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Abstract In the view of the Gliner vacuum, we remove the
deformations in the first law of mechanics for regular black
holes, where one part of deformations associated with black
hole mass will be absorbed into enthalpy or internal energy,
and the other part associated with parameters rather than mass
will constitute a natural V –P term. The improved first law
of mechanics redisplays its resemblance to the first law of
thermodynamic systems, which implies a restored correspon-
dence of the mechanic variables to the thermodynamic ones.
In particular, the linear relation between the entropy and hori-
zon area remains unchanged for regular black holes. Based
on the modified first law of thermodynamics, we establish
a self-consistent theory of Ruppeiner geometry and obtain a
universal attractive property for the microstructure of regular
black holes. In addition, the repulsive and attractive interac-
tions inside and outside regular black holes are analyzed in
detail.
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1 Introduction

It is closely related [1,2] to the first law of thermodynam-
ics (1LT) and its corresponding entropy to construct the
Ruppeiner geometry for black holes (BHs). As is known,
the 1LT is usually deduced from its resemblance to the
first law of mechanics (1LM). Based on T ∝ κ calculated
from quantum theory [3], one can read from the resem-
blance the linear relation: S ∝ A. This is now known as
the entropy/area law, where the corresponding entropy is
dubbed as the Bekenstein–Hawking entropy (BHE) [4,5].
The 1LT cannot be correctly obtained when the resemblance
mentioned above breaks. Furthermore, if the entropy calcu-
lated from the path-integral approach [6] or Wald’s method
[7,8] does not coincide with that from the 1LT, the Ruppeiner
geometry based on the 1LT will be unreliable.

A regular black hole (RBH) is such a system that its 1LM is
deformed [9], which brings about the breaking of the resem-
blance between its 1LM and 1LT. From this point of view,
a RBH does not have a well-defined 1LT, and then its Rup-
peiner geometry is suspect. As the 1LT is considered to be the
basis of Ruppeiner geometry and many other research topics,
such as the superradiance and area spectrum, etc., the lack
of a well-defined 1LT leads to an obstacle for us to establish
the Ruppeiner geometry for RBHs.

We take the noncommutative geometry inspired BH [10]
as an example of RBHs to show its present issue. Its shape
function, f (r, M, θ), contains two parameters, where one is
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BH mass M and the other θ is related to the minimal length
of a noncommutative space. If θ is set to be constant, the 1LT
takes the form, dM = T dS, where T is obtained from the
Euclidean path integral near the horizon of this BH, see e.g.
Ref. [11]. The entropy calculated from such a 1LT breaks the
entropy/area law, S �= A/4. On the other hand, if the entropy
of this BH without backreaction obeys [12] the entropy/area
law, the 1LT does not hold, i.e., dM �= T dS, when the Hawk-
ing temperature is not modified and still calculated by the
path-integral approach. In a word, this is the present situa-
tion for any RBHs1 that either the entropy/area law or the
1LT breaks if the Hawking temperature is computed by the
formula, −g′

t t (rH)/(4π).
In this work we persist in adopting the Hawking tempera-

ture formula and maintain both the entropy/area law and the
1LT unbroken by applying the radial pressure of Gliner vac-
uum [13,14] as RBH’s pressure. The so-called Gliner vac-
uum is an extended conception of vacua, which was intro-
duced by Gliner and developed by Dynmnikova, Gurevich
and Starobinsky, see the historical review [15] and refer-
ences within. The Gliner vacuum is different from the tra-
ditional vacuum with a vanishing energy–momentum tensor,
Tαβ = 0. It is defined [16] as a kind of matter that does not
allow any preferred reference frame. In the case of a spheri-
cally symmetric spacetime, this definition demands [16,17]
T 0

0 = T 1
1 and provides an infinite set of comoving reference

frames based on Petrov’s classification [18]. Thus, the Gliner
vacuum is anisotropic in a spherically symmetric spacetime.

Due to the pressure of the Gliner vacuum, we can remove
the deformations [19,20] in the 1LM for RBHs. In other
words, the deformation related to M will be absorbed into
enthalpy or internal energy, and the other deformations corre-
sponding to the parameters rather than M constitute a natural
V –P term. For RBHs this procedure not only offers a solu-
tion to reconstruct the 1LT, consequently a self-consistent
theory of Ruppeiner geometry, but also provides new insight
into the 1LT related research topics, like the superradiance
and area spectrum mentioned above.

This paper is organized as follows. In Sect. 2, we ana-
lyze the RBHs that are spherically symmetric and have a
single shape function in terms of the Ricci decomposition.
Next, we examine in Sect. 3 the deformations of the first
law of mechanics in the RBHs. We discuss in Sect. 4 how
to remove the deformations in the first law of mechanics for
some known RBHs in the view of the Gliner vacuum. In
Sect. 5 we establish a self-consistent theory of Ruppeiner
geometry for the RBHs with a spherical symmetry and a sin-
gle shape function by a well-defined 1LT. The results show
that all the RBHs are of attractive interaction. It is known that
the matters generating the RBHs violate the strong energy
condition (SEC) around the center, i.e., they have repulsive

1 Their metrics satisfy gtt grr = −1.

interactions. Therefore, we try in Sect. 6 to explain in terms
of the SEC on how the matters with a repulsive interaction
create the RBHs with attractive interactions. To give a more
intuitive illustration of the interaction structure of RBHs, in
Sect. 7, we compare them with Reissner–Nordström black
holes (RN BHs) by considering the Raychaudhuri equation.
Finally, we give our summary in Sect. 8.

