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Abstract: A notable feature of systems with non-Hermitian skin effects is the sensitivity to

boundary conditions. In this work, we introduce one type of boundary condition provided

by a coupling impurity. We consider a system where a two-level system as an impurity

couples to a nonreciprocal Su–Schrieffer–Heeger chain under periodic boundary conditions

at two points with asymmetric couplings. We first study the spectrum of the system and

find that asymmetric couplings lead to topological phase transitions. Meanwhile, a striking

feature is that the coupling impurity can act as an effective boundary, and asymmetric

couplings can also induce a flexibly adjusted zero mode. It is localized at one of the

two effective boundaries or both of them by tuning coupling strengths. Moreover, we

uncover three types of localization behaviors of eigenstates for this non-Hermitian impurity

system with on-site disorder. These results corroborate the potential for control of a class of

non-Hermitian systems with coupling impurities.

Keywords: impurity; non-Hermitian system; quantum phase transition

1. Introduction

In recent years, non-Hermitian physics has attracted a plethora of attention, un-

covering a wide range of phenomena and applications in both classical and quantum

systems [1–37]. Non-Hermitian systems also exhibit some markedly different proper-

ties with no conventional Hermitian counterparts, such as biorthogonal eigenstates [2],

exceptional points [5,6], and the breakdown of the conventional bulk–boundary correspon-

dence [15–18].

Another unique feature of the non-Hermitian system is the accumulation of all eigen-

states at the boundaries, which is a phenomenon dubbed the “non-Hermitian skin ef-

fect” [17]. A notable feature of systems with non-Hermitian skin effects is that the properties

of both spectrum and eigenstates may be dramatically changed by turning the boundary

conditions from periodic to open ones. In between, an impurity introduced into the system

could also play the role of the boundary [38–45]. A striking feature of the impurity model

is that boundary impurities can generate new types of steady-state localization behavior

characterized by scale-free accumulation of eigenstates [38]. Due to the fact that the energy

shift of the system can be extraordinarily changed by adding a vanishingly small boundary

impurity, this kind of system can also be harnessed to devise sensors in an experimentally

realistic setting [46–49].
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Recently, simulations of topological systems using superconducting quantum circuits

have attracted a great deal of attention [50–53]. On the other hand, superconducting qubits

acting as giant artificial atoms have played an important role in superconducting quantum

circuits. They can be nonlocally coupled to a waveguide at multiple points [54–59]. It was

observed that the giant atom can act as an effective boundary and induce chiral zero modes

for the waveguide in Hermitian topological systems [58,59].

These studies also further stimulate a new research direction for the interaction be-

tween the non-Hermitian topological system and quantum emitters [60–64]. In Ref. [63], the

researchers found that giant emitters can exhibit essentially different dynamical behaviors

by turning the relative strengths of the nonlocal couplings, and a series of unconventional

quantum optical phenomena have been unveiled, such as nonreciprocal decoherence-free

interaction. In Ref. [64], focusing on spectrum structures and the localization of eigenstates

for the system that a giant atom as an impurity couples to a non-Hermitian topological

chain with the same nonlocal coupling strengths, the authors mainly found that the impu-

rity can induce asymmetric zero modes. This begs the question that what new physical

phenomena will emerge in this type of systems by leveraging the relative strengths of the

nonlocal couplings.

In this work, we focus on a system composed of a two-level system as an impurity

and a nonreciprocal Su–Schrieffer–Heeger (SSH) chain with asymmetric couplings. We first

study the fundamental properties of the spectrum and find that asymmetric couplings can

cause topological phase transitions in an A− B coupling case. As two coupling strengths gn

and gm become more and more different, it seems that the zero mode will always exist. We

further reveal the localization behaviors of zero mode for the system. It can be localized at

one of the two effective boundaries or both of them depending on the relative strengths of

the nonlocal couplings. We also show three types of localization behaviors of all eigenstates

for systems with on-site disorder in the end.

The paper is organized as follows. In Section 2, we introduce a model to describe

a system composed of a two-level system and a nonreciprocal SSH chain. In Section 3,

firstly, we show the spectrum of the system, and we give the reason for the occurrence

of topological phase transitions. Secondly, we derive analytical expressions and show

numerical simulations for the zero modes. In the end, we introduce the mean center of

mass (mcom) to describe the localization feature of all eigenstates with on-site disorder. In

Section 4, we summarize our results.

