector the result is near-equal baryon asymmetries following the end

of rapid sphaleron processes.

In the context of mirror GUT groups we follow the work in the previous chapters,
though in this model, mirror symmetry remains following any GUT breaking phase
transitions. We thus focus in this chapter on both of the stated aims of generating
a similar abundance of visible and dark matter and explaining how the mass of dark
matter has a similar mass scale to the proton. For the first task, we use baryogenesis
via leptogenesis resulting from the decay of heavy Majorana neutrino states to realise a
lepton asymmetry generating mechanism. For the second task we use ASB to explain

the similarity of confinement scales.

In these two approaches our work follows from past theories of leptogenesis in a mirror
matter context. In particular, the use of a set of three right-handed neutrinos and
mirror partners was explored in [140] with temperature difference between the sectors
generated after electroweak symmetry breaking. In that work the temperature difference
is brought about by the asymmetric reheating of the universe with the Higgs, mirror
Higgs and a pure singlet scalar after they settle into the vacuum state. In Ref. [141] a
mirror model that relied on explicit breaking in different Yukawa couplings between the
sectors was considered. Similar models have considered simply a common set of singlet
neutrinos shared between the sectors [125, 142, 143]. In [125], thermal contact between
the sectors is maintained indefinitely by the Higgs portal term and kinetic mixing in
U(1) gauge bosons and their mirror counterparts. In such equal temperature scenarios,
one must remove relativistic degrees of freedom from the mirror sector prior to the scale
of BBN to be consistent with the constraints on AN.g. Recently [144] suggested that
in such models as the above, the two sectors could maintain thermal equilibrium down
to a temperature range with a large enough difference in the degrees of freedom of the
two sectors, after which the subsequent rate of cooling in each sector would generate a
temperature difference sufficient to allow for some relativistic species in the dark sector to
remain while being consistent with constraints from BBN. This can be seen by entropy

conservation. While the two sectors maintain equilibrium, if one sector undergoes a
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sudden drop in the number of degrees of freedom, much of its entropy density will be

transferred to the opposite sector.

After breaking mirror symmetry and thermally decoupling the two sectors we examine
how this type of model can allow for two distinct sectors that explain both the mass
and number density of dark matter. The chapter is structured as follows. In Section 4.2
we outline the field content of the model and Yukawa structure. In Section 4.3 we
examine the scalar potential and symmetry breaking of the model. Then in Section 4.5
we examine the neutrino mass matrix and comment on the ordering of massive neutrino
states before and after mirror parity is broken. In Section 4.6 we analyse the generation
of lepton and baryon asymmetries from the C'P violating decays of the heavy right-
handed neutrinos. Finally in Section 4.7 we see the evolution of temperature in each of
the two sectors and examine the constraints on this model from astrophysical sources and
high energy physics. This includes a discussion of the thermal history of all species in
both sectors and an examination of possible sources of indirect detection of dark matter
in this model. We consider the details of nucleosynthesis in each sector and examine the

timeline of early universe cosmology in our combined model of matter and dark matter.

4.2 The model

Previous chapters have explored asymmetric symmetry breaking with mirror symmetric
GUT groups such as SU(5)x SU(5) and SO(10) x SO(10). In this work we will start with
a high energy scale mirror symmetric [SU(3) x SU(2) x U(1)] x [SU(3)' x SU(2)' xU(1)']
theory that duplicates the content of the Standard Model. A discrete Zo symmetry inter-
changes visible sector (VS) particles with dark sector (DS) counterparts. For fermions,
left-handed fields are interchanged with right-handed fields of the dark sector and vice
versa,

b+ ¢, G < G, fr < fr (4.1)

where ¢, G* and f refer to scalar, gauge and fermion fields. This requires a mirror
counterpart for every fermion of the Standard Model. In addition to these we have three
right-handed singlet neutrinos, N%, and the corresponding left-handed states of the DS
sector, (N)é)’ . We also add a second Higgs doublet, ®, with its own Zg partner, ®,. This

second Higgs doublet allows us to use the mechanism of asymmetric symmetry breaking
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to spontaneously break mirror symmetry and have @) be the instigator of EWSB in the
dark sector while ®; takes on the usual role in our sector. While ®; and ®5 carry the
same quantum numbers, their self couplings and the size of their couplings to fermions
will differ. In this respect our model is significantly different to [125] and [140] where
there existed only a VS Higgs and a mirror counterpart. We will examine in Section 4.6
how this second doublet also allows for successful thermal leptogenesis without potential
concerns from heavy neutrino mass corrections to the squared Higgs boson mass. The
principle motivation for the two Higgs doublets is however our decision to implement the
ASB mechanism into a complete model of ADM. By using ASB we can break the mirror
parity symmetry and give discernible differences to each of the sectors. The absolute
minimum breaks the symmetry of the two sectors in different ways and we switch from a
theory of two identical sectors to a model composed of a visible sector, which carries the
observable properties of the Standard Model, and a dark sector with a phenomenology
of its own that yet retains an origin which guarantees that the mass content of the dark
universe will ultimately be highly similar. The total field content of the two sectors is
listed in Table 4.1.

TABLE 4.1: Field content and their representations under the mirror symmetric gauge

group, [SU(3) x SU(2) x U(1)] x [SU(3)" x SU(2) x U(1)']. In addition to a mirror

counterpart to all of the SM fields listed in Chapter 1, both sectors contain an additional
Higgs doublet to facilitate asymmetric symmetry breaking.

zL ~ (1’27 _%)(17 1’0) (L%t)/ ~ (17 170)(1727 _%)
e~ (1,1,=1)(1,1,0) | (e}) ~ (1,1,0)(1,1,—1)
P~ (321,100 [(Qp) ~ (11,0325
wy ~(3,1,2)(1,1,0) | (u)) ~(L10)(3,1,2)
3«2 ~ (37 15 _%) 17 170) (dlL)/ ~ (1> 1>0)(3> 17_%)
N% ~ (1,1,0)(1,1,0) | (N:) ~(1,1,0)(1,1,0)
Py ~ (1,2, %)(17 1,0) ((I)l)/ ~(1,1,0)(1, 2, %)
Py~ (1,2,5)(1,1,0) | (®2) ~ (1,1,0)(1,2,3).

4.2.1 Yukawa couplings

The use of additional Higgs doublets in extensions to the SM has a history ranging from
minimal extensions of a single extra Higgs doublet to larger extensions in which the
observed Higgs state discovered at the LHC is the lightest state of a largely decoupled
Higgs sector [145]. Models such as supersymmetry require at least two Higgs doublets

to generate mass for the fermions. In this work we will explore the implications of
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having two Higgs doublets in the VS and associated mirror partners in the DS. Models
of just two Higgs doublets are typically separated into three generic types based on the
discrete symmetries they impose. Type-I has just one of the doublets coupling to all
fermions while Type-II models have one couple to the up-type quarks and the other the
down-type. Type-III, which is the model that matches our own within the context of
the visible sector, gives both doublets the same quantum numbers and therefore allows
each of them to couple to all flavours of quarks and leptons. In Type-III models the
fields can be expressed in a basis where only one doublet gains a nonzero VEV while
the second doublet retains a vanishing VEV. This is known as the Higgs basis [145].
This variety of model with a second Higgs doublet introduces highly constrained flavour
changing neutral currents (FCNC) at tree level due to the fact that couplings between the

fermions and multiple Higgs doublets cannot in general be simultaneously diagonalised.

Our work can be compared to other models of additional Higgs fields in addressing
the nature of dark matter such as Inert Higgs doublet models [146, 147]. In this work
however we gain a dark matter candidate from the stable baryons of a dark sector with
the additional Higgs fields facilitating the mirror parity breaking of the two sectors
and the associated asymmetric gauge symmetry breaking. The second doublet is also
a second source of C'P violating decays for heavy neutrino states in each sector at the

scale of thermal leptogenesis. The leptonic Yukawa couplings are

Liepton = 1% Lt eh®y +nk I el Li NL® i, NI'®,
Lepton = T1'4; LL€p®1 + M5 Ly e €1 + Y145 L Np®1 + y1y L Ny )
- — — —t 1=

+ 772Lij Liep®s + 772Lij L e], @5+ yo;; Ly Np®a + y2;; Ly Nj @5 (4.2)

Ti N 94 T NIE! TN YG T NG
+f1ijLLNL (I)l‘i‘fl,u LR NR (I)l+f2ijLLNL (I)2+f2ijLR NR q)z"‘h.c.

Mirror parity enforces that the coupling of the doublets is the same as their mirror
counterparts however terms such as y;, and yo will not be the same and may differ by
orders of magnitude. In addition to these we have the ordinary Majorana mass terms

along with a cross-sector mass term,

M;; ((N};z)cN{% + (NDEN) + Py NN+ e (4.3)
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For the quark Yukawas we have,

L — ot Qi ®y + ot Qb w4k QF ddy + Q@
Quark = T 45 QL UR®T T 14 W U ®1 T Ny G p0R®1 T M W A7, ®1

w7, u 0 & d i i & d il q'&
+7’]2” LuR(I)2+772ijQR UL 2+n2leLdR¢2+T/21]QR dL 2+h.C. (44)

We also consider the various other ways that the two sectors can interact. The photon-

mirror photon kinetic mixing term,
€y FF'E,, (4.5)

allows for visible sector states to have dark U(1) millicharges. This parameter is con-
strained by orthopositronium decay experiments [148] to the degree of €,/ < 1.55x 1077,
Such terms are naturally absent in GUT contexts where they could only be generated
by scalars that provide a mediating interaction between the sectors that persists in the
mirror GUT regime. We also consider Higgs portal interactions. These will be explored
further in the next section and later in the discussion of the thermal history. Neutrino
interactions that mix the two sectors will also be present, which we will further discuss
in Section 4.5. As we elaborate on in Section 4.7, the two sectors can only maintain any
rapid interactions until a temperature Tpgc. This limits the size of any portal terms in
our model and these individual limits will depend on the interaction rate’s scaling with
temperature. This means that no interaction between the sectors can maintain thermal
equilibrium indefinitely. This further constrains the kinetic mixing term e, due to the

scaling of photon-mirror photon interactions with temperature.

While many models of dark sectors consider the possibility of the dark sector at a lower
temperature from the outset, for example in [149], this work has the benefit that the
separate Higgs doublets which facilitate EWSB in each sector can spontaneously break
mirror symmetry which later causes a separation in the temperature of the visible and
dark sectors. This and the other differences between the two sectors is accomplished

without the need for any soft symmetry breaking mass terms."

!The domain wall problem caused by the existence of our Zy symmetry may ultimately require a
solution such as soft breaking terms. A soft breaking that gives some separation in the squared mass
terms of ®; and @} could be considered. Another possibility is a small difference between the Majorana
masses of Ng and N7, as in [140]. Other solutions include non-restoration of one or both EW symmetries
[150], embedding the Zs symmetry within a continuous symmetry, or the possibility of breaking mirror
symmetry prior to inflation in order to make the typical domain wall separation larger than the horizon
distance[151].
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4.3 Higgs potentials

The scalar potential of our model consists of our four Higgs doublets @1, &), @y, 5. In
the simplest model of asymmetric symmetry breaking, only one Higgs multiplet gains a
nonzero vacuum expectation value for each copy of the SU(2) x U(1) gauge group. Such

a potential can be constructed using the minimal asymmetric potential,

2\ 2 2\ 2
Vasg = M1 <<1>}@1 + oo, — ”) + Ao (@5@2 + o1, — “;) + k1 (@10 (@) @)

2

+ K2(Ph02) (@ @) + o1 (@] @1)(@h02) + (@0 ) (@41 @))) (4.6)
; ; 02 w2\?

+ 02 <‘I’J{(I)1+<I>;‘I>2+‘I’/1 'y + @ (I)lz_2_2> '

In this simplest potential, the condition of asymmetric breaking is given by requiring
that each of the parameters, [A1, Ao, k1, k2,01, 03], are real and positive definite. In this
case the potential is minimised when each of the terms in the potential is zero which is

given by the vacuum state,

0

<(I)1>: v ’ <(b/1>207
ﬁ
0
@) =0, (@)= | (4.7)
V2

In the unitary gauge we can then introduce the definitions,

0 H
0 = , )= b :
%(v—l—h) %(HD"FZ'AD) |
H+ / o |
By=| . , = , (4.8)

and obtain a 2 X 2 mass matrix

2(A\1 + o9)v? T2VW h

N |

oovW 2(Xo + o9)w? hp
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We can see that the eigenstate fields are admixtures of visible and dark states. For the

remaining eigenvalues we have,

1 1
mg =ma=mpg+ :\/2/432’11}2"‘20'1'1)2, (410)
L oo 1 2
MHp = MAp = My = §H1U + §crlw . (4.11)

We can see in Eq. 4.9 that we recover a Standard Model physical Higgs mass formula
in the limit that o9 — 0 as the matrix becomes diagonal and the Standard Model
Higgs boson loses the extra term. This is the same limit that switches off the only
off-diagonal mass term that couples the two sectors, ~ vwoshhp). If the EW scales
of the two sectors are different, it is necessary to take the limit that oo does not mix
the two energy scales. In this limit, the asymmetric VEV is still the minimum and we
can see that the massive states besides h all have mass terms that are proportional to
w. This is significant in that the scale w, in the asymmetric configuration, can raise
the masses of all the scalars of both sectors except for the SM Higgs boson in the case
that w > v. We now consider this feature in the context of a full mirror symmetric
potential with two Higgs doublets in each sector. In contrast with previous chapters,
which dealt exclusively with potentials that made use of the fact that the multiplets in
each sector were in two different sized representations of the gauge group, in this work

we are considering identical representations. The most general potential in this case,

Vot = +miy (8] 01 + &) ®)) +m3, (@10, + 5 @)
+ (miy (@[, + @@L + he.) + %zl ((@{@1)? + (@]2})?)
+ %Zz ((¢;¢2)2 + (<I>'2Tc1>’2)2) + 23(0] D101 B, + 0,0, D) D)) (4.12)
+ 24 (D] 0,05 By + @ D,0 @) + %,25 ((qﬂ%)? + (@) + h.c.)
+ [(zﬁ OB, + 27 D BB, + (26 BT D1 + 27 BLDY) D]y + h.c.]
+ 25®] 1B, D + 29 DIBL BB + (210 BT DD, DY + hc)
+ (211 BT B0 ) + hc) + 212(R] 010 @) + BB BT D)

n [(213 O] 4 21 D DY) BID, + (213 BBy + 214 DhDo) D ) + h.c.} ,

features a large number of new terms which we must consider carefully. While such a

potential increases the possible minima configurations, we can always perform individual
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basis rotations of the doublets in each sector to return the doublets to a 'Higgs Basis’
where only one doublet has a nonzero VEV. What we then require in the context of
asymmetric symmetry breaking is that the mixing in the two sectors are asymmetric.
In other words, applying the Higgs basis transformation to each pair of doublets simul-
taneously will only put one sector in the Higgs basis. In this context we will consider

the above general mirror 2HDM where the global minimum is given by

0 0
@)= |. @=| |- (4.13)
Vs V2

We then define

w
v =/ |v1|? + Jv2]?, w=]wi|?+|we|?, p= e (4.14)

We can then form what we term the dual Higgs basis starting with ,

0 > P —uo® P
Hy = %@vw Hy — w (4.15)

and then consider new fields in the dark sector H] formed from VEVs wy, wa,

* K/ * A/ / /
= 1 + wi Py I — —wa Py + w1 P
1 — ) 2 — .

w w

(4.16)

The fields H; and Hj have nonzero VEVs given by v and w, respectively, while the
orthogonal combinations have vanishing VEVs. The two field rotations result in a po-
tential that is not obviously mirror symmetric prior to symmetry breaking. The obvious
mirror symmetry would however re-appear if we expand back to the original ® basis.
After symmetry breaking we will have in this new basis fields H; and H{ which break
the mirror symmetry in each sector. They are not mirror partners and have different
VEVs, masses and Yukawa couplings to fermions. What we then require is a vacuum
configuration which was previously discussed in Chapter 3 where the asymmetry is given
by the conditions

v1 > v,  wo > wq, (4.17)

which breaks mirror symmetry. In general we will also be considering the case that
wy > vp such that the VEVs in the dual Higgs basis obey w > v and p > 1. The

mirror symmetry is broken in such a way that not only is the EW scale of the dark
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sector at a higher energy scale, but the fermion Yukawa couplings relevant to mass
generation are independent. This is due to the fact that H; is mostly ®; while H] is
mostly ®,. We can consider this as asymmetric symmetry breaking promoting the ratio
of the two quantities tan(f3) = ve/v; and tan(’) = ws/w; to a relevant quantity. The
Yukawa terms relevant to quark masses, and those relevant to FCNC, in the Higgs basis

are given by diagonal and non-diagonal matrices,

_ t f
i = sVl Vg +ssVins Vig (4.18)

