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Exponential growth in the out-of-time-order correlator (OTOC) is an important potential signature of
quantum chaos. The OTOC is quite simple to calculate for squeezed states, whose applications are
frequently found in quantum optics and cosmology. We find that the OTOC for a generic highly squeezed
quantum state is exponentially large, suggesting that highly squeezed states are “primed” for quantum
chaos. A quantum generalization of the classical symplectic phase space matrix can be used to extract the
quantum Lyapunov spectrum, and we find this better captures the exponential growth of squeezed states
for all squeezing angles compared to any single OTOC. By describing cosmological perturbations in the
squeezed state language, we are able to apply our calculations of the OTOC to arbitrary expanding and
contracting backgrounds with fixed equation of state. We find that only expanding de Sitter backgrounds
support an exponentially growing OTOC at late times, with a putative Lyapunov exponent consistent with
other calculations. While the late-time behavior of the OTOC for other cosmological backgrounds appears
to change depending on the equation of state, we find that the quantum Lyapunov spectrum shows some
universal behavior: the OTOC grows proportional to the scale factor for perturbation wavelengths larger
than the cosmological Hubble horizon.
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I. INTRODUCTION

Unlike classical systems, characterizing the nature of
chaos in quantum mechanics and quantum many body
systems can be challenging. Classical chaotic systems are
characterized by a hypersensitivity to perturbations in
initial conditions through time evolution, so that nearby
trajectories diverge exponentially. This behavior can be
captured by the Poisson bracket between the position and
momentum variables

fqðtÞ; pð0Þg2 ¼
�∂qðtÞ
∂qð0Þ

�
2

∼
X
n

cne2λnt; ð1Þ

where the λn are known as Lyapunov exponents. In
quantum mechanics, the analogue of (1) is the unequal

time commutator ½q̂ðtÞ; p̂ð0Þ�, which becomes the Poisson
bracket ∼iℏfqðtÞ; pð0Þg in the semiclassical limit.
Exponential growth of this commutator can potentially
serve as an indication of quantum chaos, reflecting the
growing overlap between these operators. However, the
unequal-time commutator is in general an operator, not a c
number, so a more useful measure is the double unequal-
time commutator, also known as the out-of-time-order
correlator (OTOC)

CðtÞ≡ −h½q̂ðtÞ; p̂ð0Þ�2iβ; ð2Þ

where angle brackets h� � �iβ denote an average over some
set of states, typically taken as a thermal average at
temperature T ¼ 1=β. More generally, one can consider
the OTOC of any two Hermitian operators

CW;VðtÞ ¼ −h½ŴðtÞ; V̂ð0Þ�2iβ: ð3Þ

A related quantity, originally considered in the context of
superconductivity and becoming increasingly important in
high energy and condensed matter physics, is the out-of-
time-order four-point function [1–3],
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FðtÞ≡ hŴðtÞV̂ð0ÞŴðtÞV̂ð0Þiβ: ð4Þ

The two are commonly related through CV;WðtÞ ∼
2ðhŴ ŴihV̂ V̂i − ReðFðtÞÞÞ at late times, so that their
information content is approximately the same and is
usually referred to interchangeably. In this work we will
refer to the squared commutator (2) as the OTOC, and we
will not focus on the closely related four-point function (4).
Further, as will be seen, the commutators considered in this
work are c numbers, so our results will be completely
independent of the averaging procedure.
In a quantum chaotic system, by analogy with the

classical case we expect the OTOC to exhibit exponential
growth CðtÞ ∼ e2λt at early times, characterized by a
quantum Lyapunov exponent λ, up to some later time,
after which it saturates. However, the single OTOC fails to
capture chaotic behavior for single-particle quantum cha-
otic systems, such as the well-known stadium billiards
model [4–6], or chaotic lattice systems, such as spin chains
[7]. Indeed, the OTOC is not the only possible probe of
quantum chaos in a system. A web of diagnostics of
quantum chaos [8,9]—including the OTOC, quantum
circuit complexity, and others—can be useful for studying
quantum chaos from different angles and perspectives. One
useful extension of the OTOC is the quantum Lyapunov
spectrum [10], a generalization of the classical matrix of
phase space deviations. We will compare our results of the
OTOC with the quantum Lyapunov spectrum, finding the
latter to be more consistent in describing the late-time
dynamics.
While the OTOC has been used to investigate the

dynamics and potential quantum chaotic behavior of
several specific quantum systems, in this paper we will
calculate the OTOC for the general class of states known as
squeezed states. Squeezed states, in which the uncertainty
of the position and momentum operators is squeezed in
some phase space direction while their product is still
minimized, are characterized by a squeezing parameter r
and a squeezing angle ϕ. Squeezed states arise in diverse
contexts, from models of quantum optics, gravitational
wave detection, or descriptions of cosmological perturba-
tions, and can serve as a useful toy model for many
interesting systems. Since squeezed states are freely inter-
acting, the OTOC can be calculated in closed form and is
independent of the OTOC averaging. We find that the
OTOC for highly squeezed states is exponentially large,
implying that highly squeezed states are “primed” for
quantum chaos. Indeed, applying our formalism of
squeezed states to the well-studied inverted harmonic
oscillator, we find exponential growth in the OTOC,
consistent with other work [11,12]. It is well known that
the inverted harmonic oscillator is not strictly chaotic; since
it is unbounded from below, growth in the OTOC thus more
properly reflects its unstable nature. However, it serves as
an exactly solvable toy model for studying potential

diagnostics of quantum chaos in quantum field theories
[13–19]. We will see that the matrix of unequal-time
commutators used in constructing the quantum
Lyapunov spectrum for squeezed states has a symplectic
structure, as in the classical case, and can be used to extract
general OTOC behavior of the system that is not sensitive
to the squeezing angle itself.
Contemporary interest in quantum information theory

has uncovered the OTOC as an important ingredient in the
AdS=CFT correspondence, and the OTOC plays an impor-
tant role in the study of the scrambling of information
by black holes [20,21]. In this paper, however, we are
interested in the application of the OTOC to cosmology, in
order to gain potentially new and complementary insights
about the behavior of cosmological perturbations and
models of the early universe such as inflation. Using
quantum circuit complexity as a diagnostic of quantum
chaos, the authors of Refs. [22,23] demonstrated that two-
mode squeezed state cosmological perturbations in an
expanding, accelerating universe may be chaotic in nature,
with a Lyapunov exponent bounded from above.1 Given the
difficulty of understanding the nature of quantum chaos
by a single diagnostic, in this paper we will examine the
behavior of the OTOC of cosmological perturbations in
expanding and contracting cosmological backgrounds with
fixed equation of state.
We begin the paper in Sec. II with an analysis of the

OTOC of squeezed states in quantum mechanics to set up
the tools and techniques of our approach, including a
generalization to the squared matrix of OTOCs. As a
concrete example, we consider the inverted harmonic
oscillator in the language of squeezed states and calculate
the corresponding OTOC. Cosmological perturbations
in Friedmann-Lemaître-Robertson-Walker (FLRW) back-
grounds are naturally described in Fourier space in the
language of two-mode squeezed states [26–29] (see also
[30,31] for an application of squeezed states to Bell cosmic
microwave background (CMB) experiments), so, in Sec. III
we develop the formalism for the OTOC of two-mode
squeezed states for continuous Fourier modes, mirroring
the analysis of Sec. II. We apply the squeezed state
formalism to cosmological perturbations and their OTOC
for expanding and contracting backgrounds with a fixed
equation of state in Sec. IV. One cosmological background
of particular interest, because of its similarities with black
hole backgrounds and its relevance to early- and late-time
expansion of the universe, is de Sitter space. Interestingly,
we find that expanding de Sitter space is the only
cosmological background that exhibits late-time exponen-
tial growth of the OTOC. In Appendix, we calculate the
OTOC of Fourier modes for de Sitter space using the
known exact solutions for the mode functions, recovering

1See also [24,25] for related work on the OTOC and circuit
complexity in the context of cosmology.
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the result of Sec. IV, and we extend this analysis to the
OTOC of de Sitter cosmological perturbations in position
space. Note that the OTOC of three-dimensional (3D) de
Sitter space has also been studied recently by the authors of
Ref. [32] with different techniques, and it is in excellent
agreement with our results here. Finally, we conclude with
some discussion of our results and their potential inter-
pretation in Sec. V.

II. SQUEEZED STATES AND THE
OUT-OF-TIME-ORDERED CORRELATOR

We will begin by introducing the main techniques and
concepts used throughout the rest of the paper in the
context of quantum mechanics, and apply our formalism to
the inverted harmonic oscillator, where the language of
squeezed states arises naturally. Our fundamental building
blocks will be the annihilation and creation operators â and
â†, which act in the usual way on the vacuum âj0i ¼ 0 and
eigenstates jni of the number operator. The single-mode
squeezed vacuum state jr;ϕi ¼ Ŝðr;ϕÞj0i, given in terms
of the (time-dependent) squeezing parameter r and squeez-
ing angle ϕ, is generated by the action of the squeezing
operator Ŝðr;ϕÞ on the vacuum, which can be written as

Ŝðr;ϕÞ≡ exp

�
r
2
ðe−2iϕâ2 − e2iϕâ†2Þ

�
: ð5Þ

We will be interested in unitary evolution Ûðη; η0Þ (where
we will use the variables η; η0 for time unless otherwise
noted) that can be parametrized in the factorized form
[26,27]

Ûðη; η0Þ ¼ Ŝðr;ϕÞR̂ðθÞ; ð6Þ

for potentially time-dependent rðηÞ;ϕðηÞ; θðηÞ where R̂ðθÞ
is the rotation operator written in terms of the time-
dependent rotation parameter θ

R̂ðθÞ ¼ exp ½−iθâ†â�: ð7Þ

In the Heisenberg picture, Û acting on the creation and
annihilation operators generates the time evolution