2. Model and Methods

We consider a nonreciprocal SSH chain with the periodic boundary conditions (PBCs)

in real space. The non-Hermitian Hamiltonian associated with this chain can be written

as follows:

HSSH =
L

∑
l=1

[(t1 + γ)Ĉ†
A,lĈB,l + (t1 − γ)Ĉ†

B,lĈA,l

+ t2Ĉ†
A,l+1ĈB,l + t2Ĉ†

B,lĈA,l+1],

(1)

where the chain is composed of L unit cells, with each containing two sites. Ĉ†
A(B),l and

ĈA(B),l are the creation and annihilation operators for the sublattice site A(B) at the l-th

unit cell. The parameters t1 ± γ and t2 are intracell and intercell couplings. The asymmetry

of hopping amplitudes (γ ̸= 0) leads to the non-Hermiticity of the system.

We here focus on analyzing what occurs when a two-level impurity couples to a

nonreciprocal SSH chain with asymmetric coupling, as schematically shown in Figure 1.

Hence, we introduce a two-level impurity coupling at two points to a nonreciprocal SSH

chain via A − B couplings [Figure 1a] or A − A couplings [Figure 1b], where nonlocal
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coupling points locate at n-th lattice site and m-th lattice site. The system with B − B

couplings and system with A − A couplings are very similar, so we do not study the

case with B − B couplings. Without loss of generality, we hereafter assume n < m. The

interaction Hamiltonian between the impurity and the nonreciprocal SSH chain is given as

HI,AB = gnσ+ĈA,n + gmσ+ĈB,m + H.c.,

HI,AA = gnσ+ĈA,n + gmσ+ĈA,m + H.c.,
(2)

where gn(gm) is the coupling strength between the impurity and the n-th (m-th) site of the

nonreciprocal SSH chain. σ+ = |e⟩⟨g| is the usual pseudospin ladder operator, and |g⟩
and |e⟩ are the ground state and the excited state of the impurity, respectively. The total

Hamiltonians of the atom–chain coupling can be expressed as

HAB = HSSH + HI,AB, (3a)

HAA = HSSH + HI,AA. (3b)

We have assumed that the impurity is resonant with the energy band center, i.e., frequency

of impurity is zero. For the particularly experimental scheme, adding a constant imaginary

shift to all sites corresponding to a passive setting with loss only [65], this correction does

not affect the localization of eigenstates or the existence of boundary modes.

Figure 1. Schematicsof the nonreciprocal SSH chain coupled to an impurity via either A − B coupling

(a) or A − A coupling (b) with asymmetric coupling strengths (gm ̸= gn).

This model can be observed in a range of experimental settings, including electrical

circuits [33,49] and photonic systems [46]. For example, there are 2L nodes in our designed

non-Hermitian topological circuit. The intercell coupling of the circuit is fulfilled by a

capacitor. The nonreciprocal coupling can be achieved through connecting capacitors in

series with a voltage follower. Due to the virtual open and virtual short circuit conditions

between the inverting input and noninverting input pins, the current at the one side of

the capacitor is blocked, while it remains uninfluenced at the other side. Impurity can be

realized by using Josephson junctions [66] or just a node in the circuit [49]. The coupling

between the impurity and chain is achieved by connecting a capacitor. And then the

variation of coupling strength can be achieved by adjusting the capacitance. In addition,

this model can also be thought of as an array of coupled optical ring resonators [46]. The

asymmetric coupling has been experimentally achieved by introducing two scatterers into
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the mode volume of a ring resonator. The intercell coupling may be achieved by chiral

couplers. The coupling between impurity and chain may be represented by any optically

impenetrable region imposing a tunneling barrier. The variation of coupling strength then

only needs to change the refractive index of the impenetrable medium.

3. Results

3.1. Spectrum and Topological Phase Transition

To illustrate the role of coupling impurity in the SSH chain. In Figure 2a, we first show

the spectrum of pure SSH chain under periodic boundary conditions in the complex plane

as a contrast. We also show spectrum of the system with A − B couplings (3a) and A − A

couplings (3b) in Figure 2b,c, respectively. Note that an obvious feature is that the impurity

can induce zero modes. This implies that the impurity can act as an effective boundary for

a nonreciprocal SSH chain. Except for the zero modes, what are also called middle bound

states, there are other eigenvalues outside the continuous bands. According to the value of

the real part of the spectrum as a comparison, we call the corresponding eigenstates upper

and lower bound states, respectively. The feature of these bound states will be described

in the next section. Then, we study the spectrum feature of systems with A − B couplings

and A − A couplings in detail.