2 Regular black holes

We start with a spherically symmetric metric gμν =
diag{− f (r), f −1(r), r2, r2 sin2 θ} with the shape function,

f (r) = 1 − 2M

r
σ (r, M, αi ) , (1)

where αi ’s are parameters rather than mass M . If σ converges
to one when r goes to infinity, the corresponding metric is
asymptotic to the external spacetime of Schwarzschild BHs.
In fact, the asymptotic flatness of our metric only requires
limr→∞ σ/r = 0, i.e., σ is divergent slower than r as r →
∞, which is weaker than the condition of asymptotic to the
Schwarzschild spacetime. The requirement of asymptotic to
the Schwarzschild BH simply guarantees the attractive nature
(strong energy condition) and causality (dominant energy
condition) outside the horizon. In addition, for simplicity, we
suppose that the BHs depicted by Eq. (1) are of two horizons
at most.

It is convenient to apply the Ricci decomposition [21] for
our investigations of RBHs,

Rμνρσ = Wμνρσ + Sμνρσ + Eμνρσ , (2)

where Wμνρσ is the Weyl tensor, and

Sαβμν = R

12
gα[μgν]β, (3)

Eαβμν = 1

2

(
gα[μZν]β − gβ[μZν]α

)
, (4)

with the traceless tensor,

Zμν ≡ Rμν − 1

4
gμνR. (5)

Thus, we rewrite σ in terms of the curvature invariants,2

R, W , and E , when r is around the center of RBHs,

σ = r3

24M

(
R − 2

√
3W + 3

√
2E

)
, (6)

2 In fact, W and E can be expressed by the three independent curvature
invariants, R, R2, and K , see Appendix A for the details.
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where W ≡ WμνρσWμνρσ and E ≡ Eμνρσ Eμνρσ , and both
W and E are non-negative. According to the relations,

R2 ≡ RμνR
μν = 1

4

(
R2 + 2E

)
, (7)

K ≡ Rμνρσ R
μνρσ = 1

6
R2 + W + E, (8)

the contraction of Ricci tensors R2 and the Kretschmann
scalar K are also non-negative. Based on the Ricci decom-
position Eq. (2), the shape function then becomes

f (r) = 1 − λ(r)

3
r2, 4λ(r) ≡ R − 2

√
3W + 3

√
2E . (9)

That a BH is regular means that the independent curvature
invariants, R, R2, and K , are convergent to finite constants
everywhere in this BH spacetime. In particular, as r → 0+
we have

R ∼ R(0), R2 ∼ R2(0), K ∼ K (0), (10)

with R(0), R2(0), K (0) = const. < ∞, where the zero argu-
ment refers to the limit to the center of BHs. We can see
from Eqs. (1) and (6) that the finiteness of the shape func-
tion requests that σ converges to zero faster than r3, i.e.,
limr→0 σ/r3 = const. < ∞, see Appendix B for the detailed
analyzes of R and K .

It is worth mentioning that the treatment of RBHs is dif-
ferent from that of singular BHs (SBHs). For the latter, a
complete Lagrangian is given, its equations of motion are
solved, and thus the metric of SBHs is obtained. For the for-
mer, however, the first step is to propose such a metric that the
corresponding curvature invariants are finite and geodesics
are complete at the singularity of this metric; and the second
step is to construct the related Lagrangian that generates this
RBH, i.e., to find out the reasonable matter source.

According to the behaviors of σ , the metrics of RBHs
can be classified into two types. The first type of RBHs is
constrained locally by 0 < σ (r, M, αi ) ≤ 1, thus the outer
horizon r+ must be upper bounded by the Schwarzschild
radius, rSch = 2M , i.e.,

r+
rSch

= σ (r+, M, αi ) ≤ 1. (11)

The second type of RBHs is picked out by the local condi-
tion, σ (r, M, αi ) > 1. As the matter sources associated with
the metrics in the second type are not clear, we concentrate
only on the first type and assume that σ is a monotonically
increasing function3 of r , dσ/dr > 0, in the remaining of
the present work.

3 The monotonicity comes from the positivity of energy density of
matters, see Eq. (69). Thus, σ(r) is a sigmoid function in the range of
r ∈ [0,∞).

In addition, let us make a brief discussion about the factor
λ(r) in Eq. (9). It is not difficult to check λ(r) ∼ R(0)/4 in
the limit of r → 0+, because R ∼ O(1), E ∼ O(r2), and
W ∼ O(r2), i.e. the orders of E and W are higher than that
of R. The same result can also be obtained by the method
shown in Refs. [22,23], see Appendix B. Then changing the
parameters (mass, charge, etc.) in f (r+) = 0, such that r+
approaches zero, we obtain (see Eq. (108))

1 − R(0)

12
r2+ + O

(
r3+
)

= 0, (12)

which implies that the horizon exists only for nonnegative
R(0). Meanwhile, the negative R is forbidden by the dom-
inant energy condition [22]. In other words, a RHB is of a
dS core rather than an AdS one around the center if R(0)

does not vanish. Incidentally, if such a RHB is immersed
in an AdS spacetime with the cosmological constant �̃, the
corresponding shape function becomes

f (r) = 1 − λ(r)

3
r2 − �̃

3
r2, �̃ < 0, (13)

which gives rise to the fact that λ(0) is larger than −�̃, oth-
erwise, no horizons exist.

3 Deformations of the first law of mechanics

SBHs, e.g., the Schwarzschild BH and Reissner–Nördstrom
(RN) BH, can be regarded as thermodynamic systems
because their mechanic laws have a resemblance to the ther-
modynamic ones. Nevertheless, this resemblance is broken in
RBHs. If RBHs are of the shape function of Eq. (1), we make
differentiation on the two sides of r+ = 2Mσ(r+, M, αi ) and
obtain

dr+ = 2
(
M
∑

i ∂αi σdαi + M∂MσdM + σdM
)

1 − 2M∂r+σ
. (14)

To construct the 1LM, by substituting Eq. (14) into
κdA/(8π), where A = 4πr2+ and κ is surface gravity at
r+, we give

κ

8π
dA = (1 − τ)dM +

∑

i

βidαi + �(αi ), (15)

where βi is the conjugate of αi , τ defined by

τ ≡ 1 − r+
2M

− M
∂σ(r+, M, αi )

∂M
(16)

means the deformation associated with mass M , and �(αi )

stands for the deformations associated with αi ’s. To restore
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the resemblance between the mechanic and thermodynamic
laws for RBHs, we have to remove reasonably those defor-
mations just mentioned. In the following, we analyze the
difficulties that we shall encounter and propose a possible
way to overcome them.