- T 1
5 = —sgVine Vg +eaVEngVig

where @) = u,d and VLQR are the left- and right-handed diagonalisation matrices. For
couplings in the dark sector we have the different set of a diagonal and non-diagonal

matrix,

o t i
n? :cB/WLQn?Wg —i—s[ngLQngWg (4.19)

o t t
g = —sgWEnPWg' +caWngwg',

with Q' = u/,d’ referring to quark flavours of the dark sector, and with W denoting
the unique diagonalisation matrices. We can then see that in the limit of asymmetric
VEVs in Eq. 4.17 that we have four different n terms for each of the up and down
type couplings. In particular the mass eigenvalues of the two sectors are almost entirely
independent. The leptonic sector follows the same procedure. The presence of the non-
diagonal matrix for Hs in the visible sector is the origin of FCNC, as in the visible
sector, the model resembles that of the Type-III 2HDM. This is a necessary part of
our model as we use the mirror partner of the second doublet to play a similar role
to the SM Higgs doublet in the dark sector. The current constraints on such Type-
IITI 2HDM impose significant restrictions on the masses of the additional scalars of the
visible sector and the 72 Yukawa matrix. The decoupling of the additional scalars in
the VS from their coupling to the scale w seen in the minimal asymmetric model will
occur in the full potential as well and this will be critical in suppressing the size of these
FCNC. We can see already that it is the parameters zg and zg that play the role of
K1, ko from the minimal model. These terms will decouple the second doublet in the VS
while the parameter z;5 must be small in this basis to prevent the Standard Model Higgs

from coupling to the higher mass scale just as the parameter oo was kept small. It is
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important to note that these terms are cross-sector couplings. Because of this the limit
that these couplings approach zero may be technically natural due to the enhancement
of symmetry originating in the two sectors gaining independent Poincaré groups as in
Ref. [152]. Some of these cross-sector terms are however necessarily nonzero if we wish
that the asymmetric VEV pattern should be the guaranteed global minimum and so
the naturalness of such models is a delicate issue. In this potential this term is already
necessarily small to ensure the asymmetric configuration. We can now examine how
the mass scales of such a potential form. We label the fields within the doublets in the

original basis as

Py = G . By = I (4.20)
%(Ul + ¢1 +iG1) %(’Uz-l—(ﬁQ —|—ia2)
and
+ +
P = h . B = ot . (4.21)
5 (w1 + ¢ +iay) T5(w2 + ¢ +iGo)

The label G denotes the states that dominate the admixtures defining the Goldstone
bosons. We then consider the 6 x 6 symmetric neutral mass matrix in Appendix C and
six neutral mass eigenstates. In the limit of no mixing between the sectors, in a 2HDM
one typically labels these as h?, H?, A° and H™ in the visible sector as in the minimal
asymmetric model. In the mirror sector one would then have A%, HY, h% and HBE. In
our model however these are not mirror partners. Some of these mirror partners have in
fact been been absorbed via the Higgs Mechanism into the massive gauge boson states.
Since we make use in the VS of the decoupling limit of the second Higgs doublet, we
have that all other physical scalars would acquire masses much larger than the SM Higgs
state, myg+,m g0, Mpo > myo. In this case the physics at low energy approaches that of
just the SM Higgs state. Our approach to the decoupling limit is different from both this
minimal asymmetric case and the typical Type-III model in a number of key ways. First,
while a typical method in Type-III would be to flip the sign of the m3, mass squared
parameter in order to give positive masses to all other scalars, in our model we are
constrained to keep the sign the same as m3; by the principles of asymmetric symmetry
breaking and our mirror symmetry. Second, the additional cross-sector terms in the

full potential in Eq. 4.12 will generate mixing between scalars of the two sectors and in
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general mass eigenstates may be composed of visible and dark interaction eigenstates. In
this work decoupling follows from the minimal model in that ws lifts the mass eigenstates
of all scalars except for one of the mass eigenstates which we identify with the physical
Higgs. This decoupling limit also generates the alignment limit in that this lowest mass

eigenstate has couplings which align with SM values.

We will label the six neutral mass eigenstates as h{,h9, A9, AY, JD, JO. We note that
the first two have minimal cross-sector mixing. It is important here that the field
corresponding to the Standard Model Higgs boson not mix heavily with mirror states,
however we find it possible to have minimal visible-dark mixing in the low mass Higgs
state with SM couplings while the heavy additional scalars do mix. This comes from

terms such as

210 |0y ®, D, (4.22)
which in the limit of Eq. 4.17 only contains large mass terms of the form

V1w2

(Im[zlo](—alqﬁz + as¢)) + Re[z10](aras + gf)zqﬁ'l)) . (4.23)

Making this term large also does not interfere with the asymmetric minimum. In Ta-
ble 4.2 we list a set of parameters and the EW scales and masses they give for the mass
eigenstates of the theory. Since in this region of parameter space the asymmetric VEV
configuration is the global minimum, we have positive masses at the new minima and
indeed we find for a region of the parameter space in Table 4.2 that the couplings of &,
to the mirror sector EW scale w can make these positive mass terms sufficiently large
while keeping the SM Higgs boson light at tree level and separating the EW scales of

the two sectors, v and w. An estimate of the necessary mass scale for avoiding FCNC

TABLE 4.2: Higgs Potential parameter sample and associated masses of physical scalars
in each sector. Masses are in units of GeV.

mi, = —87% | may = —2600° | m2, = —90? 21 = 0.13 29 = 0.13

zZ3 = 0.8 Z4 = .01 zZ5 = .01 Z6 = .01 27 = .01

28 = .8 29 =0.8 210 = 0.8 211 = .01 219 = 1078
Z13 = .01 214 = .01 mp = 125 mp, = 3696 ma, = 5965
ma, = 6912 | my, = 5965 my, = 6512 mp+ = 5965 M+ = 6512
v =246 w = 7276 tan(B) =4 x 107° | tan(B’) = 18190 | p = 30

is given by [145] where K — K oscillations are avoided if m gy > 150 TeV. This assumes

however that all Yukawas are similar to that of the top quark. In our case the coupling



Chapter 4. Comprehensive Asymmetric Dark Matter 79

of the second Higgs doublet, Hy, may have Yukawa couplings that are much smaller
than the SM Higgs coupling to the top. The size of these Yukawas are constrained by a
number of sources in the model. Among them are the Higgs portal term that maintains
thermal equilibrium and the relevant scattering terms in the era of leptogenesis. In par-
ticular as we will see in Fig. 4.1 the necessary confinement scale of the dark sector may
require that the most massive dark quark has a mass such that it’s Yukawa coupling
may be comparable to the SM up and down quarks, which are at least 10* smaller than
the top coupling. This constraint then directly limits the size of the couplings to Hj

and therefore to Hs in the asymmetric limit such that FCNC bounds are satisfied.

We consider the mixing of neutral states by examining the rotation matrix U in, UT M2U =
D?. This transforms the (¢}, a1, ¢, ¢, az, ¢1) basis into the (Ja, Aa, J1, A1, ha, h1) mass-

basis. For the numerical sample in Table 4.2 we have,

—0.999996 0 —0.00265105 0 0.000447771 0
0 —0.999997 0 —0.00260254 0 0
—0.000447834 0 0 0 ~1. 0
Urr = . (4.24)
—0.00265104 0 0.999996 0 0 0
0 —0.00260254 0 0.999997 0 0
0 0 0 0 0 1

which shows how the mixing Uy, can be 1, while the remaining states have larger
mixing between the sectors. This mixing can also allow for a Higgs portal term without
affecting the couplings of the Standard Model Higgs boson and maintaining the decou-
pling limit for the additional scalar degrees of freedom. We will return to this possible
connection between the two sectors in Section 4.7.2. In Table 4.3 we list a set of param-
eters for another section of parameter space with a larger ratio of the EW scales of the
two sectors.

TABLE 4.3: Higgs Potential parameter sample and associated masses of physical scalars
in each sector. Masses are in units of GeV. This example point in parameter space for
p = 3000 will be used throughout this work to exemplify the large p case.

m3 = —6.77 | m3, = —183150% | m?, = —6.7° | z; = 0.13 29 =0.13

zZ3 = 0.8 24 = .01 25 = .01 26 = .01 27 = .01

25 = .01 29 =0.8 210 = 0.8 211 = .01 z19 = 1077

213 = .01 214 = .01 my, = 125 mp,, = 366300 | ma, = 590729
ma, = 645018 | m,, = 590729 mj, = 645018 | mpy+ = 590729 | my4 = 645018
v = 246 w = 738000 tan(B) = 10~ | tan(B’) = 107 | p = 3000
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The mixing matrix in the case of 4.3 is then given by

—1. 0 0 0 0.000184443 0
0 1 0 0 0 0
—0.000184443 0 0 0 —1. 0
Urir = (4‘25)
0 0 —1. 0 0 —0.000147143
0 0 0 1. 0 0
0 0 —0.000147143 O 0 1.

We can see that these potentials allow for ASB that can give significant differences to
the two sectors while beginning with a mirror symmetry. In the next section we will
focus on how the independent Yukawa couplings and the dark EW scale w can vary
without significantly changing the confinement scale of the SU(3)" gauge group when
compared to that of the visible SU(3).

4.4 Dark confinement

As in Chapter 2, at high energy the mirror symmetry between the sectors imposes the
condition that the gauge coupling of the SU(3) and SU(3)" groups are the same above
the dark electroweak scale, after which the mirror symmetry is broken and the couplings

may become differentiated.

In particular we have very different masses for the dark quarks, which result from a
combination of the larger electroweak VEV of H| and Yukawa couplings which are
independent almost entirely independent of the couplings to H;. This will in turn set
the scale of quark mass threshold corrections in the running of «of such that it will
become non-perturbative at an energy scale above that of the Standard Model. This
follows the analysis in Chapter 2. The reason for this is to leave two dark quarks with
small masses to form our dark baryons, a point we will return to in Section 4.7. The
principle goal of examining the quark Yukawa hierarchies is to examine which cases will
allow for a dark confinement scale, Apy, that is approximately five times that of the
Standard Model value, Agcp. As Section 4.6 will explore how to obtain near equal
number densities of visible and dark baryons, this difference between confinement scales

will be the cause of dark matter’s larger role in the universe’s mass density.
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FIGURE 4.1: The confinement scale as a function of p, the ratio of EW scales, for a
variety of Yukawa coupling hierarchies. The SM Yukawa range is shown for reference in
the black curve. Each of the sets of Yukawa couplings is divided into ranges where one
common coupling for one, two or three dark quark flavours varies between a maximum
at the SM Yukawa coupling constant listed first and a minimum at the SM Yukawa
coupling constant listed last. Yukawa coupling constants vary from left to right in
each colour band in ten even divisions. For example, C-XX-S indicates that the largest
coupling is equal in magnitude to the SM charm Yukawa, then there are two identical
Yukawa couplings that vary between the SM charm and strange Yukawas, and a fourth
Yukawa with a magnitude equal to that of the SM strange quark. Each of these exam-
ples includes two light quarks which have masses far below the confinement scale. The
red- and green-dashed cases have a Yukawa coupling constant upper value set equal to
that of the SM top quark. The blue shaded region indicates the divide between two
different regions of parameter space that we explore, one with light mirror neutrinos in
the present day (left of vertical line), and one without. The grey shaded region indicates
the desired range for the dark confinement scale to explain the similarity between dark
matter and proton mass scales.

We consider in this work the case of variations on the mass hierarchy of quarks in the
DS. This extends the work in Chapter 2, where a common mass scale for heavy quarks
was considered for the sake of simplicity. Now that we have a model with independent
Yukawa couplings, it is useful to consider the larger parameter space involved in moving
all six dark quarks independently. This approach of completely free dark quark mass
parameters and the possible effects will be considered further in Chapter 5. The critical
result is that we can see as a function of the ratio of the VEVs in each sector what,

for instance, the mirror bottom Yukawa would need to be in divisions between the SM
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charm and top Yukawa couplings to result in a dark confinement scale ~ 5 times that
of ordinary QCD. Figure 4.1 shows a sample of which Yukawa hierarchies can give a
~ 5 GeV dark baryon. As the size of the dark EW scale affects the entire dark quark
mass spectrum, we see what the dark confinement scale is for a variety of hierarchies at
each value of p, the ratio of dark to visible electroweak scales. Also shown in Fig. 4.1
is the SM Yukawa hierarchy for reference. As we will discuss in Section 4.7, depending
on the assumptions of the model with regard to the thermal history, different limits
on p come from constraints on the abundance of charged dark baryons as well as from

constraints on VS flavour physics and successful leptogenesis.

4.5 Neutrino masses

The neutrinos of our model consist of the left-handed states of the visible sector, heavy
right-handed states with Majorana mass terms along with all of the associated mirror
counterparts. These are heavy left-handed states of the DS and light right-handed
states. Above the mirror breaking scale we have only the mixing between the heavy
Majorana states given by Eq. 4.3. The cross-sector mixing, given by the parameter P,
must be suppressed in order to prevent too much mixing between light neutrinos in each
sector once the heavy degrees of freedom are integrated out. This aligns with technical
naturalness from independent Poincaré symmetries discussed in Section 4.3. If P is
the product of a small dimensionless cross-sector coupling and a right-handed neutrino
mass scale ~ M that develops near the GUT scale, then we expect M > P. However
it must be noted that any nonzero value of P will induce maximal mixing for the heavy
mass eigenstates as mirror parity commutes with the Hamiltonian. The heavy states
that undergo C'P violating decays to produce the lepton asymmetry of both sectors are
equal admixtures of visible and mirror matter states. This follows the case in [142] of an
SO(10) x SO(10) model. Below the scale of symmetry breaking we can consider both
the heavy and light neutrino states of the theory. For the Lagrangian given by Eqgs. 4.3
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and 4.2, we have mass terms in the basis (v, %’,Nif%, TL/) given by

0 0 y1v  fLv
0 0 Jw  ysw
yJ{v 2Tw M P

Above the scale at which parity is broken, where the mass eigenstates must also be parity
eigenstates, the matrix only contains the lower right 2 x 2 matrix and we can write the
heavy Majorana states as linear combinations of visible and dark sector flavour states

[153-155].

N*t = \2 ((N7)Y £ Ng) . (4.27)

These have masses Mﬁ = M £ P however by taking the cross-sector mass P to be small,
they become near degenerate at a scale My ~ M. For each generation we gain two near
degenerate mass eigenstates with masses My = (Mj, My, M3). We see directly that
taking this cross-sector mass to be small also sets the mixing of light visible and mirror
neutrinos to be minimal once the heavy neutrinos are integrated out. In the three
generational case, above the scale of mirror symmetry breaking, the heavy Majorana

mass eigenstates, NV; will be divided into parity-even and parity-odd states,

Ny =af (Ng, + NL,) + B (Nr, + N1,) + 7 (Mg, + Ni,) (4.28)

NiQ,B = a;(NRl - Nil) +B':(NR2 - Nig) +7;(NR3 - Ni;g)?

with o> + |Bi]* + |%]® = 1 and i = (1,2,3). We will consider a hierarchical case of
thermal leptogenesis where the near equal masses M+ g of the lightest heavy states will
be relevant to the temperature where out of equilibrium C'P violating decays generate

a lepton asymmetry in each sector.

4.5.1 Small cross-sector coupling case

We first consider the case where the cross-sector Yukawa couplings satisfy y; > f;.
Below the scale of symmetry breaking, where mirror parity has been broken, the mass

eigenvalues effectively result in two independent seesaw mechanisms [156] with masses
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given by

My & (ZJ’\Z’V)Q (1 +0O <J\Z/)> oy~ (ﬁ”f (1 +O (J\Zv>> . (4.29)

The light neutrino states of the dark sector will gain a mass larger than the VS coun-

terparts from the Dirac mass term while being suppressed by the same Majorana mass
scale. The Dirac mass will differ on two accounts. Firstly, the larger electroweak scale w
and secondly the different couplings of y9 compared to y;. The limit on the number of
effective relativistic degrees of freedom will limit how many dark neutrino flavours can

be relativistic.

As we have two seesaw mechanisms, one in each sector, that rely on different Yukawa
couplings we now turn to parameterising the couplings and masses of the three light
flavours. Following the Casas-Ibarra [157] parametrisation, the visible sector has mass
matrix m, = v2y1D;4lyf while in the dark sector we have m,, = w2y2D;41yg . Each
of these is independently diagonalised into D,, and D, by different matrices which
we will label U and U’ respectively. We then have in the exact asymmetric vacuum
configuration,

1 1 1 1 1 1
Y1 = ;UD,%LRD;J, Yo = EU’D%,R’D]%J. (4.30)

Here R and R’ are orthogonal matrices and are independent as U and U’ are. In
particular U’ will contain phases from the rotation of charged mirror leptons which gain
mass from Hy such that

U= whtuv, (4.31)

where U”' diagonalises the low energy m,. Wi also depends strongly on the texture of
le. In solving the Boltzmann equations for the related Yukawa couplings above, sample
nb matrices are chosen such that the mass eigenstates are in accordance with the thermal
history assumptions for dark lepton masses in that region of parameter space while U” '
is an unconstrained unitary matrix as the PMNS matrix of the dark sector is not known.
At the scale of thermal leptogenesis ys can be the dominant coupling for the creation of
a population of heavy neutrino states and the subsequent decay when T" < Mj. It can
also be the major contribution to the lepton asymmetry created in both the visible and
the dark sector. We can see that successful thermal leptogenesis may ultimately impose
more constraints on the dark sector’s low temperature light neutrino parameter space

in contrast with ordinary thermal leptogenesis. In the next section we will examine how
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this L asymmetry can form in both sectors within the mirror symmetric temperature

regime.

