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Exponential growth in the out-of-time-order correlator (OTOC) is an important potential signature of
quantum chaos. The OTOC is quite simple to calculate for squeezed states, whose applications are
frequently found in quantum optics and cosmology. We find that the OTOC for a generic highly squeezed
quantum state is exponentially large, suggesting that highly squeezed states are “primed” for quantum
chaos. A quantum generalization of the classical symplectic phase space matrix can be used to extract the
quantum Lyapunov spectrum, and we find this better captures the exponential growth of squeezed states
for all squeezing angles compared to any single OTOC. By describing cosmological perturbations in the
squeezed state language, we are able to apply our calculations of the OTOC to arbitrary expanding and
contracting backgrounds with fixed equation of state. We find that only expanding de Sitter backgrounds
support an exponentially growing OTOC at late times, with a putative Lyapunov exponent consistent with
other calculations. While the late-time behavior of the OTOC for other cosmological backgrounds appears
to change depending on the equation of state, we find that the quantum Lyapunov spectrum shows some
universal behavior: the OTOC grows proportional to the scale factor for perturbation wavelengths larger

than the cosmological Hubble horizon.
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I. INTRODUCTION

Unlike classical systems, characterizing the nature of
chaos in quantum mechanics and quantum many body
systems can be challenging. Classical chaotic systems are
characterized by a hypersensitivity to perturbations in
initial conditions through time evolution, so that nearby
trajectories diverge exponentially. This behavior can be
captured by the Poisson bracket between the position and
momentum variables

(1)
)

w000 = (5E5) ~Seet )

where the 4, are known as Lyapunov exponents. In
quantum mechanics, the analogue of (1) is the unequal
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time commutator [§(t), p(0)], which becomes the Poisson
bracket ~in{q(t),p(0)} in the semiclassical limit.
Exponential growth of this commutator can potentially
serve as an indication of quantum chaos, reflecting the
growing overlap between these operators. However, the
unequal-time commutator is in general an operator, not a ¢
number, so a more useful measure is the double unequal-
time commutator, also known as the out-of-time-order
correlator (OTOC)

where angle brackets (- --); denote an average over some
set of states, typically taken as a thermal average at
temperature 7 = 1/f. More generally, one can consider
the OTOC of any two Hermitian operators

Cwy (1) = =(W(2). V(0)1*),. (3)

A related quantity, originally considered in the context of
superconductivity and becoming increasingly important in
high energy and condensed matter physics, is the out-of-
time-order four-point function [1-3],
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F(1) = (W(n)V(0)W(1)V(0)),. 4)

The two are commonly related through Cy (1)~
2((WW)(V V) —Re(F(r))) at late times, so that their
information content is approximately the same and is
usually referred to interchangeably. In this work we will
refer to the squared commutator (2) as the OTOC, and we
will not focus on the closely related four-point function (4).
Further, as will be seen, the commutators considered in this
work are ¢ numbers, so our results will be completely
independent of the averaging procedure.

In a quantum chaotic system, by analogy with the
classical case we expect the OTOC to exhibit exponential
growth C(f) ~ e at early times, characterized by a
quantum Lyapunov exponent A, up to some later time,
after which it saturates. However, the single OTOC fails to
capture chaotic behavior for single-particle quantum cha-
otic systems, such as the well-known stadium billiards
model [4-6], or chaotic lattice systems, such as spin chains
[7]. Indeed, the OTOC is not the only possible probe of
quantum chaos in a system. A web of diagnostics of
quantum chaos [8,9]—including the OTOC, quantum
circuit complexity, and others—can be useful for studying
quantum chaos from different angles and perspectives. One
useful extension of the OTOC is the quantum Lyapunov
spectrum [10], a generalization of the classical matrix of
phase space deviations. We will compare our results of the
OTOC with the quantum Lyapunov spectrum, finding the
latter to be more consistent in describing the late-time
dynamics.

While the OTOC has been used to investigate the
dynamics and potential quantum chaotic behavior of
several specific quantum systems, in this paper we will
calculate the OTOC for the general class of states known as
squeezed states. Squeezed states, in which the uncertainty
of the position and momentum operators is squeezed in
some phase space direction while their product is still
minimized, are characterized by a squeezing parameter r
and a squeezing angle ¢. Squeezed states arise in diverse
contexts, from models of quantum optics, gravitational
wave detection, or descriptions of cosmological perturba-
tions, and can serve as a useful toy model for many
interesting systems. Since squeezed states are freely inter-
acting, the OTOC can be calculated in closed form and is
independent of the OTOC averaging. We find that the
OTOC for highly squeezed states is exponentially large,
implying that highly squeezed states are “primed” for
quantum chaos. Indeed, applying our formalism of
squeezed states to the well-studied inverted harmonic
oscillator, we find exponential growth in the OTOC,
consistent with other work [11,12]. It is well known that
the inverted harmonic oscillator is not strictly chaotic; since
it is unbounded from below, growth in the OTOC thus more
properly reflects its unstable nature. However, it serves as
an exactly solvable toy model for studying potential

diagnostics of quantum chaos in quantum field theories
[13-19]. We will see that the matrix of unequal-time
commutators used in constructing the quantum
Lyapunov spectrum for squeezed states has a symplectic
structure, as in the classical case, and can be used to extract
general OTOC behavior of the system that is not sensitive
to the squeezing angle itself.

Contemporary interest in quantum information theory
has uncovered the OTOC as an important ingredient in the
AdS/CFT correspondence, and the OTOC plays an impor-
tant role in the study of the scrambling of information
by black holes [20,21]. In this paper, however, we are
interested in the application of the OTOC to cosmology, in
order to gain potentially new and complementary insights
about the behavior of cosmological perturbations and
models of the early universe such as inflation. Using
quantum circuit complexity as a diagnostic of quantum
chaos, the authors of Refs. [22,23] demonstrated that two-
mode squeezed state cosmological perturbations in an
expanding, accelerating universe may be chaotic in nature,
with a Lyapunov exponent bounded from above.' Given the
difficulty of understanding the nature of quantum chaos
by a single diagnostic, in this paper we will examine the
behavior of the OTOC of cosmological perturbations in
expanding and contracting cosmological backgrounds with
fixed equation of state.

We begin the paper in Sec. II with an analysis of the
OTOC of squeezed states in quantum mechanics to set up
the tools and techniques of our approach, including a
generalization to the squared matrix of OTOCs. As a
concrete example, we consider the inverted harmonic
oscillator in the language of squeezed states and calculate
the corresponding OTOC. Cosmological perturbations
in Friedmann-Lemaitre-Robertson-Walker (FLRW) back-
grounds are naturally described in Fourier space in the
language of two-mode squeezed states [26-29] (see also
[30,31] for an application of squeezed states to Bell cosmic
microwave background (CMB) experiments), so, in Sec. III
we develop the formalism for the OTOC of two-mode
squeezed states for continuous Fourier modes, mirroring
the analysis of Sec. II. We apply the squeezed state
formalism to cosmological perturbations and their OTOC
for expanding and contracting backgrounds with a fixed
equation of state in Sec. I'V. One cosmological background
of particular interest, because of its similarities with black
hole backgrounds and its relevance to early- and late-time
expansion of the universe, is de Sitter space. Interestingly,
we find that expanding de Sitter space is the only
cosmological background that exhibits late-time exponen-
tial growth of the OTOC. In Appendix, we calculate the
OTOC of Fourier modes for de Sitter space using the
known exact solutions for the mode functions, recovering

ISee also [24,25] for related work on the OTOC and circuit
complexity in the context of cosmology.
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the result of Sec. IV, and we extend this analysis to the
OTOC of de Sitter cosmological perturbations in position
space. Note that the OTOC of three-dimensional (3D) de
Sitter space has also been studied recently by the authors of
Ref. [32] with different techniques, and it is in excellent
agreement with our results here. Finally, we conclude with
some discussion of our results and their potential inter-
pretation in Sec. V.