3.1 Deformations associated with M and αi

If one simply applies the traditional replacement for Eq. (15),

κ → 2πT, A → 4S, M → E, (17)

one will obtain the formula,

T dS = (1 − τ)dE +
∑

i

βidαi + �(αi ), (18)

which cannot be regarded as the 1TL of an isolated sys-
tem because of the deformations. In other words, either the
RBH is not an isolated system or the correspondence between
mechanic and thermodynamic variables Eq. (17) is not appro-
priate.

The usual attempt is to let the term τdM in Eq. (15) be
absorbed into the entropy of RBHs in order to restore the
resemblance between the mechanic and thermodynamic laws
for RBHs. To this end, we define the conditional entropy
describing the entropy of RBHs,

Sc ≡
∫ r+

rext

dM

T

=
∫ r+

rext

dA

4
+
∫ r+

rext

τ

T

(
dM

dr̃+

)

αi

dr̃+, (19)

where T is Hawking temperature and rext denotes the horizon
radius of extreme RBHs. In Eq. (19), the first term is just the
BHE, while the second one represents the deformation or
deviation from the BHE. We can prove that τ > 0 when
0 < σ ≤ 1, which implies that the deformation in Eq. (19)
is positive. Let us analyze two aspects.

• If σ does not contain M , our statement is obviously true
due to Eq. (11), that is, τ > 0 when 0 < σ ≤ 1.

• If σ depends on M explicitly, we make a dimensionless
rescaling by M for all variables, such as r+ being rescaled
to x+ ≡ r+/(2M), thus the shape function becomes

f = 1 − σ(x, α̃i )

x
, (20)

where α̃i is the dimensionless counterpart of αi which
is rescaled by a power function of M . Then repeating
the procedure that was described at the beginning of this

section, we obtain

τ = 1 − x+
[

1 − ∂σ(x+, α̃i )

∂x+

]
. (21)

Since the slope of tangent line of function σ(x, α̃i ) at the
outer horizon x+ is not greater than unit when 0 < σ ≤ 1
and x+ < 1, we verify the above statement.

If the BHE were replaced by the conditional entropy, we
would remove the deformation associated with M but we
would no longer maintain the linear relation between Sc and
the horizon area as a price. Furthermore, the deformation with
respect to αi remains. As a matter of fact, due to the lack of
resemblance between RBHs and the traditional thermody-
namic systems, the introduction of Sc does not work well in
removing the deformations associated with M and αi . More
importantly, Sc is not an independent variable because its
definition is subject to the 1TL.

3.2 Proposal for removing deformations

Starting with the classical action and observing the parti-
tion function at the zero-loop approximation, we find that
the Einstein–Hilbert action of RBHs with the shape function
Eq. (1) contributes one part of entropy and the Gibbons–
Hawking–York surface term provides the other part of con-
tributions to the entropy of RBHs, and that the combination
of the two contributions recovers the linear relation S ∝ A.
Let us give the derivation. The Einstein–Hilbert action takes
the form,

IEH = 2M − r+
[
1 + 2Mσ ′ (r+)

]

4T
, (22)

where σ converges to unit as r → ∞ and the prime denotes
the derivative with respect to the radial coordinate, and the
Gibbons–Hawking–York surface term is

IGHY = − M

2T
, (23)

where the flat spacetime is selected as background reference
[24]. As a result, the total action reads

Itot = IEH + IGHY = −πr2+ + β
r+
2

, β ≡ 1

T
, (24)

with which the entropy can be computed by

S = β
∂ Itot

∂β
− Itot = πr2+. (25)

That is to say, the semiclassical approach prefers that the
entropy of RBHs is A/4 rather than Sc. The same result can
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also be obtained by the Wald method [24]. The situation
of RBHs is similar to the case of dielectric in an external
electric field [25] where the variation of internal energy does
not alter the entropy of a dielectric system. That is to say, the
deformation associated with mass M does not depend on the
thermodynamic state of RBHs, thus it should not affect the
entropy of RBHs.

In conclusion, our proposal is to maintain the linear rela-
tion, S ∝ A, and simultaneously to remove the deformations
mentioned in the above subsection, that is, to establish the
resemblance between the mechanic and thermodynamic laws
for RBHs in terms of the pressure of Gliner vacuum [13,14]
which is dealt with as the pressure of RBHs. Thanks to the
pressure of the Gliner vacuum, the deformation associated
with M will be absorbed into the enthalpy or internal energy
and the deformation associated with αi will constitute a nat-
urally V –P term. In this way, all deformations disappear and
the other terms are well defined in Eq. (15), which gives rise
to a normal 1LT in the formulation.

We shall see that our proposal works well for some known
RBH models as examples. It is necessary for us to choose
models because we need the formulations of shape functions,
however, we shall see that our proposal is valid for all RBHs
with a single shape function depicted by Eq. (1).

4 Pressure and reconstruction of the first law of
mechanics

It is widely known that the negative cosmological constant
can be interpreted [26] as thermal pressure of BHs, while
the positive cosmological constant has a problem of ther-
mal equilibrium [27], which is caused by the existence of
a cosmological horizon. No matter whether the cosmologi-
cal constant is negative or positive, the essence of this idea
is to regard the pressure of vacuum as the pressure of BHs.
Nevertheless, a RBH has its own vacuum even though it is
not involved in an additional AdS (or dS) term in metric.
This seed goes back to Sakharov and Gliner [13,28], who re-
explained the vacuum as spacetime filled with vacuum. Such
a vacuum is currently dubbed the Gliner vacuum. It will be
our key to reconstruct the 1LM for RBHs. Next, we introduce
the pressure of the Gliner vacuum in the following models.