4.5.2 Significant cross-sector coupling case

We now consider the case where the cross-sector terms, f;, are comparable to the other
Yukawa couplings. These will create Dirac mass terms that induce some mixing be-
tween light neutrinos of the two sectors. We will see in the next two sections that the
requirements on the number of effective relativistic degrees of freedom in the dark sec-
tor require one of two possibilities. First the dark EW scale, w, can be small enough
that any relativistic neutrino species of the dark sector remain in thermal equilibrium
until the temperature drop of the dark sector, and therefore fall to a lower temperature
along with the dark photon. The second possibility is that the dark EW scale is large
enough such that any dark neutrinos become non-relativistic and subsequently decay
from the plasma prior to any temperature shift. In this latter case we will require that
the neutrinos of the dark sector are heavy enough that they decay to SM species with
a short enough lifetime. We examine the masses and mixing in this case. Points in the

parameter space such as
[f1 =0.05, f»=0.0005, p= 3000, yo =.005, y; =107% M; =1x10"GeV]| (4.32)

allow for heavy states that are still approximately even admixtures of N and N’ and
there now exists a small amount of mixing between the light states of the two sectors.
With the much larger EW scale of the dark sector we can have all three flavours of
dark neutrino in the 100 MeV range and mixing between the two light species of order
8, = 1073 where U = v + §,,,//. This is similar to that of Ref. [125], except that in
this case it is mixing between the light neutrinos of one sector with the heavy states
of the opposing sector. The light neutrinos of the dark sector then decay to visible
sector species via (' — veTe™) just prior to BBN and the only remaining light degree
of freedom in the dark sector will be the dark photon. With these larger f; couplings
we can examine the subsequent additional terms in the Boltzmann equations in there
era of thermal leptogenesis. Since we will consider at that temperature a population of

mass eigenstates NT, this will amount to an extra pair of terms to the total decay rate,
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['(N — ¢l), in each sector and modify the washout rates and C'P asymmetry parameter.

We explore this and the first case in detail in the next section.

4.6 Symmetric leptogenesis

We now consider how the visible and dark sectors generate a comparable amount of
baryon asymmetry. As with all models of Baryogenesis we require the fulfilment of
the Sakharov conditions, that is, a B violating mechanism, C' and C'P violation, and a
departure from thermal equilibrium. Mirror symmetry can then provide an associated
mechanism in the DS though the exact process will differ once mirror symmetry is
broken. Ultimately it is necessary for the two sectors to be different to explain why
there is more dark matter than visible matter in the universe. Kither DM is more
massive than the proton or the dark sector contains a higher concentration, or it is a
combination of each, to such a slight degree that the mass densities remain within the
same order of magnitude. The dark sector must also have a mechanism for the symmetric
components of the plasma to annihilate, for example through dark photons. In order
to create this B and B’ asymmetry we consider the creation of a baryon asymmetry
through sphaleron effects that partially convert a lepton asymmetry generated through
high scale thermal leptogenesis. As most of the lepton asymmetry will develop at a scale
above the mirror parity breaking scale, the generation of the mirror lepton asymmetry
will proceed almost identically. Following this the sphaleron effects in each sector will
convert these lepton asymmetries into similar amounts of B and B’ asymmetry in each
sector. The amount of B and B’ will not be identical as sphaleron effects will take place
at different temperatures when the sectors are no longer connected by mirror parity and

may therefore have different thermal populations.

Since the second Higgs doublet in the visible sector can provide a way to generate a suf-
ficient amount of lepton asymmetry while not contributing to the squared Higgs mass
corrections usually seen in the thermal leptogenesis case, the associated naturalness
bound might be avoided. This can be compared to recent work in [158] which examined
how the tension between Higgs mass corrections and the requirements of vanilla lepto-

genesis can be solved with a second Higgs doublet. The squared mass correction from
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the right-handed neutrino mass scale can be written as

1
ou? ~ Ey%va. (4.33)

The mass corrections to the heavier bosons will be larger if 9 is, however since the mass
scale of the dark Higgs, dark EW scale, and the other decoupled scalars is orders of
magnitude larger also, the quantum corrections have the capacity to still be natural if
one adopts the criteria that such corrections should be no larger than of order 1TeV?
[159] for the SM Higgs. Then this translates to an upper bound of ~ 3 x 107 GeV for

the Majorana mass in a single flavour case.

In the simplest case of leptogenesis from the decay of heavy right-handed neutrinos the
amount of asymmetry produced can be expressed in terms of the C'P asymmetry € and
the efficiency factor x ¢, which measures the asymmetry destroying processes during the
era of leptogenesis. For the case of a single doublet, the C P asymmetry factor for the

lightest right-handed state N; is

_ D(Ny — 1¢*) = T'(Ny — I°9)
‘= L(Ny = 1¢*) + T(Ny — 1¢¢)” (4:34)

Adding a second doublet allows for two relevant C'P factors from y; and yo. Including
the mirror sector adds a decay channel through f; and fo that can generate asymmetry
in the opposite sector. In a standard seesaw model, with the C'P parameter calculated,

the decay parameter is defined as

(4.35)

where z = M;/T and I'p is the decay width. This is typically done in order to set
bounds on the mass of light neutrinos in most models however in this case some of the
CP asymmetry is being generated by the coupling of heavy neutrino states to ®» and
@/, and so in the visible sector, the Yukawa coupling relevant to mass is not important
in terms of the generation of a lepton asymmetry. The factor K can still serve as a
useful parameter in measuring the ratio of relevant parameters, that of the C'P violating

couplings and the heavy neutrino mass scale Mj.

We consider in this work the generation of a B— L asymmetry in the one-flavour approxi-

mation. While this approximation is typically only completely accurate at temperatures
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of lepton asymmetry generation above the scale at which the tau charged lepton Yukawa
interactions are in equilibrium, so that the value of M; violates the Vissani bounds on
naturalness, in this case the role of flavour effects will be more complicated. In par-
ticular the thresholds for when charged lepton Yukawa interactions are in equilibrium
will depend on the couplings to ®5, as well as to ®;. Additionally the charged lep-
ton Yukawa coupling matrices to ®; and ®5, which contribute to the thermal masses,
cannot in general be simultaneously diagonalised. A full analysis of possibly significant
flavour effects in this case would need to carefully consider the relative rates among six
interactions of lepton doublets [ involving (N®1, N®y, N'®1, N'®y, $1ep, Poer) as well
as the Hubble rate at each temperature range in order to determine the coherent state
evolution. For the present analysis, we make the simplifying assumption that the com-
bination of y1, y2, f1, fo channels for washout is similar in magnitude for each individual
flavour and so the unflavoured approximation may yield a more accurate result for the
total B — L asymmetry with 7 < 10'2 GeV in this case than ordinary Type-1 seesaw

thermal leptogenesis models.

We will consider two separate regions of parameter space that are compatible with all of
the other features in the model. We can classify these as the small p regime with p < 200
and the large p regime. These different cases require different treatments for a number of
key reasons. In the small p regime, dark EW interactions are still in equilibrium at the
time of the temperature decoupling of the two sectors. This will allow the light neutrinos
of the dark sector to undergo a temperature change along with the dark photon as they
have not yet decoupled. Because of this, it is possible to have light neutrinos in the dark

sector and still satisfy the constraints on Neg as we will discuss in the next section.

4.6.1 Small cross-sector coupling case

We first consider the case with y; > f; and a hierarchical relationship among the Ma-
jorana masses, My, Ms > M;. The heavy states decay to visible and dark leptons with
equal rates and their asymmetry in these rates is also the same. We must also account
for the fact that each of ®; and ®, can appear in the self-energy and vertex diagrams.
é1
1

We then obtain the expression for the C'P parameters €]' and €]? from decays, N1 — l¢q

and N1 — I¢s. These can be expressed as functions of the form
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1 My |Im [(yiyi)kl(yjyl)kl + 2(y1y1)k1(y;‘ryi)k1}

efl ~ Z Z TSI : , (4.36)

i=1,2 k#1 (Y1y1)11

I [ (yhoi)ia (v y)s + 200b2)in (0]

6¢2 ~ Z 1 M]_
2~ -1
i=1,2 k#£1 167 My, (9592)11

Note that there is an additional term proportional to M12 /M ,f which is neglected in
this hierarchical case. Such terms are ordinarily exactly zero after summing over lepton
flavours however ys allows one of these to survive [80]. The lepton asymmetry can be
generated through the out of equilibrium decays of heavy neutrinos, N. From the Yukawa
couplings we have C'P violating decays both in (N — ¢11), (N — ¢2l) and in the mirror
sector (N — ¢)l') and (N — @hl').

The tree level total decay rate of the heavy states, including cross-sector decay in this
visible sector channel is given by

Iy, = 8%7 [(ylryl)n‘ + ()i + (FY f)ii + (f3 f2)ia| M. (4.37)

In order for these decays to take place out of equilibrium we can consider each of the
strong and weak washout cases. In the weak regime (K < 1), inverse decays will create an
abundance of heavy neutrino states which surpasses the equilibrium number density and
the subsequent out of equilibrium decays will produce an asymmetry which depends on
the initial conditions. The size of the initial population will determine the opposite sign
asymmetry produced during inverse decays as the equilibrium density is reached. The
final asymmetry will then be a combination of the asymmetry produced in each phase.
In the strong washout regime (K > 1) the high coupling will bring an initial population
of heavy N states quickly to the equilibrium density. The strong coupling leads to a
high rate of decays and inverse decays that washes out any initially formed asymmetry
after which a final asymmetry is produced when inverse decays become suppressed as
T < M; and non-relativistic heavy neutrinos undergo C'P violating decays. We make

use of the variable z = % and write [D, S, W] =T'p g w)/Hz.

It is useful to consider the limiting case by taking the contribution from 7; terms to be
small enough that the dominant contribution to the C'P violating decays comes from

just y2. In this case we can take the usual strong washout efficiency factor «y, defined
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by

3
Np_p = —Z/ifeglm, (4.38)

where this has an approximate analytical expression in terms of K in the limit that

dominates [160],

2 1
K~ K [1 — exp (—22'3[()] , (4.39)
K2 31257 K2\ \°
L+ 092 <1n< 001 )) ] . (4.40)

This is a useful check for the numerical solutions in the limit that yo dominates however in

1
zp(K) ~ 1+ iln

the general numerical solutions later we do not neglect the role of y;. In the more general
case we will write the Boltzmann equations for the generation of a lepton asymmetry
for one sector in the following and take N7 to be the combined population of states Nf
and N, at mass scale M;. With light neutrinos in the dark sector, y; > f;, and two
seesaw mechanisms we can have an orthogonal complex matrix R’ such that the scale
of (ygyg)ll is not so large that the N; mediated scattering (¢ < (¢ destroys the created
lepton asymmetry. The light neutrinos of the DS have their masses constrained by the
requirement that they do not significantly contribute as a hot dark matter candidate.
This imposes limits on the size of 3o in this case. These constraints will also depend
on the temperature of these light mirror neutrino states which will be lower than VS
neutrinos. In the next section we see these limits on m, in the low p case depend
on the thermal history assumptions. We consider the cases of the heaviest dark light
neutrino limited by upper bounds of 1.1eV,3.2eV,5.6eV. Sample R and R’ matrices
for the two seesaw mechanisms are then explored in cases A and B in Fig. 4.2 for the
first two bounds while the largest temperature difference that allows 5.6eV has three

sample pairs of matrices R and R’ for C — E.

4.6.2 General cross-sector coupling case

The previous case can be contrasted with the model for large p case. This scenario has
fewer constraints from FCNC however above p = 200 the neutrinos of the dark sector
decouple prior to the sectors thermally decoupling, such that all of the light neutrinos
of the dark sector must be non-relativistic. Clearly multiple things must change. In this

large p case, the requirements on the dark confinement scale will necessitate smaller &,
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FIGURE 4.2: Evolution for the Ny number density (the sum of the densities of Nf’
and N; divided by two) and the B — L asymmetry for the small p case for different
choices of the mass of the heaviest dark light neutrino. The left panel has zero initial
N; abundance, while the right panel has an initial thermal abundance. In all cases,
the observationally required B — L asymmetry is produced at the low temperature end,
and is independent of the initial abundance because we work in the strong washout
regime. Case A corresponds to 1.1 eV, case B to 3.2 eV, while cases C — FE have 5.6
eV for the dark neutrino mass upper limit. Each curve illustrates an allowed choice
for the Casas-Ibarra R and R’ matrices with p = 30 and M; = 10° GeV. The small p
case allows for larger quark scattering rates to ¢ and is comparable to past works in
thermal leptogenesis. The limits on the C'P parameters €4_ g come from limiting the
amount of dark matter composed of hot dark neutrinos.

quark couplings than the SM in general. In the case that all three of the light neutrinos

are ~ 100MeV and p > 200, the constraints on parameters such as in Eq. 4.32 on

washout require that the C' P parameter be much larger. At the same time with f; and

y; comparable and P nonzero such an enhancement is immediate. We consider the C'P

parameter now in the case of individual populations of N* and N~. Rewriting in terms

of Y; = y; + fi, F; = y; — fi we have

=303 o (RO M)

=12 k

¥

My

My,

Im [2 <(Y1TF1)k1(YiTFi)k1) +2 ((YlTyl)kl ijy@)kl)]

)

HEF E)a (YY), + (YD) (B YD),

I | (Vi) (] )y + 0¥ (4 12)

(Y1),

(YlTY1)11

(YlTyl)u

)

(4.41)
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Im [2 <(Y2TF2)k1(3/;TE)k1) +2 ((YQTY2)k1(1/;Tm)k1>]

=303 o (RO M)

55 (Y, Ya),,
N (Ml ) T [(VYa)ia (F Fo)yy + Y0k (V)y,
My, (Y Ya),,
S F)ia (Y Y2)y + (V] Y2) (F{ V) |
(YZTYQ)H
where
1+ 22 1
I(x) =2 |1—(1+ 2] 4.42
@ = 1= (et (F55) ¢ ) (4.42)
and

2 _2
R(M;, M) = ]2”1'+<M@z " ; . (4.43)
(M;7" — M_")2+ M -
k

1

The C'P parameters for the ¢;- terms can easily be found by interchanging F' and Y.
The relevant diagrams for these C'P parameters are in Fig. 4.3. Note that the sum can
now extend to £k = 1 and we have a nonzero C'P parameter for some of these terms.
This can be compared to the case of the double seesaw mechanism of leptogenesis [161].

However in this case again we have a symmetric asymmetry generated in the dark sector.

Similar to double seesaw mechanisms we have in this case the fact that P, the cross-
sector masses, being small automatically places us in a parameter space near resonance
between Nfr and N . This comes with the nonzero C'P violation originating from the
interference of diagrams that involve both N* and N—. With P/My ~ 10~° we are
within the range of resonant effect through the interference in the self-energy diagram
with Nfr and N for the Yukawas in Eq. 4.32. In Figure 4.4 we see that resonant

increase in the C' P parameter for this large p case.

Note that this differs from [125] in that the resonance comes from adjusting the single
small parameter P which was previously constrained to be small rather than adjusting
My and M, to bring their difference close to the decay width. The resonant boost can
allow for a smaller value of My such that in the high p case we bring My down to

~ 107GeV.

In Fig. 4.5 we can examine the scattering rate and total washout rate in the different
cases of quark mass hierarchies in the dark sector. With general cross-sector couplings

we can examine the more complex set of decays, scatterings and inverse decays. We
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FIGURE 4.3: The interference of all diagrams in the left column for a fixed final state
®; and initial state i = 11 contributes to ef}r while fixing ®5 and i = 17 allows us

to calculate efi Choosing ¢ = 17 yields efi’Z. Likewise the right column gives the

interference among mirror counterpart diagrams in the dark sector.
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FIGURE 4.4: The resonant increase in the C'P parameters e‘fLefLefi,e‘fﬁ (Blue,

Orange, Red, Green) as a function of P in GeV, the cross-sector neutrino mass term.

consider simultaneously the variables, Nf“ and N, and asymmetries of both sectors,

Np_r, and Nj_;. The considered interactions of the decay and inverse decay type are

NE & ¢,
Nt < ¢,
Nt < ¢3l,

+
N~ & ¢ol€,
and their mirror analogues

N{ & o0,
Ni & o1,
N < ¢l
N < @hlc.
For scattering processes, it is known that the dominant ones in the standard leptogenesis

case are leptons with top quarks, so in our situation we must consider if the Yukawa

couplings to quarks of the second Higgs doublet are in a similar range. We thus consider
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the following processes into the Boltzmann equations:

Nlilc > tq,

N. liq & tl,
driven by virtual ¢; exchange in the s- and ¢-channels, and the ¢o-driven counterparts,

lei:lc < Ui,

Nliq > uyl,

where g = d, s,b and u; is any charge +2/3 quark flavour that has a significant Yukawa
coupling to ¢o. The mirror analogues of these processes also must be included. For the
strong-washout regime, processes such as ¢l <+ ¢]1° and the like can be small due to the
large mass of the exchanged virtual heavy neutral lepton compared to the temperature

at which the asymmetries are generated.

