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WP show t.hat. t.hP. dragging of axis rlirf'<'tion.• of )oral inP.rtial framPS hy a WP.ightP.<! avPr:\gP of 
the energy currents in the universe (Mach's postulate) is exoct for all linear perturbations of 
all Frierlmann-Robertson-Walker universes. 

1 Mach's Principle 

'- 1 The Observational Pact: 'Mach zero' 

The time-evolution of local inertial axes, i.e. the local non-rotating frame is experimentally 
determined by the spin axes of gyro.5copes, as in inertial guidance systems in airplanes and 
satellites. This is true both in Nev.rtonian physics (Foucault 1852) and in General Relativity. 

It is an observational fact within present-day accuracy that the spin axes of gyroscopes do 
not precess relative to quasars. This observational fact has been named 'l\Iach zero', where 
'zero' designates that this fact is not yet Mach's principle, it is just the observational starting 
point. - There is an extremely small dragging effect by the rotating Earth on the spin axes of 
gyroscopes, the Lense - Thirring effect, which makes the spin axes of gyroscopes precess relative 
to quasars by 43 milli-arc-sec per year. It is hoped that one will be able to detect this effect by 
further analysis of the data which have been taken by Gravity Probe B. 

1.t The Question 

Whal ph:11sical cause explains the observational fact '.:\1ach zero' ? Equivalently: What physical 
cause determines the time-evolution of gyroscope axes ? In the words of John A. Wheeler: Who 
gives the marching orders to the spin axes of gyroscopes, i.e. to inertial axes ? 

1.3 Mach's Postulate 

An answer to this fundamental question was formulated by Ernst :\'lach in his postulate (1883) 
that inertial axes (i.e. the spin axes of gyroscopes) exactly follow an average of the motion of the 
masses in the universe: Mach postulated exact frame dragging of inertial axes by the motion of 
rosmologicfl.l mn.~sf's, not merely a little bit of frrune-<irngging n.~ in Lcnse-Thirring effec.t. 

Mach did not know, what mechanism, what new force could do the job, he merely stated: 
'the lfl.ws of motion could be conceived ... '. Mach also asked: "What share has every mass in 
the determination of direction ... in the law of inertia? No definite answer can be given by our 
experiences." 

337 



1.4 Our Results 

We have shown that exact dmgging of inertial axis directions, i.e. Mach's Principle, follows 
from Cosmological General Relativity for general, linear perturbations of FRW backgrounds 
with K = (± 1, 0). This also holds for FRW backgrounds with arbitrarily small energy density 
and pressure compared to Pcrit (Milne limit of FRW universe). 

These results have been demonstrated for the first tiwe in our paper 1 for K = 0, and in our 
paper 2 for K = (±1,0). 

2 Theoretical Results and Tools 

2.1 Cosmological Vorticity Perturbations 

The vector sector of cosmological perturbations is the sector of vorticity perturbations. Two 
important theorems for the vorticity sector are needed to understand the following summary: 

1. The slicing of space-time in slices E 1 of fixed time is unique. The lapse function (elapsed 
measured time between slices) and goo are unperturbed. 

2. The intrinsic geometry of each slice Et, i.e. of 3-space, remains unperturbed. 

The coordinate choice uniquely adapted to our 3-geometry is comoving Cartesian coordinates 
for FRW with K = 0, resp. comoving spherical coordinates for K = (±1, 0). Hence the only 
quantity referring to vorticity perturbations is the shift 3-vector fi (resp (3; =!Jo;): 

ds2 

Rcom 

2.2 Gravitomagnetism 

-dt2 + a2 [dx2 + R~0m(d82 + sin2 8d<J>2
)] + 2(3;dxidt, 

(x, sinx, sinhx). 

(1) 

(2) 

The general operational definitions of the gravitomagnetic and gravitoelectric fields are given via 
measurements by FIDOs (Fiducial Observers) with LONBs (Local Ortho--Normal Bases), where 
LONB components are denoted by hats over indices. 

Gravitoelectric field Eg = g : 

d g 
- p, = m E, free-falling quasistatic test particle. 
dt ' • 

(3) 

Gm11i.tomagnP.tic fiP.ld Hg : 

n~ro:: -~B~ precession of gyro comoving with FIDO. 
i 2 i 

(4) 

Gravitomagnetic vector potential Ag : Because all 3-scalars must be unperturbed in the 

vector sector, div Ag = 0, and Ag is uniquely determined by Hg, 

Hg=: curl Ag =} Ag = iJ = shift vector. (5) 

Our choice of FIDOs: Our FIDOs are at fixed values of the spatial coordinates x', and the 
spatial axes are fixed in the direction of our coordinate basis vectors. 
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2.3 Einstein's ct Equation: The Momentum Constraint 

New result: The momentum constraint is forn1-idenlical for all three FRW background geome­

tries, [( = (0, ±1): 
(6) 

where (Jt/2)2 = -(,1/f/dt) _ {JJ-dot radins)-2 , and .J;. =energy wrrent density= moment1lrn 
density. Since the source in Eq. (6) is the momentum density, this equation is called the 
'momentum constmint '. 