âðηÞ≡ Ûðη; η0Þ†â Ûðη; η0Þ
¼ cosh r e−iθ âð0Þ − sinh r eþiðθþ2ϕÞ âð0Þ†: ð8Þ

Note that the squeezing and rotation evolution operators
preserve the equal-time commutation relations between
the creation and annihilation operators, so that if
½âð0Þ; âð0Þ†�¼1 at some initial time, then ½âðηÞ;âðηÞ†�¼1
at later times as well.
We define position and momentum operators for some

fundamental frequency k in the usual way,

q̂ ¼ 1ffiffiffiffiffi
2k

p ðâ† þ âÞ; p̂ ¼ i

ffiffiffi
k
2

r
ðâ† − âÞ: ð9Þ

Using (8) and (9) we can rewrite the unequal-time com-
mutator2 between q̂ and p̂ as

½q̂ðηÞ; p̂ðη0Þ� ¼
i
2
½ðcosh re−iθ − sinh re−iðθþ2ϕÞÞ

× ðcosh r0eiθ0 þ sinh r0eiðθ0þ2ϕ0ÞÞ þ c:c:�:
ð10Þ

Taking the initial state to be “unsqueezed” r0 → 0, Eq. (10)
becomes

½q̂ðηÞ; p̂ðη0Þ� ¼ i½cosh r cosðθ − θ0Þ
− sinh r cosðθ − θ0 þ 2ϕÞ�: ð11Þ

Note that in the limit η → η0, this agrees with the equal-
time commutator above. In order to understand the sig-
nificance of (11), let us take some specific values of the
parameters r;ϕ; θ. In particular, for a squeezing angle that
is a multiple of π, Eq. (11) is exponentially small in the
squeezing parameter

½q̂ðηÞ; p̂ðη0Þ� ¼ ie−r cosðθ − θ0Þ; for ϕ ¼ nπ; ð12Þ

while for a squeezing angle that is an odd multiple of π=2 it
is exponentially large in the squeezing parameter

½q̂ðηÞ; p̂ðη0Þ� ¼ ier cosðθ − θ0Þ; for ϕ ¼ 2nþ 1

2
π:

ð13Þ

More generally, for any squeezing angle that is not an
integer multiple of π, the unequal time commutator
becomes exponentially large at large squeezing

½q̂ðηÞ; p̂ðη0Þ� ∼ ier; for ϕ ≠ nπ: ð14Þ

As discussed in the Introduction, one common measure
of quantum chaos is the OTOC,

CðηÞ≡ h−½q̂ðηÞ; p̂ðη0Þ�2iβ; ð15Þ

where the averaging h� � �iβ over states is typically a thermal
expectation value for temperature β ¼ 1=T,

hÔiβ ≡ Trðe−βĤÔÞ
Trðe−βĤÞ : ð16Þ

2See also [33] for other related work on unequal-time
correlators.
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Note that for systems controlled by a quadratic Hamiltonian
such as squeezed states, the thermal expectation value of
the position-momentum commutator (11) is a c number, so
that the OTOC (15) is independent of the averaging
procedure

CðηÞ ¼ −½q̂ðηÞ; p̂ðη0Þ�2: ð17Þ

Since the OTOC (17) is simply proportional to the square of
the unequal-time commutator (10), we will occasionally
refer to the commutator and its square interchangeably as
the OTOC throughout the text. We can define a quantum
Lyapunov exponent λ from CðηÞ when there is exponential
growth in time of the OTOC CðηÞ ∼ e2λη. Taking a highly
squeezed state (with ϕ ≠ nπ), the OTOC is exponentially
large

CðηÞ ∼ e2r: ð18Þ

Certainly, even though the OTOC is exponentially large,
such a highly squeezed state itself is not necessarily in a
state of quantum chaos, since it is the exponential depend-
ence on time that defines a system with quantum chaos.
However, because of the exponential dependence, even any
linear time-dependent deviation from constant squeezing
r ≈ r0 þ λη will exhibit quantum chaos with a Lyapunov
exponent λ. Thus, in this respect a highly squeezed state is
“primed” for quantum chaos.
Interestingly, a highly squeezed state with ϕ ¼ nπ with

this same linear growth in squeezing exhibits what appears
to be the opposite of quantum chaos: an exponential
decrease in the OTOC, as in (12). This quantum attractor–
like behavior for a specific squeezing angle in the quantum
phase space is an artifact of restricting ourselves to the
single unequal-time commutator (11) and motivates a
generalization of the OTOC. For classical chaos, the
sensitivity to initial conditions can be investigated by
studying the symplectic matrix

MijðηÞ≡ δziðηÞ
δzjðη0Þ

; ð19Þ

where the zi run over the canonical coordinates x, p. The
Lyapunov exponents can then be extracted from eigenval-
ues of the squared matrix

Lij ¼ ½M†ðηÞMðηÞ�ij: ð20Þ

A natural extension of (19) and (20) to quantum mechanics
is the matrix of unequal-time commutators [10]

M̂ijðηÞ≡ −i½Q̂iðηÞ; Q̂jðη0Þ� ð21Þ

and its averaged square

Lij ≡ h½M̂†ðηÞM̂ðηÞ�ijiβ; ð22Þ

where we have normalized Q̂1 ¼
ffiffiffi
k

p
q̂ and Q̂2 ¼ p̂=

ffiffiffi
k

p
.

The relevant unequal time commutators for the elements
of (21), under the assumption of an unsqueezed initial state,
together with (11) are

½p̂ðηÞ; q̂ðη0Þ� ¼ −i½cosh r cosðθ − θ0Þ
þ sinh r cosðθ − θ0 þ 2ϕÞ�; ð23Þ

½q̂ðηÞ; q̂ðη0Þ� ¼
i
k
½cosh r sinðθ − θ0Þ

− sinh r sinðθ − θ0 þ 2ϕÞ�; ð24Þ

½p̂ðηÞ; p̂ðη0Þ� ¼ ik½cosh r sinðθ − θ0Þ
þ sinh r sinðθ − θ0 þ 2ϕÞ�: ð25Þ

Note that since the unequal-time commutators (11),
(23)–(25) are c numbers for squeezed states, the matrix
elements M̂ij are also c numbers, and so the squared
matrix L is independent of the thermal averaging. It is
straightforward to check that the matrix M̂ has a unit
determinant for squeezed states; since it is also a 2 × 2
matrix, it is therefore necessarily symplectic, similarly
as its classical counterpart. This formulation of the
squared matrix of out-of-time-order correlators is prefer-
able to focusing on the single OTOC constructed using
½q̂ðηÞ; p̂ðη0Þ�, because it avoids a reliance in one particular
direction in the phase space of canonical coordinates.
The eigenvalues α� for L can easily be calculated,

though their general form is not particularly enlightening.
Recall that the OTOC (12) for ϕ ¼ nπ was exponentially
small for large squeezing, in contrast to the behavior at a
generic angle. The eigenvalues of L for ϕ ¼ nπ,

α� ¼ coshð2rÞsin2ðθ − θ0Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2ðθ − θ0ÞÞ þ cosh2ð2rÞsin4ðθ − θ0Þ

q
; ð26Þ

instead illustrate that there is indeed a large eigenvalue ∼e2r
for large squeezing. More generally, for an arbitrary
angle ϕ, in the large squeezing limit r ≫ 1 the dominant
eigenvalue of L scales as α− ∼ e2r, so that the presence of
an exponentially large eigenvalue is a generic consequence
of a highly squeezed state. It is tempting, then, to identify
the generalized behavior of the growth of the OTOC as the
dominant eigenvalue of L.
Up to this point we have been speaking in general

terms about squeezed states without reference to any
specific system. For concreteness, we can apply the general
formalism of squeezed states developed above in the
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context of the quantum inverted harmonic oscillator. The
Hamiltonian is a harmonic potential that is unbounded from
below

Ĥ ¼ 1

2
p̂2 −

1

2
k2q̂2 ¼ −

k
2
ðâ2 þ â†2Þ; ð27Þ

where we took a unit mass m ¼ 1 and we rewrote the
Hamiltonian in terms of the raising and lowering operators.
The time evolution of the squeezing and rotation param-
eters r;ϕ; θ is determined by the Heisenberg equation of
motion

d
dη

â ¼ i½Ĥ; â�: ð28Þ

For the Hamiltonian (27), this leads to the equations of
motion for the squeezing parameters

_r ¼ k sinð2ϕÞ;
_ϕ ¼ k cothð2rÞ cosð2ϕÞ; ð29Þ

_θ ¼ 0: ð30Þ

It is easy to see that these equations have a solution in
which the squeezing grows with time along a constant
squeezing angle with constant rotation angle

rðηÞ ¼ kη; ϕðηÞ ¼ π=4; θðηÞ ¼ θ0: ð31Þ

Inserting (31) into the position-momentum unequal time
commutator (11), we obtain at late times kη ≫ 1

½q̂ðηÞ; p̂ðη0Þ� ¼ i coshðkηÞ ∼ i
2
ekη; ð32Þ

with corresponding OTOC from (17)

CðηÞ ¼ cosh2ðkηÞ ∼ 1

4
e2kη ∼ e2λη: ð33Þ

Since (32) approaches an exponential at late times, we can
identify a quantum Lyapunov exponent for the inverted
harmonic oscillator λ ≈ k. We can also insert these solutions
into the matrix M̂ (21) of unequal-time commutators and
extract the Lyapunov exponent from the eigenvalues of L
(22). With θ ¼ θ0 and ϕ ¼ π=4, the matrix M̂ takes the
simple form

M̂ ¼
� − sinh r cosh r

− cosh r sinh r

�
; ð34Þ

while the eigenvalues α� of L take the simple form

α� ¼ f−1; coshð2rÞg ∼ f−1; e2kηg; ð35Þ

for r ¼ kη ≫ 1. We see that the dominant eigenvalue
e2kη captures the exponential growth we see in the single
OTOC (33), as expected, identifying the Lyapunov expo-
nent λ ∼ k as before.

