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ABSTRACT: We study the applicability of the covariant holographic entanglement entropy
proposal to asymptotically warped AdSs spacetimes with an SL(2,R) x U(1) isometry. We
begin by applying the proposal to locally AdS3 backgrounds which are written as an R!
fibration over AdSy. We then perturb away from this geometry by considering a warping
parameter a = 1 4+ § to get an asymptotically warped AdSs spacetime and compute the
dual entanglement entropy perturbatively in §. We find that for large separation in the
fiber coordinate, the entanglement entropy can be computed to all orders in § and takes
the universal form appropriate for two-dimensional CFTs. The warping-dependent central
charge thus identified exactly agrees with previous calculations in the literature. Performing
the same perturbative calculations for the warped BTZ black hole again gives universal two-
dimensional CFT answers, with the left-moving and right-moving temperatures appearing
appropriately in the result.
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1 Introduction

Understanding how the holographic principle works beyond the example of anti-de Sitter
space is a crucial and beautiful challenge which will elucidate the dynamics of quantum
gravity in general backgrounds. A natural example is the geometry describing our uni-
verse, which is cosmological in nature, and more closely resembles an FRW /de Sitter type
universe. As another example, the geometry describing regions near the horizons of certain



astrophysical black holes is not quite anti-de Sitter space but more closely resembles a slight
deformation thereof known as the NHEK /warped AdSs geometry. There have been several
proposals for holographic descriptions of these and other non-AdS spacetimes [1-15], and
the story is still unfolding.

In this paper we will focus on aspects of the warped AdSs; geometry and its putative
holographic description. As we will describe more concretely below, warped AdSs is a
deformation of AdS3 that destroys the boundary asymptotics. The deformation preserves
only an SL(2,R) x U(1) subgroup of the original SL(2,R) x SL(2,R) isometry group of
AdSs. From the point of view of the two-dimensional CF'T dual to AdSs3, the warping of
AdS3 corresponds to an irrelevant chiral deformation (which does not die away in the ul-
traviolet). Geometrically this manifests itself in the destruction of an asymptotically AdS3
boundary. Holographic considerations of this geometry began with [10-12]. Based on the
thermodynamic properties of asymptotically warped AdSs black holes [16-19], whose en-
tropy could be written in a suggestive, Cardy-like fashion, it was proposed that it was
dual to a two-dimensional conformal(-esque) field theory. Later work embedded and stud-
ied warped AdS3 within string theory [20-26] and studied properties of two-dimensional
field theories, dubbed warped CFTs, whose symmetry structure matches that of warped
AdSs [27, 28]. Other work studied the wave equation, correlation functions and quasi-
normal modes of fields in warped AdS3 [29-33]. Much of the work on warped AdSs; has
so far focused on thermodynamic properties of the theory and its asymptotic symmetry
structure [34, 35]. In this paper we would like to focus instead on entangling properties of
asymptotically warped AdSs geometries. We do so by exploiting the simple holographic
manifestation of the entropy of entanglement of some state in a CFT as an extremal sur-
face in the bulk geometry dual to such a state, as described by [36], generalizing [37, 38].
Though entanglement entropy is a simple property of the quantum state, it has sufficient
information to independently verify features derived from the thermodynamics, such as
central charges and left- and right-moving temperatures. It can also provide additional
insight into the nature of the dual as we will shortly discuss. We now move on to briefly
review the warped AdSs; geometry and the holographic entanglement entropy proposal
before summarizing our results and giving an outline of the paper.

1.1 Warped AdS3

Consider AdS3 expressed as a real-line or circle fibration over a Lorentzian AdSy base
space. These geometries can be deformed with a nontrivial warp factor into the warped
AdS3 spacetimes we will consider later. The (spacelike) warped AdSs metric in global
coordinates with warp factor a € [0,2) is given by!
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4

ds

2\ 72
(—(1-1—7“ )dr* + T2

+a2(du+7’d7)2> . (1.1)

'In the literature, usually in the context of topologically massive gravity, one often sees an alternative
convention in which the metric is characterized by parameters £ and v related to our parameters by ¢2 =
(V% 4 3)/4 and o® = 4%/ (V* + 3).



Figure 1. This is the global AdSs cylinder parameterized by the coordinates (1.1). The coordinates
ty and 0, represent the usual global coordinates. We will primarily consider sticking to a region of
the boundary with r = oo for simplicity. This figure is taken from [41].

The coordinates range over the whole real line, {r,7,u} € R? although later we will
consider compactifying u to recover a near-horizon extremal BTZ geometry. To obtain
AdSs, one sets a = 1. The conformal boundary in the case of a = 1 is the usual cylinder
parsed by null coordinates and looks like a barber-shop pole; see figure 1. The case a # 1
corresponds to spacelike warped AdSs, which is the case we shall focus on in this paper.
We will also comment on the timelike warped AdS3 case, whose base space is Euclidean
AdSa,, in section 4.3. For a # 1 there is no conformal boundary [39], although a generalized
notion of “anisotropic conformal infinity” can be defined [40]. We will also consider the
geometries in Poincaré-like coordinates with metric

2 2 2
ds? =+ (ﬁdw et e (d¢+zd¢) ) . (1.2)

4 x2 T T

and coordinate ranges {1, z, ¢} € R3.

These spacetimes posses SL(2,R) x U(1) isometry for a # 1 and appear in a Penrose-
like near-horizon limit of extremal black holes. In the context of a trivial warp factor a = 1,
these geometries are locally AdSs, and we expect the HRT proposal to apply. We will see
that our results match field theory expectations, where the field theory is placed at zero
left-moving temperature and finite right-moving temperature. This state of the field theory
has not yet been considered in the holographic entanglement entropy literature, though it
is closely related to the extremal limit of the rotating BTZ black hole, considered in [36].

For the case of nontrivial warp factor, the purported holographic duals of the spacetime
are referred to as warped CFTs and possess SL(2,R) x U(1) symmetry. This symmetry is
automatically enhanced to two infinite-dimensional local symmetries [27]: the left-moving



SL(2,R) is enhanced to a left-moving Virasoro, while the right-moving U(1) is enhanced
to a left-moving U(1) Kac-Moody current algebra (indeed, the term WCFT is used for
the case that the U(1) is not enhanced to a full Virasoro, which is also possible). Not
much is known about these theories (a nontrivial example has only recently been suggested
n [42]), but the symmetries can still be used to constrain properties that such a theory
could have. This approach has been used successfully in reproducing a Cardy-like formula
for the asymptotic growth of states in [28]. The bulk geometries are often considered in
the context of topologically massive gravity, but for simplicity we shall restrict ourselves to
the case where they are solutions of three-dimensional Einstein gravity with matter fields,
as studied in [20, 23, 43]. In string theory, for example, the warped geometries can be
constructed by a hyperbolic, marginal deformation of the SL(2,R) WZW model [44].

1.2 Holographic entanglement

The use of entanglement entropy to study quantum field theories continues to surge due to
its relevance to quantum gravity and condensed matter physics and its analytic tractability.
Holographically, this has been studied with the Ryu-Takayanagi (RT) proposal [37, 38] for
computing the entanglement entropy via geometric methods in the bulk. The proposal
now has support for multiple intervals in asymptotically AdSs bulk spacetimes [45-47] and
spherical entangling surfaces in any dimension [48]. Strong arguments for the general case
are provided in [49] and essentially prove the conjecture. Quantum corrections have been
analytically computed in [50], with a general prescription appearing in [51]. Prescriptions
for gravitational theories with higher curvature corrections are given in [52-56] and, for
higher spin theories, in [57, 58]. The covariant Hubeny-Rangamani-Takayanagi (HRT)
proposal [36] has far less support, though it has passed nontrivial consistency checks [59, 60].
It is natural to wonder how generally the proposal can apply. In this paper, we would like
to take a few steps toward understanding the issues of holographic entanglement entropy in
warped AdS3 spacetime and two-dimensional warped conformal field theory (WCFT3). The
spacetimes we will study are non-static and will therefore require the covariant proposal.
Although these spacetimes are often studied as solutions of topologically massive gravity,
here we will consider the case where they are supported by Einstein gravity plus matter,
allowing us to use the usual HRT proposal.