II. SQUEEZED STATES AND THE
OUT-OF-TIME-ORDERED CORRELATOR

We will begin by introducing the main techniques and
concepts used throughout the rest of the paper in the
context of quantum mechanics, and apply our formalism to
the inverted harmonic oscillator, where the language of
squeezed states arises naturally. Our fundamental building
blocks will be the annihilation and creation operators a and
a’, which act in the usual way on the vacuum @|0) = 0 and
eigenstates |n) of the number operator. The single-mode
squeezed vacuum state |r, ) = S(r,¢)|0), given in terms
of the (time-dependent) squeezing parameter r and squeez-
ing angle ¢, is generated by the action of the squeezing

operator S (r,¢) on the vacuum, which can be written as
S(r.¢) = exp %(e‘Zi‘f’&z —e%a?) |, (5)

We will be interested in unitary evolution (17, 7,) (where
we will use the variables 7,7, for time unless otherwise
noted) that can be parametrized in the factorized form
[26,27]

N

U(n.no) = S(r.p)R(0), (6)

for potentially time-dependent (1), ¢ (7). 6() where R(6)
is the rotation operator written in terms of the time-
dependent rotation parameter

R(0) = exp [—ifa’al. (7)

In the Heisenberg picture, {{ acting on the creation and
annihilation operators generates the time evolution

a(n) =Un,no) all(n,no)

= cosh re™a®) —sinh reti0+24) a7 (8)

Note that the squeezing and rotation evolution operators
preserve the equal-time commutation relations between
the creation and annihilation operators, so that if
[a©,a0%] =1 at some initial time, then [a(y),a(n)"]=1
at later times as well.

We define position and momentum operators for some
fundamental frequency k in the usual way,

Using (8) and (9) we can rewrite the unequal-time com-
mutator® between g and p as

N i I
[q(n), p(no)] = 5 [(cosh re™ — sinh re (9+2¢))

x (cosh ryei® + sinh rye!@+2%)) 4 c.c.].

(10)

Taking the initial state to be “unsqueezed” r, — 0, Eq. (10)
becomes

[G(n), P(o)] = i[coshr cos(6 - 6)
—sinh r cos(6 — 0y +2¢)]. (11)

Note that in the limit # — 7, this agrees with the equal-
time commutator above. In order to understand the sig-
nificance of (11), let us take some specific values of the
parameters 7, ¢, 6. In particular, for a squeezing angle that
is a multiple of 7z, Eq. (11) is exponentially small in the
squeezing parameter

[(n). plno)] = i cos(0— Gp). for ¢ =nm. (12)
while for a squeezing angle that is an odd multiple of z/2 it
is exponentially large in the squeezing parameter

2n+1

[G(n), p(no)] = ie" cos(0 =), for ¢ = 7.

(13)

More generally, for any squeezing angle that is not an
integer multiple of z, the unequal time commutator
becomes exponentially large at large squeezing

[G(n). p(no)] ~ ie",  for ¢ # nx. (14)

As discussed in the Introduction, one common measure
of quantum chaos is the OTOC,

C(n) = (=[a(n). p(n9)*)- (15)
where the averaging (- - -) p over states is typically a thermal
expectation value for temperature f = 1/T,
Tr(e " O)

Tr(ePH)

(O)y (16)

2See also [33] for other related work on unequal-time
correlators.
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Note that for systems controlled by a quadratic Hamiltonian
such as squeezed states, the thermal expectation value of
the position-momentum commutator (11) is a ¢ number, so
that the OTOC (15) is independent of the averaging
procedure

C(n) = —[a(n). p(no)P*. (17)

Since the OTOC (17) is simply proportional to the square of
the unequal-time commutator (10), we will occasionally
refer to the commutator and its square interchangeably as
the OTOC throughout the text. We can define a quantum
Lyapunov exponent A from C(n) when there is exponential
growth in time of the OTOC C(i7) ~ ¢**!. Taking a highly
squeezed state (with ¢ # nx), the OTOC is exponentially
large

C(n) ~ . (18)

Certainly, even though the OTOC is exponentially large,
such a highly squeezed state itself is not necessarily in a
state of quantum chaos, since it is the exponential depend-
ence on time that defines a system with quantum chaos.
However, because of the exponential dependence, even any
linear time-dependent deviation from constant squeezing
r & ry + An will exhibit quantum chaos with a Lyapunov
exponent A. Thus, in this respect a highly squeezed state is
“primed” for quantum chaos.

Interestingly, a highly squeezed state with ¢ = nz with
this same linear growth in squeezing exhibits what appears
to be the opposite of quantum chaos: an exponential
decrease in the OTOC, as in (12). This quantum attractor—
like behavior for a specific squeezing angle in the quantum
phase space is an artifact of restricting ourselves to the
single unequal-time commutator (11) and motivates a
generalization of the OTOC. For classical chaos, the
sensitivity to initial conditions can be investigated by
studying the symplectic matrix

5Zi(’1)
5Zj(’10) ’

Mij(’?) = (19)

where the z; run over the canonical coordinates x, p. The
Lyapunov exponents can then be extracted from eigenval-
ues of the squared matrix

L= [MT(’?)M(’?)]U- (20)

A natural extension of (19) and (20) to quantum mechanics
is the matrix of unequal-time commutators [10]

A ~

Mij(n) = =i[Qi(n), Q;(no)] (21)

and its averaged square

A

L= <[MT(’7>M(’1)]U>I3’ (22)

where we have normalized Q; = vk§ and Q, = p/V/k.
The relevant unequal time commutators for the elements
of (21), under the assumption of an unsqueezed initial state,
together with (11) are

[p(n),4(no)] = —ilcosh r cos(6 = 6)
+ sinh r cos(@ — 0y +2¢)];  (23)

400). ) = feosh r sin(0 — 0)

—sinhr sin(6 — 6y + 2¢)];  (24)

[p(n). p(n0)] = ik[cosh r sin(6 — 6p)
+sinh r sin(@ — 6y + 2¢)].  (25)

Note that since the unequal-time commutators (11),
(23)—(25) are ¢ numbers for squeezed states, the matrix
elements Mij are also ¢ numbers, and so the squared
matrix £ is independent of the thermal averaging. It is

straightforward to check that the matrix A has a unit
determinant for squeezed states; since it is also a 2 x 2
matrix, it is therefore necessarily symplectic, similarly
as its classical counterpart. This formulation of the
squared matrix of out-of-time-order correlators is prefer-
able to focusing on the single OTOC constructed using
[G(n), P(no)], because it avoids a reliance in one particular
direction in the phase space of canonical coordinates.

The eigenvalues a, for £ can easily be calculated,
though their general form is not particularly enlightening.
Recall that the OTOC (12) for ¢p = nx was exponentially
small for large squeezing, in contrast to the behavior at a
generic angle. The eigenvalues of L for ¢ = nu,

a. = cosh(2r)sin?(0 — 6,)

+1/cos(2(60 — 6y)) + cosh?(2r)sin* (6 — 6,), (26)
instead illustrate that there is indeed a large eigenvalue ~e>"
for large squeezing. More generally, for an arbitrary
angle ¢, in the large squeezing limit > 1 the dominant
eigenvalue of L scales as a_ ~ €%, so that the presence of
an exponentially large eigenvalue is a generic consequence
of a highly squeezed state. It is tempting, then, to identify
the generalized behavior of the growth of the OTOC as the
dominant eigenvalue of L.

Up to this point we have been speaking in general
terms about squeezed states without reference to any
specific system. For concreteness, we can apply the general
formalism of squeezed states developed above in the
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context of the quantum inverted harmonic oscillator. The
Hamiltonian is a harmonic potential that is unbounded from
below

A 1 1
Hz—ﬁz——szlzz

k., N
3 3 ~3 (@* + a'?), (27)

where we took a unit mass m = 1 and we rewrote the
Hamiltonian in terms of the raising and lowering operators.
The time evolution of the squeezing and rotation param-
eters r, ¢, 0 is determined by the Heisenberg equation of
motion

d oA
d—”a—z[H aj. (28)

For the Hamiltonian (27), this leads to the equations of
motion for the squeezing parameters

i =k sin(2¢);
¢ = k coth(2r) cos(2¢); (29)
6=0. (30)

It is easy to see that these equations have a solution in
which the squeezing grows with time along a constant
squeezing angle with constant rotation angle

r(n) = kn,

Inserting (31) into the position-momentum unequal time
commutator (11), we obtain at late times kn > 1

¢(n) =n/4. 0(n) =6. (31)

(). plno)] = i coshllkn) ~ 541, (32)

with corresponding OTOC from (17)
1
C(n) = cosh?(kn) ~ 1 ek ~ 2, (33)

Since (32) approaches an exponential at late times, we can
identify a quantum Lyapunov exponent for the inverted
harmonic oscillator 4 = k. We can also insert these solutions

into the matrix M (21) of unequal-time commutators and
extract the Lyapunov exponent from the eigenvalues of £

(22). With 8 = 0, and ¢ = n/4, the matrix M takes the
simple form

N —sinh r
M—(

—coshr

C-OSh r) ’ (34)

sinh r
while the eigenvalues a.. of L take the simple form

ay = {—1,cosh(2r)} ~ {—1, e*1}, (35)

for r =knp> 1. We see that the dominant eigenvalue
e?M1 captures the exponential growth we see in the single
OTOC (33), as expected, identifying the Lyapunov expo-
nent A ~ k as before.

