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Abstract: A notable feature of systems with non-Hermitian skin effects is the sensitivity to
boundary conditions. In this work, we introduce one type of boundary condition provided
by a coupling impurity. We consider a system where a two-level system as an impurity
couples to a nonreciprocal Su-Schrieffer-Heeger chain under periodic boundary conditions
at two points with asymmetric couplings. We first study the spectrum of the system and
find that asymmetric couplings lead to topological phase transitions. Meanwhile, a striking
feature is that the coupling impurity can act as an effective boundary, and asymmetric
couplings can also induce a flexibly adjusted zero mode. It is localized at one of the
two effective boundaries or both of them by tuning coupling strengths. Moreover, we
uncover three types of localization behaviors of eigenstates for this non-Hermitian impurity
system with on-site disorder. These results corroborate the potential for control of a class of
non-Hermitian systems with coupling impurities.

Keywords: impurity; non-Hermitian system; quantum phase transition

1. Introduction

In recent years, non-Hermitian physics has attracted a plethora of attention, un-
covering a wide range of phenomena and applications in both classical and quantum
systems [1-37]. Non-Hermitian systems also exhibit some markedly different proper-
ties with no conventional Hermitian counterparts, such as biorthogonal eigenstates [2],
exceptional points [5,6], and the breakdown of the conventional bulk-boundary correspon-
dence [15-18].

Another unique feature of the non-Hermitian system is the accumulation of all eigen-
states at the boundaries, which is a phenomenon dubbed the “non-Hermitian skin ef-
fect” [17]. A notable feature of systems with non-Hermitian skin effects is that the properties
of both spectrum and eigenstates may be dramatically changed by turning the boundary
conditions from periodic to open ones. In between, an impurity introduced into the system
could also play the role of the boundary [38-45]. A striking feature of the impurity model
is that boundary impurities can generate new types of steady-state localization behavior
characterized by scale-free accumulation of eigenstates [38]. Due to the fact that the energy
shift of the system can be extraordinarily changed by adding a vanishingly small boundary
impurity, this kind of system can also be harnessed to devise sensors in an experimentally
realistic setting [46—-49].
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Recently, simulations of topological systems using superconducting quantum circuits
have attracted a great deal of attention [50-53]. On the other hand, superconducting qubits
acting as giant artificial atoms have played an important role in superconducting quantum
circuits. They can be nonlocally coupled to a waveguide at multiple points [54-59]. It was
observed that the giant atom can act as an effective boundary and induce chiral zero modes
for the waveguide in Hermitian topological systems [58,59].

These studies also further stimulate a new research direction for the interaction be-
tween the non-Hermitian topological system and quantum emitters [60-64]. In Ref. [63], the
researchers found that giant emitters can exhibit essentially different dynamical behaviors
by turning the relative strengths of the nonlocal couplings, and a series of unconventional
quantum optical phenomena have been unveiled, such as nonreciprocal decoherence-free
interaction. In Ref. [64], focusing on spectrum structures and the localization of eigenstates
for the system that a giant atom as an impurity couples to a non-Hermitian topological
chain with the same nonlocal coupling strengths, the authors mainly found that the impu-
rity can induce asymmetric zero modes. This begs the question that what new physical
phenomena will emerge in this type of systems by leveraging the relative strengths of the
nonlocal couplings.

In this work, we focus on a system composed of a two-level system as an impurity
and a nonreciprocal Su-Schrieffer—-Heeger (SSH) chain with asymmetric couplings. We first
study the fundamental properties of the spectrum and find that asymmetric couplings can
cause topological phase transitions in an A — B coupling case. As two coupling strengths g,
and g, become more and more different, it seems that the zero mode will always exist. We
further reveal the localization behaviors of zero mode for the system. It can be localized at
one of the two effective boundaries or both of them depending on the relative strengths of
the nonlocal couplings. We also show three types of localization behaviors of all eigenstates
for systems with on-site disorder in the end.