If we again consider the case of the strong washout regime where gauge scattering can
be ignored, due to only being effective in the T' > M era, then the relevant Boltzmann

equations only contain washout from inverse decays and quark scattering [74],

dNB-1
i (e(fi Df_l + E(fiDiQ)(NN;' — NNFq)
— (Efinl + EfED?Q)(./\/’Nl— — NNFq) —WrNp_r,
dNB/fL/
Wi (D% + D) (Np — Ny
(DY 4+ e DPYN — Nigsa) — WeN o,
dNN1+
= (Dy + S+)(NN14- - NNFq), (4.44)
aN’ -
P (D_ + S_)(/\/Nl— _NN{Eq).

The scaled decay, scattering and washout rates are detailed in Appendix C. We consider
the large p case with strong washout and with both a vanishing and a thermal population
of heavy neutrino states as initial conditions in Fig. 4.6. The different cases (F — J)
describe different sample points in parameter space of the matrix in Eq. 4.26 that satisfy
the condition that non-relativistic light neutrinos of the dark sector have masses of order

100 MeV and decay into SM species prior to BBN. In Section 4.7 we will see that the
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FIGURE 4.5: Scaled Rates (D4, S1, Wip, Wp, S+ D) in the Boltzmann equations for
the cases of small (left panel) and large (right panel) p. The parameter points are as for
Fig. 4.2 and Fig. 4.6, respectively. As the quark Yukawa couplings to the second doublet
¥, can be smaller than those to ®; in the large p case, the (gt <> ¢ol) scattering rates
in the Boltzmann equations can be minimal. In the strong washout regime, (K > 1) we
see in the large p case significant washout rates, the natural resonance that can arise
in the C'P parameter can allow the necessary asymmetry to survive at the point the
washout rates become ineffective.
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FIGURE 4.6: B — L asymmetry and N abundance in the visible sector for the large p
case for the parameter point of Eq. 4.32. The V. 1+ and N; number densities are almost
indistinguishable. Each graph displays five distinct choices for the matrices y1, 2, f1
and fs, labelled F — J. These solutions gain an enhanced B — L from the resonance
effect between the N and N~ mass eigenstates. The C'P parameter additionally varies
from the coupling to both Higgs doublets. Each case has different initial abundances
for Ni: vanishing (left panel) and thermal (right panel).

bounds on Ngg from BBN can easily accommodate the dark photon that remains as the

only relativistic degree of freedom in this regime.
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4.7 Cosmological history

We now focus on examining the consequences of this type of model on the thermal
history of both the visible and dark sectors. In particular we examine how the two
sectors can be consistent with the current evidence of BBN and the constraints on the
number of relativistic degrees of freedom. In the dark sector we consider how, after the
breaking of mirror parity, a clear dark matter candidate can form which satisfies all of

the current astrophysical evidence of dark matter.

4.7.1 Baryogenesis in the visible and dark sector

The lepton asymmetry of each sector is converted to a baryon asymmetry beginning at
the temperature at which the B — L asymmetry is produced by thermal leptogenesis.
Immediately after this, the relation between the B, L and B — L asymmetries of each

sector can be related by

24 + 4Ny

= ETEH N 4.45
N 66+13NHNB Lo (4.45)
424 9Ny
N = 66 + 13NHNB*L ’

where Ny is the number of Higgs doublets that remain in equilibrium [162]. Following
the EWPT of the dark sector, sphaleron processes of the dark sector are no longer rapid
and the relation between B’, L' and B’ — L' is fixed at the values as in Eq. 4.45 with
Ny = 2. At this point, one of the Higgs doublets of the visible sector gains a large
positive squared mass value sufficient to decouple one the doublets of the visible sector
while sphaleron effects of the visible sector are still rapid. The B — L asymmetry in the
visible sector is then reprocessed to satisfy Eq. 4.45 with Ny = 1 and this will be the
value that remains when visible sphaleron processes are no longer rapid following the
visible sector’s EWPT. The modern baryon asymmetries are therefore given by

2

8 8
= Np_ = —_CN:! 4.4
Np 790 B-L, Np 230 B—L (4.46)

where C = ¢*(1p)/g*(T) accounts for the variation in photon density between the onset
of leptogenesis and now. We therefore have an abundance ratio from the symmetric

leptogenesis phase that is slightly less than 1 which still suggests a mass ratio of dark
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baryons that are ~ 5.57 that of the proton. In Fig. 4.1 this is considered as a range for
the dark confinement scale with the exact mass of any heavy baryons having a range
depending on the dark coloured quark masses. Further discussion of such hidden QCD
models and the exact relationship between confinement scale and baryon masses will be
explored in Chapter 5. We can now consider some of the broader consequences of the

dark sector.

4.7.2 Thermal decoupling

As discussed previously we will examine the case that the two sectors should decouple
within the temperature region between the confinement scales of the two sectors. By
doing so, we can reduce the number of degrees of freedom in the DS while the two
sectors are still in thermal contact and thus transfer the majority of the entropy density
of the universe to the visible sector. This allows for the DS to cool at a faster rate and
acquire a lower temperature at the time of BBN when constraints on the number of
effective neutrino species are stringent. This idea was explored in past works on dark
QCD models and in particular Ref. [144]. In models of two sectors the exact relationship
between the temperature of each sector has important limits imposed by the effect of
additional radiation components of the universe on the BBN and acoustic oscillations in

the CMB. This is usually quantified through an effective excess neutrino number defined

by
1IN\Y3 /TN\Y 8 /11 4/39* T 4
Neg=3(— - - = ALY s 4.47
—(5) (@) 2G) 2F) e

with the entire second term constituting ANeg. The terms g7, and Tp are the degrees of
freedom of the dark sector and their temperature. Recent measurements have obtained
the bound ANeg = 0.11 £ 0.23 at the 68% confidence limit level[4]. The ratio of the
temperatures of the two sectors at the scale of BBN is a function of the degrees of

freedom in each sector compared to the value at the time of decoupling,
TS
v _ D (gv> . (4.48)
DEC

ﬁ gv \9D

In mirror symmetric models where the two sectors remain in thermal contact such as
[125] the constraints on the dark degrees of freedom are strong enough that it is neces-

sary that all mirror relativistic particles must be removed prior to the era of big bang
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nucleosynthesis (BBN). If the temperature of the DS sector is less than the VS then the
BBN constraint may be satisfied with at least a massless photon and possibly additional

species still present in the dark sector.

In order to decouple to the two sectors in the energy range between Aqcp and Apwm
we require a particle interaction that proceeds fast enough at high energy and becomes
ineffective shortly after the DS becomes confining. We then require that either one
or more of the species involved must become Boltzmann suppressed or the rate of the
reaction as a function of temperature must drop below the Hubble rate. There are
multiple distinct cases in which this can work in our model, depending on the value of

p and the masses of the particle species in the DS.

4.7.2.1 Large p

In the first case all three of the dark sector’s light neutrino species have non-relativistic
masses, which is possible in this work given the independent s and with w sufficiently
larger than v such that My, Myh My o~ 100 MeV. We thus consider the first case of only
a relativistic dark photon in the region of parameter space where p > 200 as mentioned
previously. From the temperature difference generated by the drop in degrees of freedom

between the confinement scales we obtain

2 (Tp\*
ANg=— (22} ~o0.1 4.4
= 045 <Tv> 0.17, (4.49)

where the factor of 2 counts the degrees of freedom of the single dark photon. This is
well within the observationally allowed limits. The thermal history of the universe in
this case is summarised in Table 4.4 at the end of the chapter. Figure 4.7 shows the

degrees of freedom in each sector in this timeline.

4.7.2.2 Small p

The other case keeps all three dark neutrinos relativistic and has a sufficient temperature
difference to allow for all four of these species. In order for neutrinos to undergo the
temperature change from the above mechanism, it is critical that the lightest neutrino
population not decouple from the dark plasma prior to the thermal decoupling of the

two sectors. As the dark weak interaction rate scales down with the increasing mass of
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the dark electroweak gauge bosons, an upper bound of p < 200 can be placed assuming
that the maximum value of Tpgc is just below the dark confinement scale. While in
Ref. [144] the large change in g* following the dark QHPT is only large enough to allow
for one light neutrino species of the dark sector, the independent Yukawa couplings of
the dark sector allows for a more complex thermal history. In particular any asymmetry
between the two sectors in whether a species annihilates into photons before or after

Tpoec can further the temperature difference.

e Consider in particular the p*' + p~' < 4/ ++/ annihilations after the temperature
of the plasma drops below the dark muon mass, but at a temperature above Tphgc.
The energy density is shared between the two sectors. After Tpgc when Ty falls
below the mass of SM muons the visible plasma is heated but the dark plasma is
not. This asymmetry in muon annihilation together with the entropy shift between
the confining phase transitions, and with three light mirror neutrinos leads directly

to ANeg = 0.50.

e We can take this further by considering the dark pions. If these have a mass
that is above Aqcp and above Tpgc then they too will share the entropy density.
The scaling of pion mass will depend more significantly on the bare masses of the
lightest dark quarks and in particular will increase with more massive bare dark
quarks. With the asymmetric photon injection from both dark pions and dark

muons one obtains ANz = 0.387.

e If in addition to dark muons and pions we also have that all of the dark electron
energy is shared between the sectors, this yields AN.g = 0.229, which is well within
the current constraints. We can also have a thermal portal that decouples the two
sectors when the temperature falls below the mass of dark electrons, due to dark
electrons being reactants in the portal term. In this case only a fraction of dark
electron energy will be transferred to SM species while the thermal portal is still

active, so that AN.g will therefore be between 0.229 and 0.387

Each of these thermal histories for relativistic light dark neutrinos sets a different final
temperature for the dark neutrino species and therefore contributes a different limit to
how massive the light neutrinos of the dark sector can be before contributing too much

hot dark matter to the model. Taking the limit that Qppy < .011 we obtain for the
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FI1GURE 4.7: The degrees of freedom in the two sectors as a function of T. Initially they
constitute one sector. After the thermal decoupling the two sectors are independent
and the degrees of freedom have separate histories. For Aqcp < Tprc < Apwm the
ratio of temperatures after decoupling can fall to Tp < 0.57y as the entropy density
of the dark sector is shifted to the visible sector in the shaded region. The effective g7,
contributing to the expansion rate is then suppressed by this temperature difference.
The arrangement of dark quark masses is not significant to this picture. Any dark
quarks that become suppressed prior to Apy will contribute to the difference in g*,
however any that are still in equilibrium will hadronise at Apy and thus their degrees
of freedom will be removed in any case. The temperature shift can be affected by mass
scales of dark leptons and the dark pion mass scale.

above three cases a limit of > m, < 1.1eV,3.2eV,5.6eV respectively. This sets a limit

on how large a role yo can take in the low p regime of thermal leptogenesis.

4.7.2.3 Decoupling mechanism

In the relativistic decoupling case it is natural to examine the effective interactions
between the sectors that our model contains to observe if any of these can maintain

contact until the appropriate region. Since the scaling of the Hubble rate is of the form

A3 \[g*T?
H(T) =1/ — 4.50

we require that such reactions scale with temperature at a faster rate. It would be

preferable to have a portal that naturally switched off at the appropriate energy scale.
One appealing possibility is a dimension-9 quark interaction, that constitutes a neutron
portal operator,

1 _
a udd u'd's' + h.c. (4.51)
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The v/, d’ and s’ states here could in fact be other quark flavours, what is important is
that the two flavours that make up the dark neutron are involved and a third with mass
below 1 GeV. This ensures that dark neutrons do not decay into ordinary neutrons.
Studying such an operator within the regime where one sector has become confining
and the other has not becomes difficult due to the chaotic nature of the quark hadron
phase transition. It is possible however that the QHPT itself can be held responsible
for breaking the thermal contact between the sectors. In such a scenario once the dark
quarks of the DS have formed bound neutron states, these can then decay into VS
quarks, which are still unconfined, transferring a sufficient amount of entropy density
from the DS to the VS. Since the dark neutrons have a mass greater than than the dark
confinement scale they immediately begin being suppressed in their numbers following
the chiral phase transition, and at the time of confinement in the VS, when quarks of
the SM form bound baryonic states, the abundance of reactants is sufficiently small that
thermal equilibrium between the sectors has ended. While this argument contains a
natural explanation for a lower temperature DS, it is speculative. We can also consider
a six-fermion leptonic interaction between the sectors that could accomplish a similar
goal.

1 —
ﬁlleC I'l'e” + h.c. (4.52)

This type of operator can become ineffective at the temperature when the dark charged
lepton €’ becomes Boltzmann suppressed. This requires that the mass of this species is
tuned to be in the specific range between the confinement scales. In the large p case we
will see that we require an electron like species to have mass much smaller than this scale
and so we can again consider a particular flavour structure for the operator in Eq. 4.52
such as I'l'u® for the dark sector. This allows us to choose dark muons to be the species
that becomes suppressed between Aqcp and Apy. If, however, we are in the low p
regime, the original portal involving electrons can be involved which can allow all three
light dark neutrinos and a dark photon to be consistent with the extra radiation bounds
during BBN and the CMB formation. Such an operator could fall below the Hubble
rate due to the lightest charged leptons becoming Boltzmann suppressed at the requisite
temperature range. Efficient weak interactions of the dark sector can then remove the
remaining asymmetric component of dark electrons along with the more massive dark
protons and store the lepton asymmetry of the dark sector in the dark cosmic neutrino

background.
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FIGURE 4.8: Higgs mediated four fermion interaction rate as a function of temperature

falling below the Hubble rate between the confinement scales (Green) of the two sectors.

The rate uses [ = 0.6,72 = 0.6,210 = 0.1,m4, = 3525GeV,v; = 246 GeV,we =
7380 GeV]

We can also consider the Higgs mediated interaction that survives below our EWSB
scales consisting of the mixing between heavy neutral scalars of the two sectors. The
four fermion interaction rate can be written as

v%w%T‘r’

Fpar >~ ?722771221078- (4.53)
miy,

This term can provide a way to couple the two sectors without altering the global minima
of the potential and removing the asymmetric configuration or mixing the weak scales
of the two sectors. Additionally, such a Higgs mediated interaction can thermally couple
the two sectors down to ~ 1 GeV in a way that an ordinary mixing of a Higgs with a
mirror partner cannot. In our model, using a typical Higgs mediated interaction in order
to maintain thermal equilibrium to a low enough temperature, the Yukawa couplings
would need to be sufficiently large. However if these same Yukawa coupling give mass
to the fermions involved in the cross-sector interaction, then they will be Boltzmann
suppressed prior to T ~ 1GeV and hence the interaction cannot remain above the
Hubble rate at this low a temperature range. In our model, since the interaction utilises
those Higgs doublets that are not responsible for mass generation in their respective
sectors, such a coupling can work if the mass hierarchies permit some low mass fermions

of the SM to have heavy mirror partners in the dark sector and vice versa. In Fig. 4.8
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we examine the scaling of such a Higgs mediated interaction with temperature in the
small p regime. Other portal operators have been explored. Setting the ZZ’ mixing
to a suitable value forces the photon kinetic mixing to keep the two sectors in thermal

contact to the present day which is unacceptable for our theory.

4.7.3 Dark big bang nucleosynthesis

In the dark sector, the confinement scale is approximately five times higher than its
visible sector counterpart while the electroweak scale can span a much broader allowed
parameter space given by p. With the larger EW scale in the dark sector we also have
larger masses for the W’ and Z’ bosons. The independence of the Yukawa couplings
that generate mass for fermions in each sector also allows for the lightest baryon of the
dark sector to be neutral under U (1)/Q For ordinary baryons, the mass difference of the
proton and neutron, ém = m, — m,, can be considered as the sum of two components.
The first is from QCD which can be approximated by the mass difference of the up
and down quarks dqcp ~ mg — my =~ 2.51 MeV. The second is from EM interactions
and is given by dgm ~ —1.00 MeV. We then have 4, = dqcp + dgm ~ 1.51 MeV. By
reducing the difference in mass of the lightest of up and down type dark quarks, we can
reduce the QCD contribution until |dqcp| < [0gm| for dark baryons. The variation of
the dark electroweak scale does impact the size of the QED correction to the proton

through the change in agy, however this correction is insignificant. This can be seen

. oy 1 1
by the matching condition ~— = -+ 07127 and the fact that the U(1) and SU(2) gauge
couplings run in opposing directions such that variations in the symmetry breaking scale

only minimally alter the value of agys.