4.1 Model I

The first model is generated [16] by an anisotropic vacuum
and its shape function reads

f (r) = 1 − 2M

r
σ(r, M,�),

σ (r, M,�) = 1 − exp

(
− �

6M
r3
)

. (26)

Here � is a cosmological constant. The asymptotic flat-
ness at infinity requires that � be positive. Moreover, f (r)
approaches to de Sitter space, i.e., f (r) ∼ 1 − �r2/3 +
O(r5), as r → 0. When r becomes large, the term
exp[−�r3/(6M)] goes to zero, thus f (r) is asymptotic to
the Schwarzschild black hole. Since σ ≤ 1 for r ∈ R

+,
the outer horizon r+ is restricted by rext ≤ r+ ≤ 2M when
� > 9.28/(4M2). The extreme radius is rext ≈ 0.85 × 2M .
For � < 0, there is no real solution for f (r+) = 0. There-
fore, this model has no cosmological horizons, and thus does
not suffer from the problem of thermal equilibrium.

The Smarr formula was obtained from the total mass rep-
resented by the Komar integral which can be separated [29]
into two parts. The first part is a surface integral over the
horizon, and gives κA/(4π); while the second one, includ-
ing a deviation from the first law, is a volume integral with
one boundary at spatial infinity and the other at event hori-
zon [9,30]. Combining the two parts, one obtains the Smarr
formula,

M = κA

4π
+ εM + 1

2
ε�r3+, (27)

where ε ≡ exp
[−�r3+/(6M)

]
> 0. This Smarr formula

suggests an extended phase space. However, if one applied
P = −�/(8π) as thermal pressure [26], the first law of
mechanics would be deformed, i.e.,

κ

8π
dA = (1 − τ)dM − εV dP, (28)

where τ ≡ ε [1 − ln (ε)], and V ≡ 4πr3+/3 is the thermal
volume inside the horizon. Further, we find that the 1-form
κdA/(8π) + V dP does not satisfy the integrable condition,
i.e., it cannot be written as a total derivative of any functions.

By introducing the radial pressure of the Gliner vacuum
at the outer horizon,

P+ = Gr
r

8π

∣∣
∣∣
r=r+

= −ε
�

8π
, (29)

which is negative, as the pressure for Model I, where Gr
r

is r–r component of Einstein tensor Gμν , we note that the
last term of Eq. (27) is nothing else but −3V P+. As a result,
following the way in Ref. [20] and introducing enthalpy,

H = (1 − τ)M, (30)

we can reconstruct the 1LM from Eq. (28),

κ

8π
dA = dH − V dP+, (31)
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and write the corresponding 1LT,

dH = T dS + V dP+, (32)

with

T = κ

2π
, S = A

4
. (33)

The deformations of Eq. (28) are completely removed in
Eq. (31).

Alternatively, Eq. (31) can be rewritten as

κ

8π
dA = dU + P+dV, (34)

with total internal energy

U = (1 − ε)M = H − V P+, (35)

which suggests that the deviation from M in Eq. (27) should
be absorbed into internal energy. The other compelling reason
to think of (1 − ε)M as the energy is that it can be calculated
by the integration of energy density ρ over the whole space
inside the RBH, i.e.,

(1 − ε)M =
∫ r+

0

∫ 2π

0

∫ π

0

√−gρdrdφdθ = r+
2

, (36)

where ρ is defined by ρ = −G0
0/(8π) = � exp

[−�r3/(6
M)] /(8π) according to Einstein’s equation, Gμ

ν = 8πTμ
ν .

In other words, M is the total energy filled in the whole space
of the RBH, while εM is the energy outside the RBH.

Thus, the internal energy of the RBH should be the energy
enclosed in the event horizon, and the corresponding 1LT can
be cast as follows:

dU = T dS − P+dV, (37)

where every term is well-defined. As we expected, the resem-
blance between the mechanic and thermodynamic laws for
this RBH is restored, see Eqs. (31) and (32) or Eqs. (34) and
(37), and simultaneously the entropy is just the Bekenstein–
Hawking entropy obtained by path-integral and Wald’s
method [24].

4.2 Model II

Now let us turn to the second model, Model I immersed in
AdS spacetime, which can be established if the other cosmo-
logical constant �̃ is introduced into Model I,

f (r) = 1 − 2M

r
σ(r, M,�) − �̃

3
r2,

σ (r, M,�) = 1 − exp

(
− �

6M
r3
)

. (38)

There is no doubt that such a metric is a solution of Einstein’s
equations with a cosmological constant term [16]. The homo-
geneity of the universe remains unchanged if � is treated as a
local character, i.e., � dominates only the inside (and around
a certain range) of this RBH. Meanwhile, to bypass the prob-
lem of thermal equilibrium [31], we demand �̃ < 0. The
Smarr formula can be calculated in the same way as that
mentioned above,

M = κA

4π
+ εM + 1

2
ε�r3+ + 1

3
�̃r3+, (39)

where ε has the same form as that of Model I, but the energy
density now is calculated by ρ = −(G0

0 + �̃)/(8π) because
of Gμ

ν + �̃gμ
ν = 8πTμ

ν . We note that the deformations still
exit even if the AdS constant �̃ is regarded as pressure. If
we regard the radial pressure of the Gliner vacuum as the
pressure, we can obtain the same 1LM as Eq. (31), where the
enthalpy is defined in Eq. (30) and the Gliner pressure takes
the form,

P+ = − 1

8π

(
ε� + �̃

)
. (40)

The competition of two cosmological constants appears
in the pressure. As we have noted in Sect. 2, ε� should be
larger than −�̃, otherwise there will be no horizons. As a
result, the Gliner pressure in Model II is negative, and this
pressure is different from the one simply introduced from the
AdS cosmological constants.

4.3 Other models

The models in the above two subsections give a heuristic
evidence that a well-defined 1LM can be reconstructed with-
out any deformations and the traditional area law, S = A/4,
still holds when we introduce the radial pressure of Gliner
vacuum. It will be seen in this subsection that some other
models, including those with Gliner vacuum or vacuum-like
mediums, also support this statement.

