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Abstract

Next generation linear colliders such as the Compact Linear Collider (CLIC) or the Inter-

national Linear Collider (ILC) will accelerate particle beams with extremely small emit-

tance. The high current and small size of the beam (micron-scale) due to such a small

emittance require non-invasive, high-resolution techniques for beam diagnostics. Diffrac-

tion Radiation (DR), a polarization radiation that appears when a charged particle moves

in the vicinity of a medium, is a promising candidate as it is non-invasive. Despite these

advantages DR is used less than other techniques mainly due to a challenging target fab-

rication (micrometer scale slits production) and data extraction. The aim of this thesis

is devoted to study the feasibility of an instrument based on DR and the limitation of

this technique applied to high energy linear accelerators. Since DR is sensitive to beam

parameters other than the transverse profile (e.g. its divergence and position), prepara-

tory simulations have been performed with realistic beam parameters. A new dedicated

instrument has been designed, installed and commissioned in the KEK Accelerator Test

Facility (ATF2) beam line. At present DR has been observed in the visible wavelength

range and in the ultraviolet (down to 250 nm) to optimize sensitivity to small beam sizes.

Presented here are the latest results of these DR beam size measurements and simulations

showing that this technique allows beams as small as a few microns to be measured.
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Chapter 1
Introduction

The main aim of this thesis was to develop a combined transition and diffraction radia-

tion station for non-invasive beam size monitoring for linear accelerators, specifically for

the future generation of linear colliders. During this thesis work a combined Transition

Radiation (TR) and Diffraction Radiation (DR) monitor has been designed, installed and

tested on Accelerator Test Facility 2 beam line at KEK. This accelerator is, indeed, a test

facility for future linear colliders providing a small emittance beam that can be focused to

sub-micrometre beam sizes challenging present technologies in terms of transverse beam

size measurements.

To show the motivation of this thesis work, Chapter 1 introduces the need of such

instruments for future linear colliders, such as CLIC. A comparison with other techniques

used in instrumentation for particle accelerators is also shown. A comprehensive and

detailed overview of TR and DR, where the theoretical aspect of these polarization radi-

ations are described with the specific perspective of beam diagnostics is then presented

in Chapter 2. Preparatory calculations, simulation and experiments (such as the study

of TR interference in section 2.1.5) performed are also presented. The design and the

commissioning of the experimental apparatus developed during this thesis work is given

in Chapter 3. Finally, the discussion and the analysis of the experimental data acquired

and processed throughout the PhD research is presented in detail in Chapter 4.

1.1 CLIC - Compact Linear Collider

The energy frontier of physics exploration has been pushed forward in the last decades

by particle accelerators. One clear example is the Large Hadron Collider (LHC) [1] that

16



1.1. CLIC - Compact Linear Collider

has contributed to the verification of the Standard Model and the discovery of the Higgs

boson [2]. However, higher energy collisions are needed to study physics beyond the

Standard Model. The particle physics community worldwide has expressed a consensus

that the results of the LHC need to be complemented by experiments that make use of

cleaner collisions could be observed using fundamental particles [3]. A lepton collider in the

TeV energy range makes possible the investigation of new physics beyond the Standard

Model probing the energy range of the lightest supersymmetric particles, the primary

candidates for dark matter and for the testing of the existence of extra dimensions.

One candidate for the next generation multi-TeV electron-positron collider is the

Compact Linear Collider (CLIC) [3]. The proposed layout for the accelerator complex

designed to provide collisions with a centre-of-mass energy of 3 TeV and a luminosity of

2× 1034 cm−2s−1 is shown in Figure 1.1. The injection linacs generate and pre-accelerate

the Main Beams (MB) which then enter the Damping Rings for emittance reduction. At

the exit of the injector complex the desired normalised beam emittances are 500nm and

5nm in the horizontal and vertical planes respectively (Table 1.1). The MB are further

accelerated in a common booster linac before being transported through the main tunnel to

the turnarounds. After this, two main beam linacs with a combined length exceeding 40 km

accelerate the MB with an accelerating gradient of 100MV/m (Table 1.1). An innovative

two-beam acceleration scheme is applied in these linacs: the MB are accelerated using

a sophisticated approach where RF power typically generated by klystrons is replaced

by a Drive Beam (DB). The power to accelerate the MB is extracted from the DB and

converted to RF power in special RF devices called PETS (Power Extraction and Transfer

Structures). In the 3 TeV layout CLIC is divided into sectors on average 878m long

(Fig. 1.1), each with about 3000 accelerating structures. The Drive Beam consists of

bunch trains, each train supplying one sector with RF power. These trains have relatively

low energy, 2.4 GeV , but high peak current of about 100 A for a pulse. About 84% of

their stored energy is converted to RF power, after which they are dumped at the end of

the sector. At this point a new DB bunch train arrives to supply the following main linac

section. [3].

The next generation of accelerators, e.g. CLIC, are designed to operate with high

charge density beams and transverse beam sizes on the micron-scale (see Table 1.2). This

is necessary to achieve high luminosity collisions. In fact the beam after the accelerating

sections is finally squeezed down to a few nanometres in the vertical direction and delivered
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Figure 1.1: CLIC 3 TeV layout: The upper part of the figure shows
the Drive Beam generation in two linacs and the successive time
compression of the Drive Beam pulses in the Delay Loops and Com-
biner Rings (CR1 and CR2). This compressed Drive Beam is trans-
ported through the Main Linac tunnel to 25 individual turnarounds.
The lower part of the figure shows the electron and positron injec-
tors of the Main Beam and the transport lines of the Main Beam to
the Main Linac tunnel. The beams collide after a long Beam Deliv-
ery Section (BDS) (collimation and final focus) in one interaction
point (IP) in the centre of the complex [3].

to the interaction region. The luminosity of two colliding beams can be expressed by the

following equation:

L =
N2

pnbfrep

A
HD, (1.1)

where Np is the number of particles per bunch, nb is the number of bunches per train, frep is

the repetition frequency of the trains, A is the effective overlap area of the colliding beams

at the interaction point (IP) and HD is the overall luminosity enhancement factor [6]. This

parameter represents the combined effect of the hour-glass (i.e. the change of beta function

in longitudinal direction over the collision region) and the disruption enhancement (due

to the attractive force that the two colliding bunches exert on each other) [3,7]. Therefore

the transverse beam dimensions must be monitored at every stage of the beam production,

acceleration and delivery. Assuming Gaussian bunch distributions and head-on collisions,

Eq. (1.1) becomes

L =
N2

pnbfrep

4πσ∗xσ
∗
y

HD, (1.2)

where σ∗x and σ∗y are the horizontal and vertical beam sizes of the bunch and ∗ denotes

the parameters at the IP. One can see that the luminosity can be increased by reducing
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Table 1.1: Parameters for the CLIC energy stages [4, 5].

Parameter Symbol Stage 1 Stage 2 Stage 3

Centre-of-mass energy
√

s [GeV ] 380 1500 3000

Repetition frequency frep [Hz ] 50 50 50

Number of bunches per train nb 352 312 312

Bunch separation ∆ t [ns] 0.5 0.5 0.5

Accelerating gradient G [MV/m] 72 72/100 72/100

Total luminosity L [1034 1
cm2 s

] 1.5 3.7 5.9

Main tunnel length [km] 11.4 29.0 50.1

Number of particles per bunch Nb [109] 5.2 3.7 3.7

Bunch length σz [µm] 70 44 44

IP beam size σx/σy [nm] 149/2.9 ∼ 60/1.5 ∼ 40/1

Norm. emitt. (at IP) εx/εy [nm] 900/20 660/20 660/20

Estimated power consumption Pwall [MW ] 252 364 589

the transverse beam sizes at the IP.

Requiring high luminosity, not easy to achieve in a linear machine compared to a

circular machine due to a lower repetition rate, CLIC is the most challenging project of a

lepton accelerator. Due to its demanding requirement in terms of beam charge, repetition

rate and beam size any diagnostics developed for this accelerator could be then scaled

down and adapted for other machines.

1.2 Beam size diagnostic

Table 1.2 shows an overview of the requirements for transverse profile monitoring. It

presents the evolution of the beam size through the CLIC complex with the corresponding

expected charge density. The beam energy is also indicated as it may influence the choice

of detector technology. The charge densities are mentioned, as they will set an upper

limit above which intercepting devices like screens or wire scanners would get damaged.

For best thermal-resistant materials like Carbon, Beryllium or Silicon Carbide, the limit

corresponds to charge density of 106 nC/cm2 [8]. This number refers to the survival of

material to single shot pulse, and does not take into account the heat dissipation effects

that would need to be considered in the final design (repetition rate of the machine, cooling

of the material, etc.). This implies that they can not be used with full beam already after

the injector linac where the charge density increase significantly (Table 1.2).

The measurement of the beam size gives a direct measure of the transverse beam

emittance. For ultra-relativistic beam energy, it is routinely deducted using either the

19



1.2. Beam size diagnostic

Table 1.2: Transverse beam size requirements for CLIC (where MDI is the Machine De-
tector Interface and RTML is the Ring To Main Linac) [3]

Sub-system Energy Resolution Charge density

[GeV] [µm] [nC/cm2]

Main Beam

e− source & pre-injector complex 0.2 50 < 5× 105

e+ source & pre-injector complex 0.2 50 < 5× 105

Injector linac (e−/e+) 2.86 50 < 5× 105

Pre-Damping Rings (H/V) 2.86 50/10 < 5× 106

Damping Rings (H/V) 2.86 10/1 < 5× 108

RTML (H/V) 2.86→ 9 10/1 < 5× 108

Main Linac (H/V) 9 → 1500 10/1 < 5× 108

Beam Delivery System (H/V) 1500 10/1 < 5× 108

MDI & Post-collision line <1500 1000 < 5× 103

Drive Beam

Sorce and linac 2.37 50 < 40× 106

Frequency multiplication complex 2.37 50 < 40× 106

Transfer to tunnel 2.37 50 < 40× 106

Turn around 2.37 50 < 40× 106

Decelerator <2.37 50 < 1.5× 106

Decelerator <2.37 100 < 1.5× 106

4-profiles method [9] or a quadrupole scanning method [10]. The first method relies on

the use of multiple beam size monitors installed at different locations along the beamline

and the emittance can be deduced knowing the nominal optics of the machine. The other

method only requires one profile monitor, where the beam size is measured varying the

strength of a focusing element. This latter method is obviously easier to implement,

making it in general cheaper as it only requires a single monitor but the beam optic

needs to change accordingly, which may lead to unexpected systematic uncertainty. An

alternative solution was proposed and tested on the CTF2 [11], scanning five quadrupoles

or more in such a way that the beam size stays constant at the profile monitor while

the phase advance through the beam line changes. The use of intercepting devices, like

screens, degrade the beam emittance due to multiple scattering effects as the beam passes

though the screen and for this reason it becomes safer to dump the beam afterwards. The

best solution would then be to measure the beam emittance using the 4-profiles method

and non-intercepting devices, which is yet to be developed.

Given that the total number of required devices to measure the transverse beam

size foreseen for CLIC is 948, corresponding to 3 times the total number of such devices
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presently in use at CERN in the whole accelerator complex [3], this indicates that the

measurements of transverse beam size have become crucial. The beam emittance is signif-

icantly reduced in the damping rings and the performance of transverse profile diagnostics

become extremely challenging from the damping rings till the end of the beam delivery

system, with a 1 micron resolution. In the following subsections several detection systems

which can deal with this challenge are presented.

1.2.1 Invasive beam size diagnostics

Diagnostic instruments in accelerators may be divided into two groups: invasive and non-

invasive. The first category, whereby measurement of the beam is obtained through the

direct interaction of the beam with matter, form the traditional diagnostics: wire scanners

[12, 13], Optical Transition Radiation (OTR) monitors [14], fluorescent screens [15] such

as YAG or phosphor.

1.2.1.1 Wire scanner

The standard reference device for beam profile measurements in many accelerators is the

wire scanner. Since only a small fraction of the particles of a single bunch is intercepted

by the wire scanner, they are less invasive than other beam profile techniques. Often they

are used to calibrate other instruments present in a machine such as SR monitors [12].

Fig. 1.2 shows the schematics of a typical wire scanner configuration. A thin wire

(10 − 50µm) is swept through the beam. Highly energetic radiation is produced when the

incoming particle beam interacts with the wire. Scintillation counters of the Cerenkov light

produced in air outside of the vacuum chamber are typically used to detect the secondary

particles emitted in this interaction [16]. The signal is proportional to the number of

particles. The beam profile is obtained recording simultaneously the wire position and

signal amplitude [16]. Single bunch beam profile measurements are not possible because

of the limited speed of the wire scanner. In fact a wire scanner measures the average beam

profile by sweeping through consecutive bunches of the charged particle beam.

The wire can be swept at a very high speed (up to 20m/s) for intense high brilliant

beams. To move the wire at such high speed, a circular movement is employed. However

this introduces a disadvantage in reducing the position resolution and hence the profile

resolution from 10µm to 100µm. The speed of the wire is primarily limited due to the

stress properties of the surrounding components that can sustain a limited acceleration
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Figure 1.2: Wire scanner schematics [12].

[16].

Although wire scanners are adopted as reference solutions in several machine they

presents also some drawbacks. First of all the fragility of such a thin wire: it can break due

to the heating caused by the energy deposited by very intense particle beams. Secondly

vacuum leakage in the bellows due to wear may also occur. Furthermore inaccuracy of the

knowledge of wire position due to vibrations and beam stability over several bunches are

additional sources of uncertainty to the beam profile measurements [12,17].

1.2.1.2 Optical transition radiation imaging systems

Transition radiation (TR) refers to the emission of broad-band electromagnetic radiation

that takes place when a charged particle crosses the boundary between two media with

different dielectric properties [18]. Monitors based on TR screens, called OTR when the

radiation is observed in the optical range of the radiation spectrum, can easily achieve

a spatial resolution of 50µm, as required from the Main Beam source to the end of the

injector linac [3,19]. Contrary to wire scanners which only give beam profiles over several

shots, OTR screens provide images of the beam in a single shot. These technologies have

been used for 20 − 30 years and state-of-the-art devices have even pushed the resolution

limit down to few microns [20,21].
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Figure 1.3: Layout of the OTR monitor tested at CTF3: the vac-
uum tank and actuator of the OTR screen (grey upper part), the
optical line sits vertically under the tank, the camera is placed on
the bottom over the yellow plate and protected from stray radiation
by a shielding (brown bricks) [3].

A typical imaging system, as used on CTF3, is depicted in Fig. 1.3. It is composed

of a vacuum tank equipped with a motorized arm, capable of inserting two OTR screens

with different reflectivity coefficients and a calibration target. Visible photons are emitted

by the screen, reflected vertically downwards and focused onto a CCD camera using a

radiation-hard lens. The light intensity is adjustable using a remotely controlled Optical

density filter wheel. Lead shielding blocks are installed all around the camera to minimize

radiation damage as much as possible [3].

The major limitations for the use of OTR screens in high current beams resides

in the beam induced thermal load [3]. This is a strong constraint, which can only be

overcome by limiting the number of bunches or reducing the pulse train length.

More recently even very high resolution (better than 1µm) monitors based on TR

were introduced [22–24]. In these kind of monitors the beam size contribution to the Point

Spread Function (PSF) of a standard OTR imaging system is observed. Originally the

PSF is an image generated by a point-like source and projected by an optical system on a
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detector (e.g. CCD camera). The source is provided by optical transition radiation from a

conductive target. The PSF must bear information about the source structure, the optical

system, and the distribution of electrons (the beam size). It was predicted that the source

is non-uniform, but has a minimum in the centre. The width of the PSF (as well as the

sensitivity to the transverse beam size) is defined by the optical system, but the visibility

is determined by the beam size [3]. As for standard OTR monitors, also in the case of

this very high resolution monitor thermal limitations linked to the use of an intercepting

device remain true and limit its use to single bunch observation or low intensity beams.

1.2.1.3 Scintillator screen monitors

In the past, fluorescent screens have been widely used to measure the transverse profiles

of electron beams at high-energy accelerator facilities [15]. Traditional fluorescent screens

based on ZnS produce a bright image but have relatively poor resolution. Phosphors have

an individual grain size of 50−100µm. Internal scattering of the fluorescence limits the im-

age resolution to the same scale [15]. To overcome this limitation single crystal scintillator

was developed, for example Cerium-doped Yttrium-Aluminum-Garnet (YAG:Ce).

For this kind of screen the ultimate spatial resolution is set by both the minimum

object size that can be produced by the crystal and by the optical transport of visible

light. The minimum object size for high-energy electrons is limited by multiple Coulomb

scattering of the beam through the crystal and by the generation of bremsstrahlung. As

shown in Fig. 1.4 at high energy this effect is less significant and the dominant limitation

is the diffraction limit of the optical system used to image the source.

Another limiting effect is due to the fact that the crystals are transparent to the

emitted light so that the beam image is created along the entire depth of the crystal.

This produces an extended longitudinal object that must be accurately focused at the

plane of the camera, meaning that a thinner crystal has a better intrinsic resolution. At

high energy, the resolution for a thin crystal and a carefully designed optical system is

ultimately limited by the diffraction of visible light to approximately 1 micron [15].
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Figure 1.4: The minimun spot size as a function of beam energy for
a 0.5mm YAG crystal: solid line is multiple scattering, dashed line
is bremsstrahlung, dotted line is diffraction limit [15].

1.2.2 Non-interceptive beam size diagnostics

1.2.2.1 Synchrotron radiation

CLIC will collide beams with nanometres beam size, which strongly relies on the generation

of ultra-low emittances in the damping rings, putting very tight requirements on the spatial

resolution of beam size monitors [3]. This problem has been studied in detail during the last

10 years either in the context of performance optimization of 3rd generation synchrotron

light sources or in the framework of the CLIC studies with an R&D program performed

to prove the feasibility of low emittance generation in damping rings [3]. This work has

led to the developments of several techniques, which can provide beam size measurements

with resolution of the order of 1 micron. Two of them are based on the use of Synchrotron

Radiation (SR) [25].