II1. SQUEEZED STATES IN QUANTUM FIELD
THEORY AND THE OTOC

The squeezed state formalism described in the previous
section applies equally well in quantum field theory, with
minor modifications. In particular, we will decompose a
free real quantum scalar field #(X,n) into creation and
annihilation operators

3 T -
@) = [ G inln
3 7= 7=
= [ G e + ae ). 36)

where [&k,ag] (27)383(k— k) and az|0) = 0 as usual.
The momentum-preserving two-mode squeezing operator
can be written as

a

Sz(rk, ¢r) =exp {# (e~2ittn g _ €2i"l’*(”)fli;&£) '

L
(37)

The unitary evolution for a general quadratic, momentum-
preserving Hamiltonian is generated by

Uz = S;(ri bR (0p), (38)
where as before 7%; is the two-mode rotation operator
R (61) = exp [—i6y(n)(a

ar+aag)  (39)

E

k

written in terms of the rotation angle parameter 6 (n) and
S~ As before, the evolution of the unitary operator Z/{~

acting on the creation and annihilation operators generates
the time evolution

ag(n) = UTA £(0)tz

= cosh rye™a(0) — sinh rkei<9+2‘/’k)&_,;(0); (40)

at(n) = Uat (o)l
= —sinh r; e %2903 _(0) 4 cosh rke’yk&z(O).
(41)
We will write the Fourier modes of the field 7 () and its

momentum 7z(17) in terms of the raising and lowering
operators

023533-5
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b = —=lag(n) +a’ (n)]: (42)

i = =iy 5la_g(m) = &%) 43)

Using (40) and (41) for the raising and lowering operators
in terms of the squeezing parameters, we can rewrite the
field and its momentum as

1 . .
bz(n) = E(cosb rre”% —sinh r e~ 0%+200)4.(0)
1
+\/T(cosh ree® —sinh e @t200) 4" '(0);
(44)

>
=~
—~
=
=

I

k . .
—i\/;(cosh ree”% + sinh re0+20)a_2(0)
. [k 0 1 i i(0ct200) \ 51
+ i E(cosh rie'? 4 sinh rypel Ot ¢A))a;(0).
(45)

From these expressions it is relatively straightforward to
calculate the momentum-space unequal-time commutator

[0 (n), 27 (m0)] =

where we defined

i(22)38% (k= K) fi(m.mo).  (46)

1 ) .
fr(nno) = 3 [(cosh rpe~ — sinh rpe~/(O+200)
x (cosh rye® 4 sinh rye!@+20)) ¢,

(47)

as the amplitude of the unequal-time commutator, with the
delta function and other factors of (27) and i stripped off,
and a zero in the subscript means the parameter is evaluated
at n = ng, e.g., ro = ry(1y). Notice once again that taking
equal times # — 5o leads to f(179,19) — 1, as it should for
the equal time commutator.

As with the quantum mechanics case, we will define a
Fourier mode OTOC as the double commutator

Cr(n) = =([og, (n). 2 (mo))[Dg, (n). &, (mo)])p. - (48)

where we used two copies of the unequal time commutator
with different momenta to avoid delta function divergences.
Once again, the unequal time commutator is a ¢ number, so
the averaging is trivial and the OTOC simply becomes the
square of the commutator

Cyln) = ~[ig (n). g, (no)og, (m). e (m0)]- (49)

The OTOC (49) is proportional to the square of the
amplitude of the unequal-time commutator (47), and some
factors of (27) and delta functions enforcing momentum
conservation

-8 (R - ).
(50)

C;(’?) = (2”)6ka (n, ﬂo)sz(ﬂ’ ’70)53(7_51

Ignoring the delta functions and other factors, then,
we have

Ce(n) ~ fi, (n.10) f i, (. 10). (51)

so that the OTOC and the amphtude fx(n,19) have roughly

the same behavior for k1 ~ k2 ~ k. Because of this, we
will mostly focus our analysis on the amplitude function
fe(n,ng), which we will treat as synonymous with the
OTOC.

As in Sec. II, we can construct the matrix M of
canonical unequal-time commutators (21), with elements

MU = _Z[Qi(n)’ Qj(rlO)]’ (52)

for Q1 = \/E@Ig and Q2 = 7p/ V'k. We will similarly define
the squared matrix £ as in (22). Correspondingly, it is
straightforward to calculate the analogs of (23)—(25) for the
field theory case; the results are, unsurprisingly, identical
to the quantum mechanics case except for additional factors
of (27)38%(k — k'). In particular, we will write the unequal-
time commutators as

Dz(n0)] = —i(27)’ g (. o) (k= K); (53)

(7w (n),

[07(1), 7 (n0)] = i(27)3 by, mo) 8> (k = K');  (54)

[ (n). 2 (no)] = i(27)? i, m0)&* (k = K'), (55)
where
1 ) .
a(n,mo) = 3 [(cosh re® 4 sinh rye/(Ot240))
x (cosh rge~% —sinh rye~"(%+2d0)) + c.c];
(56)
1 0 _ o (042
he(n,mg) = 3 [(cosh rye — sinh rye/(Ot2¢u))
x (cosh rge~% —sinh rye~/(%+2d)) —c.c.];
(57)

023533-6
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1 | |
Je(n.mo) = 3 [(cosh ree™% + sinh rpe~/(O+200)
x (cosh rgei® + sinh roe’®+24)) —c.c.].

(58)

Together with f(n7,7y) in (47), these functions represent
the amplitudes of the unequal-time commutators.
For an unsqueezed initial state ry — 0, the functions

Fx(m.no) = jk(n.mo) become

Fr(n,no) ~ coshry cos(6; —6y)
—sinh ry cos(0, — 0y + 2¢);  (59)

gx(n.10) ~ cosh 1 cos(8; — )
+ sinh r; cos(0; — 6y + 2¢;);  (60)

hk(”’ 770) ~ cosh 14" sin(@k — 90)
—sinh ry sin(@, — 0y +2¢;);  (61)

Jx(n,m9) & cosh ry. sin(6 — 6p)
+ sinh ry sin(0, — 6y +2¢;).  (62)

Again, the matrix M then has determinant one, and we will
use the dominant eigenvalue of £ to identify the Lyapunov
exponent, as discussed in Sec. II.

We will find in Sec. IV that the assumption of an
unsqueezed initial state does not cover all cases of interest.
In particular, we will also be interested in the case where the
initial state is highly squeezed r, > 1, with a squeezing
angle ¢y ~ —r/2 and a vanishing rotation angle 9, ~ 0. In
this limit, the amplitude functions (47), (56)—(58) become

Fe(mn,no) ~ e (cosh ry cos(6;) — sinh r, cos(6; + 2¢));
(63)

9r(n,mo) ~ e~ (cosh ry cos(0y) + sinh ry cos(0 + 2¢));
(64)

hi(n,10) = e (cosh ry sin(6;) — sinh ry sin(0; + 2¢;));
(65)

jk<1’], l’[0) ~ el (COSh i Sin(ek) + Sinh 'y Sin(ﬁk + 2¢k))
(66)

Clearly, these are similar to the unsqueezed initial state,
up to a common multiplicative factor of e~"0. The eigen-
values of the corresponding £ will therefore be identical to
those of the unsqueezed initial state, with appropriate
choices of ry, 0y, ¢;. Finally, we will also be interested
in the initial conditions ry > 1 with vanishing angles

¢o. 0y = 0. The amplitude functions will once again mirror
the structure of (59)—(62), up to a common multiplicative
factor of e*'0 this time.