(i) Model in Ref. [10]. This model is also called noncom-
mutative geometry inspired black hole. The shape function
takes the form,

f (r) = 1 − 4M√
π r

γ

(
3

2
,
r2

4θ

)
. (41)

The Smarr formula is

M = Aκ

4π
+ εM + Mr3+e− r2+

4θ

2
√

πθ3/2
, (42)
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where in the second term on the right-hand side ε equals

ε = 2√
π

�

(
3

2
,
r2+
4θ

)

, (43)

which coincides with the result given by Eq. (36); the third
term corresponds to −3V P+, and the radial pressure of the
Gliner vacuum at the outer horizon reads

P+ = − Me− r2+
4θ

8π3/2θ3/2 . (44)

We can also give the 1LM Eq. (31) with the enthalpy and
internal energy,

H = r+
2

+ r4+

12θr+ − 12
√

π θ3/2 exp

(
r2+
4θ

)
erf

(
r+

2
√

θ

) ,

(45a)

U = M

⎡

⎣erf

(
r+

2
√

θ

)
− r+e− r2+

4θ√
π

√
θ

⎤

⎦ = r+
2

. (45b)

(ii) Model in Ref. [32]. The shape function is

f (r) = 1 − 2Mr

r2 + 6M/(r�)
, (46)

where � is supposed to be positive. The Smarr formula has
the form,

M = κA

4π
+ 6M2

�r3+ + 6M
+ 18�M2r3+

(
�r3+ + 6M

)2 , (47)

where the second term on the right-hand side stands for εM
with ε = 6M/(6M + �r3+), which coincides with the result
given by Eq. (36); the third term corresponds to −3V P+, and
the radial pressure of the Gliner vacuum at the outer horizon
equals

P+ = − 9�M2

2π
(
6M + �r3+

)2 . (48)

The same procedure leads to the 1LM Eq. (31) with the
enthalpy and internal energy,

H = r2+
4M

, U = (1 − ε)M = r+
2

. (49)

(iii) Model in Ref. [33]. This model is usually called
Bardeen’s black hole. The shape function is

f (r) = 1 − 2Mr2

(
b2 + r2

)3/2 , (50)

where b is a magnetic charge. The Smarr formula then reads

M = Aκ

4π
+ M

[

1 − r3+
(
b2 + r2+

)3/2

]

+ 3b2Mr3+
(
b2 + r2+

)5/2
, (51)

where we have used ε = 1−r3+/
(
b2 + r2+

)3/2
. In this model,

the pressure of the Gliner vacuum takes the form,

P+ = − 3b2M

4π
(
b2 + r2+

)5/2
. (52)

In the 1LM the enthalpy and the internal energy equal

H = r3+
2
(
b2 + r2+

) , U = Mr3+(
b2 + r2+

)
3/2

= r+
2

. (53)

(iv) Model in Ref. [34]. This model is generated by a
vacuum-like medium. The shape function takes the form,

f (r) = 1 − 2M

r
exp

(
− q2

2Mr

)
, (54)

where q stands for electric charge. The Smarr formula is

M = Aκ

4π
+
(

1 − e
− q2

2Mr+
)
M + q2

2r+
e
− q2

2Mr+ , (55)

where ε and P+ read

ε = 1 − e
− q2

2Mr+ , P+ = − q2

8πr4+
e
− q2

2Mr+ . (56)

The enthalpy and internal energy are

H = r+
2

− r+
6

ln

(
2M

r+

)
, U = Me

− q2

2Mr+ = r+
2

. (57)

For the above four RBHs, we emphasize that their inter-
nal energies calculated by Eq. (36) equal r+/2. This is not a
coincidence. In fact, Eq. (36) gives exactly r+/2 for all spher-
ically symmetric RBHs with the shape function Eq. (1).

An interesting property noted in Ref. [20] is that the �-Q
term in Reissner–Nördstrom (RN) BHs can be absorbed into
V -P+ term, such that κdA/(8π) = dM − �dQ becomes
Eq. (31). This result implies that the Gliner vacuum provides
a unified treatment for both RBHs and SBHs in the establish-
ment of 1LM. In this way, the enthalpy and internal energy
of RN BHs take the form,

H = r+
2

− Q2

6r+
, U = r+

2
. (58)
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When Q → 0, the enthalpy of RN BHs reduces to that
of Schwarzschild BHs, H = r+/2 = M , which coin-
cides with its internal energy. For RN-AdS BHs, one has
H = U − Q2/(6r+) − �r3+/6 with U = r+/2. It is worth
emphasizing that the internal energies of SBHs, such as the
Schwarzschild BHs, RN BHs, and RN-AdS BHs we just
mentioned, are calculated from the 1TL but not from Eq. (36).
The reason is that the energy density of SBHs is singular or
vanishing at r = 0, which leads to divergence of Eq. (36)
or makes the integration trivial. In order to make Eq. (36)
suitable for SBHs, we introduce a cutoff of the radial coordi-
nate for the SBHs whose energy densities are singular, such
that the integration is regularized. Taking the RN BHs as an
example, the regularized integration of internal energy is

U =
∫ r+

r0

∫ 2π

0

∫ π

0

√−gρdrdφdθ, ρ = Q2

8πr4 , (59)

where r0 is the cutoff. Since U = r+/2, we can fix r0 =
Q2/(2M). Meanwhile, we can prove r0 < r−, i.e.,

Q2/(2M) < M −
√
M2 − Q2, (60)

which implies that the cutoff is located inside the inner hori-
zon. As to the Schwarzschild BHs, one can use the interior
metric of Schwarzschild BHs [35] and suppose that the radius
of the matter surface equals 2M , thus one can derive the
energy density,

ρ(r) = 3

32πM2

[
H
( r

2M

)
− H

( r

2M
− 1

)]
, (61)

where H(·) is the Heaviside function. The energy in the vol-
ume V = 4πr2+/3 takes the value U = r+/2 = M .