For highly relativistic particles, the spatial resolution of an SR imaging system is

intrinsically limited by diffraction, which can be resolved by using shorter wavelengths.

To achieve micron size resolution, imaging systems have been developed in the X-ray

wavelength range [26–28]. Other techniques based on the measurements of the PSF on

an imaging system have been successfully tested [29, 30]; the SR image is observed as

a modulation of the PSF of a simple imaging system and the beam size is extracted

obtaining a sub-micron resolution. Another technique, proposed by Mitsuashi [31], has
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led to the developent of SR interferometers enabling measurement of micron-scale beams

via detection of the spacial coherency [32,33].

Nevertheless SR can only be utilized in circular machines. In linear sections other

technologies, which are described below have been developed.

1.2.2.2 Laser wire

One of the most critical issues for transverse profile monitoring is the one-micron reso-

lution beam size measurements in the linear part of a very high current machine where

interceptive beam size techniques and SR can not be used. In the CLIC complex, this

type of device will be required from the exit of the Damping Ring to the Beam Delivery

system. This part covers more than 80 km of beam line and a total of more than 100

devices will be required [3]. Contrary to the rings or turnarounds, where synchrotron

radiation could be envisaged as a natural source of light for instrumentation, there is

no natural source of photons in a linear accelerator [3]. The use of intercepting devices

must be restricted to single bunch mode to prevent any beam-induced damage, as already

discussed for intercepting devices.

Laser-wire systems are based on a finely focused laser beam used to scan across an

electron beam to measure its transverse profile and thereby determine its emittance [34].

The laser light is scattered off the electron beam because of Compton scattering and

the scattered photons (or, at high electron beam energy, the scattered electrons) can be

detected downstream [35]. Laser-wires are recognized as the state-of-the-art technology

for next generation colliders such as CLIC because they are relatively non-invasive devices

that can be used continuously during machine operation. Furthermore they can be used

for very high intensity beams, whereas solid wire would be destroyed. They can also be

used for beam sizes approaching the wavelength of the laser light [3]. High resolution

measurement was performed at ATF2 in KEK, where very small beam profiles, down to

4.8µm, have been measured using a Laser Wire Scanner [36].

Another technique based on laser interferometer, proposed by Shintake [37], led to

the development of a nm resolution beam size monitor [35,38]. The interference of the two

laser beams produces a standing-wave pattern in the direction where the beam is measured.

The electron beam is scanned across the standing-wave pattern. When the beam size is

large relative to the standing-wave fringe spacing, the core of the beam always intercepts

several nulls and peaks of the interference pattern so the number of photons that the beam
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will Compton scatter is only a weak function of the electron beam position. On the other

hand in the case of a beam size very small relative to the fringe spacing, the number of

Compton-scattered photons is a strong function of the electron beam position. This means

that for an infinitely small beam, the maximum number of photons are scattered when

the beam intercepts a bright fringe, whereas no photons are scattered when the beam

intercepts a null [35]. This kind of monitor is routinely used to monitor the beam size at

ATF2 IP [38] (see section 3.1.5).

1.2.2.3 Diffraction Radiation

Diffraction Radiation (DR) is a polarization radiation that appears when a charged particle

moves in the vicinity of a medium [39]. Similarly to the well-known TR, DR is emitted in

the specular reflection direction of the incident beam with respect to the medium surface

(Backward DR, BDR) and in the direction of the beam (Forward DR, FDR). The main

difference between TR and DR is that DR can be used as a non-invasive beam profile

measurement technique as the particles pass through a narrow aperture, i.e. a slit or a

hole. In the case of DR the beam size information is obtained from its far-field angular

distribution [40].

Given these characteristics, DR has been investigated in the last few years as a

beam size monitoring technique in different electron accelerators: at the advanced photon

source, Argonne [41], at FLASH, DESY [42], at ATF, KEK [43] and on a circular machine

at CESRTA [44].

1.3 Motivation

For future linear colliders many profile monitors will be needed: for example as stated in

the CLIC design report, the total number of required devices to measure the transverse

beam size is 948 [3]. This means that the profile monitors have to be simple to use, robust,

and relatively inexpensive to guarantee reliability of the accelerator operations.

One of the technologies that can satisfy these requirements is OTR monitors as TR

is a well studied phenomena that can provide single shot small beam (less then one micron)

resolution [23]. The main limitation of TR monitors is related to the fact that a TR screen

can sustain only a limited number of beam bunches because of the beam induced thermal

load [3], limiting the use on a pilot beam with reduced number of bunches or pulse train
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length.

Non-interceptive techniques are necessary for full beam charge. Laser wire scanners

are the state of the art technology to measure small transverse beam size with micron scale

resolution [36]. The drawbacks of this kind of monitor is that they measure the average of

several bunches and they are expensive to maintain and operate due to the need of several

high power laser so difficult and expensive to implement on the large scale needed for future

collider. Synchrotron radiation based techniques, that provide another non-intercepting

way of extracting information on the beam size can be used only in non-linear sections

of the machine, such as dumping rings, adding a strong constraint on their mass use at

a linear collider. Diffraction radiation is non-invasive, single shot and based on relatively

cost effective technology that can overcome the limitation of the other techniques.

DR experiments mentioned in section 1.2.2.3 were conducted in the visible range

showing a sensitivity to the beam size as small as 14 µm [40]. The limited resolution

of these systems was due to diffraction limit and to the residual SR contribution. To

overcome these problems a study is proposed in the UV range (250nm) with an upstream

mask to block SR light. Furthermore, going down with wavelength is important to reduce

the contribution of the coherent component of the DR and TR radiation in the presence

of short bunches [45–47].

The aim of this thesis work is to develop a combined TR and DR station for non-

invasive beam size monitoring that can overcome the limitations the previous experiment

and techniques showed for linear colliders. Combining DR and TR in one instrument,

gives possibility of taking advantage of both techniques: observation of sub-micrometre

beam sizes using high resolution PSF in TR and using non-invasive DR measurements.

Furthermore the idea to observe the position of the beam synchronously with angular

pattern of DR far-field light allows the position of the beam inside the DR slit to be

monitored (see section 3.4).
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Chapter 2
Theoretical Background

Originally predicted by Ginsburg [48] in 1946, TR has been studied experimentally during

the last 60 years. TR refers to the emission of broad-band electromagnetic radiation

that takes place when a charged particle crosses the boundary between two media with

different dielectric properties [18]. The optical frequency band of TR is widely used as a

diagnostic technique in particle accelerators [14,49] where the spatial, temporal, or angular

characteristics of TR are measured to extract information about the beam. TR is one of

the main candidate techniques for the next generation of colliders where beam size will

be at the micrometre scale [3] because it can provide very high resolution measurements

(even below 1 micron [23]) to resolve such small beam size.

More recently DR has been studied as a transverse beam size monitor technique

[40, 50]. Monitors based on DR, a non intercepting technique, are being investigated for

high charge beams such as in CLIC [3] or ILC [51]. Since this thesis presents results of

studies performed on an electron particle accelerator, focused on the TR and DR emission

mostly in the optical and UV wavelength range, descriptions of these two phenomena,

from the point of view of the beam diagnostics, are presented in this chapter.

2.1 Transition radiation

TR is produced when a charged particle crosses the interface between two media. The

particle interacts with the target surface via its electric fields polarizing it and inducing

polarization currents. The radiation is actually emitted by the resulting dipoles present

on the surface that start oscillating. In the case that a charged particle crosses a flat

boundary between two media with the incident angle, θ0, TR propagates in two main
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directions: along the particle trajectory (Forward Transition Radiation, FTR) and in the

direction of specular reflection (Backward Transition Radiation, BTR) [43] in both cases

with a characteristic opening angle θ ≈ 2/γ, where γ is the particle Lorentz factor. When

the target is a thin foil but its thickness is larger than the skin depth, in this case BTR

is produced on the incoming surface and FTR on the outgoing surface as is shown on a

simple schematic diagram in Fig. 2.1. The skin depth, ls, is given by:

ls =
c

ωp
(2.1)

where ωp is the plasma frequency defined as ωp =
√

nee2

ε0me
, here ne is the number density

of free electrons, ε0 is the vacuum permittivity and me is the electron mass. In the case

of Aluminum, a typical material used for OTR the value of ls is of the order of 12 nm.

Figure 2.1: Schematic diagram of TR production from an electron
e− crossing a screen (in grey): the cones of emission of Forward TR
and Backward TR are represented in light blue, to be noted the
minimum in the center and the total aperture θ ≈ 2/γ. Backward
TR is emitted around the reflection angle α.

Models to describe theoretically transition radiation were presented in [52, 53]. In

particular the authors of [52] proposed the following approach for better understanding

the process of TR. Let a charge, q, move from vacuum into metal (ideal mirror). The

electromagnetic field in the vacuum can be represented as the field of charge and the field

of its image, −q, which moves toward the charge in the metal (see Fig. 2.2). From the

viewpoint of the vacuum, when the charge crosses the first boundary, the charge and its

image overlap creating a null effective charge this results in emission of radiation.
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Figure 2.2: TR generation by a charge crossing a boundary between
vacuum and ideal conductor (mirror) [43].

In [53] another approach applicable for BTR was proposed. The method is based on

the Huygens principle of plane wave diffraction. The field of the charge is represented as a

sum of the pseudo-photons. When a particle crosses a boundary, the pseudo-photons are

scattered from the surface atoms and propagate in the backward direction. The difference

from the plane wave is that the field of the charge depends on the distance from the particle

trajectory. The following sections describe the main characteristics of TR of interest for

the thesis, using this approach also known as the polarization current approach.

2.1.1 Transition radiation in the far-field

TR is generated by the incident particle field on the surface of a screen. At a given

observation wavelength the characteristic dimension of the electric field can be written as

γλ/2π, where γ = E/mec =
√

1− v2/c2 is the charged particle Lorentz factor, λ is the

generated photon wavelength, E is the total particle velocity, me is the electron mass, c is

the speed of light and v is the particle speed. As already introduced in the previous section

the particle field polarizes the target surface, therefore, generating a TR source with the

same size as the electron field. All points of the source could be treated as independent

sources. In the wave zone, all waves propagating from those sources can be considered as

plane waves. This approximation is valid if the far-field condition is satisfied. The far-field

condition can be written as [54]:

L

γ
� γλ

2π
→ L� γ2λ

2π
(2.2)

where L is the distance between target and detector and λ is the TR wavelength. This

relation indicates that in the far-field, the distance L/γ must be much larger than the
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effective electric field radius of the charged particle rE = γλ/2π [54].

From Eq. 2.2 it is clear that for very high-energy electron accelerators the far-field

condition could reach distances from several metres to few kilometres. In this case the

theory described in this section might not be applicable. The pre-wave zone effect in BTR

or TR at a distance from the target comparable with or shorter than Lf in backward

direction is described in the next section.

As is depicted in Fig. 2.3, TR angular distribution is confined within a very narrow

cone of order of γ−1. This implies that for FTR the expression of the far-field condition

is described by a similar relation to the so-called radiation formation length Lf [54]:

Lf =
λ

π

1

γ−2 + θ2x + θ2y
→ Lf =

γ2λ

2π
(2.3)

Here θx and θy are the radiation observation angles measured either from the mirror

reflection direction (for BTR) or from the particle trajectory (for FTR), the approximation

θ2 = θ2x + θ2y ≈ γ−2 is used. The radiation formation length, also called coherence length,

has different physical meaning respect the far-field condition. Specifically it indicates that

if another photon is produced by the particle at a distance comparable with or shorter than

Lf from the target, those two photons are coherent. The real photons and the particle

field are completely separated at the distance much larger than the coherence length. In

BTR the electron field and the photons are separated at the distance equal to the photon

wavelength from the target.

Figure 2.3: Transition radiation angular distribution calculated for
γ = 2544 [43].
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The detailed TR theory in the wave zone is well described in literature [52, 53].

The approach for calculating TR from a particle obliquely passing through a boundary

between vacuum and an ideal conductor is presented in [53]. Of particular interest there is

also a model proposed in [55] where an ultra-relativistic approximation (θx, θy, γ
−1 � 1)

is applied to obtain a much simpler equation for the intensity WTR for a given photon

frequency ω and solid angle Ω:

d2WTR

dωdΩ
=

α

π2
θ2x + θ2y(

γ−2 + θ2x + θ2y
)2
{

1

(1− θy cot θ0)
2

}
(2.4)

here α is the fine structure constant and θ0 is the target tilt angle with respect to the

particle trajectory (see, for instance, Fig. 2.1). From here on, unless otherwise stated, the

following system of units ~ = me = c = 1 is used. TR angular distribution in forward

and backward directions coincide in case of an ideal conductor. It is possible to notice

that the term before the curly braces in Eq. 2.4 is the TR for the case of normal incidence

(θ0 = 0). The angular distribution for the normal incidence in the case of an electron

in ATF2 at energy E = 1.3GeV (γ ≈ 2544) is presented in Fig. 2.3. In this case, it is

possible to consider the TR angular distribution as an azimuthally symmetric crater-like

distribution with a polar angle of the order of γ−1, similar to the TR shown in Fig. 2.1.

However, the term in the curly braces in Eq. 2.4 is responsible for TR asymmetry. The

percent asymmetry, defined as r, could be estimated in the way presented in [55] derived

from Eq. 2.4 considering the peak intensities at θx,y = γ−1 and θx,y = −γ−1 :

r =
IR − IL

1
2 (IR + IL)

= 4γ−1 cot θ0 (2.5)

In Eq. 2.5 IL, IR are the intensities of the left (−γ−1) and right (+γ−1) maxima (see

Fig. 2.3) of the angular distribution in the diffraction plane (θx = 0), i.e. in the plane of

the particle trajectory and its projection onto the target plane. For example, for the target

tilt angle of 45◦ and beam energy E = 1.3GeV (γ ≈ 2544) the asymmetry is of about

0.16%, which is negligibly small. Therefore, the term in the figure brackets in Eq. 2.4 can

be neglected in the GeV energy region and for the target tilted angles θ0 � γ−1. In this

case the TR angular distribution can be considered as azimuthally symmetric [43].

Eq. 2.4 shows also that the TR from an ideal conductor is independent of the radi-

ation wavelength. However, it has to be said that this equation could only be used with a

proper accuracy for TR photon energies smaller than the plasmon energy of a substance,
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which is about 10 eV for a metallic foil. This equation is, therefore, valid for wavelengths

longer then ≈ 0.12nm, meaning that it can be used in the visible and UV range.

2.1.2 Transition radiation in the near-field

Development and study of high-energy accelerators is the new frontier for accelerator

physics [3, 56]. Increasing beam energy leads to new effects. Some of them are very

interesting from the point of view of physics and applications; others set new obstacles in

scientific investigations. One of the latter is the pre-wave (or near field) zone effect [43],

meaning that TR radiation from ultra-relativistic beams has to be observed before it can

reach the far-field condition. The theory of the pre-wave zone effect in FTR and BTR has

been address by several authors [20,57–60].

In this section some aspects of pre-wave zone effect for BTR are presented, as this

is the situation we had to deal with in our experiment. The pre-wave zone for BTR can

be understood in the following way. When a charged particle crosses a boundary between

vacuum and a material, it induces polarization currents on the material surface. The

region of the induced currents is the TR source [43]. Actually, that region is determined

by the incident particle field radius treated as γλ/2π (see Fig. 2.4) because this is the

characteristic field dimension at a given wavelength of a relativistic particle.

Figure 2.4: a) Schematic of emission cone angle for TR (presented
here) and DR for 3 point like sources inside the electron effective
field radius b) Schematic of TR source with coordinate reference
system [43].

Inside this region all points of the radiation source start emitting radiation. At the

close distance to the target the radiation source can not be treated like a single point. The

question that may rise is how far the observation point must be in order to obey the far
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2.1. Transition radiation

field approximation. To answer this question it is useful to refer to Fig. 2.4b). The TR

spot in the detector plane must be much larger than the radiation source size. In other

words, if z is the distance from the observation point, to distinguish to different point

source then the following condition must be fulfilled:

z

γ
� γλ

2π
, or z � γ2λ

2π
(2.6)

where z/γ is a the characteristic dimension of the single point TR as γ−1 is the emission

angle. This very simple analysis has led to an expression similar to the far-field condition

already presented in Eq. 2.2. When the condition in Eq. 2.6 is not fulfilled, the formulae

described in the previous section 2.1.1 can not be used.

Since the studies presented in this thesis were performed in GeV energy range, the

approach presented in [57] will be described in detail. This is a rather simple approach

for calculating the BTR spectral spatial characteristics for an ultra-relativistic case.

Consider a charged particle that normally crosses a boundary between vacuum and

an ideal conductor. In the ultra-relativistic case only transverse components of the particle

field are essential. The moving charge field can be described by a superposition of pseudo-

photons [53], as the electrical field of an ultra-relativistic particle is almost transverse to

to the relativistic compression in the longitudinal direction:

Ex,y

(
k⊥x , k

⊥
y

)
= −i4πe

k⊥x,y
k⊥2x + k⊥2y + k2γ−2

exp(−ikzz). (2.7)

In Eq. 2.7 e is the charge of the particle, k = 2π/λ is the wave number, k⊥x,y

are transverse components of the pseudo-photon wave vector determined in the polar

coordinate system by the following relations (see Fig. 2.4b):

k⊥x = k⊥ cosψ, k⊥y = k⊥ sinψ. (2.8)

The radiation field is obtained satisfying the boundary condition for the tangential

component. In the coordinate space representation it has the following form:

Erx,y (ρx, ρy) = − ie
π

∫ ∞
0

k⊥x,ydk
⊥
x dk

⊥
y

k⊥2 + k2γ−2
exp

(
iz
√
k2 − k⊥2

)
exp

(
ik⊥x ρx + ik⊥y ρy

)
(2.9)

where ρx and ρy are the components of the TR photon wave vector determined in the

35
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transverse plane measured in metres as can be seen in Fig. 2.4 by the following relations

(see Fig. 2.4b):

ρx = ρ cosφ, ρy = ρ sinφ. (2.10)

At any distances longer than the radiation wavelength, the TR spatial spectral

distribution per unit frequency and per unit transverse area can be written in the following

form:

d3W

dωdxdy
= 4π2k2

[
|Erx|

2 +
∣∣Ery∣∣2] =

=
αk2z2

γ2π2

∣∣∣∣∫ ∞
0

t2dt

t2 + γ−2
J1

(√
x2 + y2

kzt

γ

)
exp

(
ikz
√

1− t2
)∣∣∣∣2 (2.11)

where J1 is the Bessel function of the first order, x, y = γρx,y/z and t is the normalized

angle defined as t = γθ . It is possible to notice that at large distances from the target

x and y coordinates could be considered as the photon emission angles in units of γ−1

measured from the mirror reflection direction. In spite of an infinite integration limit the

dominant part of the integral is confined within a very small angular range ∆t� 1. The

calculations can be performed numerically [43].