In the next subsection, we will apply this language of
two-mode squeezed states to study the behavior of the
OTOC (49) for cosmological perturbations in an expanding
background.

IV. COSMOLOGICAL PERTURBATIONS
AND THE OTOC

We begin our analysis by reviewing the description of
cosmological perturbations [34] as two-mode squeezed
states, following [22] (see also [26-29]). We take as our
background a spatially flat FLRW metric

ds®> = —di* 4 a(1)?dx* = a(n)*(—dp* +dx*),  (67)
where we have introduced the conformal time #. For
simplicity we will consider our matter content to consist
of a fundamental scalar field ¢ with a canonical kinetic
term and potential V(¢). On the background (67) the scalar
field is homogeneous and time-dependent ¢ (¢); the scalar
field potential and kinetic energy source the evolution of
the scalar field a(n).

On this background we will consider fluctuations of a
scalar field ¢(x) = @o(t) + ¢(t, x) with the metric

ds* = a(n)*[=(1 + 2y (x.n))dn* + (1 = 2y (x, n))dx?].
(68)

In terms of the curvature perturbation R =y —l—%éq),

where a dot denotes a derivative with respect to cosmic
time 7, and the Hubble parameter H = @/ a, the action takes
the following simple form [34]:

M2 2 [ 1
S = Tm/dt &xa’ % [RQ - ;(8573)2]- (69)

By using the Mukhanov variable v =zR where z=
Mp,a\/Z, with € = —H/H?> =1—"H'/H?, the action
can be transformed into the following form:

1 Z/ 2 Z/
N :E/ dnd’x {1}’2 —(0v)* + (—) v — 2—1/11} . (70)

Z Z

where the prime denotes a derivative with respect to
conformal time and H = d’/a. This action represents
perturbations of a scalar field coupled to an external
time-varying source.” We promote the perturbation to a

A virtually identical-looking expression can also be derived
for tensor perturbations with the replacement z'/z — a’/a, and
our results will hold for these types of perturbations as well.
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quantum field and expand into Fourier modes 7, with
the action
N 2
A < A A
/U/ o> - k2 — | — V-0 -
—k z k™ -k

The corresponding Hamiltonian can be written in terms of
the raising and lowering operators as

(72)

The first term in (72) represents the usual free-particle
Hamiltonian, while the second term describes the inter-
action between the quantum perturbation and the expand-
ing background. Notice that this last term is similar in form
to the Hamiltonian for the inverted harmonic oscillator
from the last section, and indeed we will see that when the
last term in the Hamiltonian dominates z'/z > k the
dynamics will resemble that of an inverted harmonic
oscillator. The time evolution of the Fourier modes gen-
erated by H; is naturally described by the product of the
two-mode squeezing Sy (7, ¢;) and rotation R (6y) oper-
ators, as outlined in Sec. III.

The Heisenberg equation of motion da;/dn = i[Hy. az],
together with the squeezed form of the creation and
annihilation operators (40) and (41), leads to the equations
of motion for the squeezing parameters

o

where the parameter ff = —ﬁ is positive for accelerat-
ing solutions and negative for decelerating solutions. The
dimensionful parameter 7, controls the (cosmic-time)
Hubble expansion rate H, at the time n =, as |y =
|A|H,. For our purposes, |1y| will show up in the combi-
nation k||, which controls when modes are subhorizon or
superhorizon.

For all accelerating backgrounds, w < —1/3, modes
begin at sufficiently early times a < (k|no|)? inside the
horizon with small squeezing r;, < 1, with the approximate

solution

*As discussed in [23], the marginal case w = —1/3 is unin-
teresting for our purposes, and we will not consider it further here.

dry 4
b, S 2¢,); 73
a2 cos(2¢) (73)
d /
dink =k+ ZZcoth(Zrk) sin(2¢h); (74)
do !
Dk _ j— Z tanh(ry) sin(2¢,). (75)
dn Z

It is often more convenient to rewrite these equations of
motion with the scale factor a(y) as the independent
parameter, leading to

dr 1

d—; = —;cos(2¢k); (76)
dpy k1 NN
da o + gcoth(Zrk) sin(2¢y); (77)
a0, k1 .
i Etanh 7 sin(2¢y). (78)

Solutions to (76)—(78) are known [23]; in the rest of this
section, we will use these known solutions to compute the
unequal-time commutator (47) and the OTOC (49).

A. Expanding backgrounds

The scale factor in conformal time for expanding FLRW
backgrounds (67) with a fixed equation of state p = wp
takes the form*

, —oo<n<0,p <0 for accelerating backgrounds f > 0 (w < —1/3),

o\ [
o= () =1
n ()Pl 0 <n<oo,my>0 for decelerating backgrounds 8 < 0 (w > —1/3),

(79)
ri(a) N%al/ﬁ <1; (80)
D) =5 = a: (81)
¢ 4 Aklnol
kln.
0 (a) z—% > 1. (82)

Taking the initial state to be ‘“unsqueezed” ry — 0, the
amplitude of the unequal-time commutator (47) becomes

fx(n,1m9) = cosh ry cos(6; — )
- Sil’lh i cos(@k - 6() + 2¢k> (83)
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For times 7 > 5, but still early enough that modes remain
within the horizon, Eq. (83) oscillates with approximately
unit amplitude

Fi(n.m0) = cos (6 — 6p) ~ O(1). (84)

Thus, the OTOC for sufficiently early times when the
modes are deep within the horizon is C; ~O(1). At
late times, once the modes exit the horizon a > (k|n|)”,
the squeezing parameter grows, while the squeezing
and rotation angles “freeze out,” with the leading-order
solution [23]

ri(a) = 1n(a/klnol); (85)
dela) ~ = (86)

klnol 1
0,(a) ~ 2/3"7_‘” <l (87)

At late times, then, the unequal-time commutator becomes
dominated by the large squeezing

Fr(n.mg) & @kl cos(0y) = —cos(6p).  (88)

o)~ rilnn? = (G0 cos@n).  (59)

Up to now, we have been working with conformal time 7,
because the Hamiltonian and equations of motion take on a
particularly simple form in this coordinate system. In order
to interpret our result (89) physically, however, it is more
natural to evaluate it in terms of the cosmic time ¢, defined
in (67), because this is the time observed by an observer
comoving with the expanding fluid. The qualitative behav-
ior of the time dependence of the accelerating solutions
can be subdivided according to the null energy condition.
When applied to a homogeneous and isotropic perfect
fluid described by a pressure and energy density, the null
energy condition 7, N*N* > ( becomes a condition on the
equation of state w > —1. Accelerating cosmological back-
grounds satisfying the null energy condition —1 <w <
—1/3 are generally realizable with known matter sources,
including canonically normalized scalar fields; the corre-
sponding scale factor takes a power-law form a(r) ~
(t/19)¥CU+W) " where a(ty) = 1. Cosmological back-
grounds that saturate the null energy condition w = —1,
including de Sitter space, experience exponential expansion
a(t) ~ ef("=)_ Finally, for cosmological backgrounds that
violate the null energy condition w < —1, which may be
more difficult to realize using simple matter fields without

introducing additional pathologies, the scale factor diverges
in finite time a(t) ~ (z, —)?G0+) at time t,. The
corresponding time dependence of the OTOC (89) follows
that of the scale factor

IR for —1 <w<—-1/3(1 <ff < o),

Ci(t) ~ forw=-1(p=1),

(%)262Ht

(t,—1) ST, for w < -1(0<p<1).
(90)

As discussed in the Introduction, we will schematically
describe the growth of the OTOC C, () between the Fourier
mode and its momentum in terms of the semiclassical limit
of the corresponding Poisson bracket. For a chaotic system
we expect the OTOC to grow exponentially with time;
interestingly, we find that only de Sitter solutions (w = —1)
display strictly exponential growth of the OTOC,

2
Cult) ~ AeP = (%) 2, 91)

where 1= Hyg is a Lyapunov exponent. Putting this
together with the early-time behavior, then, we see that
the OTOC for a de Sitter background initially oscillates
with unit amplitude, then grows exponentially with cosmic
time after horizon crossing, as seen in Fig. 1. Following [3],
the timescale 7, ~ (21)'log(1/A) for the OTOC of a
given mode with wavelength k to become O(1) is

I kN2 ok
t, (k) ~ ZHdS log H—ds ~ HdS IOgH—dS . (92)