The lightest baryon of the dark sector is then the dark neutron n’ and the decay rate of
the dark proton p’ into the dark neutron is suppressed by the larger mass of the dark
sector W’ bosons. If the dark weak interaction rate now falls below the Hubble rate
at an earlier point, it is possible to find a situation in which the dark BBN produces a
maximal amount of dark helium, by contrast with the visible sector, despite the dark
neutron being the most stable baryon. This is because the n’-p’ ratio will be sensitive
to the interactions that are still in equilibrium in the dark sector as well as the mass
difference between them. However, the formation of nuclei through primordial synthesis

may not take place at all if the dark deuteron is unbound. It is a well known feature of
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conventional BBN that the deuteron, the bound state of one proton and neutron, is only
very weakly bound [163]. Its function in BBN is essential, however, in that it forms the
intermediate step between hydrogen and heavier elements such as helium. A sufficient
abundance of deuterium only appears at temperatures lower than 2.2 MeV due to its
low binding energy. The binding energy of the deuteron can be related to the ratio of
%: which has been estimated to need to be < 0.16 for the deuteron to be stable. We can
reconsider this ratio in terms of the factor xp = %%d). In Ref. [164], a conservative
estimate of the required ratio to make the deuteron unstable was found to be that zp
should increase by a factor of 2.5. Such an increase can be readily achieved in our model
provided that the low mass dark quark masses are larger than ~ 35 MeV, where ADM
is ~ 5 times the SM value. If the dark deuteron were to be unbound, its absence in the
primordial era of statistical nuclear equilibrium would disallow the formation of helium

and heavier elements. The makeup of dark matter is then dependent on a number of

free parameters in our theory. We summarise these distinct cases below.

4.7.3.1 Large p

In this case, with p > 200, we have the fact that dark weak interactions are suppressed by
the time of the dark QHPT and the light dark neutrinos have a mass scale ~ 100 MeV.
The dark lepton and baryon asymmetries are fixed at their values following the sphaleron
conversion and dark weak interactions prior to 1 GeV similar to [141]. This yields the
initial relations N = (8/23)N;_; and N} = —(15/23)N_;. If we assume that the
lepton asymmetry in this phase is evenly divided among relativistic lepton flavours then
the distribution between charged and neutral leptons can be found by solving the series
of equations that relate the chemical potentials after the dark EWPT until dark EW
interactions freeze. Using the conservation of lepton and baryon number, conservation of
charge and the enforced relations from weak interactions such as jiq = fty + e — ftu, We
solve these equations at the point just prior to when this last weak interaction condition
is removed and the charge distribution between the baryon and lepton sectors is set
[165]. This is dependent on how many fermion species have been removed from the
plasma when the dark weak freeze-out occurs. For all dark fermions in the plasma at
freeze-out we have that the ratio of the asymmetry stored in charged leptons compared
to neutral leptons of 82 : 83, while removing the two heaviest quarks yields 13 : 17.

Additionally removing a third quark and a single charged lepton yields 2 : 3. Dark
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QED charge conservation guarantees that the dark proton asymmetry equals the dark
charged lepton asymmetry. This yields an abundance of charged leptons equal to that
of charged protons such that we have a mix of dark neutral hydrogen atoms and dark
neutrons after the dark QHPT. This asymmetry is then equal to the value of the lepton
asymmetry stored in charged leptons just above the dark weak freeze-out temperature.
The lepton asymmetry stored in the light neutrinos of the dark sector at the point
of dark weak freeze-out will ultimately be transferred to the visible sector’s neutrino
background following the decays of these states to visible species. We can then write
the number densities of dark species in terms of the B’, L' and B’ — L' number densities
with nj, = ng and n;, +nj, = (8/23)nz_; such that n;, = (8/23)nz_; — n;,. The cases
listed above then give neutral atoms and dark neutrons in ratios of 15:31, 13:29 and 3:7
respectively. This assumes that the dark charged-lepton that is part of dark atoms has
both a small enough mass to survive to low temperatures and to not be an important
contributor to the overall dark matter mass density. We can thus have a component of

mirror atoms among the dark neutrons.

The later distribution between dark atoms and dark neutrons depends significantly on
a number of further assumptions we make for dark sector parameters. If the mass
difference between dark protons and dark neutrons, ) = m; —m),, is larger than the
sum of the masses of dark electrons and dark neutrinos, dark protons may decay with
a lifetime dependent on both the increased EW scale of the dark sector and a phase
space factor which can be compared to that of the SM neutron. We can consider the
case where the value of ) becomes larger than 100 MeV, while keeping the dark electron
mass negligible and the dark neutrino mass fixed at 100 MeV [166]. Dark protons can

then all decay prior to the matter-dominated era. Increasing p necessitates larger values

of @ to achieve this as the weak suppression increases the lifetime by a factor of ~ p.

In the case that dark protons are stable due to m., + m], exceeding @@ we must also
ensure that by the onset of structure formation at matter-radiation equality, Ty, =~ 1 eV,
the dark matter is no longer undergoing long range interactions and can form the early
inhomogeneities. This requires that the dark matter-radiation decoupling have taken
place prior to the moment of matter-radiation equality. While the lower temperature of
the dark sector can bring the moment that free-streaming charged dark particle numbers
are suppressed by recombination earlier in time, the dynamic temperature ratio we con-

sidered in the large p timeline is insufficient alone. However matter-radiation decoupling
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in the dark sector may take place at a higher value of Tp compared to the visible sector
case. With the Saha equation’s exponential dependence on the binding energy of hydro-
gen we can see that raising the ionisation energy of dark hydrogen through the increased
mass of dark electrons directly increases the temperature at which dark hydrogen is no
longer ionised [30, 32, 100]. The ratio of Tp/Ty then satisfies the condition that dark
matter-radiation decoupling takes place in the radiation dominated era of the universe
provided that Tp /Ty < 0.336 r where r is the ratio of photon decoupling temperatures
r= Tg/ T} and is dependent on the ratio of binding energies r ~ B}, /By = m/,/m, if

one uses the same condition for sufficiently small fractional ionisation in each sector.

While protons may be stable in this latter case it remains possible for the dark hydrogen
atoms to undergo electron capture and decay via € +p’ — n/ + et + e~ + v due to
the mixing in the neutrino sector considered in Eq. 4.32. This can be compared to
muon capture in protons in short-lived p-hydrogen atoms. Such decays are suppressed
by the electron capture probability and the large dark EW scale and have lifetimes
approximated by

e of sl et g G Vil Bs i)

T(e +p = n'+e" +e +v)~ <|¢(0)| TW(M_m") ) , (4.54)
where [1(0)|2 = m3a/3 /7 measures the wave function at the origin with m, the reduced
mass [167, 168]. The Fermi constant, G, scales with W', Eyg is the combined energy
of visible sector decay products, V,; is a dark-sector CKM element and M is the mass
of the dark hydrogen atom. With a dark electron ~ 10 times the SM electron, and
dark protons and dark neutrons at ~ 5 GeV, this suggests a lifetime for these dark
atoms between ~ 10' seconds for p = 200, that is around the time of reionisation in
the visible sector, to beyond the current age of the universe for p > 2500. The decays
of such states could be a promising source of indirect detection for dark matter if their
lifetime is between these values. The above formula holds for an on-shell dark neutrino

V', and thus is an approximate lower bound on the lifetime for the general case where

V' is off-shell.
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4.7.3.2 Small p

In this regime with efficient dark weak interactions, a light relativistic species of neutrino
and a sufficiently light associated dark charged lepton we would have charged baryons of
the dark sector all decay into neutral single baryon states, due to m, > m,/, which are
then the dark matter component of our universe and so we have a complete population
of dark neutrons. In order to calculate the relative abundance of n’ to p’ in the dark
sector during BBN we begin by taking the initial abundance of these species after the
dark QHPT to be near equal, given the small mass difference between them. The value
of p will determine the ratio of dark protons to neutrons. With the mass difference,

Q = mj, —my,, we can write
Xp = ny/(ny +ni) = e T /(14 €7@/, (4.55)

The thermal freeze-out of dark protons occurs when dark weak interactions freeze-out
at a temperature of Tphwr ~ 0.8p*3MeV. Figure 4.9 shows the how close the ratio is

to 1:1 as p increases.
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FIGURE 4.9: The ratio of dark protons to dark neutrons, X,, as a function of p for a
given mass difference, Q = m;, —mj,. In the large p limit X}, — 0.5.

The lifetime of any remaining dark protons will depend on the mass difference @ and

the value of p. Assuming a light charged lepton mass and a value of @ ~ 1 MeV we have
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that in the limiting case of p = 200 the remaining dark protons will have a lifetime of

~ 102 s such that X, will approach zero at the time of structure formation.

4.7.4 Dark matter self-interaction constraints

The possibility of self-interacting dark matter is constrained by a number of sources. In
particular, ellipticity, substructure mergers and cluster collisions [2, 126] impose upper
bounds ranging from 0.7 — 2.0cm?/g. On the other hand, issues in simulations of ellip-
ticity of galaxy structures, and the core-cusp problem can be solved by interacting dark
matter, though the required cross section may in some cases be in conflict with upper
bounds [169]. If dark matter interacts according to nucleon scattering where the cross
section is set approximately by the size of the nucleon itself, then we can consider this
model in the context of other models of dark neutron dark matter. As noted in [169],
if the length scale and mass, m,,, of the nucleonic state is scaling with increasing Apwm

then the dark self-interaction per unit mass can be considered as

mn a,_l ADM

o /m ~ 3em?/g x <ADM> (ADM>2 <100MeV>3’ (456)

where a is the scattering length which should obey a ~ A1311v[~ If the dark sector is made
up of both dark neutrons and neutral dark atoms we can consider the dark neutron-
atom interactions and dark atom-atom interactions as well. Since these are neutral we
can consider possible magnetic self-interactions, to be discussed later in the analysis in
Chapter 5 where we show that dipole-dipole interactions can be below the self-interaction
bounds for a dark o/, = apm and dark matter particles of mass 1 GeV. Compact object
formation such as dark stars may also reduce the density of objects in galaxy clusters
such that the diffuse gas assumptions which set limits on cross sections are not applicable.
The details of dark first generation star formation will depend on the thermal history
assumptions and critically on the composition of the dark sector, i.e. the ratio of dark
hydrogen to dark helium to stable dark neutrons. In the case of a pure population of
dark neutrons, we expect that with small self-interactions compact object formation will
not take place. With a mixture of neutral dark atoms and dark neutrons, it is likely

that with an unbound deuteron dark stars would not be able to survive without this link
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in the nucleosynthesis chain and so would still not be able to achieve the production of

heavier dark elements just as in the BBN era.

4.8 Summary

We have demonstrated a class of models that can both solve the number density sim-
ilarity and provide an explanation for the similar confinement scales of the visible and
dark sectors. In this model of dark matter, we have considered the possibility that
the gauge group and fermionic content that we observe govern the dynamics in one of
two similar sectors. In particular, drawing on the concept of a Zs mirror symmetry
connecting two copies of the SM gauge group we have seen how symmetric potentials
can break mirror symmetric Gsm x Gy to create two markedly different sectors. One
which sets the abundance of visible matter in the universe, and a dark copy with a high
EW scale, slightly higher confinement scale and unique fermion flavour mass hierarchy
which together sets the larger abundance of dark matter mass in the universe, made up
of stable dark baryons. A summary of the universe’s timeline that includes both matter
and dark matter is shown in Table 4.4 and can be compared to the timeline in Table 1.2.
In the next section we will examine in detail the hadronic physics of the dark composite

theories we have been discussing throughout this thesis.
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TABLE 4.4: The major epochs of the universe including dark matter.

101 GeV
1015 GeV
1012 GeV

10° GeV

10> GeV

102 GeV

1 GeV

~ 500 MeV

200 MeV

1 MeV

leV

t ~10~%3s
t ~ 10738s
t ~ 10739

t~ 105

t ~ 10719

t~ 10719

t~1073s

t~1073s

t ~1073s

t ~ 180s

t ~ 1025

e Planck scale era. Mirror symmetric sectors. Fg X Eg?
e Inflation ends, Grand unified symmetry breaking scale.
e Majorana neutrinos begin to populate both sectors.

e Thermal leptogenesis produces a B — L asymmetry in the
visible and dark sector.
e Visible and dark sphalerons create the baryon asymmetries.

e Universe has cooled to allow the Higgs fields

of the dark sector to attain a nonzero

vacuum expectation value, triggering the dark electroweak
phase transition. Dark fermions gain mass.

e Mirror symmetry is broken. Thermal interactions
between the two sectors are maintained.

e One of the visible doublets gains a large positive
squared mass term from the cross-sector couplings.

e Asymmetric symmetry breaking VEV breaks
the EW symmetry of the visible sector.
e Visible fermions gain mass.

e The gauge coupling of the dark SU(3) becomes
non-perturbative, breaking

chiral symmetry and confining all free dark quarks into hadrons.
e The difference in degrees of freedom creates a

transfer of entropy to the visible sector.

e Thermal decoupling. The interactions between the two sectors
fall below the expansion rate. Each sector evolves independently.

e Visible quarks form nucleons following the QHPT.

e Dark hadrons persist as individual nucleons.
e Dark protons decay into dark neutrons.

e The universe’s expansion becomes dominated
by matter over radiation.

e Dark neutrons dominate the hadrons of the
dark sector forming dark matter and

seeding visible structure formation.

e Visible atoms coalesce into stars.
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Chapter 5

Hadronic Spectra of Dark QCD

5.1 QCD bound states

We have seen that a dark analogue of QCD provides a compelling candidate for the
nature of dark matter. In this chapter we will examine more closely the properties that
such a dark SU(3) theory might possess. As seen in the previous chapter, the number
of quarks and the mass hierarchy among them can be different to that of the Standard
Model with asymmetric symmetry breaking. The implications of this freedom and its

impact on the possible spectra of dark hadrons will be explored in this chapter.

The study of QCD can be traced back to the hypothesis of the colour quantum numbers
in the work of Gell-Mann and Zweig [170]. The wavefunctions of QCD can be expressed
as the product

Q= \I’space wspin ¢flavou7" Tcolour+ (51)

The total wavefunction must be totally antisymmetric due to the fermion constituents.
In the development of the quark model and QCD it was the observation of the symmetric
form of the neutron wavefunction without colour that led to the theory of colour charge.
As the colour wavefunction is taken to be the antisymmetric colour singlet, the remaining
components must combine to be symmetric. We take the ground states of the theory
to be symmetric in space leaving the combination of spin and flavour to be symmetric.
This forms the famous baryon octet and decuplet of QCD describing the lowest lying
states composed of the u, d and s quarks. The states of a QCD-like theory in a hidden
sector will follow a similar logic, though the flavour structure will depend on some key

112
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assumptions. For our purposes it will be useful to list these states by the number of
flavours. One can imagine a formulation of QCD with only two light quarks, containing
only those states that possess an up and a down quark, a down and a strange quark or

an up and a charm quark.

In order to calculate the details of these exotic SU(3) theories, we consider in this chapter
the zeroth order approach to the hyperspherical non-relativistic constituent quark model

for calculating the hadronic spectra, namely the hypercentral model [171-174].

In this case we take the masses of light quarks to be approximately equal at a scale m;.
As such the constituent masses of these quarks will be expressed as m,. This constituent
quark mass can be taken, in the approximation that m; < A, to be one third of the
degenerate baryon mass scale Fy. The mass scale is in turn proportional to A which we
treat as a free parameter of the theory. In the case of G x G symmetric theories it is a
function of the running of a3 and the heavy quark mass thresholds at scales above A. In
the hypercentral approach the inter-quark potential is a function only of the hyperradius
x = \/,m, where p and X\ are the Jacobi coordinates. The spatial wavefunction is

factorised as

w’yn<p7 )\) = w’yn('r)}/v['y]lplx(Q,D?Q)\a(ﬁ)? (52)

where the angular part is written in hyperspherical harmonics and ¢ = tan~!(p/\).

lp,l
Yv[ﬂ/]lpb\ (Qpa Qx, 0) = }/lp,mp (Qp) Yi, ma (2x) F)J\§3 * (t). (5.3)

For the hyperradial part we can write down the Schrédinger equation for a given inter-

action potential V(x),

d 5d y(y+4)

[t = = T2 (@) = —2mg B — V(@) (o). (54)

In the next section we will discuss how these methods for ordinary QCD can be adapted

to solve for composite theories of the dark sector.