Figure 2.5: a) Transition radiation space distribution in the pre-
wave zone calculated for different distances from the target: z =
10γ2λ/2π - solid line, z = 4γ2λ/2π - dash-dotted line, z = 2γ2λ/2π
- dashed line; b) dependence of the maximum position as a function
of the distance from the target [43].

TR spatial distributions for different distances to the observation point are presented

in Figure 2.5. It can be seen that the TR space distribution is different from the far-field

angular distribution described in the previous section 2.1.1: the transverse position of the

maximum is not at t = γθ. Increasing the distance to the observation point approaching
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z = 10γ2λ/2π the distribution is transformed into the usual distribution in the wave zone

and its intensity is saturated to the far field one from an infinite boundary:

d2Wmax
TR

dωdΩ
=
αγ2

4π2
(2.12)

Experimentally this effect was observed in [61]. The authors as performed a series of

experiments in the pre-wave zone predicted by the theory. Their results are in reasonable

agreement with the theoretical approach described above. So far there are a lot of theories

developed including the far-field approximation. That is because the approximation allows

rather simple formulae to be obtained. However, it might be necessary to revise most of

the formulae to be able to perform calculations for highly relativistic electron beams.

Otherwise the condition in Eq. 2.6 must be fulfilled, which is difficult for beam energies

higher than a few GeV .

For example, using Eq. 2.6 for beam energy of 1.3 GeV (KEK-ATF) and the radi-

ation wavelength of 400 nm the target-to-detector distance must be about 2.5 m to be

able to obey far field approximation. However, for the beam energy of 380 GeV (CLIC

stage 1 see Tab.1.1) the target-to-detector distance must more than 220 km, which is an

unreasonable distance to achieve.

2.1.3 Transition radiation PSF measurements

The resolution of a conventional OTR monitor is defined by the root-mean-square of

the so-called PSF [20]. The PSF can be defined as the source distribution generated

by a single electron and projected by an optical system onto a detector. In the optical

wavelength region the resolution is limited and defined by diffraction and aberration effects

of the optical system. Such effects lead to the broadening of the PSF and to a lower

resolution. The best resolution achieved by conventional OTR monitors is about a few

micrometers [21]. However, in [62] the authors demonstrated that the OTR PSF differs

from a conventional PSF of an optical system.

Figure 2.6 shows a measured polarization component of the OTR PSF that has a

two-lobe structure. Specifically OTR is radially polarized; in this experiment the vertical

polarization was observed because it was in the direction of smallest beam size reachable in

the experiment (less then 1 µm). The visibility (Imin/Imax), defined as the ratio between

the minimum Imin in between the two lobes and the peak value of the lobe (Imax) can
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Figure 2.6: TR PSF measured at the Accelerator Test Facility 2 (ATF2
see sec.3.1) for a beam size σy = 1.73µm, σx = 23.04µm for 3 different
wavelengths: a) 609nm b) 558nm c) 459nm [62].

be used to monitor vertical beam size with sub-micrometer resolution. This approach has

been demonstrated with several measurements performed at the Accelerator Test Facility

2 (ATF2) in [22,23]. Fig. 2.7 shows the change of the dept of the minimum in between the

lobes for different beam size, in particular a smaller beam led to a deeper minimum. On the

other hand if the beam is flat (much smaller in vertical direction than the horizontal), which

is true for linear colliders such as CLIC [3], the horizontal projection of the distribution

represents a direct measurement of the horizontal beam size that is much larger than the

vertical size. This gives the opportunity to diagnose an electron beam size in two directions

in a single shot, avoiding using two different instruments for the purpose.

Figure 2.7: Three TR distributions measured with 550nm optical
filter for three different vertical beam sizes: σy = 1.75µm, σy =
4.8µm and σy = 10.16µm [22].

This particular method of using TR to measure very small beam sizes has been
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introduced here not only because of the interest in small beams (micrometre scale) for the

next generation of colliders, but also because it has been used during the experimental

campaign described in Chapter 4 to calibrate DR in the condition of a small beam.

2.1.4 Zemax simulation

Zemax Optical Design Studio is a readily available commercial software package which

integrates all the features required to conceptualise, design, optimise and analyse virtually

any optical system. Zemax makes use of diffraction calculations to propagate a wavefront

through an optical system surface by surface. In this way the wave-like nature of light is

fully accounted for [63]. As input to ZEMAX, the approximation of the electric field for

the OTR vertical polarization component induced by a single electron on a target surface

is used [64], defined by the following equation [65]:

Re (Ey) = const
Y√

X2 + Y 2

2π

γλ
K1

(
2π

γλ

√
X2 + Y 2

)
−
J0

(
2π
γλ

√
X2 + Y 2

)
√
X2 + Y 2


Im (Ey) = 0

(2.13)

with X and Y the two orthogonal coordinates of the target surface measured from the

point of electron incidence, const is a scale constant, K1 is the modified Bessel function

of first order, and J0 is the Bessel function of order zero.

Figure 2.8: Comparison between TR angular distribution theoret-
ical prediction in the far-field (dashed line) and Zemax simulation
reaching the far-field condition: L is the distance between the source
and the detector plane [63].

This tool has been successfully tested and used to simulate TR in the far-field [63]
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and in the near-field [65]. For example, in Fig. 2.8, very good agreement between the

theoretical TR angular distribution and the Zemax simulation is shown when the detector

is placed far enough away from the source (approaching 10 times the formation zone), i.e.

when this distance is much larger then the formation length (Lf ).

Another example of interest for this thesis is that presented in [65]. That case,

illustrated in Fig. 2.9, shows a good agreement between the position of the main peak

of TR PSF for the ATF2 in the case of Zemax simulation versus the real measurement

performed with a CCD sensor.

Figure 2.9: Comparison between TR PSF measured and simulated
with achromatic lens (DLB-30-120-PM from Sigma-Koki) at the
best focus (γ = 2500 and λ = 550nm) [65].

This kind of simulation were performed during the preliminary studies of this thesis

to predict, guide and validate the experimental campaign. In particular an intensive in-

vestigation was performed to study TR interference, the results of this study are presented

in the next section (2.1.5).

2.1.5 Transition radiation interference

When two or more coherent TR sources are present, it is predicted that radiation from

these two sources may interfere. A strong interference take place if the distance between

TR sources is comparable or shorter than the formation length Lf . This condition can be

written as δ < 1 where δ is defined as d/Lf so the distance between radiators d normalized

by formation length [18]. Some aspects of multi-TR emission have previously been studied,

e.g., the constructive interference of x-ray TR in a stack of thin foils was investigated

theoretically [66] and experimentally [67] in the 1970s. The angular distributions in the

far-field region from electrons of 70 MeV and distances between foils down to 2 mm (δ =
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1.215) were studied in the pioneering work of Wartski [68] on optical transition radiation

interference (OTRI). Several experiments on interferometry [69,70] were conducted more

recently in similar conditions, i.e. with δ values of 323 and 10, respectively. They all

reported measurements well in agreement with Wartski’s predictions and proposed the

use of such an interferometer for beam size, emittance, and energy measurements. More

recently, advanced beam diagnostic techniques using both OTR and DR [40,71,72] require

the use of two thin metallic foils or slits separated by a distance much shorter than the

formation length (δ � 1). In this case, pronounced suppression of the TR field, also

referred to as the shadowing effect [73,74], is predicted to occur [18].

This phenomenon is of primary interest for an instrument that uses a mask to

block any Synchrotron Radiation (SR) contribution that can increase the background and

influence the pattern of TR or DR. Because the instrument designed and tested during the

experimental campaign object of this thesis, described in detail in Chapter 3, make use of

this kind of mask, a preliminary study was performed on CALIFES beam line at CERN.

The CALIFES beam line and the experimental set-up are described in detail in Appendix

A, where the experiment, which consists of the study of the interference of two TR screens

with the possibility to vary the inter-screen distance (d), is presented. The two screen are

installed on the same mounter with an angle of 90 degree in between them so that every

screen intercepts the beam with an angle of 45 degree respect to the beam longitudinal

axis. The inter-screen distance at the location of the beam-screens interaction location

can be varied with a range 0 < d < 34 cm. For a full description of the experimental

set-up the reader can refer to Appendix A; here is reported a schematic of the installation

in Fig. 2.10.

Fig. 2.11 and Fig. 2.12 illustrate respectively the results of the Zemax simulations,

introduced in section 2.1.4, and the measurement performed. In particular the angular

distribution of OTRI at 650 nm is presented, demonstrating a broadening of the two main

lobes of the TR distribution decreasing the inter-screen distance to values shorter then the

formation length (δ << 1). Such a broadening with respect to a single screen distribution

was observed also in [68].

The total intensity recorded at 400 and 650nm of OTRI is depicted in Fig. 2.13.

Here the OTRI intensity curves are normalized to the intensity of the single screen and

plotted as a function of the normalized distance δ. Starting from the right-hand side

(δ > 2.6 for 400nm, > 4.2 for 650nm), where the signal is generated solely by the second
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Figure 2.10: OTRI setup at CALIFES [18]:detailed description of
the experimental set-up is presented in the Appendix A.

Figure 2.11: OTRI an-
gular distribution simu-
lated with Zemax for dif-
ferent distance D between
screens. The envelope cor-
responding to 4 times the
single screen intensity is
also reported.

Figure 2.12: Measured OTRI angu-
lar distribution for δ = 1.11, 0.47,
0.16, and 0.05 for black, red, ma-
genta and blue respectively [18].

screen (b) in Fig. 2.10, the total intensity reaches twice the reference value as soon as the

beam crosses both screens (a) and (b) in Fig. 2.10, as predicted in Ref. [68]. The intensity

curves remain approximately constant until δ ≈ 1, where a shadowing phenomena starts

to appear and the total emitted optical intensity drops abruptly. It has to be remarked

that when δ = 1 the radiation field is exactly 1 wavelength ahead of the electron field. At
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distance δ < 1 the FTR severely interferes with the electron field partially cancelling it

out. It results in a reduced effect of polarization at the second target and decrease of the

produced light intensity. However, if we compare OTRI intensity at different wavelengths,

the curves overlap when plotted as a function of normalized distance. This illustrates that

the photon yield is not only reduced but shifted towards higher frequencies [18].

Figure 2.13: OTRI intensity, normalized to the single screen OTR
intensity as a function of the normalized inter-screen distance δ, for
the wavelengths 400 (blue line) and 650 (red line) nm. Experimental
results are compared with analytical results from Ref. [68] (black
line) and with Zemax (magenta line) [18].

Experimental data are also compared with analytical formulas for the far-field dis-

tribution per unit frequency ω over a solid angle dΩ = sin θdθdφ [68]:

dI

dω
= F (ω)

e2v2 sin3 θdθdφ

π2c3 [1− (v2/c2) cos2 θ]2

∣∣∣1− e−iδ∣∣∣2 (2.14)

where F (ω) is the surface reflectivity, e the elementary charge, c the speed of light in

vacuum, v the particle speed, θ and φ are the polar and azimuthal angles, respectively.

Equation 2.14 attributes the decrease of total emitted power to the progressive destructive

interference between the two OTR sources. What is shown on Fig. 2.13 (black solid line) is

the integral of Eq. 2.14 over the same experimentally accessible angular range, normalized

to the single screen total emission calculated with the same formula. Analytical predictions

are in very good agreement with experimental data. This seems to suggest that a model

solely based on optical interference between two identical OTR sources separated by a

distance d and with a phase relation δ between them can correctly describe this shadowing

phenomena. This is remarkable as the physical process per se is not the optical interference

between the two OTR sources but between the forward OTR emitted by the first screen
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and the electromagnetic field associated with the electrons [18]. The latter is not a purely

transverse electromagnetic field and therefore, only to a degree of approximation can be

considered a radiation field (i.e. light). By adopting this approach, shadowing is the

interference between the forward OTR photons and the quasi-photons associated with

the moving electron (see Refs. [60, 74]). Any radiator downstream of the first screen at

a normalized distance of δ < 1 will be in its shadow. At a distance δ � 1, the FTR

field almost completely cancels out the field of the electron, which is a region where no

radiation is produced. At a distance δ � 1, the electron field will be completely restored

to its original value and is completely separated in time from the FTR field [18].

The validity of a purely optical model for shadowing is further confirmed by optical

simulations, performed with Zemax [63, 65], of the propagation of the forward OTR field

from the first screen to the second using near-field diffraction formulas. The resulting

field is over-lapped with the backward OTR field generated by the beam at the input

face of the second screen. The phase shift eiδ is added to account for the time of flight

difference between the particles and the forward OTR field when propagating between the

two screens. The integrals of the resulting angular curves over the angular range accessible

to the instrument are plotted on Fig. 2.13 (solid magenta line) for 400 nm, showing very

good agreement with both the experimental and analytic data [18].

This study clearly shows how a mask present in front of the main target to remove

the SR background adds a contribution in the observed pattern, not only in the shape of

this pattern but also in the total amount of radiation detectable at a given wavelength.

As it is shown later, in case of DR the contribution of forward DR can be neglected if

the mask slit is four times larger than the DR slit. However it may not be enough to

completely eliminate SR background [75].

2.2 Diffraction Radiation

Another kind of polarisation radiation is Diffraction Radiation (DR). In particular, the

atomic electrons of the surface of a medium are excited by the electric field of a charged

particle when it moves in the vicinity of this medium. Polarisation currents are produced

which are accompanied by the emission of electromagnetic waves i.e. the emission of

photons [39]. DR describes photons which are emitted when a charged particle passes

through a target aperture. In this case the charged particle does not intersect the boundary
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of the medium, like in TR, but interacts with the medium via its electric field only.

As a result, the particle does not experience any multiple scattering or bremsstrahlung

mechanism of energy loss.

As indicated in [43], the DR spectral angular distribution can be calculated using:

d2W

dωdΩ
= 4π2k2

(
|Ex|2 + |Ey|2

)
(2.15)

where the wave number is defined as k = 2π/λ and Ex,y are the two orthogonal polarisation

components of the radiation field integrated over the target surface. The total field of this

DR is dependent on the incident charged particle field [43,55].

Because the electric field of the charged particle depend on the distance from the

particle itself, the emission of DR is dependent on the distance between the charged

particle trajectory and the medium polarized. The field of a moving charge in vacuum

with velocity v, frequency ω and energy E = γmc2, where γ is the Lorentz factor, m

is the rest mass of the charged particle and c is the speed of light, can be described by

the relation: E ∝ exp (−dω/γv) that shows how the field decreases with distance d in

the direction perpendicular to the charged particle velocity. Therefore, DR polarisation

currents are located in the layer closer to the surface and the properties of DR strongly

depend on the properties of this layer. Furthermore, DR does not appear for a charged

particle uniformly moving in parallel with an infinite plane surface of a homogeneous

ideally conducting medium [39].

The impact parameter hd defined as:

hd ≤
γλ

2π
(2.16)

This parameter is explained in Fig. 2.14 where the condition on the distance from the

beam to the slit edge for the emission of DR is depicted. This condition is defined by the

effective electric field radius of the charged particle rE = γλ/2π [54].

Like TR, DR is emitted in two directions as shown in Figure 2.14: Forward Diffrac-

tion Radiation (FDR) is emitted in the direction of the charged particle trajectory; Back-

ward Diffraction Radiation (BDR) is emitted in the direction of specular reflection relative

to the target.

An important property of DR is that it is considered to be non-invasive. In fact,

the energy loss of charged particles due to DR is much smaller than the energy of the
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Figure 2.14: Schematic emission of DR from an electron moving in
the vicinity of a medium [43].

fast moving charged particle. Therefore, the particle velocity can be treated as constant

to a good accuracy [39] and DR, particularly BDR, can be used for non-invasive beam

diagnostics in low background conditions.

2.2.1 DR in the far-field and near-field

As already introduced for TR in section 2.1.1, the far-field zone is the region at which the

angular distribution of DR is observed. The distance from the target to the observation

point is assumed to be so large that it is possible to introduce the DR field as a super-

position of plane waves of different amplitude emitted by each elementary source of the

target. In this case Fraunhofer diffraction theory can be used [54].

Also for DR, the wave zone is defined by the far-field condition described by the

Eq. 2.4; from this condition it is seen that in the far-field the distance z/γ must be

significantly greater than rE . Like TR, the angular distribution of DR is emitted in a cone

of order θ = γ−1 where θ2 = θ2x + θ2y is the polar observation angle.

The pre-wave zone is the region where the far-field condition is not satisfied. In this

case, the DR distribution observed is a spatial-spectral distribution; it not purely angular

but includes a spatial contribution determined by the radiation source size.

The radiation source size is equal to the electric field radius which can be treated as

the effective radius rE as shown in Figure 2.14. On the contrary compared to the far-field,

for a detector located inside the pre-wave zone, DR photons with different emission angles

arrive at the same observation point on the detector plane [54].
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The spatial distribution is transformed into the angular distribution in the far-field

zone only [54]. As aforementioned, this can be achieved by satisfying the far-field condition

for example by using a long-line optical system where the detector is located far away from

the DR target.

Figure 2.15: Geometry of photon propagation using a thin lens to
recreate the far-field condition, where l is the distance from the
target to the lens, BFL is the back focal length of the lens and
ρd(x, y) is the position of emission angle θx,y on the detector plane.
The dashed red arrow indicate the charged particle trajectory [76].