The goal of the HRT proposal in [36] is to obtain a holographic prescription for com-
puting the entanglement entropy for time-varying states in QFTs with bulk duals which
are non-static, asymptotically AdS spacetimes. To describe the proposal, we consider a
(d 4+ 1)-dimensional asymptotically AdS spacetime M with d-dimensional boundary 0M,
and we consider a field theory defined on this boundary. We choose a foliation of OM by
spacelike hypersurfaces (time slices) ]\/4: . For each time t € R, we write the slice ]\/4\,5 as
a union of disjoint sets A; and B;, and we can compute the entanglement entropy Sap(t)
between the degrees of freedom in the two regions for a given state (density matrix) of the
full system living on ]\/Zt

The HRT proposal is as follows: for each time ¢, determine the co-dimension 2 extremal
surfaces Wy satisfying OW; = 0A;. If there is more than one extremal surface satisfying
these boundary data, then choose the extremal surface Wi min with smallest area. Then



we have

Area(W; min)
Sanlt) = = s (13)
The question of which homology class to consider is interesting in the context of the covari-
ant proposal [61], but we will not need to consider it here. This is the correct expression for
Einstein gravity coupled to matter, which are the theories we will consider here, although
subleading corrections in Gy (bulk quantum corrections) will depend on the bulk matter
supporting the geometry.

It is worth noting a rather remarkable feature of the above proposal (1.3). In the
context of Einstein theories of gravity the entanglement entropy manifests itself in a purely
geometric form at leading order in G, as the area of an extremal surface. This universal
feature is particularly surprising, given that entanglement entropy is a property of the
particular quantum state under consideration, which is generally a functional of all the
bulk matter fields and not just the metric. It is reminiscent of the universality of the
Bekenstein-Hawking entropy of a black hole, which also manifests itself as a geometric
area in Einstein theories of gravity, regardless of the matter content that constitutes the
black hole.

In our use of this formula, we will keep the slice chosen on the boundary arbitrary but
spacelike. Since we consider exclusively (2+1)-dimensional bulk geometries, this means
that our entanglement entropy answers will be phrased in terms of two distinct coordinate
separations, which can then be chosen to give a particular spacelike slice. We present the
answers in this way because it makes the split into left-moving and right-moving sectors
transparent; see (2.24) for one such example. It is important to note that the HRT prescrip-
tion (and indeed the original Ryu-Takayanagi prescription) is computing the entanglement
entropy between regions A; and B; defined by the unique geodesic along the boundary
which connects the two points which define their separation. In other words, once one
picks two points on the boundary to connect by a bulk geodesic, there remains an ambi-
guity in choosing the spacelike curves on the boundary which connect the two points and
define the regions A; and B;. The holographic entanglement entropy prescription naturally
picks the unique geodesic along the boundary which connects the two points as defining
the spatial regions A; and B;.

To elaborate further, imagine applying the covariant proposal to the Poincaré patch of
AdSs3 by picking points on the boundary that are spacelike separated but arbitrary. The
length of the regulated bulk geodesic connecting these two points, divided by 4G, is given
in terms of CFT quantities as

7‘/[’%_1’% ) (1.4)

c
SEE:§ log ;

To match with the universal 2D CFT answer, we conclude that the region being picked out
on the boundary theory is the geodesic along the boundary which connects the two points,

since this curve has length /L2 — L?. The fact that in this example the spatial length
at fixed time gets replaced with the invariant Minkowskian length is a result of Lorentz



invariance. This will not be the case once we introduce a dimensionful scale, e.g. the radius
of the cylinder for global AdSs or the temperature of a black hole.

1.3 Summary and outline

Although the validity of applying the HRT proposal to spacetimes with different asymp-
totics is an interesting open question,? in this paper we shall pursue a more modest goal.
We will set up what is effectively a perturbation theory about the AdSs point by con-
sidering warping ¢ = 1 + d and cutting off the WAdS3 spacetime deep in the interior,
where it is AdSs-like. This can be understood as AdS/CFT in the presence of an in-
finitesimal, irrelevant deformation, a context in which holographic renormalization can be
understood perturbatively in the deformation [64, 65].> Thus, attacking the problem in
this way puts our analysis on firmer footing. We will see that such an approach gives
sensible results, and in the regime of large separation in the fiber coordinate, the series
can be summed to all orders in 6. The result is precisely that of two-dimensional CFT,
with ¢ = cg = 30a/2G . This exactly matches an independent proposal for the central
charge, deduced by demanding consistency with the Cardy formula for two-dimensional
CFTs [20]. We will also consider the warped BTZ black hole and again find universal CF'T
results which allow us to read off the left-moving and right-moving temperatures. Our
central charge and temperatures altogether satisfy the Cardy formula and reproduce the
entropy of the warped BTZ black hole.

In section 2, we will apply the HRT proposal to locally AdSs spacetimes written as a
fibration over a Lorentzian AdSs base space. In section 3, we will deform these geometries
into warped AdS3 and set up the problem of applying the HRT proposal to these spacetimes.
In section 4, we will complete the problem by performing a perturbative application of the
HRT proposal to warped AdSs geometries, where we will be perturbing around the locally
AdSs3 geometries considered in section 2. Finally, we will summarize and look toward future
work in section 5.

2 AdS; in fibered coordinates

We begin our story by considering AdS3 in fibered Poincaré coordinates and fibered global
coordinates. We will see that these coordinate systems are dual to states at zero left-
moving and finite right-moving temperature, a feature reflected in the answer for the en-
tanglement entropy. The geometry obtained by compactifying the fiber coordinate appears
in a near-horizon limit of the extremal BTZ black hole. If the fiber coordinate remains
uncompactified, the geometry is instead the near-horizon limit of a boosted extremal black
string.

*We stress that calculations like the ones in [62], which consider a decoupled IR geometry, are still
understood as occurring in an asymptotically AdS spacetime, as discussed in [63].
3For a specific implementation in Lifshitz backgrounds with z = 1 + ¢, see (66].



2.1 Poincaré fibered AdSs3
The metric (1.2) with a = 1 reduces to

ds? = i ( dj +£2i + (d¢+€dw> ) (2.1)

We choose this parameterization since all coordinates and ¢ can be assigned dimensions of
length. Near the conformal boundary, the coordinates ¢ and 1) become null. We would like
to determine the affinely parametrized geodesics z#(\) = (z(A), ¢(N),¥(N)). To do so, we
notice that this geometry has Killing vectors 0y and 0y, corresponding to translations in ¢
and ¢, and these Killing vectors yield conserved quantities ¢y = @#(04), and ¢y, = & (0y ) -
We will solve for the geodesics by using these conserved quantities and the affine constraint
¢y, = 2#z,. This gives equations of motion

_ xd + ()

kT (2.2)
¢
cy = ﬁ : (2.3)
€2x2 + z(xd + 261&) (2.4)
Y 4a2 '

The solutions to these equations are given in appendix A.1l.

We want to compute the length of a geodesic beginning and ending near the conformal
boundary at z. ~ €2/, where we have used the UV-IR relation to map our bulk IR cutoff
z to a dual UV field theory cutoff e [38, 67]. This follows from the quadratic relationship
between 2 and the usual Poincaré coordinate z near the conformal boundary, 2 ~ z2. Since
we chose our geodesics to be affinely parametrized, we can use the solution x(\) to solve
for the cutoffs £\ in the affine parameter defined by x(£As) = x.. The regulated length
is then given by

Aco
Length = \/a/ A\ = 2\/cy Ao, (2.5)
7)\00

which at the end will be ¢,-independent, as required by parameterization-invariance of the
length. Writing down the leading divergence of Ay in terms of the conserved quantities

m ) cv€1/4c§)—cv g 26)

~——1
X 4 /e, ©8 A(coey —Aciey) €]

we now attempt to trade the conserved quantities c4 and ¢y, for spatial separations on the

Cy, Cy and ¢, gives

asymptotic boundary. This entails solving the equations

Ly = ¢(Ass) = 0(=Ac) , Ly = ¥(Aso) = ¥(=Ac0) , (2.7)

to zeroth order in A for ¢4 and ¢y in terms of Ly and Ly. An important point about
AdS3 solutions, which we state here to contrast with the warped AdSs solutions of later

“

sections, is that the “non-radial” coordinates (in this case ¢ and 1) asymptote to constant



values as the affine parameter diverges. In other words, one can safely take the limit
Ao — 00 in either Ly or Ly. The solutions to the geodesic equations of motion have two
primary branches, which we call the “cosh-like” and “sinh-like” branches. We will consider
the “cosh-like” branch, defined by z(As) = —2(—Ax), although the “sinh-like” branch,
defined by z(As) = x(—As), can be handled analogously (see appendix A.1 for details).
Using ¢ = 3¢/2G y, we find

o 1 . Ly
SEE = 3 log <€ \/Lw ¢sinh <%>> . (2.8)

We will comment in the next section on what ¢, the curvature scale, is doing in a field-theory

formula. Given that the geometry we are considering is simply a coordinate transformation
of the usual Poincaré patch on AdSs, we could have gotten this answer by performing the
appropriate transformations on the usual Poincaré patch answer, (¢/3)log(L/e). This
method is easier since the Poincaré patch is globally static, allowing us to use the time-
independent proposal, and the geodesics are semicircles. To see how such an approach
works, see appendix B. We will increasingly rely on using such coordinate transformations
as we begin warping the spacetime in the later sections.