The paper is organized as follows. In Section 2, we introduce a model to describe
a system composed of a two-level system and a nonreciprocal SSH chain. In Section 3,
firstly, we show the spectrum of the system, and we give the reason for the occurrence
of topological phase transitions. Secondly, we derive analytical expressions and show
numerical simulations for the zero modes. In the end, we introduce the mean center of
mass (mcom) to describe the localization feature of all eigenstates with on-site disorder. In
Section 4, we summarize our results.

2. Model and Methods

We consider a nonreciprocal SSH chain with the periodic boundary conditions (PBCs)
in real space. The non-Hermitian Hamiltonian associated with this chain can be written

as follows:
L

Hsst = Y [(t1 +7)Ch Cri + (1 —7)CE Cay )
i=1

+15C 1 Cri + 2Ch Caial,

where the chain is composed of L unit cells, with each containing two sites. CL (B and

¢ A(B), are the creation and annihilation operators for the sublattice site A(B) at the I-th
unit cell. The parameters t; &= 7y and ¢, are intracell and intercell couplings. The asymmetry
of hopping amplitudes (y # 0) leads to the non-Hermiticity of the system.

We here focus on analyzing what occurs when a two-level impurity couples to a
nonreciprocal SSH chain with asymmetric coupling, as schematically shown in Figure 1.
Hence, we introduce a two-level impurity coupling at two points to a nonreciprocal SSH
chain via A — B couplings [Figure 1a] or A — A couplings [Figure 1b], where nonlocal
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coupling points locate at n-th lattice site and m-th lattice site. The system with B — B
couplings and system with A — A couplings are very similar, so we do not study the
case with B — B couplings. Without loss of generality, we hereafter assume n < m. The
interaction Hamiltonian between the impurity and the nonreciprocal SSH chain is given as

Hyap = gn0 Cay + gmo " Cpm +He,

A i @)
Hian =800 Capn+gmo Cam+He,

where g,,(gw) is the coupling strength between the impurity and the n-th (m-th) site of the
nonreciprocal SSH chain. ¢ = |e)(g| is the usual pseudospin ladder operator, and |g)
and |e) are the ground state and the excited state of the impurity, respectively. The total
Hamiltonians of the atom—chain coupling can be expressed as

Hap = Hssy + Hj aB, (3a)

Hpa = Hssy + Hpa4- (3b)

We have assumed that the impurity is resonant with the energy band center, i.e., frequency
of impurity is zero. For the particularly experimental scheme, adding a constant imaginary
shift to all sites corresponding to a passive setting with loss only [65], this correction does
not affect the localization of eigenstates or the existence of boundary modes.

(a)

-y 1 L

Figure 1. Schematicsof the nonreciprocal SSH chain coupled to an impurity via either A — B coupling
(a) or A — A coupling (b) with asymmetric coupling strengths (g 7# gn).

This model can be observed in a range of experimental settings, including electrical
circuits [33,49] and photonic systems [46]. For example, there are 2L nodes in our designed
non-Hermitian topological circuit. The intercell coupling of the circuit is fulfilled by a
capacitor. The nonreciprocal coupling can be achieved through connecting capacitors in
series with a voltage follower. Due to the virtual open and virtual short circuit conditions
between the inverting input and noninverting input pins, the current at the one side of
the capacitor is blocked, while it remains uninfluenced at the other side. Impurity can be
realized by using Josephson junctions [66] or just a node in the circuit [49]. The coupling
between the impurity and chain is achieved by connecting a capacitor. And then the
variation of coupling strength can be achieved by adjusting the capacitance. In addition,
this model can also be thought of as an array of coupled optical ring resonators [46]. The
asymmetric coupling has been experimentally achieved by introducing two scatterers into
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the mode volume of a ring resonator. The intercell coupling may be achieved by chiral
couplers. The coupling between impurity and chain may be represented by any optically
impenetrable region imposing a tunneling barrier. The variation of coupling strength then
only needs to change the refractive index of the impenetrable medium.