If the far-field condition cannot be satisfied due to spatial constraints like in a high

energy accelerator, where the far-field distance may be reached after several metres, the

DR angular distribution may be obtained in the pre-wave zone through the use of a lens

where the detector is positioned at the back focal plane. This setup can be considered as

an alternative case of Fraunhofer diffraction as described in [77].

The author in [54] presents a detailed report on the methods of pre-wave zone

suppression. In this section, the propagation of BDR through a thin lens is reported since

this setup was used for the experiment at ATF2 (Section 3.4) due to spatial constraints

and the simplicity of installation and alignment in the accelerator tunnel.

Figure 2.15 illustrates the geometry of the photon propagation in the pre-wave zone

setup through a thin lens. The lens focus all parallel rays or photons with the same

emission angle θx,y to a common point on the detector plane ρd(x, y) in the case that the

detector is positioned at the back focal plane of this lens. In this way, the DR source is

effectively shifted to infinity [54].

The lens radius must be sufficiently large to avoid distortions to the DR distribution.

First of all, the lens must be larger than the radiation source size to avoid distortions due

47



2.2. Diffraction Radiation

to diffraction of the photons from the source tails. Secondly, it has to be taken into account

that every elementary source contributes to the radiation source spot size emitting a cone

with divergence of the order γ−1.

In order to suppress the pre-wave zone without producing distortions to the DR

angular distribution the lens must be considered infinite by satisfying the condition [54]:

Rl �
l

γ
+
γλ

2π
(2.17)

where l is the distance from the target to the lens and Rl is the lens radius. In Equation

2.17 the first term describes the DR spot size increasing with distance from the target

and the second term describes the radiation source spot size, i.e. the effective electric field

radius rE [54].

2.2.2 DR from a slit between semi-planes

Since the main experimental studies of this thesis concern the DR emitted by electron

beam moving throw a slit, in this section the equations describing the single particle

moving throw a slit are presented.

The convention described in Fig. 2.16 is used: θ0 is the tilt angle of the screen

with respect to the particle trajectory and θx,y are the horizontal and vertical angles with

respect to the reflection direction.

The spectral angular DR distribution for a single electron passing between two semi-

planes is given by [43]:

d2W slit
DR

dωdΩ
=
e2γ2

2π2

exp
(
−2πa sin θ0

γ

√
1 + t2x

)
(
1 + t2x + t2y

)
(1 + t2x)

×
[(

1 + 2t2x
)

cosh

(
4πax
γλ

√
1 + t2x

)
− cos

(
2πa sin θ0

γλ
ty + 2ψ

)]
,

(2.18)

where a is the slit size, a/2 < ax < a/2 is the offset of the electron with respect

to the slit centre in the plane perpendicular to the particle trajectory, θ0 is the target

tilt angle with respect to the incoming electron trajectory, e is the elementary charge

constant. In Eq. 2.18 new more convenient variables have also been introduced: tx = γθx ,

ty = γθy and ψ = arctan
(
ty/
√

1 + t2x

)
where θx,y are the radiation angles measured from

the mirror reflection direction [43].
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2.2. Diffraction Radiation

Figure 2.16: DR from a slit: θ0 is the angle between the incoming
particle (e−) and the screen, θy is the angle measured from the
reflection angle [76].

Figure 2.17, where the case of an electron at 1.3GeV moving through a slit used

during the experimental campaign (see sec. 3.3) is considered, illustrates how the DR

intensity reaches a maximum in the diffraction plane (tx = 0) at ty ∼ ±1 [43]. Generally,

DR intensity exponentially decreases as a function of aperture size. Reducing the target

aperture size increases the number of atoms of the target material within the effective

electric field radius rE . This results in a higher yield of photons emitted and is one way

in which the DR signal can be increased above background.

Figure 2.17: Diffraction radiation angular distribution calculated
using Eq. 2.18 where γ = 2544, a = 50µm, λ = 400nm, θ0 = 45◦

and ax = 0.
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2.2.3 Beam size effect on DR pattern

In [78] the author has shown that the vertical polarisation component is sensitive to beam

size. It is assumed that electron beam has a Gaussian distribution described by

G (ax, σy) =
1√

2πσ2y

exp

[
−(ax − ax)2

2σ2y

]
(2.19)

where σy is the rms vertical beam size, a is the target aperture size, ax is the offset of

the beam centre with respect to the slit centre and ax is the offset of each electron of the

beam with respect to the slit centre [43].

In [79], the expression for the DR vertical polarisation component convoluted with

a Gaussian distribution is:

d2W slit
y

dωdΩ
=
αγ2

2π2

exp
(
−2πa sin θ0

γλ

√
1 + t2x

)
1 + t2x + t2y

×

{
exp

[
8π2σ2y
λ2γ2

(
1 + t2x

)]
cosh

[
4πax
γλ

√
1 + t2x

]

− cos

[
2πa sin θ0

γλ
ty + 2ψ

]}
(2.20)

This model is applicable when the TR contribution from the tails of the Gaussian

distribution scraping the target is negligible i.e. approximately when a ≥ 4σy.

2.2.3.1 Projected vertical polarization component

The Projected vertical Polarisation Component (PVPC) is a technique which takes the

vertical projection (y, parallel to the direction of beam dimension is intended to be studied)

of the 3-dimensional (θx, θy, intensity) DR angular distribution. The y-projection is

obtained by integrating over the horizontal angle θx as shown in Figure 2.18(a) and (b) [40].

The visibility (Imin/Imax) of the y-projection is sensitive to the beam size of the

electron beam and may be measured as shown in plot (b) of Figure 2.18 [79]. The maximum

and minimum intensities of the DR angular distribution must be measured accurately.

Measuring the maximum intensity (Imax) is straightforward ensuring the detector is not

saturated, however the minimum intensity (Imin at ty = 0) measurement may be limited

by background photons. It is also necessary that Imin at ty = 0 is above the camera noise.

Figure 2.18 (c) shows how the visibility curves at observation wavelengths of 0.3µm
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2.2. Diffraction Radiation

Figure 2.18: A summary of the steps performed in the PVPC tech-
nique for beam size measurement [40], a) a 2D intensity distribution
of DR vertical polarization from a slit, b) projection along ty, c) plot
of the visibility against vertical beam size ωy.

(continuous line), 0.5µm (dashed line) and 0.7 (dashed-dotted line) µm, may be obtained

from multiple DR angular distribution images over a range of transverse beam sizes in

the case of ATF2 beam parameters (γ = 2544). Here is it seen that the sensitivity to

beam size improves at shorter wavelengths as the change in visibility per micron change

in beam size is greater i.e. the gradient of the visibility curve between different beam sizes

is steeper [40].

Since the vertical projection is used rather that a single line profile, the PVPC

method collects more DR photons emitted from the target. This improves the sensitivity to

beam size since the minimum intensity of the DR angular distribution is further displaced

from zero above background.

2.2.4 Diffraction radiation interference model

Generally in DR experiments a two-slit setup is implemented where a mask is positioned

upstream of the target to reduced unwanted background due to SR. This is also true for

the experimental study described in this thesis. However it must not be overlooked that

the mask is in effect a secondary target and will also emit DR as the beam passes through

the aperture. It is known that FDR produced by the mask interferes with BDR emitted

by the target, as observed in the case of TR presented in section 2.1.5. Interference occurs

between DR emitted by the mask and target because the separation between the mask and

target is comparable to or smaller than the coherence length or formation length already

introduced in section 2.1.1.

When this condition is not satisfied, the FDR from the mask must not be ignored.

This phenomena, where FDR and BDR, has been described in the literature [80] as Diffrac-
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2.2. Diffraction Radiation

tion Radiation Interference (DRI). The model described in this paper is presented here.

The first step of the DRI model considers the field component at the target only.

The electric field component with polarisation normal to the slit edge, and parallel to the

direction of beam size desired to be measured, is defined as the vertical polarisation field

component. The vertical polarisation field component for a single charged particle passing

through a slit is represented in the form:

Ey =
ie

4π2c

{
exp

[
−
(
a
2 + ax

)
(f − iky)

]
f − iky

−
exp

[
−
(
a
2 − ax

)
(f + iky)

]
f + iky

}
(2.21)

where the parameters are defined as follow:

k = 2π
λ ,

kx = k sin θ cosφ ≈ kθx,

ky = k sin θ sinφ ≈ kθy,

η = k
βγ ,

f =
√
k2x + η2

where kx,y are the components of the wave-number k [80]. The DR intensity is obtained

from the field component using the relation presented in Equation 2.15 where for simplicity

the constants have been omitted.

The polar angles θ and φ are defined in Figure 2.19. φ = π/2 and a range of

θ is chosen to observe the vertical angular distribution. Thereby the vertical angular

distribution is obtained, so the observation angle theta may be replaced by θy because

θx = 0 for φ = π/2.

In the case of a two-slit setup (mask and target), Equation 2.21 must be modified to

include the phase difference between the FDR and BDR amplitudes due to the difference

in speed between the charged particle and radiation. This results in an emission delay

of BDR at the second target with respect to the FDR wave front emitted at the mask.

Including these effects and neglecting the constant coefficient the resulting vertical electric

field component produced by two perfectly centred slits can be written as:
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Figure 2.19: Coordinate system used in the DRI model from [80], θ
is the angle between the wave-vector (~k) and the particle trajectory,
φ is the polar angle in the plane of observation.

Ey =
ie

4π2c

[{
exp

[
−
(
a1
2 + z1

)
(f − iky)

]
f − iky

−
exp

[
−
(
a1
2 − z1

)
(f + iky)

]
f + iky

}

− exp (iΦ0)

{
exp

[
−
(
a2
2 + z2

)
(f − iky)

]
f − iky

−
exp

[
−
(
a2
2 − z2

)
(f + iky)

]
f + iky

}] (2.22)

where Φ0 = 2πd
βλ (1− β cos θ), a1 is the mask aperture size, a2 is the target aperture size, d

is the distance between the mask and target, z1, z2 are the vertical positions of a particle

with respect to the centre of the mask and the target slit respectively.

The DRI model describing the vertical, field given in Equation 2.22, makes the

assumption that all FDR emitted from the mask is completely reflected by the target. In

reality, this is not the case since the target is not a screen but has an aperture through

which some FDR photons might pass. Therefore a part of the FDR distribution will

be diffracted through the target slit. However, when the mask is larger than the target

aperture this effect will be small.

2.2.4.1 DRI simulations

A Monte Carlo approach was implemented to simulate the angular distribution given by

a Gaussian beam described by its vertical size and divergence. The vertical positions of

particles with respect to the centre of the SR mask (z1) and the DR target (z2) slits are

dictated by the particles trajectory, which in turn is related to the beam divergence and

the longitudinal distance between the mask and the target [81]. A sample of 5000 (z1, z2)

pairs for a given beam emittance were considered to calculate the distribution of the DR
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pattern in the far-field. The expression used for the vertical polarisation electrical field

(Ey) of a single electron crossing the mask slit of aperture a1 and the target slit of aperture

a2, located at distance d, taken from the model previously introduced (section 2.2.4), is

expressed by Eq. 2.22. Then the intensity distribution of DR emitted by the beam, moving

through the mask and target slits, is obtained summing the square modulus of the electrical

field of all samples.

Figure 2.20: PVPC of DRI angular pattern at ATF2 obtained with
the DRI model.

Two normalized PVPCs (see section 2.2.3.1) obtained from simulations at λ =

450nm, target slit = 201.7µm and mask slit size = 582.0µm are shown in Fig. 2.20.

These parameter values were chosen because they reproduce some experimental condi-

tions of the set-up. One may notice that two profiles corresponding to different beam

sizes at the target (15 and 42µm) and with the same beam divergence present the same

angular positions for the peaks but a different visibility, defined as the ratio between the

value of the centre of the angular pattern and the value of the main peaks (see section

2.2.3.1). With this simulation tool a range of parameters was scanned and the visibility

(Imin/Imax) has been computed as a function of the beam size. The value of the vis-

ibility for different beam sizes is depicted in Fig. 2.21 for the usable target slit sizes at

the experimental station at ATF2 (section 3.3) for an observation wavelength λ = 400nm.

The points represent simulated values of the visibility and the lines are polynomial

fits of second order. It can be seen that the sensitivity increases with decreasing slit size.

However, it is also clear that the far-field DR technique has a lower limit of measurable

beam size of few microns.

Another very interesting observation about the observation wavelength can be de-
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Figure 2.21: Visibility plot of simulated Gaussian beams for differ-
ent target slit sizes: the wavelength considered for the simulation
λ is 400nm, the mask slit size is 582µm. The values of mask and
target slit sizes chosen for the plot represents the slits used during
the experimental campaign (see section 3.4).

ducted from the application of the DRI model as illustrated in Fig. 2.22. Here the tendency

of visibility against the beam size for different observation wavelengths is shown. In a sim-

ilar way of the previous figure, the points represent simulated values of the visibility and

the lines are polynomial fits of second order. In particular in Fig. 2.22 it can be seen that

decreasing the observation wavelength (from 400nm to 250nm) the sensitivity increases.

This means that moving from the visible range to the UV range increase the sensitivity

to small beam sizes allowing the measurement of beams of a few microns.

Figure 2.22: Visibility plot of simulated Gaussian beams for differ-
ent wavelengths in the case of a mask slit size of 100µm ad a target
slit size of 49.7µm.
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Chapter 3
Experimental Station at Accelerator Test

Facility 2

The Accelerator Test Facility (ATF) [82], at the High Energy Accelerator Research Or-

ganisation (KEK) [83] in Tsukuba (Japan), is a test accelerator focused on generating a

super low-emittance beam, that is one of the essential properties needed to realize the next

electron-positron linear collider (ILC, International Linear Collider). The ATF is a model

of the injector accelerator complex for a linear collider. It consists of a photocathode

electron gun, a 1.3 GeV linac, a 1.3 GeV damping ring (small beam storage ring), and

an extraction line for beam diagnosis. Initial work on ATF began in 1990. Following the

commissioning of the 1.5 GeV linac, operation of the damping ring began in 1997, and

the goal for the design low vertical beam emittance was achieved in 2001 [84,85].

ATF2 is an international project to build and operate a test facility for the final

focus system that is envisaged at ILC [51]. This upgrade was built and the first beam test

at ATF2 started in December 2008.

3.1 ATF2 layout

The ATF accelerator test facility is composed of a photocathode giving electrons to a linac

accelerating the particles to 1.3GeV followed by a damping ring (see Fig. 3.1).

When in 2008 the facility was upgraded to the ATF2 project [86], the existing

machine was extended with a 100 m beam delivery system consisting of an extraction line

and final focus line which are an energy-scaled version of the final focus system (FFS)

designed for the ILC (described in section 3.1.3). The goals of the ATF2 project are to

56



3.1. ATF2 layout

Figure 3.1: Schematic layout of the ATF: on the bottom part the
linac, then on the left the dambing ring and top part the extraction
line.

achieve a 37 nm vertical beam size at the IP (goal 1) and to stabilize the IP beam position

at the level of few nanometers (goal 2) [86]. The main ATF2 design parameters are given

in Table 3.1.

The ATF subsystems are described in detail in the next sub-sections, paying partic-

ular attention to ATF2 line, where the experimental station has been installed.

Table 3.1: ATF2 design parameters.

Parameter Symbol ATF2 design

Beam energy
√

s [GeV] 1.3

Energy spread σδ [%] [0.06,0.08]

Final quad to IP distance L∗ [m] 1

Normalized horizontal emittance εx,N [µm] 2.8

Normalized vertical emittance εy,N [nm] 31

Horizontal emittance εx [nm] 2

Vertical emittance εy [pm] 12

Horizontal β function at the IP β∗x [mm] 4

Vertical β function at the IP β∗y [µm] 100

Horizontal beam size at the IP σ∗x [µm] 2.8

Vertical beam size at the IP σ∗y [nm] 37

Natural vertical chromaticity ξy 10000
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3.1. ATF2 layout

3.1.1 Source and linac

An 18 m long 80 MeV pre-injector section and a 70 m long regular accelerator section with

energy compensation structures form the 88 m long ATF linac. The CsTe photocathode

driven by a multi-bunch UV laser is coupled with a 1.6 cell S-Band RF gun. The RF

gun generates an electron beam with intensities up to 3.2 nC per bunch. The particle

trains containing up to 20 bunches of up to 2 × 1010 particles per bunch are accelerated

by eight RF units of accelerating gradient of 35.2 MeV/m [87]. The beam energy at the

linac exit can reach a maximum energy of 1.54 GeV , while 1.3 GeV is the usual beam

energy used during recent operation. To accommodate 5 circulating bunch trains in the

damping ring the linac is operated at a repetition rate of 25 pps (pulses per second). The

main parameters of the ATF injector linac are shown in Table 3.2 [82].

Beam energy, Ebeam ≤ 1.54GeV

Bunch population, N ≤ 2× 1010

Bunches per train, Nb ≤ 20

Bunch spacing, ∆tbunch 2.8 ns

Energy spread full width, σδ < 1.0% (90% ∼ beam)

Normalized emittance, εNx,y < 3× 10−4 m

Table 3.2: Basic design parameters of the ATF injector linac.

3.1.2 Damping ring

The ATF damping ring has circumference of 138.6 m. It is a storage ring with a race-track

shape (Fig. 3.1). The arcs of the ring are based on the FOBO type cells, where B stands

for a combined function bending magnet with horizontal defocusing. To reach a small

equilibrium emittance the dispersion function is minimised in the bending magnet (see

Fig. 3.2) [88]. A 714 MHz RF cavity giving 330 harmonic numbers and 165 buckets with

2.8 ns spacing is used to compensate beam energy loss due to the synchrotron radiation.

In 2004 a vertical normalized emittance of 15nm (6 pm of geometrical emittance)

was measured for a bunch intensity of 1010 particles as reported in [85]. This result was

achieved by a precise alignment of components and beam control. During recent beam

operation periods usual values of the horizontal and vertical DR geometrical emittance

are < 2nm and < 10 pm, respectively. The X-ray Synchrotron Radiation (XSR) monitor

[89] is used in the damping ring to measure the beam size and therefore reconstruct the

emittance. The most useful parameters of the ATF damping ring are summarized in the
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Table 3.3.
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Figure 3.2: Optical functions of a damping ring cell (from [82]).