2.1.1 Interpretation

We can suggestively rewrite the answer for the entanglement entropy as

: L
G = O ngsmh<2?)_cl Lw+01 é'h Ly (2.9)
BE =3 108 € T6 8 e T s\ ) ) ’

This answer looks like the ground-state answer in the v direction and the finite-temperature

answer in the ¢ direction, with the temperature being set by the curvature scale £. Recall
that ¢ and 1 are null coordinates on the conformal boundary, so these correspond to the
left- and right-movers.

To investigate the dual state corresponding to this bulk geometry, we can write out
the bulk metric near the boundary in the Fefferman-Graham expansion [68]:

(0)
ds* =12 dpr + hyj(2?, p)daida’ hij (2, p) = Yij_ +gP 4 (2.10)
= 1 (@t p , (' p) = ) 9ij .

()
ij
through the equations of motion near the boundary as

(2)

In general, the boundary metric g;.” determines the trace and covariant divergence of 9ij

. 1
Teg® = gg))g@)w =3 R| S))]: (2.11)

Vig?V = VT g, (2.12)
()
ij
the stress-energy tensor is then given by the variation of the renormalized on-shell action

where the covariant derivative is with respect to the metric g;.’. The expectation value of



with respect to gg-)) [69, 70], which in two boundary dimensions turns out to be

oL (@ o o
(L) = g (95 =9 Trg®). (2.13)

For the usual Poincaré patch, we identify g@)

;. =0, so we see that (Tj;) = 0. However, for

the Poincaré fibered coordinates, since géi) = 1/4 we have

4 c
(Too) = 327G~ 487

(2.14)

with all other components vanishing (the tracelessness of the stress-energy tensor is pre-
served since gé(g = 0). Thus, we are not in the vacuum state of the dual theory and should
not have expected to get the universal answer for the vacuum state, which in this case

would have been

Sup = & log VLule (2.15)
3 €

since lengths in the boundary metric are computed with ds? = d¢ di. In fact, we do get the
vacuum answer for the )-movers, which agrees with (Tyy) = (Ty¢) = 0. The ¢-movers are
in an excited state, which agrees with (T,4) # 0. As it should, the bulk diffeomorphism that
takes one from Poincaré coordinates to Poincaré fibered coordinates induces a conformal
transformation on the boundary theory, and (2.14) is just what one obtains by conformally
transforming the vanishing stress-energy tensor from Poincaré coordinates to Poincaré
fibered coordinates.

Now that we have shown that the modes in the v direction are in their ground state
and the modes in the ¢ direction are excited, the expression for the entanglement entropy
is becoming a bit clearer. To make the finite-temperature interpretation more precise, we
consider the metric (2.1) with compactified fiber coordinate:

2 2
ds? = i ( @dw g2 <d¢>+édj> ) ) ¢~ ¢+4Amry . (2.16)

This is precisely the geometry that appears in a Penrose-like near-horizon limit of the
extremal BTZ black hole

2 22 2,.2 2 2
o (r=ri)? o, Cr 2
2
which has dimensionless J = M = 2;—; and S = 4mry in units where 8G = 1. Defining

left-moving and right-moving energies as
Er=M-J=0, Er=M+J, (218)

and dimensionless left-moving and right-moving temperatures as

. BEL_ o 8ER_&
To=t—5 =0, Tr=l—e =" (2.19)



we see that the state dual to the background (2.1) is at zero left-moving temperature
and finite right-moving temperature. Though it is at zero Hawking temperature, the
statistical degeneracy is explained by the Cardy formula and the nonvanishing right-moving
temperature:
2 2
S = 7Tg(CLTL + CRTR) = 7;23(51\[;—; =4nmry, (2.20)
which matches the area of the horizon in coordinates (2.16) or (2.17). We have used
8Gn =1 to get to the final expression.
Notice that our answer (2.9) applies for the geometry with compact fiber coordi-
nate (2.1) as long as we consider small Ls. With the thermodynamic language developed
above, we can define qz~5 = ¢/(2ry), @Z = ryp/ml = /PR and rewrite the second piece

in (2.9) as
¢ L Ly
% log <e sinh <QZ)>> — g log (ﬁj sinh (m)) , (2.21)

where ¢ ~ ¢ + 27 and the first term in (2.9) remains unchanged. The UV-IR relation is
fixed to match onto the ground state answer in the limit of small L(g. So we have seen that
the entanglement entropy answer for the geometry with a compact fiber coordinate reflects
the fact that the right-movers are at finite right-moving temperature.

We pause for a moment to connect to an existing result in the literature, which is the
calculation of entanglement entropy in the state dual to the rotating BTZ black hole [36].
Taking the extremal limit of their result, 5r — oo, one finds

_c L ¢ Br . L
SEE = 5 log ; + 5 10g< - sin <5R>) (2.22)

for purely spatial separation on the boundary. This is precisely our answer with L+ = L 7=
L. Tt seems that the IR limit we have taken to get to the geometry (2.16) has retained the
entangling properties of the dual state.

Now we would like to take the limit where the geometry decompactifies, i.e. r4. /¢ — oo,
since this allows us to recover our original geometry (2.1). Notice that in this limit, we
are going from having two scales, £ and r1, to just one scale ¢. Thus, all dimensionful
parameters must be measured relative to £.* Looking at the left-hand-side of (2.21), we
see that this means that the argument of the sinh must remain fixed in this limit, since
we want to keep Ly (in units of ¢) fixed. Expressed in terms of the CFT quantities on the
right-hand-side of (2.21), we are taking fr small with Lg/ Br fixed. We therefore retain
the interpretation of the right-movers being at finite temperature in the decompactification
limit. With compact fiber coordinate, the expression (2.9) can be understood in relation
to the DLCQ limit which freezes the 1-movers to their ground state [71].

To aid with understanding taking arbitrary spacelike slices, we note here that the
expression for the length of an extremal geodesic in the rotating BTZ background for

4The role of the lattice spacing e will not be important for this argument.

~10 -



arbitrary spacelike separation on the boundary can be written:

Spp = ¢ log V;fo sinh (”g“) sinh <”§”>} (2.23)
L R
A A
= Slog [iﬁ sinh <WBZ;L>} + oo [i’: sinh (”B?ﬂ (2.24)

for x; = ¢+t and xgr = ¢ — t. Again, the contribution to the entanglement entropy splits
up into distinct contributions from the left- and right-moving sectors. This is analogous
to how the contribution to the thermodynamic entropy splits into left- and right-moving
sectors in the Cardy formula.

2.2 Global fibered AdS3

The global fibered AdSs metric is obtained by setting a = 1 in (1.1) to obtain

ds® = g —(1+7?)dr* + r
1+r?