III. SQUEEZED STATES IN QUANTUM FIELD
THEORY AND THE OTOC

The squeezed state formalism described in the previous
section applies equally well in quantum field theory, with
minor modifications. In particular, we will decompose a
free real quantum scalar field v̂ðx⃗; ηÞ into creation and
annihilation operators

v̂ðx⃗; ηÞ ¼
Z

d3k
ð2πÞ3 e

ik⃗·x⃗v̂k⃗ðηÞ

¼ 1ffiffiffiffiffi
2k

p
Z

d3k
ð2πÞ3 ðâk⃗ðηÞe

ik⃗·x⃗ þ â†
k⃗
ðηÞe−ik⃗·x⃗Þ; ð36Þ

where ½âk⃗; â†k⃗0 � ¼ ð2πÞ3δ3ðk⃗ − k⃗0Þ and âk⃗j0i ¼ 0 as usual.

The momentum-preserving two-mode squeezing operator
can be written as

Ŝk⃗ðrk;ϕkÞ≡ exp

�
rkðηÞ
2

ðe−2iϕkðηÞâk⃗â−k⃗ − e2iϕkðηÞâ†
−k⃗
â†
k⃗
Þ
�
:

ð37Þ

The unitary evolution for a general quadratic, momentum-
preserving Hamiltonian is generated by

Û k⃗ ¼ Ŝk⃗ðrk;ϕkÞR̂k⃗ðθkÞ; ð38Þ

where as before R̂k⃗ is the two-mode rotation operator

R̂k⃗ðθkÞ≡ exp ½−iθkðηÞðâk⃗â†k⃗ þ â†
−k⃗
â−k⃗Þ�; ð39Þ

written in terms of the rotation angle parameter θkðηÞ and
Ŝk⃗. As before, the evolution of the unitary operator Û k⃗
acting on the creation and annihilation operators generates
the time evolution

âk⃗ðηÞ ¼ Û†
k⃗
âk⃗ð0ÞÛ k⃗

¼ cosh rke−iθk âk⃗ð0Þ− sinh rkeiðθþ2ϕkÞâ−k⃗ð0Þ; ð40Þ

â†
k⃗
ðηÞ ¼ Û†

k⃗
â†
k⃗
ð0ÞÛ k⃗

¼ − sinh rke−iðθkþ2ϕkÞâ−k⃗ð0Þ þ cosh rkeiθk â
†
k⃗
ð0Þ:

ð41Þ

Wewill write the Fourier modes of the field v̂k⃗ðηÞ and its
momentum π̂k⃗ðηÞ in terms of the raising and lowering
operators

SQUEEZED OUT-OF-TIME-ORDER CORRELATOR AND … PHYS. REV. D 103, 023533 (2021)

023533-5



v̂k⃗ ¼
1ffiffiffiffiffi
2k

p ½âk⃗ðηÞ þ â†
−k⃗
ðηÞ�; ð42Þ

π̂k⃗ ¼ −i
ffiffiffi
k
2

r
½â−k⃗ðηÞ − â†

k⃗
ðηÞ�: ð43Þ

Using (40) and (41) for the raising and lowering operators
in terms of the squeezing parameters, we can rewrite the
field and its momentum as

v̂k⃗ðηÞ ¼
1ffiffiffiffiffi
2k

p ðcosh rke−iθk − sinh rke−iðθkþ2ϕkÞÞâk⃗ð0Þ

þ 1ffiffiffiffiffi
2k

p ðcosh rkeiθk − sinh rkeiðθkþ2ϕkÞÞâ†
−k⃗
ð0Þ;

ð44Þ

π̂k⃗ðηÞ ¼ −i
ffiffiffi
k
2

r
ðcosh rke−iθk þ sinh rke−iðθkþ2ϕkÞÞâ−k⃗ð0Þ

þ i

ffiffiffi
k
2

r
ðcosh rkeiθk þ sinh rkeiðθkþ2ϕkÞÞâ†

k⃗
ð0Þ:

ð45Þ

From these expressions it is relatively straightforward to
calculate the momentum-space unequal-time commutator

½v̂k⃗ðηÞ; π̂k⃗0 ðη0Þ� ¼ ið2πÞ3δ3ðk⃗ − k⃗0Þfkðη; η0Þ; ð46Þ

where we defined

fkðη; η0Þ ¼
1

2
½ðcosh rke−iθk − sinh rke−iðθkþ2ϕkÞÞ

× ðcosh r0eiθ0 þ sinh r0eiðθ0þ2ϕ0ÞÞ þ c:c:�;
ð47Þ

as the amplitude of the unequal-time commutator, with the
delta function and other factors of ð2πÞ and i stripped off,
and a zero in the subscript means the parameter is evaluated
at η ¼ η0, e.g., r0 ¼ rkðη0Þ. Notice once again that taking
equal times η → η0 leads to fkðη0; η0Þ → 1, as it should for
the equal time commutator.
As with the quantum mechanics case, we will define a

Fourier mode OTOC as the double commutator

Ck⃗ðηÞ≡ −h½v̂k⃗1ðηÞ; π̂k⃗01ðη0Þ�½v̂k⃗2ðηÞ; π̂k⃗02ðη0Þ�iβ; ð48Þ

where we used two copies of the unequal time commutator
with different momenta to avoid delta function divergences.
Once again, the unequal time commutator is a c number, so
the averaging is trivial and the OTOC simply becomes the
square of the commutator

Ck⃗ðηÞ ¼ −½v̂k⃗1ðηÞ; π̂k⃗01ðη0Þ�½v̂k⃗2ðηÞ; π̂k⃗02ðη0Þ�: ð49Þ

The OTOC (49) is proportional to the square of the
amplitude of the unequal-time commutator (47), and some
factors of ð2πÞ and delta functions enforcing momentum
conservation

Ck⃗ðηÞ ¼ ð2πÞ6fk1ðη; η0Þfk2ðη; η0Þδ3ðk⃗1 − k⃗01Þδ3ðk⃗2 − k⃗02Þ:
ð50Þ

Ignoring the delta functions and other factors, then,
we have

Ck⃗ðηÞ ∼ fk1ðη; η0Þfk2ðη; η0Þ; ð51Þ

so that the OTOC and the amplitude fkðη; η0Þ have roughly
the same behavior for k⃗1 ∼ k⃗2 ∼ k⃗. Because of this, we
will mostly focus our analysis on the amplitude function
fkðη; η0Þ, which we will treat as synonymous with the
OTOC.
As in Sec. II, we can construct the matrix M̂ of

canonical unequal-time commutators (21), with elements

M̂ij ≡ −i½Q̂iðηÞ; Q̂jðη0Þ�; ð52Þ

for Q̂1 ¼
ffiffiffi
k

p
v̂k⃗ and Q̂2 ¼ π̂k⃗0=

ffiffiffi
k

p
. We will similarly define

the squared matrix L as in (22). Correspondingly, it is
straightforward to calculate the analogs of (23)–(25) for the
field theory case; the results are, unsurprisingly, identical
to the quantummechanics case except for additional factors
of ð2πÞ3δ3ðk⃗ − k⃗0Þ. In particular, we will write the unequal-
time commutators as

½π̂k⃗0 ðηÞ; v̂k⃗ðη0Þ� ¼ −ið2πÞ3gkðη; η0Þδ3ðk⃗ − k⃗0Þ; ð53Þ

½v̂k⃗ðηÞ; v̂k⃗0 ðη0Þ� ¼ ið2πÞ3hkðη; η0Þδ3ðk⃗ − k⃗0Þ; ð54Þ

½π̂k⃗ðηÞ; π̂k⃗0 ðη0Þ� ¼ ið2πÞ3jkðη; η0Þδ3ðk⃗ − k⃗0Þ; ð55Þ

where

gkðη; η0Þ ¼
1

2
½ðcosh rkeiθk þ sinh rkeiðθkþ2ϕkÞÞ

× ðcosh r0e−iθ0 − sinh r0e−iðθ0þ2ϕ0ÞÞ þ c:c:�;
ð56Þ

hkðη; η0Þ ¼
1

2
½ðcosh rkeiθk − sinh rkeiðθkþ2ϕkÞÞ

× ðcosh r0e−iθ0 − sinh r0e−iðθ0þ2ϕ0ÞÞ − c:c:�;
ð57Þ
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jkðη; η0Þ ¼
1

2
½ðcosh rke−iθk þ sinh rke−iðθkþ2ϕkÞÞ

× ðcosh r0eiθ0 þ sinh r0eiðθ0þ2ϕ0ÞÞ − c:c:�:
ð58Þ

Together with fkðη; η0Þ in (47), these functions represent
the amplitudes of the unequal-time commutators.
For an unsqueezed initial state r0 → 0, the functions

fkðη; η0Þ − jkðη; η0Þ become

fkðη; η0Þ ≈ cosh rk cosðθk − θ0Þ
− sinh rk cosðθk − θ0 þ 2ϕkÞ; ð59Þ

gkðη; η0Þ ≈ cosh rk cosðθk − θ0Þ
þ sinh rk cosðθk − θ0 þ 2ϕkÞ; ð60Þ

hkðη; η0Þ ≈ cosh rk sinðθk − θ0Þ
− sinh rk sinðθk − θ0 þ 2ϕkÞ; ð61Þ

jkðη; η0Þ ≈ cosh rk sinðθk − θ0Þ
þ sinh rk sinðθk − θ0 þ 2ϕkÞ: ð62Þ

Again, the matrix M̂ then has determinant one, and we will
use the dominant eigenvalue of L to identify the Lyapunov
exponent, as discussed in Sec. II.
We will find in Sec. IV that the assumption of an

unsqueezed initial state does not cover all cases of interest.
In particular, we will also be interested in the case where the
initial state is highly squeezed r0 ≫ 1, with a squeezing
angle ϕ0 ≈ −π=2 and a vanishing rotation angle θ0 ≈ 0. In
this limit, the amplitude functions (47), (56)–(58) become

fkðη; η0Þ ≈ e−r0ðcosh rk cosðθkÞ − sinh rk cosðθk þ 2ϕkÞÞ;
ð63Þ

gkðη; η0Þ ≈ e−r0ðcosh rk cosðθkÞ þ sinh rk cosðθk þ 2ϕkÞÞ;
ð64Þ

hkðη; η0Þ ≈ e−r0ðcosh rk sinðθkÞ − sinh rk sinðθk þ 2ϕkÞÞ;
ð65Þ

jkðη; η0Þ ≈ e−r0ðcosh rk sinðθkÞ þ sinh rk sinðθk þ 2ϕkÞÞ:
ð66Þ

Clearly, these are similar to the unsqueezed initial state,
up to a common multiplicative factor of e−r0 . The eigen-
values of the corresponding L will therefore be identical to
those of the unsqueezed initial state, with appropriate
choices of rk; θk;ϕk. Finally, we will also be interested
in the initial conditions r0 ≫ 1 with vanishing angles