Circumference 138.6 m

RF frequency 714 MHz

Momentum compaction factor 0.00214

Tune (x/y) 15.17/8.56

Damping time (x/y/z) 17/27/20 ms

Normalized emittance (x/y) 2.8× 10−6 / 1.0× 10−8 m

Geometrical emittance (x/y) 1.1× 10−9 / 4.0× 10−12 m

Table 3.3: Parameters and achieved performance of the ATF damping ring [88].

3.1.3 Extraction line

Experimental station

Figure 3.3: Schematic layout of the ATF2 extraction line: the loca-
tion of the TR/DR experimental station is shown in the Matching
section.
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3.1. ATF2 layout

The extraction line is presented in Fig. 3.3, showing the location of the DR experi-

mental station.

The beam is horizontally extracted from the damping ring straight section using a

pulsed kicker (KEX1) and a current-sheet septum magnet (BS1X). The septum magnet is

followed by two strong dipole magnets (BS2X and BS3X) that bend the extracted beam

at an angle of about 20◦.

Due to undesired magnetic components in the kicker and two DR quadrupoles

(QM6R and QM7R) that the extracting beam passes through with a large offset, an x-y

beam coupling occurs leading to vertical emittance growth at the extraction location [88].

A dogleg inflector is located downstream from the septum dipoles comprising two

approximately 10◦ bends (BH1X and BH2X) that offset the beam by 6 m from the damping

ring. The beam is brought parallel to the damping ring straight section by a mirror image

of the kicker-septum system composed of two dipole magnets (BH3X and BKX). The BKX

dipole replaces the KEX2 kicker that was initially installed in the extraction line. The

layout of the inflector system is depicted in Fig. 3.4.
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Figure 3.4: Optics of the inflector; horizontal functions are in blue
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plot: dispersion function; lower plot: phase advance relative to the
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the quadrupoles QF1X and QF6X (from [88]).
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3.1. ATF2 layout

On the extraction line, in a section presents just upstream of the TR/DR experimen-

tal station, an emittance diagnostic section is present. The transverse beam emittances

are reconstructed by measuring the transverse beam sizes using four Optical Transition

Radiation (multi-OTR system) monitors [90] (see Fig. 3.3). These monitors provide fast

single-shot measurements with full ellipse-fitting, allowing simultaneous measurement of

the projected x and y spot sizes and the x-y tilt of the beam. Beam sizes at the measure-

ment locations for the ATF2 nominal emittances (εx = 2nm, εy = 12 pm) range from 75

to 155 µm in x, and from 7 to 20 µm in y [88]. However, the multi-OTR system often

overestimates the vertical emittance mainly because of the hardware alignment issues and

the ambiguity of fitting the beam profile.

The beam orbit diagnostic in the extraction line is handled by 23 beam position

monitors (BPMs). There are 12 stripline BPMs, located mainly in the inflector, with

a single-shot resolution of about 10 µm, 9 C-band cavity BPMs [91], with sub-micron

single-shot resolution and 2 button-type BPMs located near the septum. These BPMs

are commonly used during operation to optimize the beam orbit. They were used during

the experimental work of this thesis to reduce the Synchrotron Radiation background (see

section 4.2).

3.1.4 Final focus system

The final focus system starts with a matching section that adjusts the β functions of

the beam coming from the extraction line. The nominal ATF2 optics, referred to as

1β∗x × 1β∗y , has β∗x = 4mm and β∗y = 100µm. Different optics are referred to with respect

to the nominal, for example 10β∗x × 1β∗y optics (see Fig. 3.5). During the experimental

campaign performed during this thesis work the 10β∗x × 1β∗y optics was used.

The lattice elements of the ATF2 final focus system are shown in Fig. 3.5. In

particular the position of the TR/DR experimental station is indicated by a blue arrow in

the picture. This is situated in between quadrupole QM14FF and QM13FF (indicated as

QM14 and QM13 in Fig. 3.5). In total the FFS contains 3 dipoles, 4 dipole correctors, 28

quadrupoles, 5 sextupoles and 4 skew-sextupoles.

All quadrupoles and sextupoles are placed on individual movers to allow the beam

steering and adjustment of relative alignment in the transverse plane. Adjacent to these

magnets, the C-band cavity BPMs [91] with sub-micron single-shot resolution are installed.
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3.1. ATF2 layout

Figure 3.5: Optical functions in the final focus section for 10β∗x×1β∗y
optics. On top is the layout of the ATF2 lattice:dipoles in blue,
quadrupoles in red and sextupoles in black. Position of the TR/DR
experimental station is indicated by the blue arrow [92].

3.1.5 The interaction point

The ATF2 focal point is called an Interaction Point (IP) in analogy with particle colliders.

In fact, the ATF2 provides just one particle beam, so no high-energy collisions occur there.

Instead, the ATF2 performance is verified by measuring the IP beam sizes using the so-

called Shintake monitor [93,94]. It is an interference monitor where two laser beams cross

in the plane transverse to the electron beam in order to form a vertical standing wave, see

Fig. 3.6.

The fringe pattern vertical distribution is modified by changing the phase of one

laser path in the optical delay line. The beam size is inferred from the modulation of the

resulting Compton scattered photon signal detected by a downstream photon detector,

see Eq. (3.1) [35]:

M = C |cos θ| exp
[
−2 (kyσy)

2
]
,

ky = π/d, d =
λ

2 sin (θ/2)
,

(3.1)

where C is the modulation (M) reduction factor which represents the overall systematic

effect causing a decrease of the observed modulation due to the monitor imperfections, θ

is the crossing angle and λ = 532 nm is the laser wavelength. Three laser crossing angle
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3.1. ATF2 layout

Figure 3.6: Shintake monitor schematic design. The electron beam
interacts with a transverse interference pattern generated by two
crossing laser beams. The number of scattered photons varies with
the fringe size and the particle beam size [35].

modes (2− 8◦, 30◦, 174◦) extend the dynamic range from 1µm to 20nm, where M > 0.1,

see Fig. 3.7.

Figure 3.7: (Left) IP beam size monitor laser path over the optical
table perpendicular to the beam propagation. (Right) Beam size
resolution for the angle modes : 2◦ − 8◦ in green, 30◦ in blue and
174◦ in red.

Larger beam sizes are measured by a wire scanner installed at the IP. It consists of a

carbon wire 5µm in diameter that when moved across the beam generates bremsstrahlung

gamma rays. The number of photons is proportional to the charge of the slice interacting

with the wire at each position setting. Profiles are constructed from the number of photons

as a function of wire position [13].
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3.2 Design and installation of the vacuum chamber

The experimental system has been installed in the ATF2 extraction line 3.1.3, in the old

laser wire experiment location [95] (between the quadrupoles QM14FF and QM13FF)

where the beam can be focused to a vertical size varying from few hundreds of nanometres

to tens of micrometres [96]. A flexible experimental set-up was designed to study the

impact of different parameters on the DR pattern generated by the beam. It mainly

consists of a vacuum chamber, connected to the main beam-line, with different ports to

allow the access of the instrumentation from outside and to extract the radiation emitted

by the interaction of the target with the beam.

Figure 3.8: ATF2 experimental set-up in the extraction line.

In Fig. 3.8 the whole system installed in ATF2 extraction line is depicted. Fig. 3.9

illustrates the experimental system assembly. As can be seen in the isometric view, the

vacuum chamber, on two opposite sides, has two flanges DN40CF (indicated with a blue

arrow showing the direction of the electron beam) that allows to connect the tank with

the main ATF2 beam line pipe. Two other bigger flanges (DN63CF) present on the front

side of the vacuum chamber are equipped with UV-grade fused silica view-ports. These

two view-ports are positioned at 40◦ and 90◦ with respect to the beam axis as can be seen

in the schematic sketch of the tank’s internal configuration Fig. 3.10.

As depicted in Fig 3.10, on the upper part of the vacuum chamber two actuators,
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3.2. Design and installation of the vacuum chamber

Figure 3.9: Technical drawing of the vacuum chamber as isometric
view (left) and viewed from the back (right) showing the replace-
ment chamber (bottom part) and target mechanism (top part).

controlled by stepper motor, are installed on two different flanges to control the vertical

insertion of the DR target and a synchrothron light mask. The target and the mask will

be described in more detail in section 3.3. On the opposite side of vacuum chamber to

the 2 UV-grade fused silica view-ports, another actuator allows the horizontal insertion

of another synchrotron light mask. On the same side, are located a couple of small view-

ports (DN16CF), tilted with angles of 45◦ and 135◦. These two view-port, with the help

of a laser, can be used to align the target and the external optical lines (described in the

section 3.4) present on the other side of the chamber.

Figure 3.10: ATF2 Tank internal configuration.

Another important element of the design, presented both in Fig 3.9 and Fig 3.10, is
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3.3. Target design and production

the replacement chamber. When the DR target and mask are not inserted in the beam line,

this element can be raised upward from underneath the chamber to reduce the wake-field

effect of the incoming beam. This is obtained firstly using for the replacement chamber a

pipe with the same inner diameter as the main ATF2 beam-pipe and secondly, when the

replacement chamber is in the upward position (aligned with the beam axis) is connected

through copper RF contact gaskets to the main beam line.

To obtain a micrometre precision in the movement of all component the actuators are

controlled with stepper motors and encoders throw a control system that will be described

in detail in section 3.5.

3.3 Target design and production

The DR target consist in a 1mm thick silicon substrate cut with a rectangular shape

(20mm×75mm) from a silicon wafer, as shown in Fig. 3.11 where the target and SR mask

are depicted in grey installed on the holders that allow the suspension on the actuators

shaft. Both on the target and on the SR mask, 4 rectangular slits, with different vertical

aperture size, were produced on the silicon substrate through chemical wet anisotropic

etching based on use of potassium-hydroxide (KOH) [97–99]. All the slits have an hor-

izontal size of 8 mm. The 4 slits on the target have the following vertical dimensions:

201.7 µm, 100.6 µm, 77.2 µm and 49.57 µm. The mask slits were designed to be a factor

2 bigger than the target sits: 399 µm, 198.9 µm, 149.2 µm and 100 µm. The dimensions

where precisely measured after the production with a microscope Appendix B.

On the DR target a surface of 2mm×2mm on the two side of every slit is coated with

aluminum (30nm thickness) to locally increase the reflectively, whereas the remaining part

of the target is sandblasted to increase the diffusion of the light. This solution was designed

following the outcome of DR experiments performed by our team at Cornell Electron-

Positron Storage Ring [100], where it was observed that this target surface configuration

helps to decrease the SR light background [44]. On the other hand the front surface of the

mask is completely coated with aluminum to obtain a mirror to increase the reflection of

the SR light coming from upstream part of the beam line.

Furthermore, the bottom part of the front surface of the DR target (1 cm below

the smaller slit) is covered with a 4mm × 2mm aluminum coating (100nm thickness)

to create a mirror that can be used as an OTR source, this part of the target was used
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3.4. Optical line

for sub-micron beam size measurement using PSF technique [23] using an in-vacuum lens

very close to the target due to his short focal length (30 mm).

Figure 3.11: ATF2 target and mask: the left drawing represents
the target and his support, the sketch on right is the mask and
his support. On both illustration are indicated the size of the slits
presents.

Fig 3.12 shows how the particle beam passing through one slit on the target, ver-

tically inserted at the right depth, produces backward DR. This radiation points to the

view-port at 90◦ thanks to the tilt angle of the target. The actuator controls the tilt and

the insertion with micrometre precision to select the desired slit, to centre it around the

beam and to send the radiation to the centre of the view-port.

A horizontal mask, made of steel, is also present. This mask is bigger than the

vertical mask and it has 3 horizontal slits with sizes: 2, 4 and 6 mm. Both vertical and

horizontal masks can be inserted with stepper motor actuators. When the particle beam

passes through the slits of the masks not only is most of the upstream-produced SR blocked

but also forward DR is produced. This DR is reflected on the target and it interferes with

the backward DR modifying the angular pattern thereby allowing a smaller minimum in

between the two main DR peaks to be reached because it removes the majority of SR.

3.4 Optical line

The far-field distribution of a light source is observed by placing the imaging sensor in the

back focal plane of a lens [54]. The light is extracted through the 90◦ view-port, passes

through a polarizer (UVT260A-25 from Moktek [101]) to select the desired polarization,
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3.4. Optical line

Figure 3.12: Functional view of vacuum chamber: the blue line
represents the particle beam trajectory, the white arrow represents
the backward DR light direction of propagation.

and, thanks to an optical pellicle beam-splitter (BP208 from Thorlabs [102]), is detected

by two independent optical lines: one to create an image of the source, the other to observe

the DR angular distribution (Fig. 3.13) as the sensor is placed in the backfocal plane of

a lens. This setup allows both imaging and DR angular dristibution to be recorded at

the same time [81]. The imaging line is used as an optical BPM, with the beam position

deduced from the intensity imbalance between the two slit edges [103].

Figure 3.13: ATF2 optical line schematics: the yellow arrows indi-
cate the DR light path in the optical line.
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Fig. 3.13 and Fig. 3.15 show how a 2-inch diameter lens with focal of 250 mm

(LA4538 from Thorlabs [104]) is installed before the beam-splitter so that it is used for

both optical lines. The lens chosen is made of UV fused silica without any coating to allow

light transmission (> 90%, see Fig. 3.14) from the UV (200 nm) to the visible wavelength

range up to 700 nm.

Figure 3.14: Transmission of LA4538 lens for different wavelengths
from [104].

The imaging optical line consists of three 2-inch UV enhanced aluminum mirrors

(PF20-03-F01 from Thorlabs [105]) that collect the light reflected by the beam-splitter

(8%), to direct the radiation to a gated intensified CCD camera (dicam pro with GaAs

photocathode from pco [106]). The mirrors, suitable for 250 nm to 700 nm spectral

range, were chosen to increase the distance between the lens and the camera in the limit

of the optical table dimensions to have the desired magnification on the CCD ×1.8 after

de-magnification due to the internal intensifier CCD optical coupling. In fact, inside the

intensifier sits a Micro Channel Plate (MCP); on the back surface of the MCP a phosphorus

screen is coupled with the CCD with 3:2 optical ratio.

The angular distribution optical line has a the detection system directly in front of

the beam-splitter so that it can collect 92% of the radiation transmitted. A remotely con-

trolled filter wheel (FRM 40-6-D25-HSM from OWIS [107]) with a set of 1 inch band-pass

filters were installed just before the detector to select different observation wavelengths and

bandwidths. The filters used during data acquisition are the following: Thorlabs FB400-10

(center peak wavelength 400 nm, FWHM bandwidth 10 nm), Thorlabs FB400-40 (center

peak wavelength 400 nm, FWHM bandwidth 40 nm, Thorlabs FB600-40 (center peak
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wavelength 600 nm, FWHM bandwidth 40 nm) [108], eSource optics 25250FBB (cen-

ter peak wavelength 250 nm, FWHM bandwidth 40 nm) [109] and Andover 232FS10-25

(center peak wavelength 232 nm, FWHM bandwidth 10 nm) [110]. The detector is an

gated image intensifier unit coupled with sCMOS camera. The intensifier (C9547-04 from

Hamamatsu [111]) is a double stage MCP with a multi-alkali photocathode sensible down

to 200 nm wavelength. The camera, chosen for the very low readout noise (a mean value

0.8 electrons), is a scientific CMOS from pco (edge 4.2LT) [112]. The camera and the

intensifier, coupled with a relay lens A11669 from Hamamatsu, are installed on remotely

controlled translation stage (T-LSR150B-KT04 from Zaber Technologies [113]) to scan

across the direction of the incident light to find the back focal plane of the lens for the

different observation wavelengths. Since the image intensifier technology is based on an

MCP tube, they can be gated to very short time window (20ns the pco and 5ns the hama-

matsu). This allows the background noise to be significantly reduced, thereby increasing

the signal to noise ratio.

Figure 3.15: ATF2 optical line picture: the yellow arrows indicate
the DR light path in the optical line. The Angular camera is the
CMOS camera (pco edge 4.2LT [112]), the Imaging camera is the
intensified CCD (pco dicam pro [106])
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3.5 Data acquisition and hardware control

The experimental station was designed to study the effect of several parameters, as already

mentioned, so the possibility to move different elements of the system remotely is a key

point of the design. This led to the presence of 4 vacuum actuators for target, masks and

replacement chamber manipulation; 2 optical translation stages; a motorized filter wheel;

and a motorized rotational stage for the polarizer. All of them are controlled with stepper

motors (7 for the vacuum actuators, 4 for the optical mover) because they allow very good

precision and reproducibility. To increase the accuracy of the target and mask actuators,

limited by the backlash down to the micron level, and needed by the dimension of the

slits, magnetic encoders (LA11 and LM13 from Renishaw) are used.

Pco.edge

Pco dicam
pro

Stepper motors (for 
actuators)

Zaber stages with  
integrated motors and 
controller (for optics)

Linux computer Stepper 
Drivers

USB 3.0

Rack in the tunnel close to 
experiment (cables = 5m)

PCI board

Stepper 
Controller

USB 2.0

USB 2.0

Optical fibre

Ethernet to the ATF2 control 
room (atf-local network)

Figure 3.16: Hardware control system schematics: pco edge [112]
is the camera to record the DR angular distribution, pco dicam
pro [106] is the camera used to image the DR target

In Fig. 3.16, a block-diagram that illustrates the schematics of the hardware control

chain is presented. A rack-mount industrial computer (operating Linux version Cern

Centos 7) is installed close to the experimental set-up in the ATF2 accelerator tunnel.