I + (du +r d7)2> : (2.25)

All coordinates are dimensionless while ¢ has dimensions of length. The coordinates u and
7 become null near the part of the boundary reached by r — 400, which is the region to
which we shall restrict our attention; see figure 1 for the precise parameterization of the
boundary cylinder in these coordinates. One can write conservation equations for affinely
parameterized geodesics just like in the Poincaré fibered case. In this case, we label the
conserved quantities corresponding to translations in 7 and u by ¢, and ¢, respectively,

while ¢, = ##&,. After some manipulation, the conservation equations can be written as

() (A e

follows:

Cy T Cr 1

TSR Al R 1 (2:27)
. Cr r Cu 1
Y=l T L (2.28)

Imposing the condition ¢, > 0 ensures that the geodesics determined by these equations
are spacelike. For equation (2.26), there are “cosh-like” and “sinh-like” solution branches
according to whether ¢2 — ¢,(£/2)? > 0 and ¢2 — ¢,(¢/2)? < 0, respectively. The solutions
are presented in appendix A.2.

We now wish to calculate the leading divergent piece of the length of these geodesics.
The approach is identical to the previous section, so we will not repeat the details here.
Using the UV-IR relation 7o, ~ €2 for dimensionless cutoff €, we find

Moo R

(2.29)

2, ( co(£/2)* 1) ,
Ve V(e =, (€/2)2)(2 + c,(£/2)?) €

- 11 -



We can now trade in the conserved quantities ¢, and ¢, for coordinate separations L, and
L, on the boundary and recover

Sgp = g log (1 \/sin (L27> sinh <L2“)> . (2.30)

We will stick to L, < 27w on the boundary to maintain spacelike separation between the

two endpoints (7 is a null coordinate that winds up the cylinder). Just as in the Poincaré
fibered case (2.8) we see that the u-moving sector seems to be at finite temperature, with
the temperature scale set by ¢ (recall that our coordinate u is dimensionless), while the
T-moving sector is in its ground state. The appearance of the sine function is simply from
the compact U(1) of the global AdS3 cylinder. One can perform a Fefferman-Graham
analysis by repeating the steps of section 2.1.1, but the details are the same and we omit
them here.
The result for the “sinh-like” branch is similar:

Spr = g log (1 \/cos <I;> cosh (%)) . (2.31)

Notice that the length remains well-defined when L,, — 0 and L, — 0, as it should since the
geodesic is going through the bulk from r = —co to r = 0o in this limit. We mention this

branch due to its relevance to the metric (1.1) with compact fiber coordinate. This is the
self-dual orbifold considered first in [72] and studied extensively in [71, 73]. The geometry
is locally AdS3 and has an AdSs factor, but a compact fiber coordinate causes the two
boundaries at r = +00 and r = —oo to become disconnected, though they are causally
connected through the bulk. The entanglement between the asymptotic boundaries was
computed via a reduction to AdSe/CFT; in [74]. Our answer can be used to compute
quantities like the holographic thermo-mutual information (HTMI) in these horizon-less
backgrounds, as defined in [75], directly in AdS;.

3 Spacelike WAdS;

We have seen in the previous sections how to apply the covariant HRT proposal to locally
AdS3 spacetimes written as a real-line fibration over AdSy. The results agree with the
universal CFTy answers for a state at zero left-moving temperature and finite right-moving
temperature. We now move on to the case of nontrivial warping. We will set up the problem
with general warping parameter a # 1 and only specify our peturbative expansion about
AdSs with a = 1+ at a later point in our analysis.

3.1 Global coordinates analysis

We consider the metric (1.1), and we determine the affinely parameterized geodesics z#(\) =
(T(N), u(A),r(N\)) in this geometry. The metric has Killing vectors 9, and 9, corresponding
to translations in 7 and u, and they yield conserved quantities ¢, = -0, and ¢, = &0y, re-
spectively. Since we consider affinely parameterized geodesics, the square speed ¢, = ##1,
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along the geodesic is also conserved. The corresponding conservation equations are

cr = (£/2) (aPr (ri + 1) — (P +1) 7), (3.1)

cu = (£/2)%a (ri + 1), 52)
(/2" [_ (12 +1)% 72+ a2 (2 +1) (7 + @) + 72

v r24+1 (3.3)

To solve these equations, it helps to manipulate them into the following form:

o (R(1—a?) - (£/2)%%, 2y cr 2 a2 — (0/2)%a%c,

me- ( (¢/2)a? ) e ((6/2)4> " (0]2)%a? ;o (34)
. Cy r Cr 1

TR R (3.5)
. Cr r Cy 1 Cu 1— a2 72
u:(£/2)272+1+(£/2)2a2r2+1+(5/2)2 < 22 >T2+1 . (3.6)

Equation (3.4) is now a decoupled, separable differential equation that can be integrated to
determine r(\). The solution to (3.4) can then be plugged into equations (3.5) and (3.6),
which can be integrated to obtain 7(\) and u(\), respectively. Notice also that setting a = 1
in these equations gives the system of equations (2.26), (2.27), and (2.28). The equations
become a-independent in the limit ¢, = 0, though such a limit does not seem particularly
useful for understanding warped AdSs; see appendix A.3.1. The general solutions to these
equations can be found in appendix A.3. We simply note here that the solution for u(\) has
a piece that grows linearly with A, unlike in the AdS3 case. This means that the relation
between ¢, and L, will necessarily involve Ao,. This complicates the analysis, as we shall
see shortly.

Let us focus on the “cosh-like” branch with 0 < a < 2 and fix ¢, = 1. This includes
the squashed and stretched cases. In our approach, we first write the length of the geodesic
in terms of the conserved quantities and the cutoff in the holographic coordinate r:

—C2 + 2C1Ts0
\/C% + 4cqcs

where we have used the definitions in (A.17) and require ¢; > 0. This expression holds for

1
Ao = —— cosh™?
Vel

(3.7)

general warping a as well as for the AdSs case of a = 1 (the a-dependence is buried in ¢;

and c3). Taking ci7s, > co and restoring the original constants of motion ¢, and ¢, gives®

C1T00 a2(1+ci)—ci
N [m] e {r“’ \/<a2+c3><a2<1+ca+ca>cz>] .
- ver VIt -1/ ! '

where we have set ¢, = /2 = 1. Although the geodesic equations for (), 7(\), and

u(A) are soluble, to write the answer for the length in terms of coordinate separations on

50One cannot in general be so cavalier in taking ci7eo >> ¢z without any restrictions on L., since ca
depends on ¢, which depends on As. In our case, however, this can be consistently realized by taking
Too > 1.
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an asymptotic boundary (instead of in terms of conserved quantities as done above) there
remains the task of inverting limits of those solutions to obtain the conserved quantities
¢y, and ¢, in terms of separations on the boundary L, and L,. The equation for the 7
coordinate is simply generalized from the AdS case:

¢y = \/c1 cot <L27> = \/C%‘(GQ — D+ <L27> : (3.9)

a2

which holds as long as L, < w. The new feature in these spacetimes, which is different
from asymptotically AdS spacetimes, is that the relation between ¢, and L, involves Ay:

REVA R
c c:— %
: L) =L, (3.10)
Cy — \/1+C%—Z%

In other words, one cannot keep both ¢, and L, fixed as the cutoff is scaled large. This

1
2 <—1 + 2) Culroo + log
a

follows directly from the linear divergence of u(\) with A, as would occur in an AdSs x R
background. One could at this point try to proceed by solving for ¢, in terms of L, and
Ao and plug ¢, and c¢; into (3.8). This would then be an equation for A, that can be
solved to determine the length. Unfortunately, such an approach has two obstacles, one
conceptual and one technical. The conceptual obstacle is that this would correspond to
fully applying the HRT proposal in an asymptotically warped AdS3 spacetime, and it is
unclear whether such a prescription makes sense. The technical obstacle (at least in this
approach) is that (3.10) is a transcendental equation for ¢,. In the case of AdSy x R, which
can be realized as the a — 0 limit of warped AdSg, the left-hand-side of the analog of (3.10)
has only the piece linear in Ao, and such a method can be carried out.

In the next section, we will show that setting up a perturbative expansion about the
AdSs3 point by considering warping parameter a = 1+ 4§ will allow us to solve this equation
order-by-order in 6.