ϕ0; θ0 ≈ 0. The amplitude functions will once again mirror
the structure of (59)–(62), up to a common multiplicative
factor of eþr0 this time.
In the next subsection, we will apply this language of

two-mode squeezed states to study the behavior of the
OTOC (49) for cosmological perturbations in an expanding
background.

IV. COSMOLOGICAL PERTURBATIONS
AND THE OTOC

We begin our analysis by reviewing the description of
cosmological perturbations [34] as two-mode squeezed
states, following [22] (see also [26–29]). We take as our
background a spatially flat FLRW metric

ds2 ¼ −dt2 þ aðtÞ2dx⃗2 ¼ aðηÞ2ð−dη2 þ dx⃗2Þ; ð67Þ

where we have introduced the conformal time η. For
simplicity we will consider our matter content to consist
of a fundamental scalar field φ with a canonical kinetic
term and potential VðφÞ. On the background (67) the scalar
field is homogeneous and time-dependent φ0ðtÞ; the scalar
field potential and kinetic energy source the evolution of
the scalar field aðηÞ.
On this background we will consider fluctuations of a

scalar field φðxÞ ¼ φ0ðtÞ þ δφðt; xÞ with the metric

ds2 ¼ aðηÞ2½−ð1þ 2ψðx; ηÞÞdη2 þ ð1 − 2ψðx; ηÞÞdx⃗2�:
ð68Þ

In terms of the curvature perturbation R ¼ ψ þ H
_φ0
δφ,

where a dot denotes a derivative with respect to cosmic
time t, and the Hubble parameterH ¼ _a=a, the action takes
the following simple form [34]:

S ¼ M2
pl

2

Z
dt d3x a3

_φ2
0

H2

�
_R2 −

1

a2
ð∂iRÞ2

�
: ð69Þ

By using the Mukhanov variable v≡ zR where z≡
Mpla

ffiffiffiffiffi
2ϵ

p
, with ϵ ¼ − _H=H2 ¼ 1 −H0=H2, the action

can be transformed into the following form:

S¼ 1

2

Z
dηd3x

�
v02− ð∂ivÞ2þ

�
z0

z

�
2

v2−2
z0

z
v0v

�
; ð70Þ

where the prime denotes a derivative with respect to
conformal time and H ¼ a0=a. This action represents
perturbations of a scalar field coupled to an external
time-varying source.3 We promote the perturbation to a

3A virtually identical-looking expression can also be derived
for tensor perturbations with the replacement z0=z → a0=a, and
our results will hold for these types of perturbations as well.
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quantum field and expand into Fourier modes v̂k⃗, with
the action

S ¼ 1

2

Z
dη d3k

�
v̂0
k⃗
v̂0−k⃗ −

�
k2 −

�
z0

z

�
2
�
v̂k⃗v̂−k⃗

− 2
z0

z
v̂k⃗v̂

0
−k⃗

�
: ð71Þ

The corresponding Hamiltonian can be written in terms of
the raising and lowering operators as

Ĥ ¼
Z

d3kĤk⃗

¼
Z

d3k

�
kðâk⃗â†k⃗ þ â†

−k⃗
â−k⃗Þ − i

z0

z
ðâk⃗â−k⃗ − â†

k⃗
â†
−k⃗
Þ
�
:

ð72Þ
The first term in (72) represents the usual free-particle
Hamiltonian, while the second term describes the inter-
action between the quantum perturbation and the expand-
ing background. Notice that this last term is similar in form
to the Hamiltonian for the inverted harmonic oscillator
from the last section, and indeed we will see that when the
last term in the Hamiltonian dominates z0=z ≫ k the
dynamics will resemble that of an inverted harmonic
oscillator. The time evolution of the Fourier modes gen-
erated by Hk⃗ is naturally described by the product of the
two-mode squeezing Sk⃗ðrk;ϕkÞ and rotation Rk⃗ðθkÞ oper-
ators, as outlined in Sec. III.
The Heisenberg equation of motion dâk⃗=dη ¼ i½Ĥk; âk⃗�,

together with the squeezed form of the creation and
annihilation operators (40) and (41), leads to the equations
of motion for the squeezing parameters

drk
dη

¼ −
z0

z
cosð2ϕkÞ; ð73Þ

dϕk

dη
¼ kþ z0

z
cothð2rkÞ sinð2ϕkÞ; ð74Þ

dθk
dη

¼ k −
z0

z
tanhðrkÞ sinð2ϕkÞ: ð75Þ

It is often more convenient to rewrite these equations of
motion with the scale factor aðηÞ as the independent
parameter, leading to

drk
da

¼ −
1

a
cosð2ϕkÞ; ð76Þ

dϕk

da
¼ k

aH
þ 1

a
cothð2rkÞ sinð2ϕkÞ; ð77Þ

dθk
da

¼ −
k
aH

−
1

a
tanh rk sinð2ϕkÞ: ð78Þ

Solutions to (76)–(78) are known [23]; in the rest of this
section, we will use these known solutions to compute the
unequal-time commutator (47) and the OTOC (49).

A. Expanding backgrounds

The scale factor in conformal time for expanding FLRW
backgrounds (67) with a fixed equation of state p ¼ wρ
takes the form4

aðηÞ ¼
�
η0
η

�
β

¼
( ðη0η Þβ; −∞ < η < 0; η0 < 0 for accelerating backgrounds β > 0 ðw < −1=3Þ;
ð ηη0Þjβj; 0 < η < ∞; η0 > 0 for decelerating backgrounds β < 0 ðw > −1=3Þ; ð79Þ

where the parameter β≡ − 2
1þ3w is positive for accelerat-

ing solutions and negative for decelerating solutions. The
dimensionful parameter η0 controls the (cosmic-time)
Hubble expansion rate H0 at the time η ¼ η0 as jη0j ¼
jβjH0. For our purposes, jη0j will show up in the combi-
nation kjη0j, which controls when modes are subhorizon or
superhorizon.
For all accelerating backgrounds, w < −1=3, modes

begin at sufficiently early times a ≪ ðkjη0jÞβ inside the
horizon with small squeezing rk ≪ 1, with the approximate
solution

rkðaÞ ≈
β

2kjη0j
a1=β ≪ 1; ð80Þ

ϕkðaÞ ≈ −
π

4
−

1

4kjη0j
a1=β; ð81Þ

θkðaÞ ≈ −
kjη0j
a1=β

≫ 1: ð82Þ

Taking the initial state to be “unsqueezed” r0 → 0, the
amplitude of the unequal-time commutator (47) becomes

fkðη; η0Þ ¼ cosh rk cosðθk − θ0Þ
− sinh rk cosðθk − θ0 þ 2ϕkÞ: ð83Þ

4As discussed in [23], the marginal case w ¼ −1=3 is unin-
teresting for our purposes, and we will not consider it further here.
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For times η > η0, but still early enough that modes remain
within the horizon, Eq. (83) oscillates with approximately
unit amplitude

fkðη; η0Þ ≈ cos ðθk − θ0Þ ∼Oð1Þ: ð84Þ

Thus, the OTOC for sufficiently early times when the
modes are deep within the horizon is Ck⃗ ∼Oð1Þ. At
late times, once the modes exit the horizon a ≫ ðkjη0jÞβ,
the squeezing parameter grows, while the squeezing
and rotation angles “freeze out,” with the leading-order
solution [23]

rkðaÞ ≈ ln ða=kjη0jÞ; ð85Þ

ϕkðaÞ ≈ −
π

2
; ð86Þ

θkðaÞ ≈
kjη0j
2β − 1

1

a1=β
≪ 1: ð87Þ

At late times, then, the unequal-time commutator becomes
dominated by the large squeezing

fkðη; η0Þ ≈ elnða=kjη0jÞ cosðθ0Þ ¼
aðηÞ
kjη0j

cosðθ0Þ: ð88Þ

The corresponding OTOC is then the square of this

CkðηÞ ∼ fkðη; η0Þ2 ≈
�
aðηÞ
kjη0j

�
2

cos2ðθ0Þ: ð89Þ

Up to now, we have been working with conformal time η,
because the Hamiltonian and equations of motion take on a
particularly simple form in this coordinate system. In order
to interpret our result (89) physically, however, it is more
natural to evaluate it in terms of the cosmic time t, defined
in (67), because this is the time observed by an observer
comoving with the expanding fluid. The qualitative behav-
ior of the time dependence of the accelerating solutions
can be subdivided according to the null energy condition.
When applied to a homogeneous and isotropic perfect
fluid described by a pressure and energy density, the null
energy condition TμνNμNν ≥ 0 becomes a condition on the
equation of state w ≥ −1. Accelerating cosmological back-
grounds satisfying the null energy condition −1 < w <
−1=3 are generally realizable with known matter sources,
including canonically normalized scalar fields; the corre-
sponding scale factor takes a power-law form aðtÞ∼
ðt=t0Þ2=ð3ð1þwÞÞ, where aðt0Þ ¼ 1. Cosmological back-
grounds that saturate the null energy condition w ¼ −1,
including de Sitter space, experience exponential expansion
aðtÞ ∼ eHðt−t0Þ. Finally, for cosmological backgrounds that
violate the null energy condition w < −1, which may be
more difficult to realize using simple matter fields without

introducing additional pathologies, the scale factor diverges
in finite time aðtÞ ∼ ðte − tÞ2=ð3ð1þwÞÞ at time te. The
corresponding time dependence of the OTOC (89) follows
that of the scale factor