5.2 Hadronic spectra

While the constituent quark model has achieved considerable success in replicating the

ground states of the baryon spectrum, in adapting this method to the exploration of a
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hidden QCD we have to deal with the fact that the parameters of the theory are taken
from the experimental spectra, which are unavailable in the dark sector. In the case of
hyperspherical potential models we adopt a method of exploring the possible dark mat-
ter spectra by considering simplified models that depend on only a few parameters, and
then deducing how those parameters change for the dark QCD case. In particular we
consider models in which the lightest dark quarks have near degenerate mass and where
the baryon mass scale Ey ~ Apy is a free parameter. This is based on our treatment
of Apy itself as a free parameter of the theory following the work in previous chapters.
In such models of asymmetric dark matter the UV value of apy was fixed by the Zs
symmetry imposed on the G' X Gmirror theory. Apy will then vary from Aqcep by the
location of mass thresholds of dark quarks with mass greater than Apy;, making the lat-
ter parameter different from the SM value, Agcp ~ 200 MeV, following the mechanism
of asymmetric symmetry breaking in Chapter 2 and Chapter 3. In these models, the
heavy dark quarks may have masses significantly larger than the dark confinement scale:
mg > Apm. As these very massive degrees of freedom have no effect, except through
their production of a given Apy, on the ground state of the dark SU(3) theory, the
locations of the thresholds can be made to produce a given low scale value of Apy and
thus Fy. The lightest dark quarks with negligible bare mass then have a dressed mass
of ~ Ey/3.

With the variation of Apy we also vary accordingly the length scale of the inter-quark
potential and any other dimensional parameters associated with Apy in the theory. One

of the simplest quark interaction forms is described by the Cornell-type potential,
T
V(z) = ——+ kz, (5.5)
x

consisting of a hyperCoulombic and a linear term. As in the bag model of QCD, where
the length scale of confinement scales inversely with the energy scale, we will vary the
length scale of the potential and constituent quark masses with Apy;. The parameters
of the reference potential will be fitted to the Standard Model’s ordinary QCD spectra
and a number of different potential forms will be used for comparison. We will focus on

the ratio of confinement scales in the two sectors used previously,

_ Apm
Aqep

(5.6)
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In a model with high scale mirror symmetry, large values of £ are less likely since mass
thresholds only vary the rate of running slightly and so similar QCD mass scales for the
two sectors are well motivated by the insensitivity of the scale of dimensional transmuta-
tion to higher mass scales in the theory. In such models, the Yukawa couplings of the two
sectors are also independent despite the high scale mirror symmetry. This can be seen
as an effect of both the different running couplings and the fact that the Higgs mecha-
nisms responsible for mass generation in the two sectors can involve scalar states that
are not mirror partners. In this work we similarly take the Yukawa coupling constants of

the dark quarks to be effectively unrelated to those of the corresponding ordinary quarks.

If £ > 1 and the lightest dark quark bare masses are comparable to the up and down
quark of the SM, then the approximate chiral flavour symmetry becomes more exact as &
increases. This can be compared with our own QCD where it is the small quark masses
relative to the confinement scale that generates the isospin symmetry. No symmetry
connecting the bare up and down quark masses is necessary for strong isospin, only
that they are small enough to be insignificant compared to the near equal constituent
masses the quarks gain from chiral symmetry breaking within the bound states in the
constituent quark model. It is in this sense that a dark QCD with n; light flavours
with masses m; < Apy can form an SU(n;) analogue of strong isospin. The assump-
tion of near degenerate dark quarks is then seen to refer to constituent masses. This
dark isospin is then a consequence of any hidden QCD where fermions gain mass via a
Higgs-like mechanism and the product of the hidden sector Higgs VEV vp and any dark
quark Yukawa couplings are small in relation to the dark confinement scale. As the light
dark quarks form the lightest bound states of a dark QCD, any coloured fermions more
massive than the confinement scale will decay to lighter states of the theory and only
be produced in small numbers following the dark quark hadron phase transition. We
also consider states analogous to the strange quark of QCD which have a mass which
can be less than Aqcp but can still contribute a significant amount to hadronic masses.
There also exists the limiting case of when all of the dark quarks have mass above Ap,
which has been explored in models such as [175-177] where the possibility of glueball
dark matter is examined. In the case of six massless quarks and a baryonic mass scale

Ey ~ Apwm, ' the meson states will have zero mass as genuine Goldstone bosons. The

'The effects of the strange quark as a virtual state contributing to the mass of the proton has a long
history. It is estimated that a massless strange quark may lower the nucleon mass scale of QCD by
between ~ 1 — 20% [178].
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exception is the Goldstone Boson associated with the breaking of the anomalous U(1)
axial symmetry. In QCD it is the n’. Importantly, in one flavour QCD, the only meson of
the theory will gain an anomalous mass and so even in a dark QCD model with a single
massless quark, there will be no massless Goldstone bosons. We will briefly discuss this

particular case in the next section.

To compute the mass spectra of a dark QCD, we apply the hCQM and scale relevant
parameters with the confinement scale. In the simplest potential model with an inter-
quark interaction as in Eq. 5.5, the size of the bound state can be compared to the radius
at which the potential transitions from Coulomb-like to linear. This follows directly from
our treatment of the confinement scale as a free parameter, in that we are adjusting the
scale at which the hidden QCD theory transitions from perturbative to non-perturbative.
This transition radius then decreases inversely with £. This can be seen directly in the
case of Eq. 5.5 where k has units of (E)? and so becomes ¢2k in a scaled potential. The

crossing point is then r, = \/% % This relationship can be seen in Fig. 5.1. The shape of
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FIGURE 5.1: The variation of an example hypercentral potential V(x) with £ (left) and

the value of r., an estimate of the radius of confinement, as a function of £ (right). By

scaling the dimensionful parameters of the interaction potential with confinement scale,

we are directly scaling the range at which the interaction transitions from perturbative
to non-perturbative.

the potential directly affects the masses of bound states and in particular has important
consequences for resonance states and the size of the hyperfine corrections. We now
turn to the computation of the dark hadron spectra of different cases of a hidden QCD.
The masses also depend on the reference potential that we can scale from and which is
taken from past work on potential models of QCD in order to replicate the masses of

the hadrons of the Standard Model.
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5.2.1 Baryon spectra

We distinguish the cases by the number of light dark quarks in the theory and examine
how the spectra change with the confinement scale. Including electromagnetic effects we
can consider that as Apy increases and r. decreases the size of the EM mass contribution
to neutral and charged states will be more significant. In particular, if we consider the

simple expression for the scaling of the EM self-energy of a neutron as [179]

a

T (5.7)

Apym ~ —

then this term will scale upwards with £ as the distance becomes smaller. The proton by
comparison has a positive mass contribution that also scales with £ and the difference
between these will push charged states above the masses of neutral states for the case of
light quarks of equal mass. Such contributions are not however to be subtracted from
the calculated neutral ground states in the hypercentral analysis as they are in theory
already factored in by the Coulombic term scaling of the potential and the fact that the
potential was fitted to the experimental neutral masses from the PDG for £ = 1. For
this reason, our work is most applicable to theories of a dark QCD with an EM U(1)
coupling strength the same as that of ordinary electromagnetism. In models of broken
mirror symmetries the value of the dark sector’s EM coupling constant is constrained to
be very close to that of the SM value due to the opposite direction of the running of U(1)y
and SU(2)w and so the model in this work is directly applicable to the QCD spectra
of these models. In a theory without an EM gauge group, the EM mass contribution
to the effective potential must be separated in order to remove its effect from the mass

ordering.

For larger confinement scales the effect of EM U(1) force in the theory will create mass
differences pushing any charged states well above any light neutral ground states if the
set of light quarks allows for them. The only counter to this is if the bare dark quark
mass differences compensate for the EM mass difference as in the case of the proton-
neutron mass splitting of ordinary QCD. This can be contrasted with the effect of £ on
the chromomagnetic spin-spin interactions that we employ and which scale inversely with
the dark confinement scale and thus increase the degeneracy between the doublet and
quartet in two flavour dark isospin, and between the octet and decuplet in three flavour

dark isospin. This term crucially depends on the spatial wavefunction and the contact
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term for overlapping quark coordinates (6(3)) = |4(0)|2. The spin-spin interaction in the

form of the chromomagnetic contact term is [180]

4 oy

‘/ss:

- 97mimj (5(3)(7’ij) O'Z‘.Uj. (58)
1<)

Note the inverse scaling with constituent masses m;m; which will increase degeneracy
between the mixed symmetry and totally symmetric baryon multiplets. This term is
analogous to the magnetic spin-spin contact interaction that gives rise to the hyperfine
splittings in atomic theory however in this case is motivated by the colour-magnetic
moments. This term is important in understanding the A° — X% and A% — N mass
differences in QCD where the flavour composition is identical and the spin-flavour wave-
function is different, a unique feature for baryon wavefunction ground states when the
number of flavours exceeds two. They are then similarly important for the present work
as they contribute to the mass splitting between the different ground state wavefunctions
allowed in the constituent quark model. One could also consider the spin-flavour and
spin-orbit interactions and depending on the choice of potential these may contribute
more or less significantly. We discuss these possibilities further in Appendix D. In this
work we consider models where the spin-spin interaction is the dominant source of these
mass differences. In the hypercentral assumption with only one hyperradius we lose the
ability to directly calculate the full value of the contact term (§() for the full coordi-
nate system of three quark wavefunction. The Gaussian-smeared contact term with a

functional form

5O (z) = ke s, (5.9)

that is treated perturbatively, is an approximation which has been applied successfully
to fitting the light baryons in [171, 181] among others and we similarly use it in this
work for the extrapolation to dark QCD states.

In fitting the form of the potential we compare parameter fits done in similar models for

standard hadronic spectra. We consider primarily potentials generalising that of Eq. 5.5,
T

V(z) = —— + ka?, (5.10)
x

as well as a perturbative hyperfine interaction given by Eq. 5.8. The eigenstates are
then given by Ex~. This follows the work on visible QCD in [181-183] as well as [184].

The masses of the baryons are then given by Mp = Ey+ Enr, where Ey = 3my, i.e. it is
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the quantity that scales directly with £ along with the dressed light quark masses. With
these different potentials, which all fit the experimental spectra to varying degrees, we
can examine the variation of dark baryon masses with the choice of potential. Following
the potentials given in [181-184] we list in Table 5.1 three sets of parameters that with
Eq. 5.10 provide a good fit to the hadronic spectra. While our starting point was these
potentials, our exact choice of parameters prioritises the fit to the ground states over the
resonances as these are the most relevant to this work. We are then assuming that such
a potential, when scaled, provides the more accurate prediction of dark QCD ground

states.

TABLE 5.1: Parameter sets of the three choices of potentials in the fitting to ground
states of QCD. The three parameter sets (P1, P2, P3) are taken from the works in
[181-183] respectively. The choice of units reflects the units used in the original works.

Model | 7 k p K mq 0 Ey
P1 102.67MeV.fm | 940.95MeV/fm | 1 616.02MeV.fm | 337MeV | 0.45fm 913.5MeV
P2 0.5069 0.1653GeV? 1 1.8609 0.315GeV | 2.3GeV~! 0.8321GeV
P3 0.4242 0.3898GeV®/3 | 2/3 | 1.8025 0.277GeV | 2.67GeV~! | 1.1313GeV

We can then calculate the same states for a dark QCD model as a function of the num-
ber of light quarks and a value of £. The parameters (7, k, p, k, mq, ro, Eg) then all scale
appropriately according to the mass dimensions of the chosen potential as discussed in
Fig. 5.1. Figure 5.2 shows the fit to ground states of the N and A baryons in QCD while
Fig. 5.3 shows a scaled version for a value of £ = 5, chosen for the sake of example.

In the one flavour quark case, the baryon spectrum consists of a lightest stable A baryon
with ground state spin 3/2. In the case of dark electromagnetic U(1)g symmetry con-
sistent with the SM it would have EM charge +2 in the case of a single up type quark.
It could also be a single down type and so be singly charged with opposite sign. For
the mass of this state we can compare with standard QCD in that we calculate the
mass from the constituent quarks and the potential energy from the scaled potential
including the spin interactions that lifts the ground state according to the chromomag-
netic hyperfine interaction in Eq. 5.8. The mesonic states will likewise contain only one
state however this lightest meson will be unique in that it has the feature of an anoma-
lous mass from the breaking of the anomalous axial U(1). The size of this anomalous

mass in these models of dark QCD with one light flavour is beyond the scope of this work.

In the two flavour quark case, with an isospin symmetry among the light states, the

baryon sector will have a spin-flavour SU (4) symmetry. The spectrum then consists of a
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FIGURE 5.2: The resonances of the N and A° states compared to PDG. The spin 1/2
ground state of the neutron and spin 3/2 ground state of the A® are fitted to match the
experimental ground states exactly in each case. These values serve as the reference for
dark QCD calculations.
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A quartet of spin 3/2 states as well as a spin 1/2 pair (N, P). However we can also con-
sider the cases where this doublet and quartet have charges that follow the possibility of
the two light dark quarks being both up type or both down type. The splitting between
the doublet and quartet in any scenario is modelled again with the spin-spin contribu-
tion which gives the spin 3/2 states larger mass than similar spin 1/2 states while EM
effects will make the neutral states lighter in general. For sufficiently light quarks with
near equal masses we can consider the spin 1/2 (N, P) doublet as the lightest states
in the first case, and with U(1)q corrections selecting the neutral state as the lightest
ground state. In the case of two up-like or down-like dark quarks, we have degenerate
states with equal EM contributions which we label (XF+ Zf*) and (27,%7) following

the naming conventions of standard QCD where in this case the flavour content of the

theory is taken to consist of near degenerate (u,c) or (d,s) dark quarks.

In the three flavour case we can compare directly with QCD, however again we can
distinguish the cases according to other quantum numbers. With three flavours we re-
cover the familiar octet and decuplet however with near degenerate quark masses the
spectrum will be near degenerate in flavour unlike the strange quark mass splitting seen
in QCD. Again we can consider EM mass differences where flavour content allows for
neutral and charged states. In the case of three or more flavours we gain two ways
of forming a spin 1/2 wavefunction for ground states as in the case of the ¥, A. The
differences in terms of Eq. 5.8 are the values of the o.0 terms. It remains true however
that in the degenerate u, d, s case that N, X, A have the same mass and share the place

of the lightest state.

In Figure 5.4 we show as a function of £ the lightest spin parity states for each of the
lightest baryons in the cases of only one light quark and two light quarks. The case of
two light quarks however provides the mass scale of the lightest state for any number of

light quarks greater or equal to two.

By observing the spin and flavour symmetries of a given set of light quarks one can
construct an equation with a functional form similar to that of the Gell-Mann-Okubo
equation which was used to make sense of the mass splittings of ground state hadrons
in the quark model. For a dark variant of such an equation, the unknown parameters
cannot be extracted from experiment though we can consider how these parameters

change from ordinary QCD for a choice of dark QCD. We introduce the additional free
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FIGURE 5.3: Spin 1/2 and spin 3/2 for a confinement scale ratio £ = 5 and three light

quarks. Dimensional parameters scale with £ displayed in the upper left. The PDG

values for the experimental spectra are shown for reference to the scale of the £ =1

case. Each of the results (P1,P2,P3) corresponds to a choice of parameters for the £ = 1
potential given in Table 5.1.

parameter dmg as the mass difference between the constituent quark mass of the light
states and the constituent mass of a semi-light state, analogous to the position of the
strange quark in QCD. In particular we consider the spin, and hypercharge symmetries
of the set given by the SUg(2) and Uy (1) groups. We also include the generalisation
of isospin, SUj(n;) where n; is the number of light flavours. This leads us to the form

of the Giirsey-Radicati mass formula, which was used to explain the Gell-Mann-Okubo
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FIGURE 5.5: Baryon states in our model for visible QCD compared to PDG values
[185]. Parameters for the Giirsey-Radicati formula are fitted from the baryon mass
results of the hypercentral Schrodinger equation.

mass relations [186], which is written as
1
M = Mo+C C2 [SUs(2)]+ D Cy [Uy (1) + E (Cz [SUI ()] — Z(Cl [Uy(l)])2> , (5.11)
where C1, Cy are the quadratic Casimirs for each group. In the case of QCD this becomes

M=My+CS(S+1)+DY +E [T(T+1)—iY2] (5.12)
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FIGURE 5.6: The top two plots shows the masses of the dark sector A? and ¥ states

for a range of values of the semi-light mass splitting dm, and £&. The lower plots display

the mass differences for the ¥ and X* baryons as well as the mass splitting of the two
different 3-quark spin-flavour wavefunctions (A, X) for a range of ém and €.

and works quite well in reproducing the masses of the octet and decuplet, of ground states
in QCD, as shown in Fig. 5.5. In Eq. 5.12 Mj is a new scale that places the energy of
the full baryon spectrum rather than being FEy itself. However from the hypercentral
analysis to find the ground state of a confining theory with n; light flavours and a given
Ey we can predict the mass of the ground state and working from this result determine
the value of My. This idea follows the applications to the experimental QCD spectrum in
[187] where the SU(6) spin-flavour symmetric Hamiltonian is solved numerically to find

the central values for the Giirsey-Radicati formula. The experimental states typically
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chosen to fit the parameters are, in terms of ground states,

- % =3C (5.13)
E—N:gE—D
A—N:—D—%E.