Now we summarize the features of the new pressure we
have proposed in Models I and II and also applied to the other
four models. At first, the Gliner pressure is not universal, i.e.,
it has different values for different models, which is similar
to the Hawking temperature that is horizon dependent. Next,
there are no conceptional contradictions between the pressure
and the vacuum or vacuum-like matter that generates RBHs,
i.e., it is widely known that the RBHs are generated by the
vacuum or vacuum-like matter with negative pressure rather
than the AdS constant with positive pressure. At last, we find
the following relation,

|P+| ∝ R(0), (62)

where R(0) can be explained as the average energy of a vac-
uum. This gives rise to our conclusion that the new pressure
we proposed, i.e., the radial pressure of the Gliner vacuum
originates from the average energy of the Gliner vacuum,
which is consistent with the case for SBHs where the pressure
comes simply from the average energy of (AdS) vacuum. In

summary, by introducing the Gliner pressure as the pressure
of RBHs we avoid such a contradiction that a RBH generated
by the matter (vacuum) with negative pressure has positive
pressure because this contradiction is physically unaccept-
able.

5 Ruppeiner geometry of regular black holes

Having the reconstructed 1LT, see Eq. (32), at hand, we apply
the Gibbs energy, G = H − T S, as the starting point and
calculate the line element by following Ref. [36],

dl2 = 1

kB

[
CP+
T 2 dT 2 + 1

T

(
∂V

∂P+

)

T
dP2+

]
, (63)

where kB is Boltzmann constant and the capacity at constant
pressure is defined as usual,

CP+ = T

(
∂S

∂T

)

P+
. (64)

Considering the metric with the shape function, Eq. (1), we
find

P+ = −Mσ ′(r+)

4πr2+
, T = 1

4πr+
− Mσ ′(r+)

2πr+
, (65)

and then obtain the equation of state by combining the above
two formulas,

P+ = T

2r+
− 1

8πr2+
, (66)

whose dependence on parameters, such as mass, charge, etc.,
is hidden in the outer horizon. Based on this equation of
state, we derive the thermodynamic curvature for a general
spherically symmetric RBH with Eq. (1) as its shape function,

R
2πT 2 = y

(√
1 − y − 3

)
− 4

(√
1 − y − 1

)
, (67)

where y defined by y ≡ 2P+/(πT 2) is dimensionless. Since
P+ < 0, we deduceR/T 2 < 0. That is to say, the interaction
of all spherical symmetric RBHs with a single shape function
is attractive from the microscopic perspective. Nevertheless,
it is known that RBHs are generated by matters which are of
repulsive interaction around the center, thus a natural problem
is how a repulsive matter forms an attractive black hole. Let
us give a quantitative analysis in terms of the strong energy
condition (SEC) of RBHs.
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6 Repulsive and attractive interactions inside and
outside regular black holes

Instead of analyzing the energy–momentum tensor of matter
Tμ

ν , we concentrate on the diagonalized Einstein tensor,

Gμ
ν = diag

{
−2Mσ ′

r2 ,−2Mσ ′

r2 ,−Mσ ′′

r
,−Mσ ′′

r

}
, (68)

because Gμ
ν and Tμ

ν are equivalent due to the Einstein equa-
tion Gμ

ν = 8πTμ
ν . The energy density ρ and pressures ρr

and ρ⊥ can then be obtained,

ρ = Mσ ′

4πr2 , pr = − Mσ ′

4πr2 , p⊥ = −Mσ ′′

8πr
. (69)

Moreover, in order to discuss the SEC, we introduce
parameter γ ,

γ ≡ ρ + pr + 2p⊥ = −Mσ ′′

4πr
, (70)

whose sign indicates the attractive (γ > 0) or repulsive
(γ < 0) interaction. This can be understood clearly from
Raychaudhuri’s equation [37]. Moreover, if the expansion,
rotation, and shear terms in Raychaudhuri’s equation are
neglected when compared with the variation of expansion,
one has

dξ

dτ
= −4πγ, (71)

where ξ denotes the expansion of geodesics and τ affine
parameter. Based on this equation, one can determine that
the gravity is attractive (γ > 0) or repulsive (γ < 0).

Further, since σ ∼ rn with n ≥ 3 as r → 0, see
Appendix B for the details, we can deduce that σ ′′ > 0 and
γ < 0 around r = 0, namely, the matters generating RBHs
are of repulsive interaction, which is also known as the viola-
tion of SEC [14]. Meanwhile, there is a special point arising
from σ ′′(r∗) = 0, where r∗ can be regarded as the point of
phase transitions. This point is special because the matters
generating RBHs are of repulsive interaction in the range of
0 < r < r∗, while they are of attractive interaction in the
range of r > r∗, i.e., r∗ separates the two phases of RBHs.

Now let us estimate the position of r∗. At first, we note
that Eq. (70) can be regarded as Newton’s equation of a one-
dimensional particle with mass M , i.e.,

−�′ = Mσ ′′, �′ ≡ 4πrγ, (72)

where � is “potential” and can be solved analytically,

� = −Mσ ′ + �0. (73)

Here �0 is an integration constant and � − �0 < 0 in
r ∈ (0,∞) because σ is a monotone increasing function of
r . Then, considering the asymptotic behaviors of σ at r = 0
and r → ∞, we obtain

lim
r→0

σ ′ = 0, lim
r→∞ σ ′ = 0, (74)

which implies that � is a potential well with one global min-
imum at r = r∗. The reason is that σ is a sigmoidal function
and thus its first derivative is bell shaped. In other words,
we have σ ′(r∗) > σ ′(rext) = 1/(2M), where σ ′(rext) =
1/(2M) comes from the combination of T (rext) = 0 and
f (rext) = 0, but we still cannot determine whether r∗ > rext

or r∗ < rext, where rext denotes the radius of extreme RBHs.
At last, we know that the temperature of a RBH is nonneg-
ative and vanishes at r = rext, from which we can deduce
T ′(rext) > 0, i.e.,