By taking the wavelength to be bounded above by a cutoff
k < A, an estimate for an upper bound on this timescale for
the entire system could be ¢, < H™'In(A/Hgg). For large
N quantum field theories, it is more appropriate to describe
the behavior of the system in terms of a four-point function
F(t) = (W(t)V(0)W(1)V(0)); ~ 1 — € /N for intermedi-
ate times longer than the typical thermalization timescale 7,
[3]. A corresponding scrambling time is then defined as the
timescale in which the four-point function decays, 7., ~
A~ 'log N [3]; large N ensures a hierarchy between the
thermalization and scrambling times. In our case, it is
difficult to directly calculate the thermalization timescale 7,
in our formalism from the thermal two-point function,
so it is not clear if such a hierarchy naturally exists.
Nevertheless, a naive estimate would give the thermal-
ization timescale to be set by the Gibbons-Hawking de
Sitter temperature scale [35] 7, ~ T~ ~ Hyd ~ 27! Givena
relationship between the OTOC and the four-point function
in this limit of the form C(¢) ~ 2 — 2F () ~ 2¢* /N, the two
timescales 7, and f,, then might play analogous roles.
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Hy (t-to)

The numerical solution to the squeezing equations of motion (76)—(78) show the behavior of the OTOC C; as a function of
scale factor (left) and as a function of cosmic time # (right) [written here in terms of H(t —

to), where a(ty) = 1 and H(ty) = H,] for an

expanding accelerating cosmological background depends on the equation of state. For all equations of state the OTOC is oscillatory
with O(1) amplitude at early times, then grows as a*> when the mode exits the horizon, following (90). For accelerating equations of state

between —1 < w < —1/3 (dashed red lines, w = —0.9), the OTOC grows as a power of 7, slower than exponential. For w = —1 (solid
black) lines, the OTOC grows exponentially, implying potential quantum chaos for de Sitter expansion. For w < —1 (dash-dotted blue
lines, w = —1.1), the growth of the OTOC is “superchaotic,” growing faster than exponential and diverging in finite time.

The putative Lyapunov exponent from (91) also saturates
the conjecture [3] that the Lyapunov exponent of the OTOC
is bounded above by the temperature 4 < 2zT, taking T ~
H/2xz [35]. However, we again note that for our case the
correspondence is less clear: the conjectured bound relies
on a parametric separation of scales between the typical
scattering, or thermalization, time t; and the scrambling
time f., which in our case might not be present. Since the
OTOC calculated using the unequal-time commutator (49)
is done in Fourier space and is a ¢ number, it is independent
of the thermal averaging procedure as also discussed earlier
around Egs. (17) and (49). Further, it is difficult using
our formalism to determine the thermalization time, and so
it is unclear that the assumptions and reasoning that went
into [3] apply in our case. It is interesting to compare our
results for the OTOC (91) and ¢, (92) to those of [32,36].
While the Lyapunov exponents agree, up to perhaps a
factor of 2, Eq. (91) does not manifestly vanish in the limit
in which gravity is decoupled for a fixed de Sitter scale
M,;/Hg4s — co, while the OTOC of [32] does manifestly
vanish in this limit. Similarly, 7, does not contain an explicit
factor of M ,;/ Hgys in this decoupling limit. Note, however,
that this is an artifact of the transformation to Mukhanov
variables below (69), which contains an explicit factor of
M. In the M ,;/Hag — oo limit, the curvature perturba-
tions R described by the action (69) do indeed decouple.
Nevertheless, Eq. (91) does not lead to the same parametric
control of the separation of timescales as [32] in this limit.
Note also that (91) is evaluated in cosmic time with
comoving coordinates, while the analysis of [32] uses
static time coordinates, making it difficult to make a direct
correspondence between these results. Finally, note that
while the Mukhanov variable v grows at late times for
de Sitter, the corresponding curvature perturbation R is

constant on these superhorizon scales, so we do not expect
the linearized theory to break down due to gravitational
backreaction.

Considering accelerating solutions that obey the null
energy condition —1 < w < —1/3, we see that the growth
of the OTOC is considerably slower than exponential.
However, for quasi—de Sitter backgrounds that might arise
in models of early universe inflation with w = —1 4 ¢ for
€ < 1, the growth of the OTOC can be strongly dependent
on time C; () ~ 1?/¢. Correspondingly, it seems reasonable
to classify the behavior of the OTOC for these backgrounds
as “quasichaotic” (in the same sense that these cosmologi-
cal backgrounds are often referred to as “quasi—de Sitter”).
Crossing over to backgrounds that violate the null energy
condition w < —1, the OTOC diverges in finite (cosmic)
time, as the expanding background approaches the so-
called “big rip” singularity. It is not surprising to see the
OTOC for these superchaotic systems display similar
pathologies as the background solution as the big rip is
approached.

While the discussion above in terms of the OTOC (51)
clearly establishes growth at large squeezing, let us also

consider the form of matrix M (52) of OTOCs and the
associated eigenvalues of the squared matrix £. At late
times, the eigenvalues of M become e=n(@/kinl) ~ (%)ﬂ,

so that the growth of the OTOC at late times is reflected in
the dominant eigenvalue of the matrix M itself. The
eigenvalues of £ at late times become

1
oy ~ {0’ z e2 1“(a/k\'70\)sin2 (90) }

~ {o% <%>zsin2(€0)}. (93)
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We see the same general behavior for the dominant
eigenvalue as discussed above for the OTOC (90), con-
firming that analysis.

For decelerating backgrounds w > —1/3, modes begin
outside the horizon for sufficiently early times a <
1/(kng) IAl; the solutions for the squeezing parameter, angle,
and rotation angle thus qualitatively resemble the super-
horizon solutions in the accelerating case, with large and
growing squeezing r; > 1 and approximately constant
angles

r(a) ~ry+In(a/ay); (94)
dela) =3 (95)
O (a) z%al/ﬂ <1, (96)

where the initial squeezing is also taken to be large ry > 1.
Setting ro > 1, 6, ~ 0, and ¢y ~ —7/2, Eq. (47) becomes

Fie(n,ng) = e~ (cosh ry cos(6;) — sinh r, cos(0; + 2¢p;)).
(97)

Using the solutions at some early time # > 7, but still
before horizon crossing, Eq. (97) becomes

Jiln,mo) = e~ %') > 1. (98)

We see that the OTOC C;, ~ f% increases with the scale
factor during these early times, up until horizon crossing.
At late times a >> 1/ (kng)"!, the modes reenter the horizon
and the squeezing freezes in, while the squeezing angle and
rotation angle are large and evolving,

r(a) = r,; (99)

3
dela) = + kg ; (100)

O (a) = —knoa'/ VP!, (101)

OoTOC
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1000

. . . . = akn
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FIG. 2. The numerical solution to the squeezing equations of
motion (76)—(78) for the OTOC C; is shown as a function of the
scale factor a for a radiation w = 1/3 background; all other
decelerating backgrounds show qualitatively similar behavior.
We see that the OTOC amplitude begins at a value of 1, grows
until the mode exits the horizon at a ~ 1/(kny)”, and then

oscillates with a fixed amplitude, interpolating between the
behaviors (98) and (102) described in the text.

The unequal time commutator then oscillates, with an
amplitude that is frozen in, set by the scale factor at horizon
reentry a, ~ 1/knq,

Fe(m,no) ~ e (cosh r, cos(;) — sinh r, cos(0; + 2¢;))

~ & cos (knga'/), (102)
ap

where in the second approximation we assumed 7, > 1.
This behavior, as a function of the scale factor, is shown in
Fig. 2. Combining the behavior of the unequal time
commutator at early times (98) and late times (102)
together with the power-law behavior of the scale factor
as a function of cosmic time a(t) = aytV/(FI+1) we see
that the OTOC grows as a power law C; ~ " for n < 1 at
early times, and then develops a strong oscillation with a
saturated amplitude Cj ~ (a,/ag)* > 1 set by the scale
factor when the mode reentered the horizon.