Figure 2. (a) Spectrum of pure SSH chain (1) in complex plane. (b) Spectrum of the system with A − B

couplings (3a) in complex plane. (c) Spectrum of the system with A − A couplings (3b) in complex

plane. The results were obtained by numerically solving the Schödinger equation. The parameters

were set as L = 50, m = 26, n = 25, gn = 0.5, gm = 1, t1 = 0.2, t2 = 1, and γ = 0.5.

Firstly, for the A − B coupling case (3a), we show the absolute value of the spectrum as

a function of t1 in Figure 3. The results were obtained by numerically solving the Schödinger

equation. The asymmetric coupling strengths were set as gm = 1, gn = 0.5, 0.1, 0.01, and

0.001 for (a), (b), (c), and (d), respectively. In fact, the spectrum feature for the system with

the same coupling strengths (gn = gm = 1) has been studied in Ref. [64] in detail. A main

finding is the condition for the emergence of the zero mode, i.e., t1 ∈ [−t2 + γ, t2 − γ]. In

Figure 3a, one can see that the condition for the emergence of the zero mode in this case

(gn = 0.5, gm = 1) is identical to the result with the same coupling strengths (gn = gm = 1).

However, this condition no longer holds as the two coupling strengths gn and gm become

more and more different, as shown in Figure 3b–d. A striking feature is that when the

coupling strength gn = 0.001 is much smaller than gm = 1, it seems that zero mode will

always exist and not change with the parameters t1, as shown in Figure 3d. This implies

that asymmetric couplings can cause topological phase transitions.
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Figure 3. Absolute value of the spectrum as a function of t1 with A − B coupling. The results are

obtained by numerically solve the Schödinger equation. gn = 0.5, 0.1, 0.01, and 0.001 for (a), (b), (c),

and (d), respectively. The other parameters were set as L = 50, m = 26, n = 25, gm = 1, t2 = 1, and

γ = 0.5.

In order to derive a condition for the emergence of the zero mode and show why

asymmetric couplings cause topological phase transitions, we first give the Hamiltonian of

the system in the momentum space via Fourier transformation described by

HAB(k) =HSSH(k) +HI,AB(k)

=∑
k

[[(t1 + γ) + t2e−ik]Ĉ†
A,kĈB,k + [(t1 − γ) + t2eik]Ĉ†

B,kĈA,k]

+
1√
L

∑
k

[σ+(gnĈA,keikn + gmĈB,keikm) + H.c. ],

(4)

where Ĉ†
A(B),k and ĈA(B),k denote the creation and annihilation operators for the sublattice

site A(B) at the k-th unit cell in the momentum space. In the single-excitation subspace, the

eigenstates of the Hamiltonian HAB(k) can be written as follows:

|Ψ⟩ = Ue|e, G⟩+ ∑
k

αkĈ
†
A,k|g, G⟩+ ∑

k

βkĈ
†
B,k|g, G⟩, (5)

where |G⟩ is the ground state of the SSH chain (vacuum state), and |e(g), G⟩ = |e(g)⟩|G⟩ can

be used to form a complete base for the whole system. αk(βk) denotes the amplitude for the

sublattice site A(B) at the k-th unit cell, and Ue denotes the amplitude at site of the impurity.

With the time-independent Schrödinger equation HAB(k)|ψ⟩ = E|ψ⟩, the transcendental

equation for the energy E can be expressed as (See Appendix A for analytical results)

E =
(g2

n + g2
m)

L ∑
k

E

E2 − ω2
k

+
2gngm

L ∑
k

(t1 cos[k(m − n)]

− γ sin[k(m − n)] + t2 cos[k(m − n + 1)])/(E2 − ω2
k)

(6)

with

ωk =
√

(t1 + γ + t2e−ik)(t1 − γ + t2eik). (7)

Setting E = 0, we can obtain a condition for the emergence of the zero mode, i.e.,

t1 ∈ [−t2 + γ, t2 − γ]. (See Appendix A for analytical results and Figure 3a for numeri-

cal simulations). This confirms that the condition for the emergence of the zero mode with
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asymmetric couplings is identical to the result with the same coupling strengths. However,

as gn → 0 (gm → 0 is similar), Equation (6) can be simplified as

E =
g2

m

L ∑
k

E

E2 − ω2
k

. (8)