3. Results
3.1. Spectrum and Topological Phase Transition

To illustrate the role of coupling impurity in the SSH chain. In Figure 2a, we first show
the spectrum of pure SSH chain under periodic boundary conditions in the complex plane
as a contrast. We also show spectrum of the system with A — B couplings (3a) and A — A
couplings (3b) in Figure 2b,c, respectively. Note that an obvious feature is that the impurity
can induce zero modes. This implies that the impurity can act as an effective boundary for
a nonreciprocal SSH chain. Except for the zero modes, what are also called middle bound
states, there are other eigenvalues outside the continuous bands. According to the value of
the real part of the spectrum as a comparison, we call the corresponding eigenstates upper
and lower bound states, respectively. The feature of these bound states will be described
in the next section. Then, we study the spectrum feature of systems with A — B couplings
and A — A couplings in detail.

0.5r(a) =~ a 0.51(b) ». A 05f(c) » A
,’ﬁ :
Eﬁ\ : . . . ‘ / X . . .
=0 - - (] e Of 0 = o s
E . . [N . A A TN
e M * Voo ’ zer:mnde :upp:r :;)Omlllenrdsla(e: : Zsm‘mude : . u;;er
\ . (middle ‘ . bound state| .+ (middee « . bound state|
. i bound state) ., boundstate) = .
-0.5 Y 051 ¥ 05
100 1 1 0 1 10 1
Re(E) Re(E) Re(E)

Figure 2. (a) Spectrum of pure SSH chain (1) in complex plane. (b) Spectrum of the system with A — B
couplings (3a) in complex plane. (c) Spectrum of the system with A — A couplings (3b) in complex
plane. The results were obtained by numerically solving the Schodinger equation. The parameters
weresetas L =50,m =26,n =25,8, =0.5,gm =1,t; =0.2,t, = 1,and y = 0.5.

Firstly, for the A — B coupling case (3a), we show the absolute value of the spectrum as
a function of t; in Figure 3. The results were obtained by numerically solving the Schédinger
equation. The asymmetric coupling strengths were setas g, = 1, g» = 0.5, 0.1, 0.01, and
0.001 for (a), (b), (c), and (d), respectively. In fact, the spectrum feature for the system with
the same coupling strengths (g, = gm = 1) has been studied in Ref. [64] in detail. A main
finding is the condition for the emergence of the zero mode, i.e., t; € [—t2 + 7, t2 —9]. In
Figure 3a, one can see that the condition for the emergence of the zero mode in this case
(gn = 0.5, gm = 1) is identical to the result with the same coupling strengths (g, = gm = 1).
However, this condition no longer holds as the two coupling strengths g, and g, become
more and more different, as shown in Figure 3b—d. A striking feature is that when the
coupling strength g, = 0.001 is much smaller than g, = 1, it seems that zero mode will
always exist and not change with the parameters t;, as shown in Figure 3d. This implies
that asymmetric couplings can cause topological phase transitions.
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Figure 3. Absolute value of the spectrum as a function of ¢; with A — B coupling. The results are
obtained by numerically solve the Schodinger equation. g, = 0.5, 0.1, 0.01, and 0.001 for (a), (b), (c),
and (d), respectively. The other parameters were set as L = 50,m = 26,n = 25,¢;; = 1, = 1, and
v =05.