σ ′′ (rext) <
2σ ′ (rext)

rext
− 2σ (rext)

r2
ext

, (75)

then applying σ ′ (rext) = 1/(2M) and σ (rext) = rext/(2M)

to replace σ ′ (rext) and σ (rext), we arrive at

σ ′′ (rext) < 0, (76)

which helps us rule out r∗ > rext.
In summary, we have r∗ < rext, i.e., the point of phase

transitions should be located inside the extreme horizon,
which gives us an explanation of how a repulsive matter
forms an attractive black hole. The whole physical picture
should be like this: Along the radial coordinate, the matter
first shows the repulsive interaction around r = 0; when r
passes through the phase transition point r∗, the repulsive
interaction becomes the attractive one. Since thermodynam-
ics describes a BH as a quantum system from the outside, the
interaction of RBHs should reflect the attractive nature. Here
we have explained how a repulsive matter forms a black hole
with attractive interaction. In addition, we note from Eq. (99),

γ ∝ −
(
R − √

2E
)

, (77)

which implies that the sign of γ depends on the competi-
tion between two scalar curvatures R and E outside RBHs.
When R <

√
2E , the interaction is attractive, while R >√

2E means a repulsive interaction. The balance R = √
2E

corresponds to the phase transition point r∗.

7 Comparison with Reissner–Nordström black holes

To give a more intuitive illustration of the interaction struc-
ture of RBHs, we compare RBHs with RN BH by considering
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the full version of the Raychaudhuri equation because a RN
BH also has the attractive interaction outside its horizon and
repulsive one in the vicinity of r = 0 [38,39].

According to our formula Eq. (67) for the thermodynamic
curvature of a general RBH with the spherical symmetry,
a RN BH has a negative thermodynamic curvature as well,
i.e. an attractive interaction outside its horizon, but its local
structure of interaction in the vicinity of r = 0 is different
from that of RBHs.

To show the difference, we start with the ingoing radial
geodesics on a general spherically symmetric metric with
single shape function Eq. (1), the tangent vector field of those
geodesics is

uα = (−1, ur , 0, 0) , (78)

where

ur = − 1

f

√
2M

r
σ(r). (79)

The main element in the Raychaudhuri equation is a B-
tensor, which is defined as the gradient of the tangent vector,
Bαβ := ∇βuα , thus the expansion scalar ξ can be expressed
by the trace of Bαβ , ξ = Tr Bαβ . In our case, the trace reads

ξ = −
√

M

2r3σ

(
rσ ′ + 3σ

)
, (80)

and it is negative definite if σ is a monotonically non-
decreasing function of r . The general Raychaudhuri equation
in our notation is

dξ

dτ
= �(r), �(r) := −BαβB

αβ − 4πγ, (81)

where

BαβB
αβ = M

2r3σ

[
r2(σ ′)2 − 2rσσ ′ + 9σ 2

]
. (82)

For a RN BN, we write its σ(r) from Eq. (1),

σRN(r) = 1 − Q2

2Mr
, (83)

and then compute the corresponding �,

�RN(r) = −9�2 + 2�Q2 + Q4

4�r4 , (84)

where � = 2Mr − Q2. When expanding it around r = 0,

�RN(r) ∼ 2Q2

r4 + O

(
1

r3

)
, (85)

we can see that it is divergent as r approaches to zero. More-
over, We note that this quantity is not positive definite and
there exist two phases,

�RN < 0, when r > Q2/(2M), (86a)

�RN > 0, when r < Q2/(2M), (86b)

where the critical point r0 = Q2/(2M) is located inside the
inner horizon because of Eq. (60). In other words, the varia-
tion of expansion scalar with respect to the affine parameter
is negative in the first phase Eq. (86a), while it becomes pos-
itive when the geodesics cross the critical point r0 into the
second phase Eq. (86b). Finally, the SEC of RN BHs holds
in the whole domain,

γRN = Q2

4πr4 > 0. (87)

It is consistent with the result obtained from the weak-field
approximation [39], i.e., the RN BH reveals a repulsive inter-
action in the vicinity of r = 0 although its SEC holds every-
where.

The situation of RBHs is different. Let us take the Bardeen
BH as an example. Its � is strictly negative, i.e., it has only
one phase compared with the RN BH,

�B = −3Mr2
(
10b2 + 3r2

)

2
(
b2 + r2

)7/2 < 0, (88)

and the variation of expansion scalar with respect to the affine
parameter vanishes at the center of Bardeen BHs, which is
obvious from the expansion around r = 0,

�B ∼ −15Mr2

b5
+ O

(
r3
)

. (89)

In fact, for all RBHs, if σ has the power expansion like
Eq. (108) at r = 0, then one has

� = 4a1Mr +
(

10a2 − a2
1

2a0

)

Mr2 + O
(
r3
)

, (90)

where ai ’s are abbreviate notations of the coefficients of
Eq. (108). In other words, the variation of expansion scalar
is vanishing at r = 0. Oppositely, the variation of expansion
scalar for BHs with a singularity at their centers is always
divergent.

For the Bardeen BH, we have

γB = 3Mb2
(
3r2 − 2b2

)

4π
(
b2 + r2

)7/2 , (91)

which means that the SEC of Bardeen BHs does not hold
when r <

√
2/3 b. This is different from the situation of
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RN BHs, which is obvious from the comparison between
Eqs. (91) and (87).