An analysis of the matrix M and the eigenvalues of £
tell a similar story. At early times, for ¢, ~ —z/2 and
0, < 1, the eigenvalues of £ are approximately constant
ay ~=*1. At late times, the eigenvalues oscillate with
about fixed values

1
a, = cosh(2r,)sin?(0;) + 1 \/3 + 12 cos(26y) + cos(46;) + 8 cosh(4r,)sin*(6;) ~ cosh(2r) sin*(6;)

2o (35 )i 2
~e*0 | =) sin*(6,),
do

(103)
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in rough agreement with (102). Thus, the dominant eigenvalue for an expanding decelerating background grows until

horizon crossing, after which it saturates.

B. Contracting backgrounds

Now we will consider contracting cosmological backgrounds with a fixed equation of state. The scale factor for a
contracting universe with a fixed equation of state can be written as

(B,

P o
a = () =<
n (%)‘ﬂ‘, —o0 <1 <0, ny <0 for decelerating backgrounds f < 0 (w > —1/3),

where = —2/(1 + 3w) as before.

Cosmological backgrounds that are contracting are time
reversals of their expanding counterparts, so we expect
most of the qualitative features of the previous subsection
to be reproduced. In particular, contracting accelerating
backgrounds will be similar to expanding decelerating
backgrounds, and vice versa. The only main difference
is that the scale factor for contracting backgrounds will be
large at early times and become small at late times.

For contracting accelerating backgrounds w < —1/3,
modes begin outside the horizon and reenter the horizon
as the universe contracts; the corresponding solutions to the
squeezing and rotation parameters are

ri(a) ~ rog—In(a/ay); (105)
Q) Ko g,

0 ( N_i -1/p

v(a) ~ a '/’ (107)

(142p)

As with the expanding decelerating case, we have ry > 1,
while now ¢, 9, ~ 0. Using these initial conditions in (47),
we have

Fie(n,no) ~ e (cosh ry cos(6;) — sinh r; cos(6 + 2¢by)).
(108)

Using the early-time squeezing solutions in (108), we have

a
filnmo) m e m—< 1. (109)

o

Note that since a < ay as the universe contracts, the
magnitude of the OTOC C; ~ f7 decreases during the early
stage of a contracting accelerating universe as the scale
factor decreases. At late times, the mode reenters the horizon
around a, ~ 1/(kny)?, and the squeezing freezes in, while
the squeezing and rotation angles become large,

0 <7 < o0, ng > 0 for accelerating backgrounds > 0 (w < —1/3),

(104)
|
r(a)=r, =ry—In(a,/ay); (110)
kno
~— — 111
¢k(a) T+ al/ﬂ ( )
kno
0 N = 112
k(a) a]/ﬁ ( )

The OTOC in this regime, then, oscillates with a fixed
amplitude set by horizon reentry,

fr(n,mo) ~ e"e’ (cos(6) — cos(Oy + 2¢))

R~ ' @cos(ek).
A,y

(113)

Altogether, for a contracting accelerating background the
OTOC starts at 1, increases until the mode reenters the
horizon, and then oscillates with a fixed amplitude
e’ay/a, > 1 set by the scale factor at reentry. A numerical
solution demonstrating this behavior is shown in Fig. 3.

OTOC
10"+
10°F
100
10 1 01 ey
001l
FIG. 3. Numerical solutions to the squeezing equations of

motion (76)—(78) for the OTOC C;, show that the amplitude of the
OTOC for a contracting accelerating (w = —1) background
grows as a power of the (inverse) scale factor while the mode
is outside the horizon, and then saturates once the mode reenters
the horizon. Note that in contrast to the expanding accelerating
case, Fig. 1, the OTOC does not continue to grow exponentially at
late times, even for a contracting de Sitter universe.
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The eigenvalues of the matrix £ tell a similar story. At early times, the eigenvalues of £ are constant @, ~ %1, while for

late times the dominant eigenvalue becomes

1
ay = cosh(2r,)sin?(0;) + 1 \/3 + 12cos(20;) + cos(40;) + 8 cosh(4r, )sin*(6;) ~ cosh(2r)sin?(6y)

2
~ €20 <@> sin?(6y).
a*

The dominant eigenvalue is indeed approximately the
square of the amplitude (113). Altogether, the eigenvalues
begin O(1), growing through horizon crossing until reach-
ing the saturation value given in (114). Note that this
behavior precisely mirrors the behavior of the eigenvalues
of the expanding, decelerating background from the pre-
vious subsection. Focusing on a contracting de Sitter
background, the OTOC grows proportional to the scale
factor while the mode is outside the horizon, leading to a
period of exponential growth of the OTOC when expressed
in cosmic time. However, the OTOC soon saturates as the
mode enters the horizon, leading to a transient period of
exponential growth of the OTOC, where the timescale for
this period of growth is set by the horizon reentry time.
Comparing this to the OTOC for an expanding de Sitter
background, we see that the OTOC behaviors are not mirror
images of each other, since the OTOC grows without
saturation for the expanding case. It would be interesting
to study further whether this fundamental difference
between expanding and contracting de Sitter backgrounds
could be due to a difference in the validity of their
respective effective field theories.

Finally, let us consider a contracting decelerating cos-
mological background. At early times, modes for a con-
tracting decelerating background start deep within the
horizon, with a small squeezing parameter, fixed squeezing
angle, and large rotation angle,

Bl
rk(a) N2k|7]0|m, (115)
J
k 1
1—3?/}\“ /Bl
ér ~{ Ba\/W _%al/lﬁ\al/lﬂl In
Ba?,

0, ~ 0+ O(al/lP). (122)

As discussed in [23] the behavior of the solution for
the scale factor changes with f depending on whether
the homogeneous or inhomogeneous term dominates the
right-hand side of the ¢; equation of motion. The constant

(114)

V4 1 1
N—+——— 116
O ~ —k|nola'/ VP!, (117)

Using ry < 1 and ¢ ~ 7/4, the magnitude of the OTOC
takes the general form

Ji(n.no) = cosh ry cos(6 — )

— sinh ry cos(0; — Oy + 2¢y). (118)
The corresponding magnitude of the OTOC at early times
thus oscillates with an O(1) amplitude

Fi(n.mo) ~ cos (6 — 6) ~ O(1). (119)
At late times (again, corresponding to a small scale factor),
the modes exit the horizon, and the squeezing parameter
begins to grow, while the squeezing and rotation angles
freeze out to zero. Unlike the previous cases, however, we
need to keep careful track of how the squeezing angle ¢,

decays as a function of the scale factor and the equation of
state [controlled by = —2/(1 + 3w)]

re~—1In(a/ay); (120)
for p < —1/2(-1/3 <w < 1),
for = —1/2(w = 1), (121)

for —1/2<p<0(w>1),

|

B is determined by the initial conditions for ¢; its precise
value will not be important for us to determine the
qualitative behavior of the OTOC from (121). Inserting
the solutions (120)-(122) into (118), we have (before
inserting specific behaviors of ¢;)

frla,ag) ~ e " cos(@y) + e sin(6y) sin(2¢;) (123)
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FIG. 4. Numerical solutions to the squeezing equations of
motion (76)—(78) for the OTOC C; show that the amplitude of the
OTOC at late times (small scale factor) for a contracting
decelerating universe depends on the equation of state, as
discussed in (125). For equations of state —1/3 <w < 1/3,
the OTOC grows at late times as a power of the scale factor (blue
dot-dashed line). For equations of state w > 1/3, the OTOC
decays as a power of the scale factor (red dashed line). For
radiation backgrounds w = 1/3, the OTOC has a constant
amplitude of one (black solid line).

(£) cos(dy).
2kl’]odo Sin(go) R

kng
2130

fila, ag) =

Sin(eo) ﬁ .

~ (i> cos(6y) + 2(%) du(a)sin(@y).  (124)

ap

Notice that the first term of (124) is always decreasing as
a — 0 at late times for a contracting background. However,
depending on the functional form of ¢, (a), the second term
of (124) could be either increasing or decreasing with time.
In particular, as long as the squeezing angle scales with a
power of the scale factor less than one ¢;(a) ~ a" for
n < 1, then the second term of (124) will increase with
time and dominate at late times. From (121), the power of
the squeezing angle scales with a power of the scale factor
less than one for || > 1, which translates to an equation of
state of —1/3 < w < 1/3. For these equations of state,
which encompass most known large-scale matter fluids, the
amplitude of the OTOC at late times will grow with time.
On the other hand, for || < 1, corresponding to w > 1/3,
the amplitude of the OTOC will decay with time; the
marginal case || = 1 (w = 1/3) will result in a constant
amplitude at late times,

for |p| <1 (w>1/3),
for |f| =1 (w=1/3),
for |p| > 1 (—1/3 <w < 1/3).