Evidently, E = 0 is always the solution of the Equation (8), which implies that there is

always a zero mode in the systems. Hence, the topological phase transitions occur as

two coupling strengths gn and gm become more and more different (see Figure 3a–d for

numerical simulations). This can also be understood in terms of symmetry. The matrix

form of the Hamiltonian HAB(k) in the local site basis satisfies

HAB(k) =





























0 t1 + γ + t2e−ik1 0 0 . . .
gne−ik1n

√
L

t1 − γ + t2eik1 0 0 0 . . .
gme−ik1m

√
L

0 0 0 t1 + γ + t2e−ik2 . . .
gne−ik2n

√
L

0 0 t1 − γ + t2eik2 0 . . .
gme−ik2m

√
L

. . . . . . . . . . . . . . . . . .
gneik1n
√

L

gmeik1m
√

L

gneik2n
√

L

gmeik2m
√

L
. . . 0





























, (9)

where the system has 2L lattice sites and one site for impurity. This matrix [Hamiltonian

HAB(k)] is no longer a block diagonal matric, since the impurity couples to the SSH chain.

Hence, the Hamiltonian cannot be written as the form of d·σ as usual. As is known to all, a

pure nonreciprocal SSH model has a chiral symmetry. The spectrum of a chiral symmetric

Hamiltonian is symmetric. For any state with energy E, there is a chiral symmetric partner

with energy −E. While this model with A − B couplings does not preserve chiral symmetry.

However, when gn = 0 (gm = 0 is similar), this system can still preserve a chiral symmetry

Γ−1HAB(k)Γ = −HAA(k) with

Γ =





















1 0 0 0 . . . 0

0 −1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1





















. (10)

For this system (gn = 0) with an odd number of site basis, the zero mode obviously

always exists.

Physically speaking, for gn = 0 (or gm = 0), this is like a small atom coupled to a

nonreciprocal SSH chain. Here, for the qubit coupled to a waveguide at one point, we call

it “small atom”. In this case, except for the sublattice site B at the m-th unit cell coupled to

the atom as an effective boundary, the other parts of the SSH chain are similar to a chain

with a A site at both ends. For this kind of boundary condition, there is always a zero mode

as usual. In a word, when gn (or gm) goes from a finite value to zero, topological phase

transitions will be bound to happen.

Next, consider a system (3b) consisting of an impurity coupled to a nonreciprocal

SSH chain via A − A coupling. In Figure 4, we show absolute value of the spectrum as

a function of t1 with the same parameters as used in Figure 3. Note that there is always

a zero mode in the gap for the A − A coupling, and this result does not change with the

coupling strength. The Hamiltonian of the system in momentum space via the Fourier

transformation can be described by
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HAA(k) =HSSH(k) +HI,AA(k)

=∑
k

[[(t1 + γ) + t2e−ik]Ĉ†
A,kĈB,k + [(t1 − γ) + t2eik]Ĉ†

B,kĈA,k]

+
1√
L

∑
k

[|e⟩⟨g|ĈA,k

(

gneikn + gmeikm
)

+ H.c.].
(11)

Similarly, the matrix form of Hamiltonian (3b) in the momentum space can be expressed as

HAA(k) =

























0 t1 + γ + t2e−ik1 0 0 . . .
gne−ik1n+gme−ik1m

√
L

t1 − γ + t2eik1 0 0 0 . . . 0

0 0 0 t1 + γ + t2e−ik2 . . .
gne−ik2n+gme−ik2m

√
L

0 0 t1 − γ + t2eik2 0 . . . 0

. . . . . . . . . . . . . . . . . .
gne−ik1n+gme−ik1m

√
L

0
gne−ik2n+gme−ik2m

√
L

0 . . . 0

























. (12)

The corresponding transcendental equation for energy E satisfies (See Appendix A for

analytical results)

E =
1

L ∑
k

(

g2
n + g2

m + 2gngm cos[k(m − n)])

E2 − ω2
k

)

. (13)

Obviously, E = 0 is always the solution of Equation (13), which can be seen in the numerical

spectra of Hamiltonian HAA (Figure 3a–d). Fortunately, this system always has a chiral

symmetry σ−1HAA(k)σ = −HAA(k) with

σ =





















1 0 0 0 . . . 0

0 −1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −1





















. (14)

Even after setting gn = 0 or gm = 0, we find that chiral symmetry will not vanish. This

further indicates that zero mode will always exist.