4 Perturbative entanglement entropy

Given that a nonperturbative application of the HRT prescription to asymptotically warped
AdS3 spacetimes is suspect, here we will try to infinitesimally perturb around the AdSs
point and use the AdS/CFT dictionary, which presumably contains as one of its entries the
HRT prescription. Deep in the IR, the geometry (1.1) is close to AdSs, and it is only in the
UV that the nontrivial warping parameter begins to destroy the asymptotics. If we cut off
our spacetime before this happens, then we are at low enough energies where our analysis
will be on firmer ground. Viewed in this way, we have a conformal field theory which we
perturb by an infinitesimal, irrelevant operator. Holographic renormalization can then be
understood perturbatively in this infinitesimal source [64, 65]. We will find that in a certain
limit we can sum the perturbative expansion to all orders. The resulting answer takes the
precise form of a two-dimensional CFT and reproduces the warping-dependent central
charge and left- and right-moving temperatures postulated previously in the literature.
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4.1 Perturbative expansion

We imagine that the warping parameter is close to 1, i.e. a = 1+ for |§| < 1. It is in
this sense which we expand about the AdSs point a = 1. Such a perturbative expansion
will help us solve (3.10) for ¢, order-by-order in §. The solutions below follow a simple
pattern at each order, and though we list the general formulae for arbitrary order, we have
technically only checked that they are true to tenth order. Expanding

Cy = Cy0 + (5cu,1 + 526u,2 +e (41)
we solve (3.10) to get
Ly,
cu,0 = (£/2) coth 5 (4.2)
1 L, o Ly
Cup = 5((€/2) — 4 + (£/2) cosh L,,) coth 5> csch 5 (4.3)
n—1 n (n) I L
: o . )
Cumn = ZOZ%)\ZOO(Z/Q)” Zkij cosh(jL,) | coth ?" csch "77‘ : n>1, (4.4)
j=0 i=

where the k:l(]n) are calculable n- and Ax-dependent constants. We require [6" ¢, | <
lénflcu,n_ﬂ to assure convergence of our perturbative expansion. This can be satisfied by
taking

Lu>1,  |ed<1. (4.5)

L, is being measured in units of £. The latter condition ensures that we stay in an AdSs-
like part of the geometry and not get into the WAdSs asymptotic. Notice that from the
point of view of perturbing about AdSs, this is an eminently sensible condition; regardless
of how small one takes §, the geometry looks wildly different from AdSs for sufficiently
large Aoo, S0 we need to constrain their product. Incidentally, the curvature invariants
of WAdS3 are all finite and continuously connected to the AdS3 case a = 1, so they are
not a good way to classify where to cut off the spacetime for a well-defined perturbation
theory. When computing the length, we keep only the leading divergent piece (in r,) at
each order. This gives the following result for the entanglement entropy:

SER = Gn [(1 + 5coth22> log <roo sin 5> sinh 2” +

o 7 1—2
iGn ;_2 5 (—1)Z+1coth2?csch2(l 1)7 [log <7°OO sin —- sinh 2)] jE_O cij cosh(jLy)
(4.6)

The constants c¢;; are all positive. Notice that the zeroth order piece is precisely the answer

for AdSs3 given in (2.30), as it should be. Unfortunately, the series does not seem simply
summable unless we take the scaling limit L, > 1, in which case we use our knowledge of
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the ¢;; and sum the series to get

14 . Ly . L,
SEE = iGn [(1 +0)log (roo sin. —- sinh 2)} —
14

AGy €

L L in LT ginh Lu
~Lu [—1 + 46 log (roo sin 77 sinh 2”) 4 40 10g(roosin - sinh £t ) (4.7)

to leading order in L,. Notice that the first two terms in the second line are suppressed
by a factor of e~% relative to the first line and can safely be dropped. Up to an overall
constant, the last term in the second line can be written as

I —48
(sin ;) (r;l‘se_L“(H%)). (4.8)

For § > 0, this is suppressed relative to the first line without further qualification and can
be dropped. For § < —1/2, this term grows with L, and cannot be neglected. However,
for —1/2 < § < 0, there is a competition between the factor containing reo ~ et > 1
and the factor containing L, > 1. In this regime, for a given § and 7., one simply needs
to choose L, sufficiently large (L, (1+ 20) > —4JA\) such that the resulting expression is
dominated by the expression in the first line.

By combining these observations, we find that if 6 > —1/2, then the leading behavior
of the entanglement entropy in the large-L, regime is

¢ 1 [ L, L,
SEE = E (1+0)log (e \/sm ?exp <2>> , (4.9)

where we have used the UV-IR relation 7o, ~ 1/€2. Since we are sourcing an infinitesimal

irrelevant operator and computing perturbatively, the UV-IR relation used should remain
that of AdS/CFT. We have also replaced the hyperbolic sine function with an exponential

function, since corrections are subleading in our expansion in e~

. As usual, numerical
factors are absorbed into a redefinition of the cutoff e.

We see that for a = 1 + 4, the perturbative expansion in the large-L, gives simply
the two-dimensional CFT answer of (2.30) upon identifying the coefficient of the logarithm
with ¢/3:

3¢
¢, =Cr= ﬂ(l—i-é). (4.10)
The equality of ¢;, and cg is due to a lack of diffeomorphism anomaly, since we are working
in Einstein gravity. These are precisely the central charges of [20], conjectured by demand-
ing consistency with the Cardy formula (we will reproduce this check in section 4.5).° One
of these central charges has been produced through an asymptotic symmetry group anal-
ysis [76]. Identifying the functional form of Sgr with the AdSs result (2.30) allows us to

conclude that the dual state lives on a cylinder charted by null coordinates 7 and u.

To facilitate comparison with the notation of [20], one should take a®> — A2 and £% — (4 — 5%)¢?/3.
Notice that as 42 — 4, which is the limit in which the central charge of [20] vanishes, there is an infinite
rescaling that allows our central charge to remain finite.
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It is important to keep in mind that the entanglement entropy computed in (4.9) is
understood as an expansion to zeroth order in e X but to all orders in . This approach
can in principle be extended to lower orders in L,, and the appearance of the logarithmic
term in our general formulae suggests that the answer will remain roughly in the form
of the CFTy answer, except the logarithm will have an L,-dependent prefactor. This is
consistent with the existence of a single Virasoro algebra, since it seems the answer only
picks up additional u-dependence while keeping the T-dependence the same. Our result at
leading order in e~ seems to suggest that warped CFTs behave like ordinary CFTs in
the IR, for large L,. The IR restriction is due to cutting off our spacetime deep in the
bulk and is independent of the large L, restriction. The similarity to CF'Ts jibes well with
the fact that the deep interior of the WAdS3 geometry is AdSs-like. We will discuss the
physical meaning of large L,, in section 4.4. We will also go beyond the small warping limit
in section 4.5 by arguing that warped CFTs are CFT-like generally, as long as one takes
an infrared limit and studies large L.

Performing the same perturbative expansion in the case of Poincaré coordinates would
give a result that can be obtained simply by coordinate transforming our current answer
as in appendix B.2, and it is given by

o 1 Ly

This is again the appropriate answer at large Ly for a two-dimensional CFT, now on the

Minkowski plane charted by null coordinates ¢ and v, as presented in (2.8). Taking the
fiber coordinate L, large in the global coordinate system corresponds to taking the fiber
coordinate Ly large in Poincaré coordinates. In the case of Poincaré coordinates, however,
we can simultaneously take Ly, large if we want to consider a particular time slice Ly = L.

Due to the convergence of the perturbative expansion for any warping parameter a >
1/2 in the large fiber-coordinate regime, we conjecture that the nonperturbative answer
for the entanglement entropy for a state at zero left-moving temperature and finite right-
moving temperature, in the large fiber-coordinate regime, is given by (4.11) for a state
on the plane or (4.9) for a state on the cylinder. We will expound on this conjecture
in section 4.5 after providing some more evidence for our approach. However, we will
henceforth use the nonperturbative parameter a in our formulae.