We can then use Eq. D5 to obtain a minimal number of baryon ground states and refit
the above parameters, for a choice of £ and dmg, based on our calculated eigenvalues
instead of the experimental spectrum. Figure 5.6 shows the masses of the A? and
Y ground states, as well as the mass differences in spin 1/2 and spin 3/2 ¥ ground
states, needed to find the parameters of such a formula for a choice of & and dmg
while Figure 5.4 shows the lightest %Jr,%_ and %Jr values needed in order to fit the mass
difference parameters that use the neutral N and A states. Note that as dm; approaches
zero, the dimensional parameters D, E also approach zero, as we expect. This is relevant
to the limit of maximum degeneracy. It is through this method that the mass differences
within the baryon multiplet for a dark QCD model can then be explored by solving for
the Giirsey-Radicati formula parameters each time we generate the resonance spectrum
for dark QCD states. Figure 5.7 examines the cases with only two light flavours and in
Fig. 5.8 we examine how the spectra of lightest spin-flavour states changes depending
on the value of £ and whether there are any non-degenerate light quarks. Applying this
methodology to a dark QCD inherently comes with the caveats that the exact scaling
of these parameters in, for instance, one flavour dark QCD may be more complicated
than the scaling we employ. In particular the relationship between bare quark mass and
constituent quark mass is non-trivial and has been explored in lattice studies such as

[188].

5.2.2 Meson spectra

For mesons we are mostly interested in the scaling with confinement scale as their masses
can have significant consequences on the stability of baryons. They may additionally
impact the cross sections of strong interactions and thus the self-interaction strength of

dark matter. In QCD, the application of the constituent quark model meson formula
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cases.

[189],

Macn =1+ 3 (5 ) 2708 53 85 W en (0 (5.14)
works surprisingly well, where S.S is 1/4 for vector mesons and -3/4 for pseudoscalars.
Taking the up and the down to have constituent mass 310 MeV and the strange quark
to have 483 MeV reproduces the results in Fig. 5.9. One approach we can then take
in exploring a dark analogue is to simply consider the inter-quark potential from the
baryon spectrum and solve for the two body wavefunction to find |¥peson(0)|2. This

follows the work in [181-183] where the potential and parameter space considered was

specifically designed to fit both the baryon and meson spectra.

While Eq. 5.14 is not particularly accurate in the chiral limit as m, — 0, we observed

that the pion scaling with £ is consistent with the Gell-Mann, Oakes, Renner relation,

my = Wigmd)p, (5.15)

Iz
if one assumes a pion decay constant that does not vary with £&. The parameter p is
the condensate, p = (qq), that scales directly with & This suggests that the model
we employ is taking the degree of explicit chiral symmetry breaking to be of the same
magnitude as ordinary QCD as we increase £. In other words, while the bare light
dark quark masses remain small compared to Apy, we are able to analyse the meson

spectrum for models where the ratio of light dark quark current masses to Apys is similar

to standard QCD. This is consistent with models of broken mirror symmetries where the
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FIGURE 5.8: Spin 1/2 and spin 3/2 baryon ground states for a factor of £ = 5 in the
case of three light quarks where one quark may have additional mass. The more massive
state is then labelled as the ¢ or s dark quark depending on its quantum charges.

dark EW scale can be a free parameter. This limits the

amount of parameter space we

can explore in this particular approach to dark hadronic spectra to models of dark QCD

with a similar degree of chiral symmetry breaking. We additionally know that in the

chiral limit the mesons approach zero mass and so Eq. 5.14 is applied in the context of

increasing £ with meson spectra fitted dressed masses now scaling with £ along with the
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the baryon model, these fits will act as the starting point for the scaling of dark meson
masses.

inter-quark potential. We can also factor in a value of dmg to observe the splitting with
a semi-light dressed state. The meson spectra are much more sensitive to the masses
of the bare dark quarks, which are all free parameters, and thus the spectra and the
comparison between meson and baryon mass will depend on the exact model. As noted
in [120], choosing a semi-light mass for bare quark masses and a hidden QCD without
flavour violating dark electroweak forces, one can make states similar to the A baryon

stable as Kaons may be too heavy for kinematics to allow decay to lighter baryons.

Figure 5.10 shows the light meson spectra for a small set of different dark QCD cases.
As the dark confinement scale is large, we take the anomalous meson to be sufficiently
heavy that it is not part of the light set as discussed previously. In Figure 5.11 we
examine how a sample of the meson spectra in this model varies with £. In particular we
see the variation of the mass between the pseudoscalar and vector mesons as £ increases.
As we are assuming a consistent value of the pion decay constant it must be the case
that the bare quark masses are similarly increasing with £&. This reiterates the previous
statement that this model is not well suited to exploring the chiral limit and, indeed,
exploring the full parameter space of varying the bare quark mass and confinement scale
independently for a dark QCD is a task that chiral perturbation theory or lattice QCD

studies may have the capacity to accomplish.
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5.3 Cosmological history of dark QCD

We have seen that asymmetric dark matter models position dark matter as the remaining

abundance of matter in a dark sector following the annihilation of near equal amounts

of dark matter and dark antimatter, similar to the baryon asymmetry in our own sector

[101]. We then require from an asymmetric dark matter model with a dark QCD a

number of key features. The first is that dark matter is stable and so a conserved global

quantum number is necessary. Dark QCD can provide this in the form of a dark baryon

number, however this must be present in the model of the dark quarks themselves, as
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is the case in models with a mirror symmetry. Secondly, in order for the dark sym-
metric matter-antimatter components to be annihilated a form of dark radiation such
as dark electromagnetism U(1)p is needed or annihilation into ordinary radiation must
occur. If dark photons fulfil that role this has direct implications as discussed in the
previous chapter on the ordering of the hadronic spectra as well as the self-interaction
cross section for dark matter. If the dark EM coupling is of the same scale as the SM
value, the self-interaction rate for purely charged DM may be above the current bounds.
For a recent analysis of constraints see [190] where DM with an U(1) gauge charge was
considered and constraints from triaxiality and galaxy cluster mergers were compared to
the significant bounds, in particular that for ~ 10 GeV scale DM the dark EM coupling
ap < 107*. Note that these bounds assume no compact object formation in the dark
sector. The strength of the dark gauge coupling in this case allows for different fractions
of DM to be charged. If the set of light quarks allows for neutral states then we have
seen that degenerate quark masses motivate models in which the neutral states are the
lightest stable composites and if nuclear forces are sufficiently weak then dark matter can
satisfy these constraints. In the case of dark glueball dark matter Ref. [191] considers
the relationship derived from the suspected glueball state of QCD that map ~ 5.5 Apum

and estimates a self-interaction cross section o ~ 4w /A3, .

In order to find a natural explanation for the observed components of the universe,
PDM = Dpm, we require both a reason for the similar abundance of baryons and dark
baryons as well as the similarity in mass. The relationship in the abundance can be for-
mulated in a large number of different ways and Chapter 4 gives just one fully-worked
example. In the case of mass, Section 5.2 has demonstrated how the lightest stable

baryon may scale with a dark confinement scale.

In the cases where there is a large mass gap between the lightest baryon and the rest
of the spectra we can take the dark matter candidate to be this stable state if dark
weak interactions are not suppressed and dark quarks masses are light. If however the
mass differences between two or more of the lightest dark QCD states are small then the
dark QCD phase transition will produce similar numbers of these states. This can be
compared to standard cosmology where the near degeneracy of the neutron and proton
produces roughly equal numbers following the quark hadron phase transition. In that

case the near equal numbers allows for the process of nucleosynthesis where an array
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of stable states of multiple nucleons can be formed. This is in the case where the dark
sector has n + v, <> p + e~ interactions that maintain near equal n, p densities prior
to the freeze out of weak interactions. This allows for helium to make up a significant
fraction (~ 26%) of the visible mass density. One can then consider dark sectors where
two or more near degenerate composite states, that is where Am < Apyg, are bound by
dark nuclear forces into a complex arrangement of nuclei like objects. The complexity
may be far greater than standard nuclear theory where there is an approximately lin-
ear relationship between the number of protons and neutrons in nuclear bound states,
for example; three near degenerate baryons, as in the case of degenerate u,d,s have six
possible dibaryon states and the mass hierarchy among these will depend non-trivially
on the dark nuclear-like interactions. Compact objects in the form of neutron star-like
bodies could also manifest ultimately depending on the model and the self-interaction

strength from strong-like interactions.

5.4 Summary

In this chapter we have considered the hypercentral approximation of the constituent
quark model and the possible properties of a dark sector with a QCD analogue. In
particular we have examined the dependence of the hadron spectra on the number of
light chiral fermions and the resulting phenomenology of dark QCD with a confinement
scale in the GeV range. As a class of theories to explain the nature of dark matter we
have seen that larger confinement scales result in higher degrees of degeneracy in the
spectra while the number of flavours has a significant impact on the mass and nature
of the lightest baryon and meson for SU(3) theories. Constituent quark models have
provided insight into the nature of QCD and while many frameworks for advancing
these calculations have sought to better replicate the experimental signatures, potential
models still allow us to probe the ground state spectra in a simple manner with fewer
parameters and a direct relationship to the confinement scale. By incorporating such
descriptions of dark QCD into the asymmetric dark matter models of this work, where
the gauge couplings of the SM and hidden sectors are connected in the UV, the similarity
in mass scale of DM and the proton finds a natural explanation. The higher confinement
scale motivates theories with a neutral ground state in addition to higher degeneracy

among the baryons with different total spin and charge. The spin and charge of the
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ground state is further dependent on the number of light dark quarks in the theory and

the quantum numbers of these quarks that make up the dark matter candidate.



Chapter 6

Conclusion

Common to much of the dark matter literature are models that consider the addition
of a single new particle species to fulfil the role of dark matter, in order to explain the
majority of mass in the universe. These models assume that the present day knowledge
of forces and fields that play a role in the modern universe, despite making up just one

sixth of the mass of the universe, is close to complete.

If we consider however that the Standard Model is merely an effective field theory then
the possibility is clear that not only is there much more to be found at higher energy
scales, but also that the Standard Model could be just one of a number of low energy
sets of states that primarily interact gravitationally with each other. The Standard
Model does remain however our greatest roadmap for developing theories that seek to
explain the currently unexplained features of the cosmos. In this theory of dark matter
we have considered the possibility that the gauge group and fermionic content that we
observe, governs the dynamics in one of two similar sectors. In particular, drawing on
the concept of a Zo mirror symmetry connecting two copies of the SM gauge group we
have seen how symmetric potentials can break mirror symmetry to create two markedly

different sectors.

This type of model can proceed with mirror GUT SU(5) x SU(5) theories that break this
GUT symmetry asymmetrically to give rise to very different mass scales for fermions in
the two sectors. The different fermion masses which result from this symmetry breaking
can then alter the running of the gauge coupling constants giving rise to similar confine-

ment scales. We demonstrated that this can work with a supersymmetric potential and
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a wide range of mass scales for dark fermions. This model can be extended to SO(10)
theories, where in the case of SO(10) x SO(10) we constructed symmetric Lagrangians
that induce the mirror GUT group to break asymmetrically through different intermedi-
ate gauge theories. This can then generate low energy scale visible and dark sectors that
can be similar with respect to the mass scales of matter but have very different thermal
histories and forces. In particular, for a wide array of intermediate breaking scales and
gauge groups that may have existed along the two sectors’ histories, the confining gauge
theories at low energy can have very similar confinement scales and thus explain the

similar masses of dark matter and the proton.

The similar abundances of matter and dark matter can be explained if the number
density asymmetries are generated above the scale of mirror symmetry breaking. This
naturally leads us to consider high scale leptogenesis models. We demonstrated models
where one sector sets the abundance of visible matter in the universe and a dark copy,
with a much higher EW scale, slightly higher confinement scale, and unique fermion
flavour mass hierarchy sets the larger density of dark matter mass, made up entirely of
dark baryons. Thermal leptogenesis is an ideal model to use for this high scale theory as
it also explains the small masses of light neutrinos. In these models of asymmetric sym-
metry breaking, a lepton asymmetry is generated in each sector by C'P violating decays
of Majorana neutrinos above the mirror breaking scale after which the two sectors can
independently reprocess equal lepton asymmetries into near equal baryon asymmetries.
Once antibaryons in our sector and dark antimatter in the hidden sector annihilate away
we then have an explanation for a unique dark sector which naturally has a density of
dark matter particles near that of the visible baryons and with a mass scale for these
particles that is naturally explained to be close to the proton mass. These models can

then completely explain the approximate 1:5 ratio of Eq. 1.1.

Lastly we explored the more complicated possibilities of a hidden composite SU(3) the-
ory. Using the hyperspherical constituent quark model of hadronic physics, we explored
the spectra of baryons and mesons in a model with a higher energy confinement scale
and dark quarks with independent mass scales. In this model we found how the order-
ing of the hadronic spectra can change depending on whether electromagnetic forces are
relevant as well as the effect of the value of the confinement scale and the mass splitting
among the dark quarks themselves. This model shows how neutral states are naturally

favoured over charged states and how the spin and mass of the lightest stable baryon is
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dependent on the number of light dark quarks. This also opened up the discussion to the
complexity of possible dark sectors in terms of nuclear binding forces and the possible
number of near degenerate dark matter candidates that may co-exist, leading to a rich

field of dark matter physics that the hidden sector in our models could be described by.

This thesis has investigated how to solve the fundamental mystery of the matter to dark
matter ratio. To that end we have developed the mechanism of asymmetric symmetry
breaking and shown in the first five chapters how this can solve the ratio problem in a
natural way. The breaking of these high scale mirror symmetries can produce the visible
sector, governed by the SM at low energies, and a dark sector with vastly different
properties but a similar mass contribution to the universe. These dark sectors are then
a compelling explanation for dark matter and offer the possibility that the dark sector
itself may be a fascinating landscape of new physics that is eerily similar to the world

we know.
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Appendix A

SU(5) x SU(5) Potentials

A.1 Scalar potential for non-supersymmetric SU(5)xSU(5)

model

In Chapter 2 we outlined the construction of an SU (5)x.SU (5) potential with asymmetric
minima. Here we discuss its features in more detail and explore some of the possibilities
in regard to breaking to various subgroups. The full SU(5) x SU(5) potential can be

written as

Vo= Aa(@ojou] + 0déa] — 1) + Ka(00j00] 0akdan) + Az (@05 dutdordni + dd5éatdarda;)
)‘t2(Xvinvji + Xdindji - M%)Q + “t(XvinvjiXdindji)

)‘t2(Xvinuinvinvij + Xdindindindij) + CO(XvinvijQﬁv;‘vag + Xdindji(ZSd;‘lsdg)
C1(Xuigxo” kbl + Xaijxa’ akdal) + Calxuigxn™ duou! + Xagxa® bdjbaf)
03(X’Uququ(ZS’ugﬂSv;Esmuﬁepnqit + deuXdpqﬁbdzLd)dé€Smuﬁ€pnqit)

Ca(bolidul Xas;xa"" + Gd'dal XvijXo"). (A.1)

+ o+ + o+ o+

The parameters are A1, g, A2 as well as A1, ttg, a2, ke and k;. In addition to these
there are five cross terms arising from nontrivial contractions between our representa-
tions, with parameters (Cy, C1, Co,C3,Cy). In general the asymmetry required can be
attained by making these additional cross term parameters smaller than Cy and the
other parameters of the model. In minimising this potential we can reduce the total

number of parameters by placing all of our fields in a simplified VEV form. The adjoint
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can be represented by the traceless matrix

ap 0 0 0 O
0 a0 0 0 O
(o) =0 0 0 a3 0 0|, (A.2)
0 0 0 a4 O
0 0 0 0 oas
with a1 + as + a3z + a4 + a5 = 0. For the 10 we have
0 po 0 0 O
-p1 0 0 0 O
(xa)=va| 0 0 0 p2 O], (A.3)
0 0 —p2 0 O
o 0 0 0 0

with p1 2 complex. The 24 and 10 are both reduced to just four total different degrees
of freedom each in this form. Working numerically we can however quickly compare the
results of using just these 16 degrees of freedom or the full 68; they were found to agree
in all cases. The parameter space is directly comparable to that of the simple model of
Sec. 2.3. The positive definite terms act exactly like collections of additional fields that
one could add to that previous model with the same-sector and cross-sector couplings
needed to generate asymmetric VEVs that differentiate entire sets of fields within these
multiplets. That is, if x, is large enough then if all (qﬁvé) fields gain a nonzero VEV, all
of the fields ((bdé-) are encouraged to become zero. Together with (Cy, Ca, Cs3, Cy) there is
a greater variability for the signs of quartic terms of the potential. Scaling any of these
additional quartics too high may alter the VEV pattern from the desired asymmetric
pattern. A larger value of Cy will however ensure the breaking is the extension of that
in Sec. 2.3. To be concrete, we display an example of some parameters set along these

guidelines and the VEVs that are produced. The parameters

A1 =04, kg =204, kK ~0.4, A\q = 0.8,
e =02, pg >~ 0.1, Ago ~ 0.1, Ao >~ —0.1,

Cy~05, Cy~—-0.1, Cy~-0.1, C3~-0.1, Cy ~ —0.1 (A4)
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give rise to the VEVs

100 0 0
010 0 0

(po) =~ 02410 0 1 0 0o |
000 —3/2 0
000 0 —3/2

(Xv) = 0,

(¢a) =~ 0,
0 144 0 0 0
~1—i 0 00 0

(xa) =~ 0.1 0 0 000 (A.5)
0 0 00 0
0 0 00 0
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A.2  Scalar potential for supersymmetric SU(5) x SU(5)

model

In this section we will discuss further the results of the supersymmetric version of asym-
metric symmetry breaking. The analysis here only serves to demonstrate that such
asymmetric patterns are possible within the constraints inherent in supersymmetric

theories.