Figure 4. Absolute value of the spectrum as a function of t1 with A − A coupling. The results were

obtained by numerically solving the Schödinger equation. gn = 0.5, 0.1, 0.01, and 0.001 for (a), (b),

(c), and (d), respectively. The other parameters were set as L = 50, m = 26, n = 25, gm = 1, t2 = 1,

and γ = 0.5.
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3.2. Localization of Zero Mode

In the previous section, we mainly found that asymmetric couplings can cause topo-

logical phase transitions for A − B couplings. To illustrate this result again, we show the

relationship between the localization of middle bound states and asymmetric couplings.

To begin with, we define the population as modular square of the wave function |ΨA(B)|2
in real space, and the populations of middle bound states for the system (3a) with A − B

coupling with different parameters gn are shown in Figure 5a–d. Here, the parameters are

t1 = 1, gn = 0.5, 0.3, 0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other parameters

are the same as used in Figure 3a–d. One can see that middle bound states have no obvious

symmetry for spatial distribution when gn = 0.5, as shown in Figure 5a. However, the

spatial distribution of the bound state gradually becomes an exponential decay (type of

zero mode) as gn almost vanishes from a finite value, as shown in Figure 5d. This visually

indicates that reducing one of the coupling strength can induce a zero mode.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0 50 100
0

0.1

0.2

0.3

0.4

0 50 100
0

0.1

0.2

0.3

0.4

0 50 100
0

0.1

0.2

0.3

0.4

Figure 5. Populations of the middle bound states for the system (3a) with A − B coupling as a

function of site N. Here gn = 0.5, 0.3, 0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other

parameters were chosen as L = 50, m = 26, n = 25, gm = 1, t1 = 1, t2 = 1, and γ = 0.5. The site of

impurity was set to N = 2L + 1 = 101.

Next, we are interested in analyzing localization of zero mode for the system wherein

emitters couple to a nonreciprocal SSH chain. The populations of the zero mode as a

function of site N with different parameters are shown in Figure 6 for A − B coupling. The

population on the impurity was set to N = 2L + 1 = 101. The bars represent numerical

results and the empty circles represent the analytical results. The corresponding coefficients

of wave function are as follows (See Appendix B for analytical results):

Bl/Ue =







gn
t1+γ

(

− t1+γ
t2

)(n−l)
, (l < n),

0, (l ≥ n),

Al/Ue =







0, (l ≤ m),

gm
t1−γ

(

− t1−γ
t2

)(l−m)
, (l > m),

(15)

where Bl (Al ) denotes the amplitude in the B(A) sublattice site of the l-th unit cell.

Equation (15) shows that amplitudes in the wave function occupy B(A) lattice sites on

the left (right) side of the impurity, and they satisfy exponential decay. Assuming l = n − 1,

we have |Bn−1/Ue| = |gn/t2|, and assuming l = m + 1, we have |Am+1/Ue| = |gm/t2|.
This means that the zero modes mainly occupies B sites on the left side of the impurity

when gn ≫ gm and occupies the A sites on the right side of the impurity when gm ≫ gn.

This has been clearly shown in Figure 6a–d. In addition, with the increase in gn(m)/t2, the
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populations of zero mode on the impurity are gradually suppressed. This means that the

spatial distribution of zero modes can be regulated by coupling strengths.

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.1

0.2

0.3

0.4

0.5

Figure 6. Populations of zero mode for the system (3a) with A − B coupling as a function of site N.

gn = 1, 0.5, 0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other parameters were chosen

as L = 50, m = 40, n = 20, gm = 1, t1 = 0.2, t2 = 1, and γ = 0.5. The site of impurity was set to

N = 2L + 1 = 101.