CkðtÞ∼

8>><
>>:
t

4
3ð1þwÞÞ; for −1<w<−1=3ð1< β<∞Þ;
ðHkÞ2e2Ht; for w¼−1ðβ¼ 1Þ;
ðte− tÞ− 4

3ð1þwÞÞ; for w<−1ð0< β< 1Þ:
ð90Þ

As discussed in the Introduction, we will schematically
describe the growth of the OTOC CkðtÞ between the Fourier
mode and its momentum in terms of the semiclassical limit
of the corresponding Poisson bracket. For a chaotic system
we expect the OTOC to grow exponentially with time;
interestingly, we find that only de Sitter solutions (w ¼ −1)
display strictly exponential growth of the OTOC,

CkðtÞ ∼Ae2λt ¼
�
HdS

k

�
2

e2Ht; ð91Þ

where λ ¼ HdS is a Lyapunov exponent. Putting this
together with the early-time behavior, then, we see that
the OTOC for a de Sitter background initially oscillates
with unit amplitude, then grows exponentially with cosmic
time after horizon crossing, as seen in Fig. 1. Following [3],
the timescale t� ∼ ð2λÞ−1 logð1=AÞ for the OTOC of a
given mode with wavelength k to become Oð1Þ is

t�ðkÞ ∼
1

2HdS
log

�
k

HdS

�
2

∼H−1
dS log

k
HdS

: ð92Þ

By taking the wavelength to be bounded above by a cutoff
k < Λ, an estimate for an upper bound on this timescale for
the entire system could be t� ≤ H−1 lnðΛ=HdSÞ. For large
N quantum field theories, it is more appropriate to describe
the behavior of the system in terms of a four-point function
FðtÞ ¼ hŴðtÞV̂ð0ÞŴðtÞV̂ð0Þiβ ≈ 1 − eλt=N for intermedi-
ate times longer than the typical thermalization timescale td
[3]. A corresponding scrambling time is then defined as the
timescale in which the four-point function decays, tscr ≈
λ−1 logN [3]; large N ensures a hierarchy between the
thermalization and scrambling times. In our case, it is
difficult to directly calculate the thermalization timescale td
in our formalism from the thermal two-point function,
so it is not clear if such a hierarchy naturally exists.
Nevertheless, a naive estimate would give the thermal-
ization timescale to be set by the Gibbons-Hawking de
Sitter temperature scale [35] td ∼ T−1 ∼H−1

dS ∼ λ−1. Given a
relationship between the OTOC and the four-point function
in this limit of the form CðtÞ ≈ 2 − 2FðtÞ ≈ 2eλt=N, the two
timescales t� and tscr then might play analogous roles.
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The putative Lyapunov exponent from (91) also saturates
the conjecture [3] that the Lyapunov exponent of the OTOC
is bounded above by the temperature λ ≤ 2πT, taking T ∼
H=2π [35]. However, we again note that for our case the
correspondence is less clear: the conjectured bound relies
on a parametric separation of scales between the typical
scattering, or thermalization, time td and the scrambling
time tscr, which in our case might not be present. Since the
OTOC calculated using the unequal-time commutator (49)
is done in Fourier space and is a c number, it is independent
of the thermal averaging procedure as also discussed earlier
around Eqs. (17) and (49). Further, it is difficult using
our formalism to determine the thermalization time, and so
it is unclear that the assumptions and reasoning that went
into [3] apply in our case. It is interesting to compare our
results for the OTOC (91) and t� (92) to those of [32,36].
While the Lyapunov exponents agree, up to perhaps a
factor of 2, Eq. (91) does not manifestly vanish in the limit
in which gravity is decoupled for a fixed de Sitter scale
Mpl=HdS → ∞, while the OTOC of [32] does manifestly
vanish in this limit. Similarly, t� does not contain an explicit
factor of Mpl=HdS in this decoupling limit. Note, however,
that this is an artifact of the transformation to Mukhanov
variables below (69), which contains an explicit factor of
Mpl. In the Mpl=HdS → ∞ limit, the curvature perturba-
tions R described by the action (69) do indeed decouple.
Nevertheless, Eq. (91) does not lead to the same parametric
control of the separation of timescales as [32] in this limit.
Note also that (91) is evaluated in cosmic time with
comoving coordinates, while the analysis of [32] uses
static time coordinates, making it difficult to make a direct
correspondence between these results. Finally, note that
while the Mukhanov variable v grows at late times for
de Sitter, the corresponding curvature perturbation R is

constant on these superhorizon scales, so we do not expect
the linearized theory to break down due to gravitational
backreaction.
Considering accelerating solutions that obey the null

energy condition −1 < w < −1=3, we see that the growth
of the OTOC is considerably slower than exponential.
However, for quasi–de Sitter backgrounds that might arise
in models of early universe inflation with w ¼ −1þ ϵ for
ϵ ≪ 1, the growth of the OTOC can be strongly dependent
on time CkðtÞ ∼ t2=ϵ. Correspondingly, it seems reasonable
to classify the behavior of the OTOC for these backgrounds
as “quasichaotic” (in the same sense that these cosmologi-
cal backgrounds are often referred to as “quasi–de Sitter”).
Crossing over to backgrounds that violate the null energy
condition w < −1, the OTOC diverges in finite (cosmic)
time, as the expanding background approaches the so-
called “big rip” singularity. It is not surprising to see the
OTOC for these superchaotic systems display similar
pathologies as the background solution as the big rip is
approached.
While the discussion above in terms of the OTOC (51)

clearly establishes growth at large squeezing, let us also
consider the form of matrix M̂ (52) of OTOCs and the
associated eigenvalues of the squared matrix L. At late
times, the eigenvalues of M̂ become e� lnða=kjη0jÞ ∼ ð a

kjη0jÞ�1,
so that the growth of the OTOC at late times is reflected in
the dominant eigenvalue of the matrix M itself. The
eigenvalues of L at late times become

α� ∼
�
0;
1

2
e2 lnða=kjη0jÞsin2ðθ0Þ

�

∼
�
0;
1

2

�
aðηÞ
kjη0j

�
2

sin2ðθ0Þ
�
: ð93Þ

FIG. 1. The numerical solution to the squeezing equations of motion (76)–(78) show the behavior of the OTOC Ck as a function of
scale factor (left) and as a function of cosmic time t (right) [written here in terms ofH0ðt − t0Þ, where aðt0Þ ¼ 1 andHðt0Þ ¼ H0] for an
expanding accelerating cosmological background depends on the equation of state. For all equations of state the OTOC is oscillatory
withOð1Þ amplitude at early times, then grows as a2 when the mode exits the horizon, following (90). For accelerating equations of state
between −1 < w < −1=3 (dashed red lines, w ¼ −0.9), the OTOC grows as a power of t, slower than exponential. For w ¼ −1 (solid
black) lines, the OTOC grows exponentially, implying potential quantum chaos for de Sitter expansion. For w < −1 (dash-dotted blue
lines, w ¼ −1.1), the growth of the OTOC is “superchaotic,” growing faster than exponential and diverging in finite time.
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We see the same general behavior for the dominant
eigenvalue as discussed above for the OTOC (90), con-
firming that analysis.
For decelerating backgrounds w > −1=3, modes begin

outside the horizon for sufficiently early times a ≪
1=ðkη0Þjβj; the solutions for the squeezing parameter, angle,
and rotation angle thus qualitatively resemble the super-
horizon solutions in the accelerating case, with large and
growing squeezing rk ≫ 1 and approximately constant
angles

rkðaÞ ≈ r0 þ ln ða=a0Þ; ð94Þ

ϕkðaÞ ≈ −
π

2
; ð95Þ

θkðaÞ ≈
kη0jβj

ðjβj þ 2Þ a
1=jβj ≪ 1; ð96Þ

where the initial squeezing is also taken to be large r0 ≫ 1.
Setting r0 ≫ 1, θ0 ≈ 0, and ϕ0 ≈ −π=2, Eq. (47) becomes

fkðη;η0Þ ¼ e−r0ðcosh rk cosðθkÞ− sinh rk cosðθk þ 2ϕkÞÞ:
ð97Þ

Using the solutions at some early time η > η0, but still
before horizon crossing, Eq. (97) becomes

fkðη; η0Þ ≈ erk−r0 ≈
aðηÞ
a0

≥ 1: ð98Þ

We see that the OTOC Ck ∼ f2k increases with the scale
factor during these early times, up until horizon crossing.
At late times a ≫ 1=ðkη0Þjβj, the modes reenter the horizon
and the squeezing freezes in, while the squeezing angle and
rotation angle are large and evolving,

rkðaÞ ≈ r�; ð99Þ

ϕkðaÞ ≈ −
3π

2
þ kη0a1=jβj; ð100Þ

θkðaÞ ≈ −kη0a1=jβj: ð101Þ

The unequal time commutator then oscillates, with an
amplitude that is frozen in, set by the scale factor at horizon
reentry a� ∼ 1=kη0,

fkðη; η0Þ ≈ e−r0ðcosh r� cosðθkÞ − sinh r� cosðθk þ 2ϕkÞÞ
≈
a�
a0

cos ðkη0a1=jβjÞ; ð102Þ

where in the second approximation we assumed r� ≫ 1.
This behavior, as a function of the scale factor, is shown in
Fig. 2. Combining the behavior of the unequal time
commutator at early times (98) and late times (102)
together with the power-law behavior of the scale factor
as a function of cosmic time aðtÞ ¼ a0tjβj=ðjβjþ1Þ, we see
that the OTOC grows as a power law Ck ∼ tn for n < 1 at
early times, and then develops a strong oscillation with a
saturated amplitude Ck ∼ ða�=a0Þ2 > 1 set by the scale
factor when the mode reentered the horizon.
An analysis of the matrix M̂ and the eigenvalues of L

tell a similar story. At early times, for ϕk ≈ −π=2 and
θk ≪ 1, the eigenvalues of L are approximately constant
α� ∼�1. At late times, the eigenvalues oscillate with θ
about fixed values