The momentum constraint is an elliptic equation, i.e. there are no partial time-derivatives of 
perturbations, although tht: momt:utum constraint reft:rs to time-dependent gravitomagnctism. 

Our new approach: For the source we have used the LONB components f(. ='it, which is 
a measurable input, and which needs no prior knowledge of 9o;, which is the output. Einstein 
had emphasized that the coordinate-basis components T'f: are not a directly measurable input: 
'If you have T;w and not a rnet1-ic, the statement that matter by itself dete1mines the met1ic is 
meaningless. ' 

Kew result: The momentum constraint for time-dependent gravitomagnetism for all three 
FRW background geometries has the same form as Ampere's law for stationary magnetism, 
except for the term µ 2 Ag, which causes causes a Yukawa suppression beyond the H -dot radius . 
Then~ are no cnrvat.nre t.erms in Eq. {fi}. 

2.4 The Laplacian 011 Vector Fields in Riemannian 3-Spaces 

The Laplacian ~ acting on vector fields in Eq. (6) is the de Rham - !lodge Laplacian, which 
mathematicians simply call 'the Laplacian', and which differs from V'2 , which mathematicians 
call the 'rough Laplacian'. Unfortunately all publications on cosmological vector perturbations 
up to ours have used the 'rough Laplacian' V'2 . The difference between the two operators is 
given by the Weitzenbock formula: 

(7) 

where K = {±LO} is the curvat.nrc index for the FRW background, and a" is its curvature 
radius. For vorticity fields {divergence zero} the de Rham - Hodge Laplacian is defined by 

(8) 

where we have given both the 11otatio11 of elementary vector calculus and the 11otatio11 of calculu~ 
of differential forms with d = exterior derivative and * = Hodge dual. 

The de Rham - Hodge Laplacian on vector fields is singled out by the following properties: 

1. If all sources (curl and div) are zero =;. the de Rham - Hodge Laplacian gives zero. 

2. The de Rham - Hodge Laplcian commutes with curl. div, grad. 

3. The identities of vector calculus in Euclidean 3-space {familiar from Classical Electrody­
namics) remain true in Riemannian 3-spaccs for the Hodge - de Rham Laplacian. 

4. The action principle for Ampere magnetism in Riemannian 3-spaces directly produces 
Ampere's equation for A with the Hodge - de Rham Laplacian and wilhou/. curvature 
terms. 

5. For electromagnetism in curved space-time the equivalence principle forbids curvature 
terms in equations with the Hodge - de Rham Laplacian. 

Every one of these properties does not hold for the 'rough' Laplacian V'2 . 
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3 The Bottom Lines 

3.1 The Solution of the Momentum Constraint 

Cosmological gravitomagnetism on a background of open FRV\r universes gives identical expres­
sions for K = (0, -1) : 

-2figyro(P) = 

-4GN J d(volQ) [nPQ x ~(Q)] Yµ(TpQ) (9) 

-d 1 
dr [R exp(-Jtr)] = Yukawa force, (10) 

where r = ra.dia.1 distance, and 2nR = circumference of the great circle through Q and centered 
at. P. The solnt.ion Eq. (9) is analogous to Amper<''s solnt.ion for st.at.ionary magnet.ism, bnt. 
Eq. (9) is v-~lid for time-dependent gravito-magnetodynamics, and it has a l'Ukawa suppression. 

There is a fundamental difference between our solution Eq. (9) for cosmological gravito­
magnetism and the corresponding solutions in other theories, Ampere's magnetism, electro­
magnetism in Minkowski space, and General Relativity iu the solar system: Our solution for 
Cosmological General Relativity is manirestly form-invariant when going to globally rotating 
frames. In contrast, the other theories give solutions, which are not form-invariant when going 
to globally rotating frames. 

If the background is a closed FRW universe, one simply makes the following replacement in 
Eqs. (9, 10): 

exp(-µr) =? sinh-1 (µ11") sinh[µ(11" - r)]. (11) 

3.2 Exact Dragging of Inertial Axes 

From symmetry under rotations and reflections one concludes: The precession of a gyroscope 
can only be acted on by the component of the matter velocity field with JP = 1 + relative to the 
gyrosc-.ope. This component of the velocity field is equivalent to a rigid rotation of matter with 
angular velocity nmatter(r). 

From Eq. (9) one concludes that inertial axes, i.e. the spin axes of gyroscopes, exactly follow 
the weighted average of the energy currents of cosmic matter. 

W(r) 

< nmatter > =lo"° dr Omatter(r) W(r) 

1 3 ) 3 1611"GN(P + p) R Y,,(r , 

(12) 

(13) 

for perturbations of open FRW universes. The weight function W(r) is normalized to unit11, 

lo''° drW(r) = 1, (14) 

as it must be for a proper averageing weight function in any problem. - For perturbations of 2 

closed FRW universe one again makes the replacement of Eq. (11). 
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