For the system with A− A coupling, zero modes always exist regardless of the value of

parameters. Simple algebra (see Appendix B for analytical results) shows that amplitudes

of zero modes take Al = 0, and

Bl/Ue =



















gn
t1+γ

(

−t1−γ
t2

)(n−l)
+ gm

t1+γ

(

−t1−γ
t2

)(m−l)
, (l < n),

gm
t1+γ

(

−t1−γ
t2

)(m−l)
, (n ≤ l < m),

0, (m ≤ l),

(16)

with −t2 + γ < t1 < t2 − γ and

Bl/Ue =



















0, (l < n),

−gn
t1+γ

(

−t2
t1+γ

)l−n
, (n ≤ l < m),

−gn
t1+γ

(

−t2
t1+γ

)l−n
+ −gm

t1+γ

(

−t2
t1+γ

)l−m
, (m ≤ l),

(17)

with t1 > t2 + γ or t1 < −t2 − γ. For −t2 − γ < t1 < −t2 + γ and −t2 − γ < t1 < −t2 + γ,

the analytical results of the zero mode are not given. Similarly, the spatial distribution of

the zero modes can also be changed by tuning the coupling strengths gm and gn, as shown

in Figure 7. It is clear that the analytical results (empty circles) given by Equation (16) are

in good agreement with the numerical results (bars).

In this section, we mainly show that the localization of the zero modes is regulated

by tuning the coupling strengths gm and gn for A − B couplings and A − A couplings. A

notable feature is that the localization of the zero modes can be flexibly adjusted; as well,

nonreciprocal hopping and asymmetric nonlocal couplings play a decisive role in systems.

Concretely speaking, the impurity is nonlocally coupled to an SSH chain at two points

and acts as two effective boundaries for the chain. Zero modes can localize at one of the

two effective boundaries or both of them by tuning the coupling strengths gm and gn.

While for a nonreciprocal SSH chain, zero modes only localize at one of the two boundaries

due to the non-Hermitian skin effect. For Hermitian systems, zero modes localize at both

the two boundaries. It is obviously seen that the localization of the the zero modes of

these two systems is relatively fixed. In short, we find a zero mode that can be regulated
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flexibly. In addition, except for the zero modes in the gap, there are other eigenvalues

outside the continuous bands, as shown in Figure 3a. We call the corresponding eigenstates

upper bound states. We find that these bound states can also be regulated by the coupling

strengths gm and gn. See Appendix C for the analytical results and numerical simulations.
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Figure 7. Population of zero mode for the system (3a) with A − A coupling as a function of site N.

gn = 1, 0.5, 0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other parameters were chosen

as L = 50, m = 40, n = 20, gm = 1, t1 = 0.2, t2 = 1, and γ = 0.5. The site of impurity was set to

N = 2L + 1 = 101.

3.3. Systems with Disorder

We further explore the localization of all eigenstates for systems in the A − A coupling

case (A − B couplings are similar) with on-site disorder. To this end, a Hamiltonian with

disorder reads as

Hdis = H′
SSH + HI,AA, (18)

with

H′
SSH =

L

∑
l=1

[(t1 + γ1)Ĉ
†
A,lĈB,l + (t1 − γ1)Ĉ

†
B,lĈA,l

+ t2Ĉ†
A,l+1ĈB,l + t2Ĉ†

B,lĈA,l+1

+ VlĈ
†
A,lĈA,l + VlĈ

†
B,lĈB,l ]

(19)

where Vl denotes an on-site disorder potential. Here, we set Vl = SRl , where S is the

disorder strength, and Rl is a normal random number.

This localization behavior of all eigenstates can be easily quantified by the mean center

of mass (mcom) of the amplitude squared of all eigenvstates |ΨR,n⟩ averaged over many

disorder realizations as follows:

mcom =
∑

N−1
ℓ=1 ℓ⟨A(ℓ)⟩V

∑
N−1
ℓ=1 ⟨A(ℓ)⟩V

, (20)

with

⟨A(ℓ)⟩V =

〈

1

N

N

∑
n=1

|⟨ℓ | ΨR,n⟩|2
〉

V

, (21)

where ⟨·⟩V indicates disorder averaging, and we are only interested in the wave functions

living at the SSH chain, so the population of the impurity is not considered.

As shown in Figure 8, we plot the mcom as a function of coupling strength gn and

disorder strength S for the system with A − A coupling. The results were averaged for

50 disorder realizations. Note that one can clearly see that in the limit of small disorder

strength S and small coupling strength gn, all eigenstates localize at the right coupling point
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(white region in Figure 8). Thus, making the coupling strength gn larger will gradually

increase localization of the eigenstates to the left coupling point (black region in Figure 8).

In addition, the system exhibits a different localization behavior with the increase in the

disorder strength S. On-site potential disorder will always dominate, leading all eigenstates

to localize on the basis of Anderson localization (red region in Figure 8). The localization

behavior is that eigenstates are randomly localized at points in the SSH chain.