Inside the same rack the stepper motor controller and drivers (ZMX+ from Phytron) are

present and controlled by the computer via USB. This specific configuration was chosen as

it is the standard solution implemented by the BE-BI-PM section at CERN. The sCMOS

camera (pco edge 4.2 LT) communicates via USB 3.0 with the computer. The CCD

camera (pco dicam pro) has an optical fiber connection using a PCI board installed on

the linux computer. To synchronize with the beam the gate time window, the intensifier

and the cameras receive a reference trigger signal from the ATF2 timing system thanks
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3.5. Data acquisition and hardware control

to coaxial cables. The stepper motors installed on vacuum actuators and on the filter

wheel are controlled by the stepper driver in the rack, the translation stages and the

polarazier stepper (from zaber) integrate a controller so that they are connected directly

to the computer via USB. Finally the computer is connected on the local ATF2 technical

network through Gigabit ethernet.

3.5.1 Software

The data acquisition system was developed in C++, using the open source QT libraries

[114] to create a Graphic User Interface to control simultaneously both cameras. The 2D

images acquired with the cameras are saved in FITS format allowing to register also infor-

mation about the beam and the instrument inside the image header. The software make

use of the Experimental Physics and Industrial Control System (EPICS) [115] a control

system in use at ATF2. The software to control the stepper motor of the experimental

station control, written with Python language at CERN, was modified to communicate

also through EPICS. Thanks to EPICS it is possible to record with the data (in the

header of the image) not only beam parameters, from other instrument present on the

beam-line (e.g. beam charge), but also hardware control parameters of the experimental

station. This information is really useful for post-acquisition data analysis. Furthermore,

controlling the system through EPICS allows the implementation of automated scans of

beam-line elements (e.g. Quadrupole scan) while collecting data.

The offline data analysis has been performed with Python scripts, developed for

this thesis, to analyse 2D images to extract information about DR and TR radiation.

Specifically, for each image the experimental background, obtained form the portion of

the image where the TR or DR are not present, is subtracted. Furthermore vertical

and horizontal integrated projections, as figures presented in the next chapter, can be

calculated, plotted and processed to obtain visibility values for every DR or TR image.
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Chapter 4
Experimental Results and Discussion

In this Chapter the results of the experimental study for small beam size (micrometre scale)

measurements using DR and TR in the visible and UV range are presented. The first part

describes the commissioning phase of the DR/TR monitor, in particular the alignment

and the calibration of the optical lines described in Chapter 3. All the optimizations

performed during data recording shifts at ATF2 such as the studies to minimize the SR

contribution are also presented here. DR measurements were obtained using single shot

images, meaning recording the DR pattern produced by a single bunch of electron (energy

1.3GeV ). If averaging or summation of multiple images from a single buch was used

in the post-acquisition analysis this is indicated in the text. The single electron bunch

charge was always between 0.4nC and 0.6nC, recorded for every data point as explaind

in section 3.5. The main results presented are for DRI measured successfully in the UV

range where a sensitivity down to beam size as small as 3µm is shown.

4.1 Commissioning of the experiment

Measuring micrometre size beam requires a careful alignment of every element of the

experiment. As already introduced in the previous Chapter (section 3.2), the DR target

and mask can be moved during beam operation with a micrometre precision, thanks to

remotely controlled stepper motor and encoders. However, all optical elements must be

aligned just after the installation, knowing nothing else but the expected position of the

beam. Here the procedure to align and prepare the optical line in the tunnel to be able to

observe directly an image during the beam operations without scanning too many position

of movers is described in detail in the following sections. Furthermore the calibration
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procedures of the optical lines are also described.

4.1.1 Alignment laser

To align all optical elements previously described in section 3.4 an alignment system was

used. This alignment system, formerly used for another experiment at ATF2 [50] was

adapted to the new DR monitor. As depicted in in Fig. 4.1, the alignment system consists

of a laser system and a vacuum mirror. The laser system consists of a laser stage, a He-Ne

Continuous Wave (CW) laser (λ = 632.8nm) from Melles-Griot, a spatial filter, and a

focusing lens [50].

Figure 4.1: Alignment laser: the laser is installed underneath the beam
line, the light emitted follows the red arrow in the picture. It passes
through a spatial filter, a focusing lens, the periscope mirrors (M1 and
M2) and the last mirror (M3) before entering the beam pipe and being
reflected in the beam direction thanks to the in-vacuum mirror.

Changing the distance between the spatial filter and the lens, the laser can be focused
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at any point of the experimental setup. The laser is placed below the beam line (Fig. 4.1).

Two periscope mirrors (M1 and M2 in Fig. 4.1) bring the laser up to the level of the beam

orbit. Another mirror (M3 in Fig. 4.1) sends the light in the beam line. The in-vacuum

mirror, inserted in the beam line by a pneumatic actuator, reflects the laser light along the

beam line. The laser spot is observed on the imaging line detector because it is reflected

by the mirrored surface of the DR target inserted at the center of the beam pipe (section

3.3).

The pneumatic actuator and the laser are remotely controlled, allowing the system

to be switched on and off during accelerator operation to control the relative position of

the laser with respect to the electron beam on the target. In the case when they do not

coincide, the laser direction can be corrected using the two periscope mirrors. Once the

optimal position is found, every element of the detection optic is precisely aligned with

respect to the laser spot. It has been demonstrated experimentally that the alignment

accuracy is better than 1/γ = 0.4mrad, which is more than enough for our purpose.

4.1.2 Slits alignment and magnification calibration of the imaging opti-

cal Line

Once the DR target is aligned with the electron beam position, as described in the previous

subsection, the vertical position of each slit is found by controlling the vertical translation

mechanism of the target. Using the laser, also the mask slit is precisely aligned with respect

to the target slit using a similar technique: the target is kept in the desired position and

the shadow of the mask created by a sufficiently large laser spot (5mm radius) passing

through the mask is observed with the imaging line.

Figure 4.2(a) presents an image of the 201.7µm target slit (see section 3.3) recorded

with the CCD camera on the imaging line. The aperture of the slit on the imaging camera

is measured observing the two edges of the vertical projection of the image shown in

Fig. 4.2(b).

The target has 4 DR slits, as explained in section 3.3 of the previous Chapter. This

fact allows all the slits to be used to measure the magnification simply using different

target vertical insertion positions. Specifically, several measurements are collected for

each target slit and a plot of the slit sizes on the object plane (real slit) versus slit sizes

measured on the CCD is shown in Fig. 4.3. The data are described by a linear fit y = Mx,

where y is the slit size on the CCD (image plane), x is the real slit size (object plane) and
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(a) (b)

Figure 4.2: Target slit imaging calibration: (a) 2D image of the
201.7µm slit; (b) blue curve is a part of the vertical projection
(between the two vertical red line in image (a)) of the slit, the orange
profile is the derivative of the blue curve and the two vertical red
lines are the position of the maximum and minimum values of the
orange curve. The measured slit size from the image is the number
of pixel measured between the two red lines multiplied by the pixel
size (6.7µm in this case).

M is the magnification. The magnification measured is M = 1.82 ± 0.01, that gives an

equivalent pixel size on the magnified image of 3.72µm considering the fact that the real

CCD pixel is 6.7µm.

Figure 4.3: Target slit imaging calibration curve size of the different
slits on the camera versus real slit sizes: blue dots are recorded
points, light blue line is a linear fit y = Mx.
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4.1.3 Calibration of the angular optical line

The angular optical line measures the angular distribution of TR or DR from the target,

as introduced in section 3.4. Since the lens used to recreate the far-field condition is

not achromatic, the position of the back-focal plane changes for different wavelengths in

particular a significant shift of ≈ 2 cm can be observed passing from the visible light at

450nm to the UV at 250nm. The practical technique of imaging a light source very

far from the lens was used, because the back-focal plane of the lens can be found by

minimizing the spot size of focused light coming from an infinite distance. The light

source was positioned at the end of the ATF2 tunnel giving a source to lens distance of

≈ 35m. This distance was verified with Zemax simulation to be a good approximation

of an infinite distance: the back focal plane of the lens, found minimizing the spot size

on detector plane, from parallel rays coming from infinite distance and from 35m was the

same within 0.1%. For all visible wavelengths filters (400nm and 600nm) a broad-band

white source was used. On the other hand for the UV filters (250nm and 230nm) an

AlGaN based deep UV LED Lamp (UVCLEAN255-5 from QPhotonics) was chosen.

The angular optical line needs to be carefully calibrated to be able to know the

corresponding angular size of a single pixel for every position of the back-focal plane

(different wavelengths). This calibration is obtained rotating the target around its vertical

axis, the rotation is measured with the rotational encoder (resolution ≈ 32µrad) on the

actuator. At the same time, an image of the vertical polarization of the TR angular profile

with the angular line camera (see section 3.4) is recorded. This procedure is repeated for 9

different angles inside the field of view of the optical system for every wavelength. Then the

relative rotation is associated to the pixel position on the CMOS sensor of the horizontal

centre of TR angular pattern.

To explain this procedure the reader can refer to Fig. 4.4(a) which shows a 2D

image of the vertical polarization of the TR angular distribution taken at 400nm. The

horizontal projection of this image, depicted in Fig. 4.4(b) (blue curve), is fitted to find

the pixel corresponding to the horizontal centre position of the TR pattern (red vertical

line in Fig. 4.4(b)). This position is then plotted in Fig. 4.5 against the rotation angle in

mrad. Finally a linear fit is applied to obtain a calibration of 51.0 ± 0.1µrad per pixel

at 400nm and 56.0 ± 0.1µrad per pixel at 250nm. These values are not expected to be

equal as the lens is not achromatic so it has a different focal length (i.e. magnification)

for such different wavelengths.
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(a) (b)

Figure 4.4: Angular calibration: (a) 2D image of the TR angular
pattern recorded with the 400nm filter; (b) the blue curve is the
horizontal projection of image (a) with a fit (orange curve) to find
maximum, the red vertical line indicates the pixel of the orange
curve maximum value.

(a) (b)

Figure 4.5: Angular calibration curves for two different wavelengths:
the target rotation θ versus the horizontal centre position x of TR
(see Fig. 4.4) in pixel; (a) 400nm filter; (b) 250nm filter. Measured
points are represented by dots and linear fitting curve by the blue
line.

4.2 Synchrotron radiation suppression

Synchrotron Radiation is the electromagnetic radiation emitted when charged particles

are radially accelerated. The SR acts as an undesired background in DR measurements

because the SR intensity can be similar to or higher than DR [116]. In particular the SR

produced upstream and reflected from the beam pipe arrives collinear with the beam, so

in the angular distribution created in the back-focal plane of the lens it is concentrated

in the centre of the DR pattern increasing the value of the minimum (see section 2.2.2)

causing an overestimation of the beam size.
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In particle accelerators SR is generated not only in dipole magnets but also in

quadrupole magnets where an off-centre beam experiences a dipole deflection. This de-

flection is routinely used in accelerators for beam based alignment techniques [117], to

align quadrupoles with respect to the beam orbit centre.

For these reasons the SR experimental conditions have been studied at ATF2 since

they are related to many parameters, mainly the orbit, the current of the magnets (so the

strength of the radial acceleration) and the effect of the mask. This study, summarised in

the next sections, led to an operational procedure to minimize the SR contribution before

any DR measurements.

4.2.1 Beam orbit

The first step of the SR suppression procedure consists of optimizing the beam orbit

using all the steering (corrector) magnets present along the beam line before the DR/TR

experimental station to reduce the bending radius locally and the off-centre position of

the beam with respect to every quadrupole. The aim is to obtain a “flat” orbit monitoring

the ATF2 Beam Position Monitors (BPMs), meaning an orbit that is in every point as

close as possible to centre of the beam pipe. Fig. 4.6 shows the orbit in the vertical and

horizontal planes recorded with ATF2 BPMs after the optimization process. It is seen

that the absolute position of the beam is always below 600µm with respect to the field

center of the BPMs.

Figure 4.6: Beam orbit from ATF2 BPMs: upper plot is the verti-
cal plane, lower is the horizontal plane. The horizontal scale is in
metres from the extraction kicker, the position of the DR monitor is
indicated by blue arrows. The vertical scale is in micrometres from
the center of the beam pipe.

During the operation of the beam orbit optimization an important step is alignment
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of the quadrupoles QM14FF and QM15FF that are the closest optical elements present

before the experimental station. This is necessary not only to reduce the SR background

but also to have a stable position of the beam in the target slit varying the quadrupole

current. In fact varying the QM14FF current changes the focusing strength of the magnet

itself producing a variation of the vertical beam size at the DR monitor. Therefore to align

the beam to the quadrupole centre the beam based alignment is performed, observing the

deflection of the beam on the target, inserted to produce TR, through the imaging line.

The SR reduction obtained with this technique is clearly shown in Fig. 4.7, where the

PVPC of the TR angular distribution is measured before and after the orbit optimization.

The TR angular pattern has a well known two lobe structure with a deep minimum in the

centre (see Fig. 2.3 in section 2.1.1). In our set-up, the minimum level is increased by the

SR concentrated in the centre of the pattern by the lens; this contribution is reduced by

the orbit optimization [81].

Figure 4.7: PVPC of TR angular distribution before (a) and after (b)
orbit optimization. The value of the minimum in centre of the TR
angular distribution is ≈ 20% lower after the orbit optimization.

4.2.2 Mask

Another important contribution to the reduction of the SR is the mask present in the

experimental station. Indeed the use of the mask removes part of the SR generated

upstream in the beam line. As for the orbit optimization effect, the presence of the mask

was studied thanks to the well-known TR far-field distribution. Figure 4.8 compares two

2D images of the vertical polarization of the far-field distribution of TR recorded by the
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angular optical line. The presence of a spot in the middle of the pattern (focused SR) is

clearly visible without the mask (Fig. 4.8(a)), which is removed when the mask (in this

case the mask slit used was 399µm) is inserted (Fig. 4.8(b)) [81].

(a) (b)

Figure 4.8: TR angular pattern without (a) and with mask (b). In
(a) the SR spot is present in the middle of the two lobe structure
characteristic of TR vertical polarization.

4.3 DR beam position monitoring at ATF2

A precise knowledge of the position of the beam on the DR target is fundamental to per-

form beam size measurements. Indeed as it was introduced in Chapter 2, the DR angular

pattern depends on the position of the centroid inside the slit (see Eq. 2.20 in section 2.2.3).

For this reason the experimental station was designed to allow a synchronous acquisition

of the target image and the far-field distribution as presented in Chapter 3. Figure 4.9(a)

shows a single shot image of the 49.7µm slit recorded with the CCD intensified camera.

The vertical profile (integrated between the two red lines) of this image is presented in

Fig. 4.9(b).

The asymmetry between the two peaks of the DR profile can be defined as follows:

Asym =
Atop −Abottom
Atop +Abottom

(4.1)

where Atop and Abottom are respectively the amplitude of higher and lower peak [103], for

instance the right peak and the left in Figure 4.9(b). It is easy to understand that this
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(a) (b)

Figure 4.9: Single shot DR image of the 49.7µm slit obtained with
the imaging line: (a) 2D image, (b) vertical profile integrated be-
tween the red line of the image (a).

parameter gives information about the position of the beam inside the slit. In fact if the

beam is closer to one side of the slit, the electrical field experienced by this side will be

higher compared to the side more distant from the beam. Therefore more intense DR will

be emitted at the closer side of the slit of the beam.

The response of the DR image profile asymmetry was measured scanning the beam

inside the slit by means of steering magnets. The relative position of the beam into the

target aperture was extracted from steering magnet currents and compared with the DR

asymmetry ratio. Steering magnet current was calibrated with the TR image measuring

the shift of the beam centroid versus steering current at the beginning of the shift giving a

result of 11.5µm/A. The zero crossing is found when the two DR lobes have the exact same

amplitude. The beam position dependence presented in Fig. 4.10 was recorded scanning

the beam into the 49.7µm target slit, and using the 600nm band-pass filter (bandwidth

40nm).

According to the measurement, the asymmetry to position response is quite linear.

The sensitivity is about 4% asymmetry variation per micron. The data are overlapped

with the linear response simulated calculating the DR electrical field on the two side of

the slit using the relation described in [65] already presented in section 2.1.4. The slight

deviation from the linear response of the data is due to the hysteresis of the steering

magnet since the expected beam position was extracted from the magnet current.

The presented measurements show how imaging DR source can be used as an optical

beam position monitor. This allow to center precisely the beam inside the slit during

angular data acquisition. Furthermore the possibility to continuously monitor the position
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4.4. Beam size measurement at ATF2

Figure 4.10: Beam position in µm versus asymmetry of DR peaks
imaging the 49.7µm target slit showing a good agreement between
simulation and measurements [103].

allow to correct the beam size data in case of drift during temporally long data acquisition

shifts.

4.4 Beam size measurement at ATF2

During a data acquisition shift it is possible to record DRI far-field images after the

optimization procedure. A cross calibration with TR PSF (see sec. 2.1.3) measurements

is performed to check the sensitivity of DRI to small beam sizes (micrometres). The TR

data are recorded with the same beam optics just before any DRI measurements to have

reference beam size. This cross-calibration is described in the following section.

4.4.1 Calibration with transition radiation PSF

The target is inserted so that the beam intercepts the aluminum mirror to the side of

the slit. TR radiation is therefore emitted and observed by the same optical system

used for the DRI measurements. For example, Fig. 4.11 shows an image of TR vertical

polarization (thanks to the polariser, see section 3.4) recorded when the beam is strongly

focused vertically by magnet QM14FF. In this image it is clearly visible that there is the

two-lobes structure of TR PSF introduced in section 2.1.3.

A procedure similar to that described in [23] and [22] is applied to extract the beam

size and described in this section. In particular, an automated quadrupole scan (thanks
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4.4. Beam size measurement at ATF2

Figure 4.11: Image of TR 2D PSF recorded during the experimental
study for a measured vertical beam size of 1.5µm.

to the developed control system described in section 3.5) is performed with QM14FF: the

current is varied over a large quadrupole current range (from −90 Amps to −50 Amps)

and for each step of current an image of TR is recorded. Then the TR PSF PVPC with

minimum visibility is selected, defined as the ratio between the minimum between the

peaks and the maximum Imin/Imax (see section 2.1.3). Since the intensity of the peaks

is not equal, the maximum is calculated as the average values between the two peaks.

This difference between the two peaks (less then 5%) can be explained by an optical

misalignment of the order of few microns. The TR profile of minimum visibility is the

closest to the expected form of an ideal zero-size particle beam. Then this profile is

convoluted with different rms Gaussian profiles that represent real beam sizes, as depicted

in Fig. 4.12(a).