(125)

We can clearly see this transition in the late-time behavior as a function of the equation of state in the numerical solutions

displayed in Fig. 4.

As with the other contracting case, we should reexamine this result for the OTOC by calculating the eigenvalues of the
matrix £. At early times, the eigenvalues of the matrix £ are O(1), and given by a,. = {—cos(2(6; — 6y)), 1}. At late times,

the eigenvalues become

1 2
a. = cosh ry sin(6;, — 6y) £ \/—1 + cosh?(ry)sin? (0 — 0y) ~ {O,Eez’ksinz(éo)} ~ {0, 2<@> sinz(eo)}. (126)
a

From these eigenvalues we see dramatically different
behavior from that of the single OTOC (125): while
the late-time behavior of the OTOC (125) depended on
the equation of state, the behavior of the eigenvalues
shows a dominant growing mode as the universe con-
tracts. This illustrates a shortcoming of focusing only on
a single OTOC. By considering the spectrum of eigen-
values from the OTOC matrix £, we see a more complete
picture of the behavior of the OTOC that is independent
of the particular choice of field variables inserted into the
OTOC.

Remarkably, we see that the eigenvalues of L for the
contracting decelerating backgrounds match those for the
expanding accelerating backgrounds at late times. In fact, if
we chose to calculate the OTOC based on [, (1), #x(17)],
with the roles of 5 < 5, switched, for a contracting
decelerating background, then we should recover the single
OTOC results from the expanding accelerating back-
ground, illustrating the incompleteness of studying an
OTOC based on only one particular combination of fields.
Note that even while the eigenvalues of £ for the OTOC are
growing at late times, the scale factor, written in terms of
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cosmic time #, does not exhibit exponential behavior. In
particular, for the contracting decelerating backgrounds
considered here, the scale factors written in cosmic time are
power-law functions of ¢, and so are subchaotic.

Overall, we have seen a general universal behavior in the
OTOC (and its generalization to the dominant eigenvalue
of £) for all cosmological backgrounds: When the mode is
inside the horizon, the OTOC has a fixed amplitude, while
modes outside the horizon grow proportional to the scale
factor (for expanding backgrounds) or its inverse (for
contracting backgrounds).

V. DISCUSSION

Tools and techniques from quantum information theory,
such as the OTOC or circuit complexity, can provide
alternative perspectives of interesting quantum systems.
The OTOC can be a useful probe of the time-dependent
overlap between two operators, and has a natural inter-
pretation in the semiclassical limit as the separation
between two nearby trajectories in phase space.
Analogous to the classical case, an exponentially growing
OTOC is commonly associated with quantum chaos
(although not all systems with quantum chaos exhibit an
exponential dependence). In this paper, we studied the
OTOC for squeezed states and their application in the time
evolution of cosmological perturbations.

We find that the OTOC for generic squeezed states can
be calculated in closed form and is independent of the
averaging procedure. Highly squeezed states, characterized
by the squeezing parameter r, have an exponentially large
OTOC, C~e*, so that any linear dependence of the
squeezing on time leads to exponential growth. In this
sense, a highly squeezed state is “primed” for quantum
chaos. However, we found that an over-reliance on a single
combination of fields in the OTOC (such as the canonical
choice [§(n7), p(ng)]) can mask general behavior of the
system. Instead, one should construct the squared matrix
El-j constructed from the symplectic matrix M,- ; of
unequal-time commutators, analogously to the classical
case. The eigenvalues of L;; capture the general OTOC
behavior of the system, and their late-time exponential
behavior can be used as a more robust diagnostic of
quantum chaos. We applied our formalism of squeezed
states to calculate the OTOC of the inverted harmonic
oscillator, finding an exponential growth of both the
canonical OTOC and the eigenvalues of £ at late times.
It is interesting to compare this result to other diagnostic
probes of the inverted harmonic oscillator. For example, the
single-evolved complexity [22] does not show any growth
at late times consistent with quantum chaos, while the
double-evolved complexity [37] and displacement operator
complexity [12] do show such growth. Thus the OTOC,
particularly the eigenvalues of the squared OTOC matrix

L;;, may be among the more sensitive measures of time-
dependent dynamics.

After generalizing our techniques for computing the
OTOC to two-mode squeezed states of continuous Fourier
modes, we studied the OTOC for cosmological perturba-
tions on expanding and contracting backgrounds of a fixed
equation of state. Previous studies of the complexity of
cosmological perturbations [22,23] uncovered a rich struc-
ture in its time-dependent behavior, including surprising
bounds on the growth rate of complexity reminiscent of [3].
Here, we find that only expanding de Sitter space leads to
an exponential growth of the OTOC at late (cosmic) times,
suggesting that only expanding de Sitter can be described
as quantum chaotic at late times. In Appendix we further
used the exact mode function solution for de Sitter to
calculate the OTOC in both Fourier space and position
space exactly, the former showing excellent agreement with
the squeezed state result. In position space, the OTOC
between two operators is only nonzero inside their causal
light cone, as expected, and it grows exponentially in a
similar way as the Fourier space OTOC. Altogether, the
OTOC for cosmological perturbations on an expanding de
Sitter background shows exponential growth as other
OTOC calculations done using different techniques [32],
and leads to an identical putative Lyapunov exponent.

While expanding de Sitter is of particular interest,
because of its applications to early- and late-time accel-
eration of our Universe as well as its theoretical similarity
to black hole spacetimes, the squeezed state language
makes it easy to include in our analysis expanding and
contracting backgrounds with arbitrary fixed equation of
state. The OTOC for expanding accelerating backgrounds
begins small while modes are still within the horizon, then
grows after the horizon exit. As noted before, only for
de Sitter backgrounds is the resulting growth of the OTOC
exponential. For expanding accelerating backgrounds
that obey the null energy condition —1 < w < —1/3, the
OTOC grows as a subchaotic power of cosmic time, while
the OTOC for backgrounds that violate the null energy
condition w < —1 has a superchaotic growth, diverging
in finite time. The OTOC for expanding decelerating
backgrounds shows a qualitatively different behavior,
however, as it grows initially, and then freezes in once
the mode enters the horizon. For expanding backgrounds
the dominant eigenvalue of the squared matrix £;; matches
qualitatively the behavior of the canonical OTOC.

We expect that the behavior of the OTOC for contracting
backgrounds should mirror their expanding counterparts,
namely that a contracting accelerating background should
behave similar to an expanding decelerating background,
and vice versa. Indeed, we find for contracting accelerating
backgrounds, including a contracting de Sitter universe,
the OTOC grows initially before freezing in once the
mode enters the horizon. Since the growth of the OTOC
is proportional to the scale factor, this means that the OTOC
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for a contracting de Sitter universe has a transient period of
exponential growth, before saturating at a fixed value.
However, the behavior of the canonical OTOC for con-
tracting decelerating backgrounds does not directly mirror
that of an expanding accelerating background; instead of
uniform growth after exiting the horizon, the late-time
behavior of the OTOC qualitatively changes as a function
of the equation of state. For equations of state less than that
of radiation —1/3 < w < 1/3, including pressureless mat-
ter, the OTOC grows at late time as a power of the scale
factor. For an equation of state equal to that of radiation
w = 1/3 the OTOC is constant and equal to 1 at late times,
while for equations of state “stiffer” than radiation w > 1/3
the OTOC decays at late times. Interestingly, while the
behavior of the canonical OTOC for a contracting decel-
erating background does not mirror that of its expanding
accelerating counterpart, the eigenvalues of the squared
matrix £;; have precisely the same qualitative form for both
backgrounds. This is further evidence that reliance on a
single OTOC as a probe of the dynamics of a quantum
system can mislead, and that important general features
can be better extracted from the squared matrix inspired by
classical chaos. Note that while a contracting decelerating
background has a growing OTOC at late times, the growth
is always slower than exponential, so that it is subchaotic in
this sense. Overall, we find a universal behavior for the
generalization of the OTOC to the eigenvalues of the squared
matrix £: the OTOC oscillates with a fixed amplitude for
modes inside the horizon, while it grows as the scale factor
(or its inverse) for modes outside the horizon, for expanding
and contracting backgrounds, respectively. Note that this
means that only de Sitter backgrounds, either expanding or
contracting, have a period in which the OTOC grows
exponentially with cosmic time.