Figure 8. Mcom on the parameter space of coupling strengths gn and disorder strengths S for the

system with A − A coupling. The results have been averaged for 50 disorder realizations. The

parameters were chosen as L = 50, m = 40, n = 10, gm = 100, t1 = 1, t2 = 1, and γ = 0.5. The site of

impurity was set to N = 2L + 1 = 101.

4. Conclusions

In summary, we have studied an impurity coupled to a nonreciprocal SSH chain with

asymmetric couplings. We show the fundamental properties of non-Hermitian spectra

and find that asymmetric couplings can cause topological phase transitions for the A − B

couplings case. In addition, the interplay of asymmetric couplings and nonreciprocal

hopping can induce flexibly adjusted zero modes. They are localized at one of the two ef-

fective boundaries or both of them by tuning the coupling strengths gm and gn. It is worth

noting that the analytical results of the zero modes are precise and almost identify with

the numerical results. We also explored the localization of all eigenstates for systems with

on-site disorder, and we uncovered three types of localization behavior—localized at the

right coupling point, localized at the left coupling point, and randomly localized at points

in the SSH chain.
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Appendix A. Energy Equation

Make use of the time-independent Schödinger equation HAB(k)|ψ⟩ = E|ψ⟩, together

with Equations (4) and (5) in the main text, which then leads to

EUe =
1√
L

∑
k

(

αkgneikn + βkgmeikm
)

,

Eαk =
(

t1 + γ + t2e−ik
)

βk +
gn√

L
e−iknUe,

Eβk =
(

t1 − γ + t2eik
)

αk +
gm√

L
e−ikmUe.

(A1)

Eliminating αk,βk, and Ue from the above equations, we will obtain the transcendental

equation for energy E as

E =
(g2

n + g2
m)

L ∑
k

E

E2 − ω2
k

+
2gngm

L ∑
k

(t1 cos[k(m − n)]

− γ sin[k(m − n)] + t2 cos[k(m − n + 1)])/(E2 − ω2
k)

(A2)

To discuss the existence condition of the zero mode, we set E = 0; then, Equation (A2) can

be simplified as

0 =
gngm

π

∫ π

−π
dk(t1 cos[k(m − n)]− γ sin[k(m − n)]

+ t2 cos[k(m − n + 1)])/(−ω2
k).

(A3)

Simple algebra shows that the right-hand side of Equation (A3) = 0 when t1 ∈ [−t2 + γ, t2 − γ].

This means that the condition for the emergence of the zero mode is t1 ∈ [−t2 + γ, t2 − γ].

Similarly, for the system with A − A coupling, the Hamiltonian in the momentum

space reads as

HAA(k) =HSSH(k) +HI,AA(k)

=∑
k

[[(t1 + γ) + t2e−ik]Ĉ†
A,kĈB,k + [(t1 − γ) + t2eik]Ĉ†

B,kĈA,k]

+
1√
L

∑
k

[|e⟩⟨g|ĈA,k

(

gneikn + gmeikm
)

+ H.c.].
(A4)

HAA(k)|ψ⟩ = E|ψ⟩ leads to

EUe =
1√
L

∑
k

αk

(

gneikn + gmeikm
)

,

Eαk =
(

t1 + γ + t2e−ik
)

βk +
1√
L

(

gne−ikn + gme−ikm
)

Ue,

Eβk =
(

t1 − γ + t2eik
)

αk.

(A5)

Some algebraic calculations show that the energy E satisfies

E =
1

L ∑
k

(

g2
n + g2

m + 2gngm cos[k(m − n)])

E2 − ω2
k

)

. (A6)

Obviously, E = 0 is always the solution of the Equation (A6).
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Appendix B. States outside the Band

For the system with A − B couplings, according to the Equation (A1), amplitudes αk

and βk satisfy

αk/Ue =
f (k)√

Lt2

(

gnEe−ikn +
(

t1 + γ + t2e−ik
)

gme−ikm
)

,

βk/Ue =
f (k)√

Lt2

(

gmEe−ikm +
(

t1 − δ + t2eik
)

gne−ikn
)

,
(A7)

where f (k) = 1/(x − (t1 + γ)eik − (t1 − γ)e−ik), and x = (E2 − (t1 + γ)(t1 − γ)− t2
2)/t2.