8 Summary

Starting from the idea of the Gliner vacuum, we apply the
approach given in Ref. [20] to remove the deformations in
the 1LM for RBHs. In addition, we provide a possible expla-
nation for the deformation of the mass term. The new 1LM
redisplays the resemblance between RBHs and traditional
thermodynamic systems. In other words, all the variables
in the new 1LM have their thermodynamic counterparts, in
particular, the area law, S ∝ A, is recovered. Based on the
reconstructed 1LM, we give a self-consistent theory of Rup-
peiner geometry, and show that all RBHs with the spheri-
cal symmetry and one single shape function should have an
attractive interaction in the range of r ≥ rext > r∗ from
the microscopic perspective. This shows that our analyses
of interactions inside and outside RBHs are consistent with
the Ruppeiner thermodynamic geometry we established in
Sect. 5. Furthermore, the new 1LM offers a universal treat-
ment for both RBHs and SBHs. However, the local prop-
erties of the interaction structures in the vicinity of r = 0
between RBHs and SBHs are different. When r goes to zero,
the expansion scalar of RBHs maintains unchanged due to no
singularities while that of SBHs blows up. Finally, the expla-
nation is given on how a repulsive matter forms a RBH with
an attractive interaction. Our result may shed light on solving
the related problems in superradiance and area spectrum for
RBHs.
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Appendix A: The representation of the shape function via
curvature invariants

We start with the curvature invariants that are expressed [34]
by the shape function, Eq. (1),

R = 2M

r2

(
2σ ′ + rσ ′′) , (92)

R2 = 2M2

r4

[
4(σ ′)2 + r2(σ ′′)2

]
, (93)

K = 4M2

r6

{
4
[
3σ 2 − 4rσσ ′ + 2r2(σ ′)2

]

+4r2 (σ − rσ ′) σ ′′ + r4(σ ′′)2
}
. (94)

Although these equations are derived from a RBH, they
are valid for all spherically symmetric BHs with a single
shape function. We note that R, R2, and K contain σ and its
first and second derivatives with respect to r . Thus, we can
solve these three algebraic equations and express σ and its
derivatives in terms of the curvature invariants. By ignoring
redundant roots,4 we obtain

σ = r3

24M

(
R ± 2

√
3K + R2 − 6R2 + 3

√
4R2 − R2

)
,

σ ′ = r2

8M

(
R +

√
4R2 − R2

)
,

σ ′′ = r

4M

(
R −

√
4R2 − R2

)
, (95)

where the different signs in σ correspond to two regions
separated by the line r2σ ′′ + 6σ = 4rσ ′ in the parameter
space. The plus sign depicts the region r2σ ′′ + 6σ > 4rσ ′,
while the minus one r2σ ′′ + 6σ < 4rσ ′ is more closer to the
center. On the other side, the Riemann tensor breaks down
into three parts in terms of the Ricci decomposition [21,40],
Rμνρσ = Wμνρσ +Sμνρσ +Eμνρσ , where Wμνρσ is traceless
part called the Weyl tensor, Sμνρσ is scalar part, and Eμνρσ

is semi-traceless part. Moreover, we have the following rela-
tionships,

E ≡ Eμνρσ E
μνρσ = 2R2 − R2

2
,

W ≡ WμνρσW
μνρσ = K − 2R2 + R2

3
. (96)

4 There are four roots originally, two of them are removed by the weak
or null energy condition, rσ ′′ ≤ 2σ ′.
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Then applying these relations to replace R2 and K in
Eq. (95), we obtain

σ = r3

24M

(
R + 3

√
2E ± 2

√
3W

)
, (97)

σ ′ = r2

8M

(
R + √

2E
)

, (98)

σ ′′ = r

4M

(
R − √

2E
)

. (99)

We can also express the Hawking temperature and Gliner
pressure in terms of the curvature invariants,

T = r

24π

(√
3W − R

) ∣∣∣
r=r+

,

P+ = − 1

32π

(√
2E + R

) ∣∣∣
r=r+

, (100)

where the case of the minus sign before
√

3W in T has been
ruled out due to the positivity of temperature. The zero point
of T as a function of r+ corresponds to the solution of the
algebraic equation

√
3W = R. In other words,

√
3W = R

signifies the ground state of BH configurations.

Appendix B: The asymptotic behavior of σ around r = 0

Using Eq. (1), we compute the scalar curvature,

R(r) = 2M
(
2σ ′ + rσ ′′)

r2 . (101)

If R(r) is finite around r = 0, its Taylor expansion has the
form,

R(r) =
∞∑

n=0

rn R(n)(0)

n! . (102)

By solving the ordinary differential equation, Eq. (101),
and using the above Taylor expansion, we obtain a general
solution for σ ,

σ̃ = c1 + c2

r
+ r3

∞∑

n=0

rn R(n)(0)

2M(n + 3)(n + 4)n! , (103)

where c1 and c2 are two integration constants. Substituting
Eq. (103) into the Kretschmann scalar, we can separate the
scalar into two parts, where one is finite and the other diver-
gent at r = 0,

K = K fin + K div, (104)

with

K fin = 4
∞∑

n=0

rn R(n)(0)

(n + 3)(n + 4)n!

×
∞∑

m=0

(
m2 + 7m + 6

)
rm R(m)(0)

(m + 3)(m + 4)m!

+4
∞∑

m=0

m(2m + 3)rm R(m)(0)

(m + 3)(m + 4)m!

×
∞∑

n=0

nrn R(n)(0)

(n + 3)(n + 4)n!

+r2

( ∞∑

n=0

(n − 1)nrn R(n)(0)

(n + 3)(n + 4)n!

)2

, (105)

and

K div = 8c2M

r3

∞∑

n=0

n(n + 1)rn R(n)(0)

(n + 3)(n + 4)n!

+8c1M

r4

∞∑

n=0

n(3n + 5)rn R(n)(0)

(n + 3)(n + 4)n!

+192c1c2M2

r7 + 48c2
2M

2

r6 + 224c2
1M

2

r8 . (106)

A regular black hole implies K div = 0, i.e., c1 = 0 = c2. As a
result, we derive the asymptotic behavior of the Kretschmann
scalar,

K = K fin ∼ [R(0)]2

6
+ R(0)R′(0)

3
r + O(r2), (107)

and the asymptotic behavior of σ around r = 0,

σ = r3
∞∑

n=0

rn R(n)(0)

2M(n + 3)(n + 4)n! ∼ r3R(0)

24M

+r4R′(0)

40M
+ O(r5). (108)
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