It is possible, in this way, to obtain a calibration curve of the visibility, measured

on these convoluted profiles, against the added beam size, as shown in Fig. 4.12(b). In

particular, blue points are calculated with the convolution of different width Gaussian

distributions, representing the beam, with single particle TR PSF; the orange curve is

obtained with a third order polynomial fit of the blue points. It is seen that the curve

saturates (reaching a plateau for a visibility 0.4) for small beam sizes of around 1µm,

showing the limit of the optical system in measuring very small beams. This limit come

from the fact that the system was designed to find the position of the beam with respect

to the smallest DR of slit of 49.7µm. Nevertheless such resolution of 1µm was sufficient

for our purpose. The third order polynomial used in Fig. 4.12(b) to fit the curve, V =

Aσ3y + Bσ2y + Cσ2y + D where V is the visibility, A,B,C,D the fit parameters and σy the
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4.4. Beam size measurement at ATF2

(a) (b)

Figure 4.12: TR calibration. In (a) PSF PVPC convolution with
different Gaussian beam sizes: 1µm blue curve, 5µm orange curve,
9µm green curve. In (b) the curve obtained for the vertical beam
size versus PSF PVPC visibility. Blue points are calculated with the
convolution of different width Gaussian distributions, representing
the beam, with single particle TR PSF, the orange curve is obtained
with third order polynomial fit of blue points.

vertical beam size, provide a relation between visibility and beam size.

The relation found between visibility and beam size allows us to associate a beam

size to the measured visibility of the TR PSF during the quadrupole scan. Fig. 4.13(a)

shows the single shot visibility versus the QM14FF current measured from the TR PSF

PVPC: the error bars are the error on the mean of the visibility distribution over 100

images. The centre value is the mean value of the distribution. As can be seen the errors

are bigger closer to visibility value of 1. In fact the visibility is 1 when the maximum has

the same value as the minimum meaning that there is not a two-lobe structure anymore.

So in the cases close to 1 it is practically very difficult to define the peaks and this increases

the error due to the peak fitting procedure.

Finally, starting form the TR data acquired, it is possible to plot the beam size

against the quadrupole current (Fig. 4.13(b)) thanks to the relation found between the

visibility values and the beam size. This allows us to know the beam size for a given

QM14FF current, so that when the DR angular profile is recorded under the exact same

conditions, it can be compared to the expected beam size.

The consistency of the TR PSF cross calibration data was verified comparing the

vertical beam size at the location of the experimental station with SAD [118] simulation.

The beam optics during data acquisition was saved and used as input for SAD simulation.

The results of this comparison is presented in Fig. 4.14, it is seen that TR PSF are in
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4.4. Beam size measurement at ATF2

(a) (b)

Figure 4.13: TR PSF quadrupole scan (a) showing the variation of
visibility as function of QM14FF current. In (b) the vertical beam
size versus magnet current.

good agreement with the simulated beam size.

Figure 4.14: TR vs SAD comparison, showing a very good agree-
ment for the performed quadrupole scan.

The vertical beam emittance used for the simulation is 34 pm. The emittance is

also measured with the TR PSF through a parabolic fit of the beam size squared versus

the magnet current, depicted in Fig. 4.15 using the well known method described in the

literature [119, 120]. A second order polynomial fit x2 = a(1/f)2 − 2ab(1/f) + (c + ab2)

is used where x2 is the beam size squared, 1/f is the inverse of the focal-length or the

quadrupole strength (kLq) and a, b, c fit parameters. The measured emittance is therefore

calculated as
√
ac/d2 where d is the distance between the TR screen and the quadrupole.

From this fit a value of 33 ± 3 pm is obtained for the emittance that is in very good
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4.4. Beam size measurement at ATF2

agreement with the simulated beam emittance.

Figure 4.15: TR emittance parabolic fit: on the vertical axis the
beam size squared, on the horizontal axis the magnetic strength of
the quadrupole QM14FF.

4.4.2 DRI measurements

The first set of measurements collected during operation was in the visible range, specifi-

cally at 400nm. This wavelength was chosen because despite being in the visible spectrum

it is shorter compared to 600nm. Therefore it is expected to provide a better sensitivity

to small beam size as explained in section 2.2.4. Furthermore thanks to the wide com-

mercial availability of optical components for visible light it was possible to use a very

narrow-band filter that helps to reduce the background.

In Fig. 4.16(a), an image of DRI vertical polarization angular pattern measured with

a 400nm filter is shown. The PVPC image of this 2D image is presented in Fig. 4.16(b),

showing a typical DRI angular pattern as presented in 2.2.4. In the case depicted in this

image, the beam was strongly focused in the vertical direction by QM14FF leading to a

very small visibility, thanks also to the small SR contribution that would otherwise have

increased the minimum value.

Thanks to the careful choice of every component of the optical line (see section 3.4),

in particular the intensifier of the angular line with a good sensitivity to wavelengths down

to 200nm, it was also possible to acquire data in the UV at 250nm. In Fig. 4.17(a) an

image of vertical polarization DRI angular pattern saved in the far-UV, is acquired with
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4.4. Beam size measurement at ATF2

(a) (b)

Figure 4.16: Single shot 2D DRI angular pattern (a). PVPC (b)
calculated between the two red lines in (a). DR is produced from
target slit 49.7µm and mask 100µm at 400nm with QM14FF cur-
rent −70 Amps (σy = 3µm).

the same beam conditions as in Fig. 4.16(a), showing a slightly smaller DR pattern with

respect to the visible wavelength. The contraction of the DR pattern with respect to the

visible light leads to an increased sensitivity to smaller beam sizes as already discussed in

section 2.2.4. In this case the PVPC, illustrated in Figure 4.17(b), presents a larger value

of the minimum in between the two peaks meaning a better sensitivity to this beam size.

(a) (b)

Figure 4.17: Single shot 2D DRI angular pattern (a). PVPC (b)
calculated between the two red lines in (a). DR is produced from
target slit 49.7µm and mask 100µm at 250nm with QM14FF cur-
rent −70 Amps (σy = 3µm).
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4.4. Beam size measurement at ATF2

During the data taking, as in the case of the TR measurements, automated quadrupole

scans were performed to record the DRI patterns for different vertical beam sizes. The

results of these scans are presented in Figure 4.18. The visibility of the PVPC is plotted

against the magnetic current, i.e. the magnetic strength, of QM14FF. In particular the

distribution of the single shot measured visibility. From the comparison of Fig. 4.18(a)

and Fig. 4.18(b), the reader can notice that the sensitivity to the change of vertical beam

size is much higher in the UV observation.

(a) (b)

Figure 4.18: DR quadrupole scan at 400nm (a) and at 250nm (b).
The error bar are here the rms of distribution of 20 images (a) and
25 images (b) for each magnet current point.

Considering the cross-calibration obtained with TR PSF explained in the previous

section 4.4, the current of the magnet can be converted to the expected beam size allowing

a plot of the visibility as a function of the beam size to be made. This graph is shown

for both wavelengths in Fig. 4.19. It is seen that the UV DR have a better sensitivity

to beam size. A linear fit is plotted over the two set of data to show the sensitivity for

different wavelengths. It has to be remarked that on one hand the 400nm data show how

ODR measurement has an intrinsic limit around 5µm, below this value the visibility reach

a plateau of ≈ 0.050 meaning that even if the beam is smaller (as it is known from the

TR measurements) it can not be measured with the DR technique. On the other hand

the UV observations at 250nm show how this limit is pushed down to about 3µm where

the visibility is ≈ 0.125.

As during the QM14FF scan we are varying the vertical beam size at the screen

location passing through a beam waist, from the data acquired it is possible to extract the

vertical beam emittance. Specifically the technique previously described in section 4.4.1
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4.4. Beam size measurement at ATF2

Figure 4.19: DR beam size sensitivity at 400nm and 250nm. Error
bar on the data point represent the error on the mean. The smallest
beam size from which we visibility starts to increase for an increasing
beam size is 5µm for 400nm and 3µm for 250nm.

based on a parabolic fit is applied. The data and the fit are presented in Fig. 4.20 for

visibile (400nm) and UV (250nm). The measured emittance is 33 ±13 pm and 32 ±5 pm

respectively for 400nm and 250nm providing a very good agreement with the emittance

measured with TR PSF and simulated with SAD. The fact that the visible data lead to a

larger error on the emittance (i.e. a worse fit shape) compared to the UV measurements,

is due to the saturation effect at small beam sizes as can be seen in Fig. 4.19.

(a) (b)

Figure 4.20: Beam size squared versus magnetic strength for DR
quadrupole scan at 400nm (a) and at 250nm. Data with statistical
error bar (error of the mean) over 20 images (a) and 25 images (b)
and the parabolic fits are shown. In (a) the saturation effect for
small beam sizes is evident: the minimum of the parabola is flat.
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Chapter 5
Conclusion

5.1 Main results and achievements

The main aim of this thesis was to develop a combined transition and diffraction radiation

station for non-invasive beam size monitoring for linear accelerators, specifically for the

future generation of linear colliders. The interest in this kind of technology for linear

collider applications has been discussed in the introductory chapter 1. Therefore, during

this thesis work a TR/DR combined monitor has been designed, installed and tested

on ATF2 beam line at KEK. This accelerator is, indeed, a test facility for future linear

colliders, in particular for the ILC final focus, providing a small emittance beam that

can be focused to sub-micrometre beam sizes challenging present technologies in terms of

transverse beam size measurements.

A comprehensive and detailed overview of TR and DR is presented in chapter 2,

where the theoretical aspect of these polarization radiations are described with the specific

perspective of beam diagnostics. Furthermore, to understand the effect of the presence of

a mask to block the contamination by Synchrotron Radiation background an innovative

experimental study on the shadowing phenomenon is presented in the same chapter. This

study, experimentally conducted at CALIFES at CERN during my PhD, shows how the

interference between the target generated radiation and the upstream mask one has to be

taken into account for a mask installed within the radiation formation length.

The work carried out during the thesis period was divided in two main parts. The

first was the design and the installation of the TR/DR monitor. The experimental appa-

ratus have been carefully designed, following the experience matured in our research team

on previous DR and TR experiments. For instance, as presented in Chapter 3 the target
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5.2. Future studies

was designed with a limited mirrored area to minimize the SR reflection and the target

slits size was chosen to maximize the DR emission and to produce sensitivity to small

beam size. Furthermore, the innovative design of the optical line allows synchronously di-

rect high resolution (less then 1µm) images of the target surface and angular distribution

distribution of DR or TR in visible or UV wavelength range to be acquired.

The second part of the thesis work was focused on the commissioning of the exper-

imental apparatus and on the data acquisition and processing. As presented in details in

Chapter 4, the study show that the instrument is capable to measure micrometre scale

transverse beam size thanks to the TR PSF technique. Furthermore, as predicted by the

theory, the sensitivity to beam size for DR measurements increased with UV wavelengths

(250nm). The system was proven to detect a beam size as small as 5µm much smaller

then the previous lower limit of this technique of 14µm present in literature [40]. Vertical

emittances of 32± 5 pm and 33± 13 pm were also measured with quadrupole scans.

In conclusion this study proved that non-invasive DR measurements performed in

the UV region can measure micron scale beams. Furthermore, combining this system with

a very high-resolution TR monitor, it is possible to have an instrument that not only

can measure low intensity and very small beams, e.g. pilot beams of linear collider with

a limited number of bunches or short pulse train lengths, but also can monitor the beam

size during standard operation at full charge. In addition, the instrument can measure

the beam size (with micron precision) at the monitor location thanks to synchronous

acquisition of imaging and angular distributions.

5.2 Future studies

As presented in [121–123], another non-invasive technique based on polarization radiation

is the Cherenkov diffraction radiation (CDR). This is the radiation emitted through the

Cherenkov effect by particles travelling at a distance h from the surface of a dielectric, also

called the impact parameter. In particular, the use of Incoherent Cherenkov radiation for

beam instrumentation purposes is really interesting for the expected high total number of

photons emitted and its highly directional emission [123]. This can allow discrimination of

CDR signal from the SR background, contrary to DR where SR is the limiting background

source. With a properly designed target, similar to that described in [122], and an adapted

optical line, the TR/DR station can be modified to study CDR. In particular, as the
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location at ATF2 allows exploitation of sub-micrometer beam sizes that are difficult to

find in other accelerators, the lower limit of the CDR resolution can be investigated.
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Appendix A
OTRI at CALIFES

The OTRI experiment, indrodued in Chapter 2 was conducted in the CALIFES beam

line insdie the CLEX complex of the CLIC Test Facility 3 (CTF3) at CERN. Here the

electrons are accelerated up to an energy of 205 MeV, with a corresponding formation

length in the optical region of Lf (λ = 500nm) ≈ 13mm from Eq. 2.3.

Fig. A.1 presents the CALIFES beam line. The beam is produced in a Cs2Te photo-

injector pulsed by an UV (262nm) laser which delivers up to 270nJ/pulse. This energy

can be reduced using a hard aperture to produce a bunch charge up to 0.6nC with a

bunch frequency of 1.5GHz [124]. The accelerator can run with trains ranging from 1 to

300 bunches. The acceleration is provided by a single klystron delivering pulses of 45MW

to power the gun, a buncher structure and two accelerating structures [125]. Using a com-

pression cavity the pulse peak power is increased to 130MW during 1.2µs, the necessary

time to fill the accelerating structures. An attenuator and a phase shifter located before

the gun provide flexibility tuning bunch extraction from the photo-cathode [125]. The

phase of the buncher can be independently controlled using a specially developed power

phase shifter thereby operating the structure close to the zero crossing, thus shortening

the bunch length via velocity bunching. The whole acceleration system of the injector can

provide a beam with kinetic energy up to 210MeV with an energy spread < 2%. The

energy spread can be increased by changing the timing of the laser pulse versus the RF

pulse to produce a train of pulses scaled in energy if needed. A system of solenoids around

the accelerating cavities keep the beam emittance below 10π · mm · mrad; this can be

measured by quadrupole scan using a quadrupole triplet and a screen downstream the last

accelerating cavity. Finally a spectrometer line located downstream the injector enables
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energy measurements [125].
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Figure A.1: CALIFES beam line [126].

The OTRI experiment was installed after the spectrometer line, a focusing triplet

(QFD0510,QDD0515,QFD0520), a BPM (BPM530) and a gate-valve (DHJ/DVJ0540), in

the beam line now called CLEAR, as can been seen in Fig. A.2. Here the right end part

of the line is the outcoming beam line of CALIFES depicted in left part of Fig. A.1.
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Figure A.2: CLEAR beam line [126].

A schematic drawing of the setup is shown in Fig. A.3. A 100µm thick aluminum

foil (a) and a 200µm thick aluminum-coated silicon screen (b) are mounted on a linear

actuator that moves the screen assembly across the beam path. The assembly is designed

to have an angle of 90◦ between the screens so that the distance traveled by the particle

beam between the two screens d can be changed depending on the position of the screen

assembly within a range 0 < d < 34mm. Screen (b) is longer than (a) by 9mm, allowing

the particle beam to solely cross screen (b), therefore producing backward single-screen

OTR as a reference [18]. Because of the 45◦ orientation of both screens with respect to

the electron beam, the TR signal is emitted orthogonally from the beam path through a

borosilicate glass view-port (not shown in Fig. A.3). The whole optical setup is mounted

on a motorized translation stage allowing the control of its transverse position with respect

to the target assembly. Indeed, when the screen assembly is moved across the beam, the
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area where screen (b) intercepts the beam (that is the OTR source) moves along the

beam path. Given the narrow (of the order of 1/γ = 2.5mrad) angular distribution

of OTR light, to avoid any optical distortion the typical conical light emission of OTR

must coincide with the optical axis of the instrument. Therefore, a transverse scan of

the optical imaging system until the light intensity reaching the sensor is maximized is

needed whenever the distance between screens is changed [18]. Figure A.3 shows the

setup for angular measurements. A 12 bit, 1/3 of inch CCD sensor (f) is placed in the

backfocal plane of a f = 40mm, 1′′ diameter air-spaced doublet (e) to reproduce far-

field,i.e. angular distribution of the incoming radiation, after passing through a set of

band pass filters (400 or 650nm; bandwidth 40nm) (d). The focus is adjusted prior to

the experiment, by sending a laser centered inside the beam pipe following the electron

beam path. The system is designed to record an angular range −42 < θ < 42mrad, with

a resolution of ≈ 94µrad/pixel. A pellicle beam-splitter (c) sends approximately 3% of

the light, through a lens to create an image, to a camera for monitoring purposes (h) [18].

Figure A.3: OTRI setup at CALIFES [18].
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Appendix B
Target and Mask slits
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(a) (b)

(c) (d)

Figure B.1: Measurement of DR target slits size with microscope: (a) 201.7 µm slit ; (b)
100.6 µm slit; (c) 77.2 µm slit; and, (d) 49.57 µm slit.
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(a) (b)

(c) (d)

Figure B.2: Measurement of SR mask slits size with microscope: (a) 399 µm slit ; (b)
198.9 µm slit; (c) 149.2 µm slit; and, (d) 100 µm slit.
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Abbreviations

ATF2 Accelerator Test Facility 2

BDR Backward Diffraction Radiation

BPM Beam Position Monitor

BTR Backward Transition Radiation

CCD Charge-Coupled Device

CLIC Compact Linear Collider

CMOS Complementary Metal-Oxide Semiconductor

CTF3 Clic Test Facility 3

DB Drive Beam of CLIC

DR Diffraction Radiation

DRI Diffraction Radiation Interference

FDR Forward Diffraction Radiation

FTR Forward Transition Radiation

FWHM Full Width Half Maximum

ILC International Linear Collider

IP Interaction Point
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Abbreviations

LHC Large Hadron Collider

MB Main Beam of CLIC

MDI Machine Detector Interface

OTR Optical Transition Radiation

OTRI Optical Transition Radiation Interference

PSF Point Spread Function

PVPC Projected Vertical Polarization Component

RF Radio Frequency

RTML Ring To Main Linac of CLIC

sCMOS scientific Complementary Metal-Oxide Semiconductor

SR Synchrotron Radiation Interference

TR Transition Radiation

UV Ultraviolet

YAG Yttrium-Aluminum-Garnet
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[30] M. Sjöström, H. Tarawneh, and E. Wallén, Characterisation of the MAX-II Electron

Beam: Beam Size Measurements, in Proc. 10th European Particle Accelerator Conf.,

26-30 June 2006, Edinburgh, Scotland, UK (2006) Vol. 60626, pp. 1193–1195, 2006.