By Fourier expansion of f (k), we will obtain the amplitude Al(Bl) in real space as follows:

Al/Ue =
1√
L

∑
k

eiklαk/Ue

=
(−1)y+1

(

Tτ
|l−n|
1 + gmτ

|l−m−1|
2 + Y2τ

|l−m|
2

)

√

x2 − 4(t1 + γ)(t2 − γ)
,

Bl/Ue =
1√
L

∑
k

eikl βk/Ue

=
(−1)y+1

(

Tτ
|l−m|
2 + gnτ

|l−n+1|
1 + Y1τ

|l−n|
1

)

√

x2 − 4(t1 + γ)(t1 − γ)
,

(A8)

where T = gnE/t2, Y1 = gn(t1 − γ)/t2, and Y2 = gm(t1 + γ)/t2. In addition, τ1 = a for

l ≥ n, and τ1 = b for l < n. τ2 = a for l > m, and τ2 = b for l ≤ m. And a = (x +
√

x2 − 4(t1 + γ)(t1 − γ))/2(t1 + γ), b = (x +
√

x2 − 4(t1 + γ)(t1 − γ))/2(t1 − γ) for x <

−2|t1| or a = (x −
√

x2 − 4(t1 + γ)(t1 − γ))/2(t1 + γ), b = (x −
√

x2 − 4(t1 + γ)(t1 − γ))

/2(t1 − γ) for x > 2|t1|.
For the zero modes, setting E = 0, Equation (A8) can be simplified as

Al/Ue =







gm
t1−γ

(

− t1−γ
t2

)(l−m)
, (l > m),

0, (l ≤ m),

Bl/Ue =







gn
t1+γ

(

− t1+γ
t2

)(n−l)
, (l < n),

0, (l ≥ n),

(A9)

Similarly, for the system with A − A coupling, Equation (A5) yields

αk/Ue =
E√
Lt2

(

gne−ikn + gme−ikm
)

f (k),

βk/Ue =

(

t1 − γ + t2eik
)

√
Lt2

(

gne−ikn + gme−ikm
)

f (k).

(A10)

Through the inverse Fourier transformation, we can obtain
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Al/Ue =
1√
L

∑
k

eiklαk/Ue

=
(−1)y+1T

√

x2 − 4(t1 + γ)(t1 − γ)

(

τ
|l−n|
1 + τ

|l−m|
3

)

,

Bl/Ue =
1√
L

∑
k

eikl βk/Ue

=
(−1)y+1

√

x2 − 4(t1 + γ)(t1 − γ)

{

Y1

(

τ
|l−n|
1 + τ

|l−m|
3

)

+g
(

τ
|l−n+1|
1 + τ

|l−m+1|
3

)}

,

(A11)

where τ3 = a for l ≥ m, and τ3 = b for l < m. Then by setting E = 0, Equation (A11) can

be simplified as Al/Ue = 0, where

Bl/Ue =



















0, (l < n),

−gn
t1+γ

(

−t2
t1+γ

)l−n
, (n ≤ l < m),

−gn
t1+γ

(

−t2
t1+γ

)l−n
+ −gm

t1+γ

(

−t2
t1+γ

)l−m
, (m ≤ l),

(A12)

for t1 > t2 + γ or t1 < −t2 − γ, and

Bl/Ue =



















gn
t1+γ

(

−t1−γ
t2

)(n−l)
+ gm

t1+γ

(

−t1−γ
t2

)(m−l)
, (l < n),

gm
t1+γ

(

−t1−γ
t2

)(m−l)
, (n ≤ l < m),

0, (m ≤ l),

(A13)

for −t2 + γ < t1 < t2 − γ.

Appendix C. Upper Bound States

In Figure A1a–d, we show the corresponding populations of the upper bound state

with A− B coupling and A− A coupling, respectively. It is clearly shown that the analytical

results (empty circles) given by Equations (A8) and (A11) are in good agreement with the

numerical results (bars). The spatial distribution of the upper bound states can also be

changed by tuning the coupling strengths gm and gn.
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Figure A1. Populations of upper bound states in (a,b) with A − B coupling and (c,d) with A − A

coupling as a function of site N. gn = 0.5 for (a,c), and gn = 0.3 for (b,d). The other parameters were

chosen as L = 50, m = 40, n = 20, gm = 1, t1 = 0.2, t2 = 1, and γ = 0.5. The site of impurity was set

to N = 2L + 1 = 101.
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