4.2 Finite temperature

In the limit of large separation in the fiber coordinate, we can match our results with those
of two-dimensional CFT even at finite temperature. Since black holes in warped AdSg are
given by discrete quotients of the vacuum spacetime, they are locally warped AdSs [77].
This is analogous to BTZ black holes in AdSs. Due to the local equivalence, we can exhibit
local coordinate transformations that take us from the geometry with a black hole to the
geometry without a black hole. We will stick to the stretched case a > 1 to avoid closed
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timelike curves. The metric for the warped BTZ black hole is given by

ds? 3dt2 dr? 6v/3
e Alr —ry)(r —r-) " (4 — a?)3/2 (ar = y/rer—) didd
+ (497"2)2 ((@° = Dr 47y 47 = 2a/ryr=) d6° . (412
—a

We will restrict to the stretched case a > 1 to avoid the presence of closed timelike curves
at large radial coordinate. The answer for the entanglement entropy in a warped BTZ
background can be reproduced by coordinate transforming our previous answer. The coor-
dinate transformations can be found in section 5 of [77]. Performing such a transformation
to (4.9), we find

la T4 —7r_ 3 w A0 mAf
=—1 e A inh —— 4.1
SFE = Gy Og< & eXp( 2a—a) T m)sm E ) (#13)

with dimensionless temperatures

3 2
/821 :TL:m <r++r_—am> , (4.14)

Bl = Ty — ?;E:(z _Z;)) . (4.15)
Due to the compactification of 6, there can exist many spacelike geodesics in this geometry,
distinguished by their winding number and directionality. The expression A# refers to the
separation in a noncompact 6, i.e. without modding by 27. We can ignore the global
topology by considering Af < 2w. This is consistent with the large-L, limit taken in the
previous section, since that limit can be accomodated by taking At large. Adding winding

7 so we see that our answer is valid in the

will only increase the length of the geodesic,
regime considered.

In the case of AdS3 with a = 1, the coordinates are such that one picks a constant-time
slice by requiring At = 0. It is important to note that this case corresponds to the BTZ
black hole in a rotating coordinate system, and our answer for @ = 1 is the universal CFTy
answer for such a dual state. Since we are using a rotating coordinate system, it is not
necessary that the functional form of our answer precisely match the form of (2.24). The
parameters B, and Br give the inverse left-moving and right-moving temperatures of the
BTZ black hole in this frame, and we see that this match extends to the warped BTZ
case as well; the dimensionful temperatures (4.14) and (4.15) match precisely with those
of [77]. In section 4.5 we will show that these temperatures, combined with the central
charge (4.10), satisfy the Cardy formula. Finally, implementing an appropriate homology
constraint suffices to reproduce the thermodynamic black hole entropy in the limit where
we consider the entire boundary density matrix without tracing out any degrees of freedom.

"Note that this would be more subtle if we considered the squashed case a < 1, since for large enough r
winding in 6 corresponds to a timelike direction and can decrease the length of the geodesic.
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4.3 A vacuum state proposal

We have produced the universal CFT results for states dual to spacelike warped AdS3 and
the warped BTZ black hole. However, as our formulae in the previous sections illustrate,
none of these states can be considered the vacuum state. The proposal in [28] is that
the timelike warped AdS3 geometry is a suitable candidate for the vacuum state in both
topologically massive gravity and a specific string theory example that reduces to Einstein
gravity plus matter. The proposed vacuum geometry (which is in fact Goédel space) can be

written as
2 2 2 4—q?— 2_1
ds® _ 3dt N 3dr B 6arv/3 dtdo + 3r(4—a*—3r(a ))d92’ (4.16)
02 4—a? 4r(4—a?+3r) (4—a?)3/? (4 —a?)?

where 6 is a compact coordinate with § ~ 6 + 2w. For a?> > 1 this geometry has closed
timelike curves for r > (4—a?)/3(a?—1) (see [78, 79] for a discussion). In our perturbative
approach, we can take 7,0 < 1, which is sufficient to excise the region with closed timelike
curves. Notice that we can get to this geometry by taking the warped BTZ black hole (4.12)
and performing the identifications

ry =0, r_ = t — it, 0 — 6 . (4.17)

3 9
If we replace the exponential function in (4.13) with a hyperbolic sine (i.e. start with a
precise match to 2D CFT instead of a match only at large fiber coordinate), then we can

perform these identifications on the entanglement entropy result to get, for At =0,

la sin(Lg/2)
= 1 . 4.1
StE 2G N °8 ( € (4.18)

We see that this is the ground state answer for a two-dimensional CFT on a cylinder
with a compact spatial coordinate #. Unfortunately, this is merely illustrative because
it runs afoul of the requirement of large fiber-coordinate separation. The correct way to
get the answer in our framework is to keep the entire expression (4.6) and perform the
identifications necessary to get to timelike warped AdS. From here, there does not appear
to be a sensible regime in which the series can be summed and reduces to a two-dimensional
CFT answer.

4.4 The geometric meaning of large fiber-coordinate separation

We now discuss the meaning of the limit of large fiber-coordinate separation L4 on a
field theory calculation of entanglement entropy. Note that the limit is not necessarily
a restriction on the spatial size, (L¢L¢)1/ 2 for which our result holds.® The different
spatial sizes lie on spacelike slices boosted with respect to one another. For example, large
spatial sizes are accommodated by taking L, ~ L, which results in a “mostly spacelike”
slice, whereas small spatial sizes are accommodated by taking L, small, which makes the

8Here we are referring to spacelike warped AdSsz in Poincaré coordinates (1.2), where the fiber coordinate
is denoted by ¢, and there is no restriction on the separation in the other coordinate 1. The dual state is
on the Minkowski plane and has finite right-moving temperature.
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slice more null. Nevertheless, imposing large Lg without constraining the system size
does impose a physical restriction on the reduced density matrix. Unlike the case of the
vacuum state on the Minkowski plane, there is no Lorentz symmetry relating the different
observers on their different spacelike slices. In the case of spacelike warped AdSs, our result
for Sgpp exhibits that there is a finite right-moving temperature turned on, which breaks
Lorentz invariance. In the case of warped BTZ black holes, there is also a finite left-moving
temperature. Thus, Lorentz transformations connecting different observers act nontrivially
and lead to a different reduced density matrix. On the other hand, for the vacuum state on
the plane the answer can be boosted and replaced with the invariant Minkowskian interval,
as shown in (1.4). The entanglement entropy in this case is only sensitive to the length
of the spatial interval and not the orientation of the spatial slice, whereas when Lorentz
invariance is broken it is sensitive to both.

4.5 Nonperturbative conjecture

We have seen that the perturbative series we constructed converges for @ > 1/2 in the large
fiber-coordinate regime. Recall that the physically relevant range is a € [0,2), so we fail
to capture part of the parameter space. The region a € [0,1/2) includes the interesting
case of AdSy X R, which can be reached by taking a — 0 and rescaling the fiber coordinate
u— u/ain (1.1).

The convergence of our series seems to suggest that our results for the entanglement
entropy hold nonperturbatively in the warping. We conjecture this to be true. This claim
requires a UV-IR relation of the form r,, ~ 1/€? to hold nonperturbatively. In our per-
turbative approach we could make use of this UV-IR relation since we were working in the
context of AdS/CFT, where it is known to be true. Extending the requirement into the
nonperturbative regime is a natural choice. With it, we claim that our perturbative expan-
sion is sufficient to capture the nonperturbative dynamics entering into the entanglement
entropy.

A nontrivial check on this nonperturbative proposal is the Cardy formula. Our answers
for Sgg allow us to read off left-moving and right-moving temperatures and the central
charge. We now claim that all these results hold nonperturbatively. The central charge is
given universally as

3la
2GN
For the warped BTZ black hole, our proposal allows us to identify the left-moving and right-

C], = CRr = (4.19)

moving temperatures as (4.14) and (4.15) nonperturbatively in a. These temperatures and
the central charge reproduce the entropy of the warped BTZ black hole through the Cardy
formula:

A 3ml 2
S = 1Gr = (2GN(4 — a2) (a/mr - W)) = ?(CLTL + CRTR). (4.20)

5 Summary and outlook

We have taken the first steps toward understanding holographic entanglement entropy in
the context of asymptotically warped AdSs spacetimes in Einstein gravity. We began by
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considering AdSs as a real-line fibration over AdSs, a coordinate system relevant to the
study of extremal black holes. The calculation of the entanglement entropy indicated a
state at zero left-moving and finite right-moving temperature, as expected.