α� ¼ coshð2r�Þsin2ðθkÞ �
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 12 cosð2θkÞ þ cosð4θkÞ þ 8 coshð4r�Þsin4ðθkÞ

q
∼ coshð2rÞ sin2ðθkÞ

∼ e2r0
�
a�
a0

�
2

sin2ðθkÞ; ð103Þ

FIG. 2. The numerical solution to the squeezing equations of
motion (76)–(78) for the OTOC Ck is shown as a function of the
scale factor a for a radiation w ¼ 1=3 background; all other
decelerating backgrounds show qualitatively similar behavior.
We see that the OTOC amplitude begins at a value of 1, grows
until the mode exits the horizon at a ∼ 1=ðkη0Þjβj, and then
oscillates with a fixed amplitude, interpolating between the
behaviors (98) and (102) described in the text.
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in rough agreement with (102). Thus, the dominant eigenvalue for an expanding decelerating background grows until
horizon crossing, after which it saturates.

B. Contracting backgrounds

Now we will consider contracting cosmological backgrounds with a fixed equation of state. The scale factor for a
contracting universe with a fixed equation of state can be written as

aðηÞ ¼
�
η0
η

�
β

¼
8<
:

ðη0η Þβ; 0 < η < ∞; η0 > 0 for accelerating backgrounds β > 0 ðw < −1=3Þ;
ð ηη0Þjβj; −∞ < η < 0; η0 < 0 for decelerating backgrounds β < 0 ðw > −1=3Þ; ð104Þ

where β ¼ −2=ð1þ 3wÞ as before.

Cosmological backgrounds that are contracting are time
reversals of their expanding counterparts, so we expect
most of the qualitative features of the previous subsection
to be reproduced. In particular, contracting accelerating
backgrounds will be similar to expanding decelerating
backgrounds, and vice versa. The only main difference
is that the scale factor for contracting backgrounds will be
large at early times and become small at late times.
For contracting accelerating backgrounds w < −1=3,

modes begin outside the horizon and reenter the horizon
as the universe contracts; the corresponding solutions to the
squeezing and rotation parameters are

rkðaÞ ≈ r0 − ln ða=a0Þ; ð105Þ

ϕkðaÞ ≈
kη0

ð1þ 2βÞ a
−1=β; ð106Þ

θkðaÞ ≈ −
kη0

ð1þ 2βÞ a
−1=β: ð107Þ

As with the expanding decelerating case, we have r0 ≫ 1,
while now ϕ0; θ0 ≈ 0. Using these initial conditions in (47),
we have

fkðη; η0Þ ≈ er0ðcosh rk cosðθkÞ − sinh rk cosðθk þ 2ϕkÞÞ:
ð108Þ

Using the early-time squeezing solutions in (108), we have

fkðη; η0Þ ≈ er0−rk ≈
a
a0

≤ 1: ð109Þ

Note that since a < a0 as the universe contracts, the
magnitude of the OTOC Ck ∼ f2k decreases during the early
stage of a contracting accelerating universe as the scale
factor decreases. At late times, the mode reenters the horizon
around a� ∼ 1=ðkη0Þβ, and the squeezing freezes in, while
the squeezing and rotation angles become large,

rkðaÞ ≈ r� ¼ r0 − lnða�=a0Þ; ð110Þ

ϕkðaÞ ≈ −π þ kη0
a1=β

; ð111Þ

θkðaÞ ≈ −
kη0
a1=β

: ð112Þ

The OTOC in this regime, then, oscillates with a fixed
amplitude set by horizon reentry,

fkðη; η0Þ ≈ er0erkðcosðθkÞ − cosðθk þ 2ϕkÞÞ
≈ e2r0

a0
a�

cosðθkÞ: ð113Þ

Altogether, for a contracting accelerating background the
OTOC starts at 1, increases until the mode reenters the
horizon, and then oscillates with a fixed amplitude
e2r0a0=a� ≫ 1 set by the scale factor at reentry. A numerical
solution demonstrating this behavior is shown in Fig. 3.

FIG. 3. Numerical solutions to the squeezing equations of
motion (76)–(78) for the OTOC Ck show that the amplitude of the
OTOC for a contracting accelerating (w ¼ −1) background
grows as a power of the (inverse) scale factor while the mode
is outside the horizon, and then saturates once the mode reenters
the horizon. Note that in contrast to the expanding accelerating
case, Fig. 1, the OTOC does not continue to grow exponentially at
late times, even for a contracting de Sitter universe.
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The eigenvalues of the matrix L tell a similar story. At early times, the eigenvalues of L are constant α� ∼�1, while for
late times the dominant eigenvalue becomes

α� ¼ coshð2r�Þsin2ðθkÞ �
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 12 cosð2θkÞ þ cosð4θkÞ þ 8 coshð4r�Þsin4ðθkÞ

q
∼ coshð2rÞsin2ðθkÞ

∼ e2r0
�
a0
a�

�
2

sin2ðθkÞ: ð114Þ

The dominant eigenvalue is indeed approximately the
square of the amplitude (113). Altogether, the eigenvalues
begin Oð1Þ, growing through horizon crossing until reach-
ing the saturation value given in (114). Note that this
behavior precisely mirrors the behavior of the eigenvalues
of the expanding, decelerating background from the pre-
vious subsection. Focusing on a contracting de Sitter
background, the OTOC grows proportional to the scale
factor while the mode is outside the horizon, leading to a
period of exponential growth of the OTOC when expressed
in cosmic time. However, the OTOC soon saturates as the
mode enters the horizon, leading to a transient period of
exponential growth of the OTOC, where the timescale for
this period of growth is set by the horizon reentry time.
Comparing this to the OTOC for an expanding de Sitter
background, we see that the OTOC behaviors are not mirror
images of each other, since the OTOC grows without
saturation for the expanding case. It would be interesting
to study further whether this fundamental difference
between expanding and contracting de Sitter backgrounds
could be due to a difference in the validity of their
respective effective field theories.
Finally, let us consider a contracting decelerating cos-

mological background. At early times, modes for a con-
tracting decelerating background start deep within the
horizon, with a small squeezing parameter, fixed squeezing
angle, and large rotation angle,

rkðaÞ ≈
jβj

2kjη0j
1

a1=jβ
; ð115Þ

ϕkðaÞ ≈
π

4
þ 1

4kjη0j
1

a1=jβj
; ð116Þ

θk ≈ −kjη0ja1=jβj: ð117Þ

Using r0 ≪ 1 and ϕ0 ≈ π=4, the magnitude of the OTOC
takes the general form

fkðη; η0Þ ≈ cosh rk cosðθk − θ0Þ
− sinh rk cosðθk − θ0 þ 2ϕkÞ: ð118Þ

The corresponding magnitude of the OTOC at early times
thus oscillates with an Oð1Þ amplitude

fkðη; η0Þ ≈ cos ðθk − θ0Þ ∼Oð1Þ: ð119Þ

At late times (again, corresponding to a small scale factor),
the modes exit the horizon, and the squeezing parameter
begins to grow, while the squeezing and rotation angles
freeze out to zero. Unlike the previous cases, however, we
need to keep careful track of how the squeezing angle ϕk
decays as a function of the scale factor and the equation of
state [controlled by β ¼ −2=ð1þ 3wÞ]

rk ≈ − lnða=a0Þ; ð120Þ

ϕk ≈

8>><
>>:

kη0
1−2jβj a

1=jβj; for β < −1=2ð−1=3 < w < 1Þ;
Ba1=jβj − kη0

jβj a
1=jβja1=jβj ln a; for β ¼ −1=2ðw ¼ 1Þ;

Ba2; for − 1=2 < β < 0ðw > 1Þ;
ð121Þ

θk ≈ 0þOða1=jβjÞ: ð122Þ

As discussed in [23] the behavior of the solution for
the scale factor changes with β depending on whether
the homogeneous or inhomogeneous term dominates the
right-hand side of the ϕk equation of motion. The constant

B is determined by the initial conditions for ϕk; its precise
value will not be important for us to determine the
qualitative behavior of the OTOC from (121). Inserting
the solutions (120)–(122) into (118), we have (before
inserting specific behaviors of ϕk)

fkða; a0Þ ≈ e−rk cosðθ0Þ þ erk sinðθ0Þ sinð2ϕkÞ ð123Þ
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≈
�
a
a0

�
cosðθ0Þ þ 2

�
a0
a

�
ϕkðaÞ sinðθ0Þ: ð124Þ

Notice that the first term of (124) is always decreasing as
a → 0 at late times for a contracting background. However,
depending on the functional form of ϕkðaÞ, the second term
of (124) could be either increasing or decreasing with time.
In particular, as long as the squeezing angle scales with a
power of the scale factor less than one ϕkðaÞ ∼ an for
n < 1, then the second term of (124) will increase with
time and dominate at late times. From (121), the power of
the squeezing angle scales with a power of the scale factor
less than one for jβj > 1, which translates to an equation of
state of −1=3 < w < 1=3. For these equations of state,
which encompass most known large-scale matter fluids, the
amplitude of the OTOC at late times will grow with time.
On the other hand, for jβj < 1, corresponding to w > 1=3,
the amplitude of the OTOC will decay with time; the
marginal case jβj ¼ 1 (w ¼ 1=3) will result in a constant
amplitude at late times,

fkða; a0Þ ≈

8>><
>>:

ð aa0Þ cosðθ0Þ; for jβj < 1 ðw > 1=3Þ;
2kη0a0 sinðθ0Þ; for jβj ¼ 1 ðw ¼ 1=3Þ;
2 kη0
1−2jβj sinðθ0Þ a0

a1−1=jβ ; for jβj > 1 ð−1=3 < w < 1=3Þ:
ð125Þ

We can clearly see this transition in the late-time behavior as a function of the equation of state in the numerical solutions
displayed in Fig. 4.
As with the other contracting case, we should reexamine this result for the OTOC by calculating the eigenvalues of the

matrixL. At early times, the eigenvalues of the matrixL areOð1Þ, and given by α� ¼ f− cosð2ðθk − θ0ÞÞ; 1g. At late times,
the eigenvalues become

α� ¼ cosh rk sinðθk − θ0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ cosh2ðrkÞsin2ðθk − θ0Þ

q
≈
�
0;
1

2
e2rksin2ðθ0Þ

�
≈
�
0; 2

�
a0
a

�
2

sin2ðθ0Þ
�
: ð126Þ

From these eigenvalues we see dramatically different
behavior from that of the single OTOC (125): while
the late-time behavior of the OTOC (125) depended on
the equation of state, the behavior of the eigenvalues
shows a dominant growing mode as the universe con-
tracts. This illustrates a shortcoming of focusing only on
a single OTOC. By considering the spectrum of eigen-
values from the OTOC matrix L, we see a more complete
picture of the behavior of the OTOC that is independent
of the particular choice of field variables inserted into the
OTOC.

Remarkably, we see that the eigenvalues of L for the
contracting decelerating backgrounds match those for the
expanding accelerating backgrounds at late times. In fact, if
we chose to calculate the OTOC based on ½v̂kðη0Þ; π̂kðηÞ�,
with the roles of η ↔ η0 switched, for a contracting
decelerating background, then we should recover the single
OTOC results from the expanding accelerating back-
ground, illustrating the incompleteness of studying an
OTOC based on only one particular combination of fields.
Note that even while the eigenvalues of L for the OTOC are
growing at late times, the scale factor, written in terms of

FIG. 4. Numerical solutions to the squeezing equations of
motion (76)–(78) for the OTOC Ck show that the amplitude of the
OTOC at late times (small scale factor) for a contracting
decelerating universe depends on the equation of state, as
discussed in (125). For equations of state −1=3 < w < 1=3,
the OTOC grows at late times as a power of the scale factor (blue
dot-dashed line). For equations of state w > 1=3, the OTOC
decays as a power of the scale factor (red dashed line). For
radiation backgrounds w ¼ 1=3, the OTOC has a constant
amplitude of one (black solid line).
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cosmic time t, does not exhibit exponential behavior. In
particular, for the contracting decelerating backgrounds
considered here, the scale factors written in cosmic time are
power-law functions of t, and so are subchaotic.
Overall, we have seen a general universal behavior in the

OTOC (and its generalization to the dominant eigenvalue
of L) for all cosmological backgrounds: When the mode is
inside the horizon, the OTOC has a fixed amplitude, while
modes outside the horizon grow proportional to the scale
factor (for expanding backgrounds) or its inverse (for
contracting backgrounds).

V. DISCUSSION

Tools and techniques from quantum information theory,
such as the OTOC or circuit complexity, can provide
alternative perspectives of interesting quantum systems.
The OTOC can be a useful probe of the time-dependent
overlap between two operators, and has a natural inter-
pretation in the semiclassical limit as the separation
between two nearby trajectories in phase space.
Analogous to the classical case, an exponentially growing
OTOC is commonly associated with quantum chaos
(although not all systems with quantum chaos exhibit an
exponential dependence). In this paper, we studied the
OTOC for squeezed states and their application in the time
evolution of cosmological perturbations.
We find that the OTOC for generic squeezed states can

be calculated in closed form and is independent of the
averaging procedure. Highly squeezed states, characterized
by the squeezing parameter r, have an exponentially large
OTOC, C ∼ e2r, so that any linear dependence of the
squeezing on time leads to exponential growth. In this
sense, a highly squeezed state is “primed” for quantum
chaos. However, we found that an over-reliance on a single
combination of fields in the OTOC (such as the canonical
choice ½q̂ðηÞ; p̂ðη0Þ�) can mask general behavior of the
system. Instead, one should construct the squared matrix
Lij constructed from the symplectic matrix M̂ij of
unequal-time commutators, analogously to the classical
case. The eigenvalues of Lij capture the general OTOC
behavior of the system, and their late-time exponential
behavior can be used as a more robust diagnostic of
quantum chaos. We applied our formalism of squeezed
states to calculate the OTOC of the inverted harmonic
oscillator, finding an exponential growth of both the
canonical OTOC and the eigenvalues of L at late times.
It is interesting to compare this result to other diagnostic
probes of the inverted harmonic oscillator. For example, the
single-evolved complexity [22] does not show any growth
at late times consistent with quantum chaos, while the
double-evolved complexity [37] and displacement operator
complexity [12] do show such growth. Thus the OTOC,
particularly the eigenvalues of the squared OTOC matrix

Lij, may be among the more sensitive measures of time-
dependent dynamics.
After generalizing our techniques for computing the

OTOC to two-mode squeezed states of continuous Fourier
modes, we studied the OTOC for cosmological perturba-
tions on expanding and contracting backgrounds of a fixed
equation of state. Previous studies of the complexity of
cosmological perturbations [22,23] uncovered a rich struc-
ture in its time-dependent behavior, including surprising
bounds on the growth rate of complexity reminiscent of [3].
Here, we find that only expanding de Sitter space leads to
an exponential growth of the OTOC at late (cosmic) times,
suggesting that only expanding de Sitter can be described
as quantum chaotic at late times. In Appendix we further
used the exact mode function solution for de Sitter to
calculate the OTOC in both Fourier space and position
space exactly, the former showing excellent agreement with
the squeezed state result. In position space, the OTOC
between two operators is only nonzero inside their causal
light cone, as expected, and it grows exponentially in a
similar way as the Fourier space OTOC. Altogether, the
OTOC for cosmological perturbations on an expanding de
Sitter background shows exponential growth as other
OTOC calculations done using different techniques [32],
and leads to an identical putative Lyapunov exponent.
While expanding de Sitter is of particular interest,

because of its applications to early- and late-time accel-
eration of our Universe as well as its theoretical similarity
to black hole spacetimes, the squeezed state language
makes it easy to include in our analysis expanding and
contracting backgrounds with arbitrary fixed equation of
state. The OTOC for expanding accelerating backgrounds
begins small while modes are still within the horizon, then
grows after the horizon exit. As noted before, only for
de Sitter backgrounds is the resulting growth of the OTOC
exponential. For expanding accelerating backgrounds
that obey the null energy condition −1 < w < −1=3, the
OTOC grows as a subchaotic power of cosmic time, while
the OTOC for backgrounds that violate the null energy
condition w < −1 has a superchaotic growth, diverging
in finite time. The OTOC for expanding decelerating
backgrounds shows a qualitatively different behavior,
however, as it grows initially, and then freezes in once
the mode enters the horizon. For expanding backgrounds
the dominant eigenvalue of the squared matrix Lij matches
qualitatively the behavior of the canonical OTOC.
We expect that the behavior of the OTOC for contracting

backgrounds should mirror their expanding counterparts,
namely that a contracting accelerating background should
behave similar to an expanding decelerating background,
and vice versa. Indeed, we find for contracting accelerating
backgrounds, including a contracting de Sitter universe,
the OTOC grows initially before freezing in once the
mode enters the horizon. Since the growth of the OTOC
is proportional to the scale factor, this means that the OTOC
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for a contracting de Sitter universe has a transient period of
exponential growth, before saturating at a fixed value.
However, the behavior of the canonical OTOC for con-
tracting decelerating backgrounds does not directly mirror
that of an expanding accelerating background; instead of
uniform growth after exiting the horizon, the late-time
behavior of the OTOC qualitatively changes as a function
of the equation of state. For equations of state less than that
of radiation −1=3 < w < 1=3, including pressureless mat-
ter, the OTOC grows at late time as a power of the scale
factor. For an equation of state equal to that of radiation
w ¼ 1=3 the OTOC is constant and equal to 1 at late times,
while for equations of state “stiffer” than radiation w > 1=3
the OTOC decays at late times. Interestingly, while the
behavior of the canonical OTOC for a contracting decel-
erating background does not mirror that of its expanding
accelerating counterpart, the eigenvalues of the squared
matrix Lij have precisely the same qualitative form for both
backgrounds. This is further evidence that reliance on a
single OTOC as a probe of the dynamics of a quantum
system can mislead, and that important general features
can be better extracted from the squared matrix inspired by
classical chaos. Note that while a contracting decelerating
background has a growing OTOC at late times, the growth
is always slower than exponential, so that it is subchaotic in
this sense. Overall, we find a universal behavior for the
generalization of the OTOC to the eigenvalues of the squared
matrix L: the OTOC oscillates with a fixed amplitude for
modes inside the horizon, while it grows as the scale factor
(or its inverse) for modes outside the horizon, for expanding
and contracting backgrounds, respectively. Note that this
means that only de Sitter backgrounds, either expanding or
contracting, have a period in which the OTOC grows
exponentially with cosmic time.
It is interesting to compare our results here for the OTOC