104



Bibliography

[31] T. Mitsuhashi et al., Spatial coherency of the synchrotron radiation at the visible

light region and its application for the electron beam profile measurement, KEK

preprint/National laboratory for high energy physics (Tsukuba) 97, 56 (1997).

[32] T. Naito and T. Mitsuhashi, Very small beam-size measurement by a reflective

synchrotron radiation interferometer, Physical Review Special Topics-Accelerators

and Beams 9, 122802 (2006).

[33] T. Mitsuhashi, Measurement of small transverse beam size using interferometry, in

Proc. of DIPAC Vol. 1, 2001.

[34] I. Agapov, G. Blair, and M. Woodley, Beam emittance measurement with laser wire

scanners in the International Linear Collider beam delivery system, Physical Review

Special Topics-Accelerators and Beams 10, 112801 (2007).

[35] P. Tenenbaum and T. Shintake, Measurement of small electron-beam spots, Annual

Review of Nuclear and Particle Science 49, 125 (1999).

[36] S. T. Boogert et al., Micron-scale laser-wire scanner for the KEK Accelerator Test

Facility extraction line, Physical Review Special Topics-Accelerators and Beams 13,

122801 (2010).

[37] T. Shintake, Proposal of a nanometer beam size monitor for e+ e- linear collid-

ers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 311, 453 (1992).

[38] T. Suehara et al., A nanometer beam size monitor for ATF2, Nuclear Instruments

and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment 616, 1 (2010).

[39] A. P. Potylitsyn, M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko, Radiation

from Relativistic Particles, in Diffraction Radiation from Relativistic Particles, pp.

1–28, Springer, 2010.

[40] P. Karataev et al., Beam-size measurement with optical diffraction radiation at KEK

accelerator test facility, Physical Review Letters 93, 244802 (2004).

[41] A. Lumpkin, W. Berg, N. Sereno, D. Rule, and C.-Y. Yao, Near-field imaging of

optical diffraction radiation generated by a 7-GeV electron beam, Physical Review

Special Topics-Accelerators and Beams 10, 022802 (2007).

105



Bibliography

[42] E. Chiadroni et al., Non-intercepting electron beam transverse diagnostics with op-

tical diffraction radiation at the DESY FLASH facility, Nuclear Instruments and

Methods in Physics Research Section B: Beam Interactions with Materials and

Atoms 266, 3789 (2008).

[43] P. Karataev, Investigation of optical diffraction radiation for non-invasive low-

emittance beam size diagnostics, PhD thesis, PhD Thesis, Tokyo Metropolitan Uni-

versity, 2004.

[44] L. Bobb et al., Feasibility of diffraction radiation for noninvasive beam diagnostics as

characterized in a storage ring, Physical Review Accelerators and Beams 21, 032801

(2018).

[45] Y. Shibata et al., Observation of coherent diffraction radiation from bunched

electrons passing through a circular aperture in the millimeter-and submillimeter-

wavelength regions, Physical Review E 52, 6787 (1995).

[46] Y. Shibata et al., Diagnostics of an electron beam of a linear accelerator using

coherent transition radiation, Physical Review E 50, 1479 (1994).

[47] Y. Shibata et al., Observation of coherent transition radiation at millimeter and

submillimeter wavelengths, Physical Review A 45, R8340 (1992).

[48] V. Ginzburg and I. Frank, Radiation of uniformly moving electron at transition from

one media into another one, Sov. Phys. JETP 16, 15 (1946).

[49] M. Castellano et al., Analysis of optical transition radiation emitted by a 1 MeV elec-

tron beam and its possible use as diagnostic tool, Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-

ated Equipment 357, 231 (1995).

[50] P. Karataev et al., Experimental observation and investigation of the prewave zone

effect in optical diffraction radiation, Physical Review Special Topics-Accelerators

and Beams 11, 032804 (2008).

[51] International Linear Collider, https://ilc.kek.jp/ATF2/.

[52] V. Ginzburg, Transition radiation and transition scattering, Physica Scripta 1982,

182 (1982).

106

https://ilc.kek.jp/ATF2/


Bibliography

[53] M. L. Ter-Mikaelian, High energy electromagnetic processes in condensed media

(Wiley, 1972).

[54] P. Karataev, Pre-wave zone effect in transition and diffraction radiation: Problems

and solutions, Physics Letters A 345, 428 (2005).

[55] A. P. Potylitsyn, Transition radiation and diffraction radiation. Similarities and

differences, Nuclear Instruments and Methods in Physics Research Section B: Beam

Interactions with Materials and Atoms 145, 169 (1998).

[56] T. Behnke et al., The International Linear Collider Technical Design Report-Volume

1: Executive Summary, arXiv preprint arXiv:1306.6327 (2013).

[57] V. Verzilov, Transition radiation in the pre-wave zone, Physics Letters A 273, 135

(2000).

[58] N. Shul’ga, S. Dobrovol’sky, and V. Syshchenko, On transition infrared radiation by

relativistic electrons in a thin layer of matter, Nuclear Instruments and Methods in

Physics Research Section B: Beam Interactions with Materials and Atoms 145, 180

(1998).

[59] N. Shul’ga and S. Dobrovol’sky, About transition radiation by relativistic electrons

in a thin target in the millimeter range of waves, Physics Letters A 259, 291 (1999).

[60] S. Dobrovolsky and N. Shulga, Transversal spatial distribution of transition radi-

ation by relativistic electron in the formation zone by the dotted detector, Nuclear

Instruments and Methods in Physics Research Section B: Beam Interactions with

Materials and Atoms 201, 123 (2003).

[61] M. Castellano et al., Search for the prewave zone effect in transition radiation,

Physical Review E 67, 015501 (2003).

[62] P. Karataev et al., First observation of the Point Spread function of optical transition

radiation, Physical review letters 107, 174801 (2011).

[63] T. Aumeyr et al., Advanced simulations of optical transition and diffraction radia-

tion, Physical Review Special Topics-Accelerators and Beams 18, 042801 (2015).

107



Bibliography

[64] M. Castellano, A. Cianchi, G. Orlandi, and V. Verzilov, Effects of diffraction and

target finite size on coherent transition radiation spectra in bunch length measure-

ments, Nuclear Instruments and Methods in Physics Research Section A: Accelera-

tors, Spectrometers, Detectors and Associated Equipment 435, 297 (1999).

[65] B. Bolzon et al., Very high resolution optical transition radiation imaging system:

Comparison between simulation and experiment, Physical Review Special Topics-

Accelerators and Beams 18, 082803 (2015).

[66] X. Artru, G. Yodh, and G. Mennessier, Practical theory of the multilayered transition

radiation detector, Physical review d 12, 1289 (1975).

[67] L. C. Yuan, C. Wang, H. Uto, and S. Prünster, Formation-zone effect in transition

radiation due to ultrarelativistic particles, Physical Review Letters 25, 1513 (1970).

[68] L. Wartski, S. Roland, J. Lasalle, M. Bolore, and G. Filippi, Interference phe-

nomenon in optical transition radiation and its application to particle beam diag-

nostics and multiple-scattering measurements, Journal of Applied Physics 46, 3644

(1975).

[69] A. H. Lumpkin et al., Optical-transition radiation measurements for the Los Alamos

and Boeing free-electron laser experiments, Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment 285, 343 (1989).

[70] C. Couillaud, A. Loulergue, and G. Haouat, Electron beam transverse emittance

measurement using optical transition radiation interferometry, in Proc. of the Fifth

European Particle Accelerator Conference, Sitges (Barcelona), 1996.

[71] A. Cianchi et al., First non-intercepting emittance measurement by means of optical

diffraction radiation interference, New journal of physics 16, 113029 (2014).

[72] R. Fiorito and D. Rule, Diffraction radiation diagnostics for moderate to high en-

ergy charged particle beams, Nuclear Instruments and Methods in Physics Research

Section B: Beam Interactions with Materials and Atoms 173, 67 (2001).

[73] X. Artru and C. Ray, Interference and shadow effects in the production of light

by charged particles in optical fibers, Nuclear Instruments and Methods in Physics

Research Section B: Beam Interactions with Materials and Atoms 266, 3725 (2008).

108



Bibliography

[74] G. Naumenko, Y. Popov, and M. Shevelev, Direct observation of a semi-bare electron

coulomb field recover, in Journal of Physics: Conference Series Vol. 357, p. 012005,

IOP Publishing, 2012.

[75] K. Lekomtsev, Investigation of Coherent Diffraction Radiation from a dual target

system at CTF3 and its application for longitudinal bunch profile diagnostics, PhD

thesis, Royal Holloway, University of London, 2012.

[76] L. Bobb, Feasibility of Diffraction Radiation for Noninvasive Micron-scale Trans-

verse Beam Size Measurement in Circular Machines, PhD thesis, Ph. D. Thesis,

Royal Holloway, Univ. of London, 2016.

[77] M. Born and E. Wolf, Chapter VIII - Elements of the Theory of Diffraction, in

Principle of Optics, pp. 370–458, New York: Pergamon Press, 1980.

[78] M. Castellano, A new non-intercepting beam size diagnostics using diffraction radi-

ation from a slit, Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 394, 275 (1997).

[79] P. Karataev et al., Application of optical diffraction radiation to a non-invasive low-

emittance high-brightness beam diagnostics, in Quantum Aspects Of Beam Physics

2003, pp. 111–118, World Scientific, 2004.

[80] A. Cianchi et al., Nonintercepting electron beam size monitor using optical diffraction

radiation interference, Physical Review Special Topics-Accelerators and Beams 14,

102803 (2011).

[81] M. Bergamaschi et al., JACoW: Diffraction Radiation for Non-Invasive, High-

Resolution Beam Size Measurements in Future Linear Colliders, in Proceedings

of the Eight International Particle Accelerator Conference, Copenhaghen, 2017.

[82] S. Kawabata et al., ATF Accelerator Test Facility: design and study report (KEK,

Tsukuba, 1995).

[83] KEK: High Energy Accelerator Research Organisation. http://www.kek.jp/en/.

[84] ATF Collaboration, K. Kubo et al., Extremely Low Vertical-Emittance Beam in the

Accelerator Test Facility at KEK, Phys. Rev. Lett. 88, 194801 (2002).

109

http://www.kek.jp/en/


Bibliography

[85] Y. Honda et al., Achievement of Ultralow Emittance Beam in the Accelerator Test

Facility Damping Ring, Phys. Rev. Lett. 92, 054802 (2004).

[86] H. Braun et al., ATF2 Proposal: v.1, CERN Report No. CERN-AB-2005-035, 2005.

[87] H. Hayano, ATF Linac Commissioning, KEK Report No. KEK-96-112, 1996.

[88] T. Okugi et al., ICFA Beam Dynamics Newsletter, No 61 (ICFA, 2013).

[89] H. Sakai et al., Improvement of Fresnel zone plate beam-profile monitor and applica-

tion to ultralow emittance beam profile measurements, Phys. Rev. ST Accel. Beams

10, 042801 (2007).

[90] J. Alabau-Gonzalvo et al., The ATF2 Multi-OTR System: Studies and Design

Improvements, in International Beam Instrumentation Conference, 2012.

[91] Y. I. Kim et al., Cavity beam position monitor system for the Accelerator Test

Facility 2, Phys. Rev. ST Accel. Beams 15, 042801 (2012), 1301.5561.

[92] P. Bambade et al., Present status and first results of the final focus beam line at

the KEK Accelerator Test Facility, Physical Review Special Topics-Accelerators and

Beams 13, 042801 (2010).

[93] T. Shintake et al., Design of laser-Compton spot size monitor, in Proceedings of the

XVth International Conference on High-Energy Accelerators, Int. J. Mod. Phys. A

(Proc. Suppl.) A Vol. 2, pp. 215–218, 1993.

[94] J. Yan, Precise Measurement of Nanometer Scale Electron Beam Sizes Using Laser

Interference by Shintake Monitor, Ph.D. thesis, University of Tokyo, 2015.

[95] A. Aryshev et al., Micron size laser-wire system at the ATF extraction line, recent

results and ATF-II upgrade, Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623,

564 (2010), 1st International Conference on Technology and Instrumentation in

Particle Physics.

[96] B. I. Grishanov et al., ATF2 proposal Vol 2, arXiv preprint physics/0606194 (2005).

[97] S. Franssila, Anisotropic Wet Etching, in Introduction to microfabrication, pp.

237–254, John Wiley & Sons, 2010.

110



Bibliography

[98] G. Kaminsky, Micromachining of silicon mechanical structures, Journal of Vacuum

Science & Technology B: Microelectronics Processing and Phenomena 3, 1015 (1985).

[99] G. T. Kovacs, N. I. Maluf, and K. E. Petersen, Bulk micromachining of silicon,

Proceedings of the IEEE 86, 1536 (1998).

[100] Cornell Electron/Positron Storage Ring Test Accelerator, https://www.classe.

cornell.edu/Research/CesrTA/WebHome.html.

[101] UV-visible polarizer, http://www.moxtek.com/wp-content/uploads/

pdf-downloads/optics/datasheets/ProFluxUV1008.pdf.

[102] Pellicle beam splitter, https://www.thorlabs.com/thorproduct.cfm?

partnumber=BP208.

[103] R. Kieffer et al., Optical diffraction radiation for position monitoring of charged

particle beams, Nuclear Instruments and Methods in Physics Research Section B:

Beam Interactions with Materials and Atoms 402, 88 (2017).

[104] Lens with focal = 250 mm, https://www.thorlabs.com/thorproduct.cfm?

partnumber=LA4538.

[105] UV enhanced mirror, https://www.thorlabs.com/thorproduct.cfm?

partnumber=PF20-03-F01.

[106] CCD intensified camera, http://pdf.directindustry.fr/pdf-en/pco-ag/

dicam-pro/29533-93103.html.

[107] Motorized filter wheel, https://www.owis.eu/en/products/

motorized-positioning-systems/produktgruppe/filterraeder/produkt/

148/.

[108] Bandpass filters from Thorlabs, https://www.thorlabs.com/newgrouppage9.cfm?

objectgroup_id=1001&pn=FB400-10#5413.

[109] Bandpass filter from eSource, http://www.esourceoptics.com/catalog/item/

8093856/8732032.htm.

[110] Bandpass filter from Andover, https://www.andovercorp.com/products/

bandpass-filters/standard/193-299nm/.

111

https://www.classe.cornell.edu/Research/CesrTA/WebHome.html
https://www.classe.cornell.edu/Research/CesrTA/WebHome.html
http://www.moxtek.com/wp-content/uploads/pdf-downloads/optics/datasheets/ProFluxUV1008.pdf
http://www.moxtek.com/wp-content/uploads/pdf-downloads/optics/datasheets/ProFluxUV1008.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=BP208
https://www.thorlabs.com/thorproduct.cfm?partnumber=BP208
https://www.thorlabs.com/thorproduct.cfm?partnumber=LA4538
https://www.thorlabs.com/thorproduct.cfm?partnumber=LA4538
https://www.thorlabs.com/thorproduct.cfm?partnumber=PF20-03-F01
https://www.thorlabs.com/thorproduct.cfm?partnumber=PF20-03-F01
http://pdf.directindustry.fr/pdf-en/pco-ag/dicam-pro/29533-93103.html
http://pdf.directindustry.fr/pdf-en/pco-ag/dicam-pro/29533-93103.html
https://www.owis.eu/en/products/motorized-positioning-systems/produktgruppe/filterraeder/produkt/148/
https://www.owis.eu/en/products/motorized-positioning-systems/produktgruppe/filterraeder/produkt/148/
https://www.owis.eu/en/products/motorized-positioning-systems/produktgruppe/filterraeder/produkt/148/
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1001&pn=FB400-10#5413
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1001&pn=FB400-10#5413
http://www.esourceoptics.com/catalog/item/8093856/8732032.htm
http://www.esourceoptics.com/catalog/item/8093856/8732032.htm
https://www.andovercorp.com/products/bandpass-filters/standard/193-299nm/
https://www.andovercorp.com/products/bandpass-filters/standard/193-299nm/


Bibliography

[111] Image intensifier unit C9547-04, https://www.hamamatsu.com/eu/en/product/

type/C9547-04/index.html.

[112] sCMOS camera, https://www.pco.de/fileadmin/user_upload/pco-product_

sheets/pco.edge_42_lt_data_sheet.pdf.

[113] Linear Stage 150mm, https://www.zaber.com/products/linear-stages/T-LSR/

details/T-LSR150B.

[114] Qt Libraries, https://www.qt.io/what-is-qt/.

[115] EPICS, https://epics.anl.gov/.

[116] G. A. Naumenko, Synchrotron radiation contributions to optical diffraction radiation

measurements, Nuclear Instruments and Methods in Physics Research Section B:

Beam Interactions with Materials and Atoms 201, 184 (2003).

[117] P. Tenenbaum and T. Raubenheimer, Resolution and systematic limitations in beam-

based alignment, Physical Review Special Topics-Accelerators and Beams 3, 052801

(2000).

[118] SAD, Strategic Accelerator Design, http://acc-physics.kek.jp/SAD/.

[119] S. Bernal and D. Stratakis, Emittance Measurement: Quadrupole Scan (U.S. Particle

Accelerator School 2008, University of Maryland, College Park, 2008).

[120] A. Green and Y.-M. Shin, Implementation of Quadrupole-scan Emittance Measure-

ment at Fermilab’s Advanced Superconducting Test Accelerator (ASTA), in Proc.

IPAC 15, 2015.

[121] R. Kieffer et al., Direct observation of incoherent Cherenkov diffraction radiation in

the visible range, Physical review letters 121, 054802 (2018).
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