Deforming the fibration by a nontrivial warp factor leads to the warped AdSs geome-
tries, appearing in the near-horizon limit of extremal Kerr black holes at constant polar
angle. To connect with the HRT proposal in AdS/CFT, we constructed a perturbation
theory about the AdS3 point with trivial warping. For @ = 1 + §, one can compute the
length of the necessary geodesic perturbatively in 0 to all orders. The general answer is
not particularly illuminating, except in the limit of large separation in the fiber coordinate.
Recall that the U(1) isometry originating from translation invariance in the fiber coordi-
nate is what is expected to enhance to an infinite-dimensional U(1) Kac-Moody algebra
in the boundary theory. In this limit, the answer takes the universal form predicted by
two-dimensional CFT. Interpreting our answer as a CFT answer allows us to read off the
purported central charge of the dual theory, which is given by ¢ = 3¢a/2G . Since we
are working in Einstein gravity, there is no diffeomorphism anomaly and c¢;, = cg = c.
Furthermore, heating up the dual state with a warped BTZ black hole in the bulk again
leads to universal two-dimensional CFT answers, with the left- and right-moving tem-
peratures appearing appropriately in the entanglement entropy. Altogether, the central
charge and left- and right-moving temperatures identified in this way satisfy the Cardy
formula and thus reproduce the black hole entropy in the bulk. The central charge we
have identified from the entanglement entropy calculation has been previously produced
in the literature [20] by demanding consistency with the Cardy formula. Our approach
implements the covariant holographic entanglement entropy proposal and consistency with
the Cardy formula is instead a promising output. Taking our results at face value, they
seem to suggest that warped CFTs behave like ordinary CFT's in the IR; this matches the
intuition garnered from asymptotically warped AdSs spacetimes in holography, since their
deep interiors are AdSs-like for small warping. Our perturbative expansion also shows that
there exists nontrivial fiber-coordinate dependence at subleading order in the separation
of the fiber coordinate, suggesting that the full theory is not a standard conformal field
theory. How to implement a proposal for holographically computing entanglement entropy
in asymptotically warped AdSs3 spacetimes, without taking an IR limit, remains an open
question.

The most immediate way one can make progress on the questions discussed in this
paper is by studying the constraints of warped CFT on field-theoretic calculations of en-
tanglement entropy. It has been shown in [28] that warped conformal invariance is strongly
constraining and allows one to reproduce a Cardy-like formula for the asymptotic growth in
the density of states by using the modular covariance of the partition function. As shown
in [80], the calculation of entanglement entropy in the vacuum and finite-temperature
states of two-dimensional CFT can be conformally mapped to the calculation of a par-
tition function. The constrained form of the partition function then allows one to write
down the universal formulas for two-dimensional CF'T. Such a procedure may prove fruit-
ful in the case of warped CFTs as well, although one of the primarily difficulties is due
to warped CFTs not having natural Euclidean descriptions. Obtaining a universal entan-
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glement entropy formula for simple states of warped CFTs will allow one to determine if
our holographic results are indicating the existence of a second hidden Virasoro algebra or
if the infinite-dimensional U(1) is sufficient to constrain the answers in the way we have
presented.

It is also interesting to see how far the analogy with two-dimensional CFT can be
taken. For example, it is possible that for large separation in the U(1) coordinate, with an
appropriate IR limit, the field-theoretic calculation of entanglement entropy in a warped
CFT reproduces the CFT result. A simpler question is the constraint on correlation func-
tions: it can be shown [27] that left-translation invariance, left-scale invariance, and right-
translation invariance constrain the vacuum two-point function of local operators ¢; to be

(st ol ) = 5.1)

where ); is the weight of the operator ¢;. Furthermore, the symmetries are automatically

of the form

enhanced to an infinite-dimensional left-moving U(1) Kac-Moody algebra and a left-moving
Virasoro algebra. If the analogy to two-dimensional CFT is to be taken seriously, these
symmetries should provide a constraint on f;; such that in the limit of large separation
x~ —y~ and in an appropriate infrared regime the answer reduces to that of two-dimensional
CFT. Even if this simplification occurs, however, it does not imply that the theory can be
described by an ordinary two-dimensional CFT in this regime. The entanglement entropy in
the states we have considered and the vacuum two-point function give limited information
about the theory and do not elucidate its full dynamics.

Another home for the study of warped AdSs and warped BTZ black holes is topo-
logically massive gravity, a higher curvature theory of gravity. There exists a proposal
for extending the holographic entanglement entropy proposal to this theory [56], although
there has not been much work in this direction. Given our study of finite-temperature
solutions, it is plausible that a proposal for topologically massive gravity which reproduces
the CFTy answer for empty, warped AdS; will also reproduce the correct answer for the
warped BTZ black hole, as shown in section 4.2.

We have seen that the method of holographically computing entanglement entropy,
devised in AdS/CFT, can be adapted to the case of warped AdSs holography. It provides
further evidence that a sharp holographic correspondence can be developed in this context.
The perturbative approach we implemented may be a promising way to study entanglement
entropy in more general spacetimes continuously connected to AdSg.s. It can also be
adapted to the NHEK geometry, where one would like to independently deduce c;, = 12J.
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A  Geodesics

A.1 AdS;3 in Poincaré fibered coordinates

There are four solution branches for the geodesics in the background (2.1). To obtain these
solutions, one solves equations (2.2) and (2.3) for ¢ and ¢ in terms of x, plugs the result
back into (2.4), and then integrates the resulting equation to obtain

le,

deyey = 2\/01% (— (cv — 403)) cosh (M) 7

le,
deyey £2 cw (cv 4c§>> sinh (w)

Ter(N) = (A1)

Ts,+ ()‘) -

(A.2)

We typically refer to the solutions (A.1) as the “cosh-like” branch and to those in (A.2)
as the “sinh-like” branch. The differences between these branches will be clarified in the
next section when we consider global coordinates. Note that in the process of obtaining
these four solutions, one made the assumption that ¢, — 402 < 0 to get the “cosh-like”
branch, while one assumed that ¢, — 4635 > 0 to obtain the “sinh-like” branch. Each of
these solutions for x can then be combined with the other conservation equations to find
the following corresponding solutions for ¢:

V/CuCy coth (7\/@(24\0))

2cycy F \/cfp (— (CU — 4635))

s+ () = gEsi + 20 coth™! Veuly , (A.4)
F2cycy tanh (M) + ci (cv — 401)

Ge+(N) = &;c,i + 20 coth™! , (A.3)

and the following for :

5 [ (5128 o) (5322

sl = s+ 2 (e — 463 cosh (S0 g, 1 12) |
(A.5)
ot ) = s INGS (cv — 4ci> cosh <42\/07(Z\—>\0)> )

+2cy, (cv — 4c3)) sinh (M) +4cy ci <cv — 4ci>

At first glance one might be concerned about the continuity of the “cosh-like” branch
solutions because of the presence of the function coth™'. However, we see that the argument
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of the coth™' is of the form acoth(BA + ) where «, 8, and 7 are real, and this ensures
that the overall solution is continuous. Similar remarks hold for the sinh branch.

A.2 AdSs; in global fibered coordinates

The geodesics of (2.25) are obtained by first solving (3.4) to obtain the following four
solution branches:

” _ Gl V(e = co(0/2)?)(2 + cu(£/2)?) cos Ve

== app i 2P (G -w). @
e V@Al E P (Va

res(A) = (]2 o l]2) sinh ((6/2) (A — )\0)) . (A.8)

The different branches can be clarified by considering the parametrization of the boundary
in these coordinates found in appendix A of [41]. The two solutions in the “cosh-like”
branch give geodesics that go from r = 400 or ¥ = —o0 back to r = 400 or r = —o00,
respectively, depending on the sign of the solution chosen. The two branches in the “sinh-
like” solution correspond to geodesics that go from r = 400 to r = —oo or vice versa. In
this paper we primarily restrict attention to “cosh-like” branch solutions. If we define

L) =TT b, he= (@ — /2P (E F a2, (A.9)
Ver(A—A0)
FoN) =TT hs . he= /(@ — e l/2)) (& T en(0/2)7). (A.10)

then the corresponding solutions for 7 can be written as

2Ve(6/2) (e — coer (/27 £ cufelN)

Fs(N)? F2crcufs(N) + (cz — CU(K/Q)Z) (C% - cv(€/2)2) (A12)
2/C(0/2) (2er — coer(€/2)2 F cufs(N) o

() = P — cot] (mﬁichcufcuw(cZ—cv<z/2>2) (cz—cvw/m?)) (A1)