Positive definite couplings between fields of different sectors are required to create the
anti-correlation between sectors. This is what necessitates a field which transforms into
itself under the discrete symmetry. An alternative to this could be to arm the theory
with a pair of complete singlets under the discrete symmetry, i.e. S,, Sg. Without such
additions we are unable to create gauge invariant terms in the superpotential which
can allow for cross-sector couplings to appear in the F-terms. The other addition we
made of the multiplet Y was based on our choice of complex representations.! We wish,
however, to demonstrate that the theory which we used previously can be adopted into
a supersymmetric form with the same gauge group breaking chains. The terms that we
wish to highlight that are derived from the superpotential are the contractions of the
form

Si(q)vq)vaXv + &,9,Y, Y, + P3P Xy X4+ <I>d<1>deYd). (Aﬁ)

It is clear that the parameter s4 being larger can help lead to asymmetric VEVs. The

other important parameter is s; which affects the term
$E (D DD, D). (A7)

With just these terms and the additional soft masses one can generate an asymmetric

VEV pattern. For the parameter example

s4 = s5 ~ 0.02, gs ~ 0.037, s9 ~ 0.001,

mx = my =~ 0.001, me ~ 0.1, mg = 0, (A.8)

'This may of course not be necessary, if one was working with two different real representations
to facilitate different symmetry breaking in each sector. In that case the procedure would be more
straightforward.
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and all trilinear terms and other parameters set at or close to zero, we obtain nonzero
VEVs for the adjoint in one sector and for the fields X, and Yy in the other sector
which serve to break SU(5), to the Standard Model gauge group and SU(5)4 to the
dark sector gauge group with VEVs

100 0 0
010 0 0
(®,) ~ 2110 0 1 0 0 |,
000 —=3/2 0
000 0 —3/2
(Xy) = 0,
(Yy) =~ 0,
(@) =~ 0,
() =~ o,
0 1.2+ 2.9i 0 0 0
~1.2 —2.9i 0 0 0 0
(Xa) =~ 0 0 0 ~1.53—-2.1i 0],
0 0 1.5+ 2.1i 0 0
0 0 0 0 0
0 1.2—2.9i 0 0 0
—1.2+2.9i 0 0 0 0
(Yo) =~ 0 0 0 ~1.53+2.1i 0 (A.9)
0 0 1.5i — 2.1i 0 0
0 0 0 0 0

This demonstrates the capacity for supersymmetric models to display the same asym-
metric symmetry breaking as non-SUSY models. There are other terms which can
contribute to the asymmetric pattern, i.e. contractions of the style (XyX;X,X,), but
scaling these up to be larger also scales upwards terms that we would need to contend

with to maintain the asymmetry.



Appendix B

SO(10) x SO(10) Potentials

In this appendix we expand on the potential discussed in Section 3.4. We firstly consider
the two representations of SO(10) independently. These are the adjoint 45, denoted by
¢;; which can be formed from the antisymmetric product of two fundamental represen-
tations, and the 54 which we label x;; which is formed from the completely symmetric
product of two fundamentals. The most general quartic potential for a rank two anti-

symmetric tensor in SO(10) is
u? A 5y «
= 5 i bji + 5 (0ii5i)” +  biiPindmidu- (B.1)

For this potential the symmetry breaking pattern is as follows. For A > 0 and o > 0 we

have

SO(10) — SU(5) x U(1), (B.2)

while for A > 0 and o < 0 we find
SO(10) — SO(8) x U(1). (B.3)

In the case of the symmetric rank two representation we have a similar equation but

with the added cubic term Tr(x?) so that the potential reads

2
7 A
= S+ 3 g +

Bu
3

(0%

1 Xij Xk Xki- (B.4)

XijXjkXkiXli +
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For this potential the parameter space is such that without the cubic term the possible

breaking chains are, for A < 0 and «a < 0,

SO(10) — SO(9), (B.5)

while for A > 0 and o > 0 we have

SO(10) — SO(5) x SO(5). (B.6)

For the parameter space where A > 0 and o > 0 and the cubic term is nonzero we have

SO(10) — SO(10 — n) x SO(n), (B.7)

where for values of 5 = 0 we recover the above result in Eq. B6 and for 8 > 0, n
increases as 8 does until the breaking chain of Eq. B5 is recovered. The generation of
the potential in Eq. 3.18 then results from the addition of the two potentials given above
in Eq. B1 and Eq. B4, as well as the analogue terms of the toy potential that mix the
fields of the two sectors and the new non-trivial same-sector contractions afforded by
the choice of the 45 and 54 representations. Using this potential our numerical results
align with the expected minima from the above potentials in the case where the cross
terms and the additional cubic terms are sufficiently small. For the choice of parameter
space where Ay > 0,09 > 0,A\ > 0, > 0,8 > 0,64 > 0,5, > 0,c20 > 1 > 0,c3 <
c2,cq4 K co,05 K cg we will obtain a potential which breaks asymmetrically with the
specific choice of breaking chain for each sector. This agrees with our numerical analysis

where for a sample choice of parameters,

Ap =1, Ky ~0.75, Ky ~0.75, A\, ~ 1.6,
e =1, py =1, agp ~0.5, a, ~1,

By >~ 0.35, c1 ~0.25, ca ~0.75, c3 ~0, c4 ~0, c5 ~0,
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we find that minimum preserves the VEVs

O 1.0 0 0O O O 0O 0 o
-10 0 0 O O O O 0 O
0O 0o 0 1.0 0 0O 0O O O
O 0o -1 0 0 0O O O O O
Gv) = 03 O 0 0 0 01 0 0 0 O ,
o 0 0 0 .10 O O 0 O
O 0o 0 o 000 1 0 O
O 0 0 0 0 0O—-1 0 0 O
0O 0 0 0 00 0 0 0 1
O 0o 0 o 0O 00 0 -10
{(op) = 0,
(xv) = 0,
1 0 00 0O 0 0 0 0
01 0 00O 0 0 0 0
001 O0O00O0 0 0 0 0
000100 0 0 0 0
(xp) = 03 00 0O0T1O0 0 0 0 0 ’ (B.5)
00 0 O0O0 1 0 0 0 0
000O0O0O0 —6/4 0 0 0
00 0O0O0UO 0 0 —6/4 0 0
00 0O0O0GO 0 0 —6/4 0
00 O0O0O0UO 0 0 0 —6/4

which breaks the symmetry according to

SO(10)y x SO(10)p — [SU(4) x SU(2) x SU2)]v x [SUB) x U(D]p.  (B.9)

The analysis discussed here describes just the first step in asymmetrically breaking an
SO(10) mirror symmetric potential to different subgroups for each sector and at different
energy scales. While many other possible breaking chains that have been discussed in this
work could be analysed, we leave such work to future efforts to create a detailed model
of an SO(10) GUT model where the choice of representations aligns with choices for

fermion mass generation models and considerations of minimality. Due to the complexity
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in analysing such Higgs potentials for large gauge groups we content ourselves at the
present juncture with the demonstration of the versatility of such asymmetric symmetry
breaking in the context of GUT models. With this specific example and the principles
given in the toy model, many of the other breaking chains could be realised in potentials

constructed in a like manner.



Appendix C

Leptogenesis Rates and Mass

Eigenstates of a Mirror 2HDM

C.1 Interaction rates in mirror leptogenesis

The decay terms in Eq 4.44 are given by

Y KiR) e (5 Ya)u Ka(2)
DY =Rt P T tHG =D RKale) (C.1)
o R K(z) g, (IR Ka(2)

S T HGE=D)EKa(z)) T T TH(E=1)Ka(2)

with K7, K5 modified Bessel functions of the second kind with order one and two respec-
tively. For scatterings and washout we also have additional terms from the additional

decay channels to each sector and via the second Higgs doublet,

Fs,t
)t +
with Sy = 2(S% + 25%). The scattering rate is
Ml Is,t
s,t + (CB)

7 24((3)gn? Ko(2)23
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where

@%iﬂmw”%)¢.muﬁ)

850 = oo [PV + ()2 Yo x @), ()
&> = 16% [(ni)z(FlTFl)ii + (U%)Q(FQTFZ)%} X (@).

The functions x** are the same as in [74] and the n' is the top Yukawa coupling. The

washout from inverse decays is then given by

1 N Eq
Wip = S0+ D+ D2 4 D20 ©5)

[Eaq

and the total washout rate by

N1+ s Nf s t t
< (NES N§q5>+4(5++5)>

1
(D} + DP* + D% + D?)

Wpr=Wip |1+

C.2 Mirror Higgs potentials

In Chapter 4 we examined the general Higgs potential of a mirror symmetric model with
two Higgs doublets in each sector. In the asymmetric limit where neutral states G; and
G5 are massless Goldstone bosons following the breaking to QED in each sector we can
examine the mixing among all six neutral bosons. The neutral squared mass matrix in

the mirror symmetric ® basis among states, (¢1, @2, az, @}, ¢h, a1), is

Mp1p1 Mep1ga Mepraz Mey¢y Mergl, Meraa
Meopr  Mepaga Mepnaz  Meogy Myl Meran
Magzgy  Maggy  Magaz  Mage, Masgl, Mazar
Meigr Meiga Mehas Meigy Meidl,  M¢hay

Mehgr  Mehga  Mehas Meher  Mehel,  Mehar

Maygr  Margs Maraz Mayg), Marpl, Majar
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This consists of the 21 elements, which in the asymmetric limit become

1 1 1 1
+ (w§z12)§ + (0323)5 + (v324)§ + (U}%Zg)i + wiwaRe[z13]

| =

Mg g, = miy + (3v721)

1
+ §U%Re[25] + 3vivaRe 26],
1
2
1
+ §U%Re[25] + 3v1v2Relz7],
1

1 1 1 1
Magay = M3y + (w%212)§ + (U§Z2)§ + (U%23)5 + (U%Z4)§ + (w329)§ + wiwaRe[z14]

1 1 1 1
Mgy ~ Miy + (Wiz12) = + (3’0322)5 + (vf23)§ + (vf24)§ + (w§z9)§ + wiwzRel214]

1
— iv%Re[zg)] + viveRe[z7],

1 1 1 1 1
M g, m3, + (3w%zl)§ + (v5212)§ + (w§Z3)§ + (w324)§ + (U%ZS)§ + vivaRe[z13]
1
+ §w§Re[25] + 3wiwaRe[z),

1 1 1 1 1
Mgy g1, m3, + (v%zu)i + (3w522)§ + (w%23)§ + (w%24)§ + (’0529)5 + vivaRe[214]

1
+ iw%Re[zg)] + 3wiwaRe[z7],

1 1 1 1 1
Maya, = Ma2 + (0%212)5 + (w%Z2)§ + (wfzs)i + (w%z4)§ + (U%Zg)i + vivaRe[z14]

1
— —w?Re|z5] + wiwoRe|27],
2
1 1 1
Mg py ~ V1V223 + V10224 + Re[Y3] 4+ §w1w2Re[2’10] + §w1w2Re[zll] + §w%Re[213]
1 3 3
+ §w§Re[zl4] + v1veRelzs] + 51}%1%6[26] + inge[zﬂ,
o1 1 1, 1,
Mg iap ~ Im[mis] + iwlwglm[zm] + iwlwglm[zn] + iwllm[zlg] + inIm[zM]
3 1
— v1velm|z;] — iv%Im[zg] - ivglm[zﬂ,
1 1
Mg, g = V1W128 + 502102Re[210] + §v2w2Re[zn] + vow Re[z13]
+ viwzRelz13],
1 1
Mg, g = V1W2212 + §v2w1Re[zlo] + §v2w1Re[z11] + viwiRe[z13]
+ vawaRe[214],
1 1
Mepra; = 51}Qw11m[z10] — §v2w11m[211] + vlwllm[zlg],

1
Mepoay = —(i)vflm[zs] — v1velm[z7],

1 1

Mig,gr ~ Vo212 + §v1w2Re[210] + §v1w2Re[z11] + viwiRe[z13] + vawaRe([214],
1 1

Mgy, ™ VaW2g + 5vlwlRe[zlo] + §v1w1R6[211] + vawiRe[z14] + viwaRe[z14],

1 1
7’)’L¢2a1 ~ ivlwllm[zlo] — ivlwllm[zn] + vgw11m[214],
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Mgy, ivlwglm[zlo] + %mwﬂm[«zn] + viwiIm[z3],

Maygl, 51)11011111[210] + %Ulwllm[zll] + viwzlm[z14],

Maga; —(%)vlwlRe[zlo] + %vlwlRe[zll],

My g, = Wiw223 + wiwazg + Re[Y3] + %vlnge[zm] + %vlnge[zn] + %U%Re[zm]
+ %nge[zM] + wywoRe[z5] + gw%Re[zﬁ] + gnge[zﬂ,

Mehay =~ Im[m?,] + %vlvﬂm[zlo] - %Ulvglm[zn] + %U%Im[zm] + %U%Im[zm]

— wywalm[zs] — %w%lm[zG] — %w%lm[m],

1
Mgy ay = —(g)w%Im[Z5] — wiwelm[z7].

In the dual Higgs basis we can express a new set of six fields that are in terms of
only v and w. We can then move to the mass eigenstate basis by rotating these fields
or, working from the initial basis, rotate the 8 x 8 matrix including G; and G3. This
results in two zero eigenvalues for the solutions in Table 4.2 and Table 4.3 as expected.
Either case yields the same physical mass eigenstates which we find numerically. These
solutions to the mass eigenstates, in terms of the parameters of the mirror symmetric
basis, are given in Table 4.2 and Table 4.3 for particular choices of the parameter space

that produce asymmetric symmetry breaking.
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C.3 Feynman diagrams in mirror leptogenesis

We list here the relevant AL = 1 scattering interaction channels in the case of mirror

leptogenesis considered in Chapter 4.

N+ 1
P,

t q

N# 1
P,

q u

N+ I
@,

u’ q

N+ I
o4

q t/

FiGURE C.1: Scattering channels considered in the Boltzmann equations of Chapter
4.

N+ 1
@,

q t

N+ 1
P,

u q

N+ I
)

q u

N+ I
L

t/
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N* t N+ u

I

FI1GURE C.2: Decay and scattering channels considered in the Boltzmann equations of
Chapter 4.



Appendix D

Hypercentral Schrodinger

Equation

The full potential including additional spin-spin interactions, isospin-isospin and spin-

isospin interactions has the form
Hy = V(1) + Vss(r7j) 61 - G2 + Vi (1)t - to + Vg (7)) (F1 - 82) (61 - G2)  (D.1)
and the full non-relativistic Hamiltonian is then [173, 174]

H =Y mi+Hy+ Hy (D.2)
7

with Hy =), 2]2 - As the spin-spin interaction has a larger contribution to the potential
than the remaining hyperfine interactions and the spin-orbit term is taken to be negligible
as in [171] we similarly focus on a model with the spin-spin effect contributing the most
important effects to mass differences. It has the form [180]

Hijy = A |(5) 8i- 856°(r) | (D3)

where A = SQA
m;m;

. In the case of the confining potentials of Eq. 5.10 where analytic
solutions are not obtainable we use the matrix methods of [172]. This then uses the
expansion of the 6D hyperspherical Schrodinger equation using the Fourier expansion of

the spatial wavefunctions over the hyperradius . Following the matrix methods converts
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this to a scaled coordinate y = where rg remains as a scaling estimate of the radius

x-‘,—r

of the spatial wavefunction. We can then express the hypercentral wavefunctions as

N
= Z a; sin(iry). (D.4)
i=1

This reduces the differential equation to a matrix eigenvalue problem that gives the first

N levels for a given value of ,

Z [[ (1 ;yz Z ) sin(kmy;) kK Sln(/{?ﬂ'yz)] (D.5)

J 0 k

_[15(1%)

2m 7“3 Yi

Z 2 sin(cmy; ) em cos(cmy;)
—~ N +1 !

(L

2m (y;)? + V(x(yj))) 5ij] ¥j = Enp(yi)-

This can be compared to the numerical solution of the case without the hypercentral
approximation. In that calculation, a similar change of variables allows for the calcula-
tion of the complete set of coupled hyperspherical differential equations. In our case we
apply it to a variety of non-analytic potentials that scale to dark sector parameters and

that use the hypercentral approach.
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