It is interesting to compare our results here for the OTOC
of cosmological backgrounds to the corresponding results
for quantum circuit complexity found in [22,23]. Both the
OTOC and the circuit complexity are expected to be probes
of time-dependent dynamics of a quantum system and
can potentially signal the onset of quantumm chaos. In
[22,23], the complexity grows at late times for expanding
accelerating (and contracting decelerating) backgrounds.
While we did find that the OTOC for contracting decel-
erating backgrounds with w > 1/3 decreases at late times,
the eigenvalues of the squared matrix £;; increase at late
times in an identical way to expanding accelerating back-
grounds. Remarkably the slope of the growth of complexity
was found to saturate for equations of state less than —5/3
for expanding backgrounds (or greater than 1 for con-
tracting backgrounds), evoking echoes of the bound on the
Lyapunov exponent [3]. We do not see any corresponding
saturation in the growth or growth rate of the OTOC
for expanding accelerating (or contracting decelerating)
backgrounds, suggesting that circuit complexity is probing
slightly different features of the quantum system. Further,

for expanding decelerating (and contracting accelerating)
backgrounds, the authors of Refs. [22,23] found that the
circuit complexity actually decreases with time until
freezing in after entering the horizon, while we find here
the opposite behavior that the OTOC increases until
entering the horizon. It would be interesting to study
whether there is a deeper reason these two diagnostics
give qualitatively different behaviors, and whether there is
an analogue of the squared eigenvalues of the OTOC for
circuit complexity.

While we have seen that only an expanding de Sitter
background leads to exponential growth at late times,
suggesting that expanding de Sitter space experiences
quantum chaos, it is less clear how to see a separation
of dissipation and scrambling timescales in this system.
Thus, it is not immediately clear what an interpretation of
the OTOC for a microscopic theory of the de Sitter horizon
would be. Indeed, for eternal de Sitter the growth of the
OTOC continues without bound, which is inconsistent
with broad expectations of the OTOC at very late times.
Perhaps general expectations that the OTOC saturate at
very late times imply the breakdown of the effective field
theory used here and could lead to a cap on the amount
of de Sitter expansion, similar to other proposals [38]
(although the curvature perturbation is fixed on super-
horizon scales, reducing the likelihood of gravitational
backreaction). Additionally, since de Sitter is the fastest
“scrambler” among backgrounds that satisfy the null
energy condition, with the fastest growth of the OTOC,
this may make it a natural cosmological background for
our Universe, since we have only one Universe (that we
know of) and it appears to have early-time and late-time
(quasi—)de Sitter expansion periods. We leave these and
related questions for future work.
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APPENDIX: OTOC FOR de Sitter

In Secs. Il and IV, we investigated the OTOC for Fourier
modes of cosmological perturbations using the squeezed
state formalism, which allowed us to easily investigate
several different cosmological solutions using a uniform
formalism. However, there are some cosmological back-
grounds, such as de Sitter, where the Fourier mode
functions are known precisely in closed form. It can be
advantageous to perform explicit calculations using these
closed form expressions for this specific and important
background.

Following the analysis of Sec. III, the Hamiltonian for
Fourier modes in de Sitter space can be written as in (72),
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with 7'/z = d’/a = —1/n. The mode functions 9;(y7) and

their corresponding momenta 7 (#7) for a mode that begins
in the ground state in the far past #; - —oco can be written

dp(n) = vp(mag(n:) + v* " (m); (A1)
fp(n) = b_g(ma_g(m) + vx(mai(n:),  (A2)
where
1 Y\ ity
i) = Ner: < - 17;1) K (A3)

Notice that in the far past ; — —oo this becomes the flat
space ground state v; ~ e 1 /\/2k, as expected. For

normalized raising and lowering operators, the equal-time
commutator between the mode ; and its momentum 7}

k
gives the canonical result
[op(n). g ()] = i) (K =K).  (A4)

The unequal time commutator between these operators,
evaluated at 7 and 7/, gives a more interesting result

[03(n). 2 ()] = i(2)’8 (k= K) fu(n.),  (AS)
where the amplitude function f(n,7') is

filn.n') = cos(k(n—1n')) _w (1 1>

. cos(k(n = n’))% <1 B 1)

k2 n 11/
sin(k(n—1n')) 1
—_— . A6
+ k3 l,mlz ( )

Notice that for n — #/, f; = 1, recovering the equal-time
result.

The OTOC, written as the thermally averaged square of
the unequal time commutator

Creln) = =([o7, (n). 27 (mo)][og, (n). 2z (mo)])p (A7)
again simplifies to the square of the commutator
Cr(n) = =log (n). & (no)l[oz, (n). 2 (mo)].  (A8)

because the commutator is a ¢ number, so that the
amplitude of the OTOC in Fourier space is given by the
square of the amplitude C;(n) ~ (fi(7.7'))*. Taking our
initial time to be in the far past 7' = —co, Eq. (A6)
simplifies to become

sin(k(n =)

feln.n') ~cos(k(n —1')) - i

(A9)

At late times 7 — 07, this is dominated by the second term
fen, 1) ~sin(kn')/(kn), so that the amplitude of the
OTOC is given by

sin(kn' H
Ck(’])N (’7)N< dS

2
(o) k> sin?(kn')e*fss',  (A10)
where we converted from conformal time 7 to cosmic time
t. Up to O(1) factors, we find the same results for de Sitter
space as (90) in Sec. IV using the squeezed state formalism.
In particular, we find that the OTOC for de Sitter space
exhibits exponential growth at late times C; ~ ¥, with a
putative Lyapunov exponent given by the de Sitter Hubble
constant A = Hg.

While we have been focused on the Fourier space
behavior of the OTOC, it is also potentially interesting
to consider the position space unequal time commutator

Bkd’k'
- [p-
(2”)6 k

. d3k (e
= l/mfk(’%’?')elk'(x_x)-

Using the expression (A6) for the amplitude of the Fourier
OTOC, the result becomes

(20X, n), #(X', )] = (n), 7y () e ¥k

(A1)

C(x,x')

6.x10°

5.x107°

4.x10°°

3.x10°

2.x10°

1.x10°°

FIG. 5. The position-space OTOC C(x,x’) for cosmological
perturbations in de Sitter space (A14) between the field operator
?(X,n) and its conjugate momentum #(X’,#’), shown here in
conformal coordinates 7, x, grows as 1/#* inside the light cone
(we have taken 7 = —20 for concreteness).
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i

R N 5(An? — Ax?
() )] = g | 200 A=)
T

Ap? — Ax?
I 1 5 5

+ 7| ——= |6(An* — Ax?)
non

Tz 1 .
- EW sign(An)O(An — Ax)] ,

(A12)

where Ay =’ —n, Ax = X' — x, and the Heaviside func-
tion ®(x) in the last term only gives a nonzero contribution
inside the light cone. As expected, the unequal-time
commutator vanishes outside the light cone, reflecting
causality, as can be seen in Fig. 5. Taking the position-
space OTOC as the square of the thermally averaged
unequal time commutator, the thermal averaging is
trivial

Clx,x') = =i([0(X.n), 2(X' . 0")]*) g = =i[0(%, m), 2(X'. 1)),
(A13)

and so working strictly within the light cone, we see
the familiar exponential growth of the OTOC in de Sitter
space

1 11 1

— H2 e2HdSt’
(271.)4 ’,[/4 1,12 ds

C(x’ xl) = (471.)27]/4

(A14)
where we again used the relationship between conformal
time and cosmic time. The position-space OTOC (A14)
reflects a similar structure as we found in Fourier space
(A10), including exponential growth with the de Sitter
Hubble constant, and a factor of Hﬁs. Interestingly, if we
take our initial time to be past infinity ' — —oco the
position-space OTOC (A14) vanishes for points inside
the light cone and is nonzero only on the light cone itself,
reflecting a lack of correlations between the momentum at
past infinity and the field at any finite time not on the light
cone. Similar results hold for the field-field and momen-
tum-momentum unequal-time commutators and their asso-
ciated position-space OTOCs. It would be interesting to
explore how the behavior of the de Sitter OTOC near the
light cone relates to the bounds presented in [39].
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