of cosmological backgrounds to the corresponding results
for quantum circuit complexity found in [22,23]. Both the
OTOC and the circuit complexity are expected to be probes
of time-dependent dynamics of a quantum system and
can potentially signal the onset of quantumm chaos. In
[22,23], the complexity grows at late times for expanding
accelerating (and contracting decelerating) backgrounds.
While we did find that the OTOC for contracting decel-
erating backgrounds with w > 1=3 decreases at late times,
the eigenvalues of the squared matrix Lij increase at late
times in an identical way to expanding accelerating back-
grounds. Remarkably the slope of the growth of complexity
was found to saturate for equations of state less than −5=3
for expanding backgrounds (or greater than 1 for con-
tracting backgrounds), evoking echoes of the bound on the
Lyapunov exponent [3]. We do not see any corresponding
saturation in the growth or growth rate of the OTOC
for expanding accelerating (or contracting decelerating)
backgrounds, suggesting that circuit complexity is probing
slightly different features of the quantum system. Further,

for expanding decelerating (and contracting accelerating)
backgrounds, the authors of Refs. [22,23] found that the
circuit complexity actually decreases with time until
freezing in after entering the horizon, while we find here
the opposite behavior that the OTOC increases until
entering the horizon. It would be interesting to study
whether there is a deeper reason these two diagnostics
give qualitatively different behaviors, and whether there is
an analogue of the squared eigenvalues of the OTOC for
circuit complexity.
While we have seen that only an expanding de Sitter

background leads to exponential growth at late times,
suggesting that expanding de Sitter space experiences
quantum chaos, it is less clear how to see a separation
of dissipation and scrambling timescales in this system.
Thus, it is not immediately clear what an interpretation of
the OTOC for a microscopic theory of the de Sitter horizon
would be. Indeed, for eternal de Sitter the growth of the
OTOC continues without bound, which is inconsistent
with broad expectations of the OTOC at very late times.
Perhaps general expectations that the OTOC saturate at
very late times imply the breakdown of the effective field
theory used here and could lead to a cap on the amount
of de Sitter expansion, similar to other proposals [38]
(although the curvature perturbation is fixed on super-
horizon scales, reducing the likelihood of gravitational
backreaction). Additionally, since de Sitter is the fastest
“scrambler” among backgrounds that satisfy the null
energy condition, with the fastest growth of the OTOC,
this may make it a natural cosmological background for
our Universe, since we have only one Universe (that we
know of) and it appears to have early-time and late-time
(quasi–)de Sitter expansion periods. We leave these and
related questions for future work.
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APPENDIX: OTOC FOR de Sitter

In Secs. III and IV, we investigated the OTOC for Fourier
modes of cosmological perturbations using the squeezed
state formalism, which allowed us to easily investigate
several different cosmological solutions using a uniform
formalism. However, there are some cosmological back-
grounds, such as de Sitter, where the Fourier mode
functions are known precisely in closed form. It can be
advantageous to perform explicit calculations using these
closed form expressions for this specific and important
background.
Following the analysis of Sec. III, the Hamiltonian for

Fourier modes in de Sitter space can be written as in (72),
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with z0=z ¼ a0=a ¼ −1=η. The mode functions v̂k⃗ðηÞ and
their corresponding momenta π̂k⃗ðηÞ for a mode that begins
in the ground state in the far past ηi → −∞ can be written

v̂k⃗ðηÞ ¼ vk⃗ðηÞâk⃗ðηiÞ þ v�
−k⃗
â†
−k⃗
ðηiÞ; ðA1Þ

π̂k⃗ðηÞ ¼ _v−k⃗ðηÞâ−k⃗ðηiÞ þ _v�
k⃗
ðηÞâ†

k⃗
ðηiÞ; ðA2Þ

where

vk⃗ðηÞ ¼
1ffiffiffiffiffi
2k

p
�
1 −

i
kη

�
e−ikη: ðA3Þ

Notice that in the far past ηi → −∞ this becomes the flat
space ground state vk⃗ ∼ e−ikη=

ffiffiffiffiffi
2k

p
, as expected. For

normalized raising and lowering operators, the equal-time
commutator between the mode v̂k⃗ and its momentum π̂k⃗
gives the canonical result

½v̂k⃗ðηÞ; π̂k⃗0 ðηÞ� ¼ ið2πÞ3δ3ðk⃗ − k⃗0Þ: ðA4Þ

The unequal time commutator between these operators,
evaluated at η and η0, gives a more interesting result

½v̂k⃗ðηÞ; π̂k⃗0 ðη0Þ� ¼ ið2πÞ3δ3ðk⃗ − k⃗0Þfkðη; η0Þ; ðA5Þ

where the amplitude function fkðη; η0Þ is

fkðη; η0Þ ¼ cosðkðη − η0ÞÞ − sinðkðη − η0ÞÞ
k

�
1

η
−

1

η0

�

þ cosðkðη − η0ÞÞ
k2

1

η0

�
1

η
−

1

η0

�

þ sinðkðη − η0ÞÞ
k3

1

ηη02
: ðA6Þ

Notice that for η → η0, fk → 1, recovering the equal-time
result.
The OTOC, written as the thermally averaged square of

the unequal time commutator

Ck⃗ðηÞ≡ −h½v̂k⃗1ðηÞ; π̂k⃗2ðη0Þ�½v̂k⃗3ðηÞ; π̂k⃗4ðη0Þ�iβ ðA7Þ

again simplifies to the square of the commutator

Ck⃗ðηÞ ¼ −½v̂k⃗1ðηÞ; π̂k⃗2ðη0Þ�½v̂k⃗3ðηÞ; π̂k⃗4ðη0Þ�; ðA8Þ

because the commutator is a c number, so that the
amplitude of the OTOC in Fourier space is given by the
square of the amplitude Ck⃗ðηÞ ∼ ðfkðη; η0ÞÞ2. Taking our
initial time to be in the far past η0 → −∞, Eq. (A6)
simplifies to become

fkðη; η0Þ ≈ cosðkðη − η0ÞÞ − sinðkðη − η0ÞÞ
kη

: ðA9Þ

At late times η → 0−, this is dominated by the second term
fkðη; η0Þ ≈ sinðkη0Þ=ðkηÞ, so that the amplitude of the
OTOC is given by

CkðηÞ ∼
sin2ðkη0Þ
ðkηÞ2 ∼

�
HdS

k

�
2

sin2ðkη0Þe2HdSt; ðA10Þ

where we converted from conformal time η to cosmic time
t. Up to Oð1Þ factors, we find the same results for de Sitter
space as (90) in Sec. IVusing the squeezed state formalism.
In particular, we find that the OTOC for de Sitter space
exhibits exponential growth at late times Ck ∼ e2λt, with a
putative Lyapunov exponent given by the de Sitter Hubble
constant λ ¼ HdS.
While we have been focused on the Fourier space

behavior of the OTOC, it is also potentially interesting
to consider the position space unequal time commutator

½v̂ðx⃗; ηÞ; π̂ðx⃗0; η0Þ� ¼
Z

d3kd3k0

ð2πÞ6 ½v̂k⃗ðηÞ; π̂k⃗0 ðη0Þ�eik⃗·x⃗−ik⃗
0·x⃗0

¼ i
Z

d3k
ð2πÞ3 fkðη; η

0Þeik⃗·ðx⃗−x⃗0Þ: ðA11Þ

Using the expression (A6) for the amplitude of the Fourier
OTOC, the result becomes

FIG. 5. The position-space OTOC Cðx; x0Þ for cosmological
perturbations in de Sitter space (A14) between the field operator
v̂ðx⃗; ηÞ and its conjugate momentum π̂ðx⃗0; η0Þ, shown here in
conformal coordinates η, x, grows as 1=η2 inside the light cone
(we have taken η0 ¼ −20 for concreteness).
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½v̂ðx⃗; ηÞ; π̂ðx⃗0; η0Þ� ¼ i
2π2

�
−2πΔη

δðΔη2 − Δx2Þ
Δη2 − Δx2

þ π

�
1

η
−
1

η0

�
δðΔη2 − Δx2Þ

−
π

2

1

ηη02
signðΔηÞΘðΔη − ΔxÞ

�
;

ðA12Þ

where Δη ¼ η0 − η, Δx ¼ x0 − x, and the Heaviside func-
tion ΘðxÞ in the last term only gives a nonzero contribution
inside the light cone. As expected, the unequal-time
commutator vanishes outside the light cone, reflecting
causality, as can be seen in Fig. 5. Taking the position-
space OTOC as the square of the thermally averaged
unequal time commutator, the thermal averaging is
trivial

Cðx; x0Þ≡ −ih½v̂ðx⃗; ηÞ; π̂ðx⃗0; η0Þ�2iβ ¼ −i½v̂ðx⃗; ηÞ; π̂ðx⃗0; η0Þ�2;
ðA13Þ

and so working strictly within the light cone, we see
the familiar exponential growth of the OTOC in de Sitter
space

Cðx; x0Þ ¼ 1

ð2πÞ4
1

η04
1

η2
¼ 1

ð4πÞ2η04H
2
dS e

2HdSt; ðA14Þ

where we again used the relationship between conformal
time and cosmic time. The position-space OTOC (A14)
reflects a similar structure as we found in Fourier space
(A10), including exponential growth with the de Sitter
Hubble constant, and a factor of H2

dS. Interestingly, if we
take our initial time to be past infinity η0 → −∞ the
position-space OTOC (A14) vanishes for points inside
the light cone and is nonzero only on the light cone itself,
reflecting a lack of correlations between the momentum at
past infinity and the field at any finite time not on the light
cone. Similar results hold for the field-field and momen-
tum-momentum unequal-time commutators and their asso-
ciated position-space OTOCs. It would be interesting to
explore how the behavior of the de Sitter OTOC near the
light cone relates to the bounds presented in [39].
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