7':|:75()\) = ?:l:,s — COt_1 (

The seeming discontinuity of the function arccot(y) at y = 0 is not important since it can
be glued onto arccot(y)+m there and continue smoothly to negative values of the argument.
This can potentially introduce a shift of m into L,, which is important and needs to be
tracked.” Now if we define

e (N) = cy cosh <W\/Z) = )\0)> + (£/2)\/cy sinh (W\/Z) = )\0)> , (A.13)

gs,+(X) = (£/2)\/c, cosh <W\/§) (A= )\0)> + ¢, sinh (W\/Zv) (A — )\0)> , (A.14)

9An easy way to not have to deal tracking constant shifts like this one is to do the naive calculation first

and obtain a function of the form sin((L- 4 ¢)/2) in the entanglement entropy answer for the “cosh-like”
branch, with ¢ an overall constant that has not been carefully tracked. Requiring the length to vanish when
L. — 0 now fixes ¢ = 0.
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the solutions for v become

Ut (A) = Ut + = log

C%—Wmﬁwm/) )
(€/2)y/e + cu) (((£/2) )
Cuy — (6/2)\/07) (((£/2)20’u + cz) 9s,+
((¢/2)v/e + ) ((/2) )

Ut s(A) = Ut s+ = log (

A.3 Warped AdS;3 in global fibered coordinates

To simplify our expressions for geodesics in the background (1.1) with a # 1, we define

_ci —a%c — (1/2)%a’¢c, 2 2 —a?c — (0/2)%a%c,

(¢/2)%a? N (77 A (¢/2)%a? !
(A.17)

Ccl =

This illuminates the general form of (3.4):

72 =1 — cor — c3. (A.18)

The general solution with ¢, > 0 has four branches depending on the sign of the combination
c3+4cic3. We ignore the case c3+4cic3 = 0 which yields an exponentially decaying solution.
For cg +4cie3 > 0, there are two “cosh-like” branches r4 . and for c% 4+ 4cie3 < 0, there
are two “sinh-like” branches ry g:

2
rio(\) = 2 & <62> + 2 cosh (Ver(A — Ao)) (A.19)

a 201 C1

2
ris(\) = 2% ¥ \/— <62> — B ginh (VA — o)) . (A.20)

201 C1

Comparing these solutions to (A.7) and (A.8), we find the same qualitative behavior in
r(A) for both the warped and non-warped cases. Moreover, setting a = 1 in these warped
solutions yields precisely (A.7) and (A.8), as one would expect since the form of the r
equation is left unaltered by non-trivial warping. The form of the 7 equation is unaltered
by warping, so we expect the corresponding solution to be of the same form. However,
notice that the last term in (3.5) only appears in the case a # 1 where there is non-
trivial warping, and this changes the qualitative behavior of the solutions. In particular,
manipulating the second and third terms allows one to write the u equation as
Cy Cy r? Cr r

U= T 2R 1 2R 1

(A.21)

from which it becomes clear that integration of the first term with respect to A leads to a
term in the solution for u that diverges linearly with A. This is just like the AdSs x R case.
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A31 ¢,=0

A simple limit in which we can compute the length of the geodesic in terms of separations in
7 and u at large r is for ¢, = 0. In this case, the equations of motion become a-independent
and we are forced onto the “sinh-like” branch. The answer is then just given by the answer
for AdS3 in global fibered coordinates with ¢, = 0:

Length ~ log ( cos <L2T> Z) : (A.22)
€

It is not a problem that the argument of the log does not begin to vanish in the L, =
T(Aoo) —T(—Aoo) — 0 limit, since we are on the “sinh-like” branch and so 7(As) # 7(—Aso)-
Thus, the endpoints remain well-separated in the limit L, — 0.

B AdS; entanglement entropy via coordinate transformations

For completeness, in this section we show how one can translate from entanglement entropy
answers in Poincaré coordinates to global coordinates, or vice versa, by performing the
appropriate coordinate transformations. The only point one needs to be careful about is
the mapping of the UV cutoff. As an illustrastive example, we will begin with showing
how to get the answer in global coordinates from the answer in the Poincaré patch, within
which it is easiest to compute. We then show how to go from Poincaré fibered coordinates
to global fibered coordinates. Such methods will come in handy when we go from warped
AdSs3 to the warped BTZ black hole in section 4.2.

B.1 Global coordinates from Poincaré patch

Recall that AdSs can be defined as an embedded submanifold of R>? defined by the con-

straint
X2 - X2 - X3+ X5=1 (B.1)

where Xo, X1, X2, X3 are the standard coordinates on R?2. The embedding coordinates
for global AdSs are

Xo =L coshpcosty, X1 ={sinhpsiné,, (B.2)
Xy = {sinh pcosb,, X3 = Lcosh psint,, (B.3)

while for Poincaré AdSs they are

1 lx
Xy = (22 2 2 42 X, = & B.4
0 2Z(Z +€ +z t)v 1 27 ( )
Xy = i(% — 2 a1 X3 = e (B.5)
2z ’ z
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To get from global coordinates to Poincaré coordinates we use the transformations

X3+ X3 t?
702; 3 :coshz,o:M2 S(P P+ -+
z 2

X3 tont 20t

— =tant, =

Xo I (22402422 —12)7

X1 tan 0 22z

— =tanf, = .

Xs "V (22 = 02 4+ 22 —12)

The inverse transformations are given by

e 1

Xo—Xo = cosh pcosty, —sinh pcosf, ’
12 S £sinh psin @

Xo—Xo e cosh p costy — sinh pcosfy ’
(X5 i ¢ cosh psint,

Xo — Xo cosh pcost, —sinh pcosf,

Using either set of relationships, we can see that for t = ¢, = 0 and z = 0, p = oo, we get
x = {sinfy/(1 — cosfy). We want to show that L,/ep = (x2 — 21)/ep, when written in
terms of Ly, is Ly/ep o< sin(Lgy/2)/ey. Our answer for the length of the curve in Poincaré

c L, c L, c L,
21 i -1 =) =21 B.6
6 Og<2’1>+60g<22> 3 Og< Z1Z2> ( )

where we have picked two different endpoints z; and zo for the curve. Using z =

coordinates is

20e” P

1—cosfy
as the asymptotic coordinate transformation between the coordinates gives
L, _ sinfgo  sinfy, /(1 —cosfy1)(1 —cosbyo) (B.7)
/7122 1—cosfyo 1—cosfy; 2e~—P '

sin (%)
=" (B.8)
where we have picked p1 = p2 = p to fix to a constant cutoff surface. We then use
e P ~ 7 ~ € and recover

. Ly .
c sin %2 c sin(iw/L
Sglobal = 3 log ; 2z = 3 log (6/) (B.9)

upon identifying Ly = 6,2 — 6,1 = 27l/L for total circumference L.

B.2 Global fibered from Poincaré fibered

We now map the Poincaré fibered answer onto the global fibered answer. The coordinate
transformations between these two metrics are

6= tlo e’ cot(r/2) -1 , B coshosinT B 1
N e’ cot(7/2) + 1 ’

= — r=—
sinh ¢ + cosho cos 7’ sinh ¢ + cosho cos 7’
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which asymptotically (¢ — co0) become

277
=/ =t 2 = —.
(;5 U, 7!) aD(T/ )’ €z 1 +COST

From these relations we see that

Ly =1(L,, Ly = tan(m/2) — tan(71/2),

and
1 /(IT4cosi)(1+ cosa)
JT1xa 27 ’

since we will be assuming we are at different points z1, 9 at the two ends of the curve in
Poincaré fibered coordinates, whereas for global fibered coordinates we will assume we are
at the same o coordinate at both endpoints of the curve. Our Poincaré fibered answer was

found to be
1/ Lyl sinh Ly
v 2t (B.10)

C
S=Clog| X2
30g c )

where to get here the cutoff relation x ~ €2/¢ was employed. Translating back, we find

€ — \/€E1€2 = \/5\/.731.1:2

gives us

S:

or \/ (tan(72/2) — tan(r1 /2))+/(1 T cos 1) (1 F cos )

¢
3 2e—20

= o P G (o (o ()

where we have used the relation € ~ e~ for what is now a dimensionless UV cutoff. This

Ly
S111 5

is precisely the answer for global fibered coordinates (2.30).
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