In order to derive a condition for the emergence of the zero mode and show why
asymmetric couplings cause topological phase transitions, we first give the Hamiltonian of
the system in the momentum space via Fourier transformation described by

H4p (k) =Hssp (k) + Hy ap (k)
=Y [[(tr +7) + t2e  |CT (Chie + [(t1 — ) + t2e™ ] C k] @
%

1 R ‘ N
+ ﬁ ;[UJF (gn(CA,kelkn + gm(CB,ke’k’") + He. ],

where CL B) and C A(B)x denote the creation and annihilation operators for the sublattice
site A(B) at the k-th unit cell in the momentum space. In the single-excitation subspace, the
eigenstates of the Hamiltonian H 45 (k) can be written as follows:

[¥) = Uele, G) + Y} mxCly kI8, G) + ) BrChlg, G, )
k K

where |G) is the ground state of the SSH chain (vacuum state), and |e(g), G) = |e())|G) can
be used to form a complete base for the whole system. ay () denotes the amplitude for the
sublattice site A(B) at the k-th unit cell, and U, denotes the amplitude at site of the impurity.
With the time-independent Schrodinger equation H4p(k)|¢p) = E|i), the transcendental
equation for the energy E can be expressed as (See Appendix A for analytical results)

E= (85 -ngn) ; m Ij 2 + Zgzgm ;(tl cos[k(m —n)] ©
— qsinfk(m — n)] + tp cos[k(m — n +1)])/ (E* — w?)
with
W = \/(f1 + 7+ e ®)(h — v + he'). @)
Setting E = 0, we can obtain a condition for the emergence of the zero mode, i.e.,

t1 € [—tr +,t2 — 7]. (See Appendix A for analytical results and Figure 3a for numeri-
cal simulations). This confirms that the condition for the emergence of the zero mode with
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asymmetric couplings is identical to the result with the same coupling strengths. However,
as gn — 0 (gm — 0 is similar), Equation (6) can be simplified as

2
Sin E
E=°my _— .
L ; E? — w? ®)

Evidently, E = 0 is always the solution of the Equation (8), which implies that there is
always a zero mode in the systems. Hence, the topological phase transitions occur as
two coupling strengths g, and g, become more and more different (see Figure 3a—d for
numerical simulations). This can also be understood in terms of symmetry. The matrix
form of the Hamiltonian H 4 (k) in the local site basis satisfies

0 H+ 7+ the ik 0 0 . gnef;”
t — 7 + tpe'k 0 0 0 . 3"13;@1"'
0 0 0 b4y e g"e:/’i:” ’ ©)
0 0 t =y + toel®? 0 L B
e i e o :
VL VL VL VL

where the system has 2L lattice sites and one site for impurity. This matrix [Hamiltonian
H4p(k)] is no longer a block diagonal matric, since the impurity couples to the SSH chain.
Hence, the Hamiltonian cannot be written as the form of d-¢ as usual. As is known to all, a
pure nonreciprocal SSH model has a chiral symmetry. The spectrum of a chiral symmetric
Hamiltonian is symmetric. For any state with energy E, there is a chiral symmetric partner
with energy —E. While this model with A — B couplings does not preserve chiral symmetry.
However, when g, = 0 (g = 0 is similar), this system can still preserve a chiral symmetry
T 'Hap (k)T = —Hya (k) with

1 0 0 O 0
0 -1 0 O 0
o o0 1 0 0

I'= 1
0O 0 0 -1 0 (10)
0 0 0 O 1

For this system (g, = 0) with an odd number of site basis, the zero mode obviously
always exists.

Physically speaking, for g, = 0 (or g = 0), this is like a small atom coupled to a
nonreciprocal SSH chain. Here, for the qubit coupled to a waveguide at one point, we call
it “small atom”. In this case, except for the sublattice site B at the m-th unit cell coupled to
the atom as an effective boundary, the other parts of the SSH chain are similar to a chain
with a A site at both ends. For this kind of boundary condition, there is always a zero mode
as usual. In a word, when g, (or g,;) goes from a finite value to zero, topological phase
transitions will be bound to happen.

Next, consider a system (3b) consisting of an impurity coupled to a nonreciprocal
SSH chain via A — A coupling. In Figure 4, we show absolute value of the spectrum as
a function of t; with the same parameters as used in Figure 3. Note that there is always
a zero mode in the gap for the A — A coupling, and this result does not change with the
coupling strength. The Hamiltonian of the system in momentum space via the Fourier
transformation can be described by
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Haa (k) =Hssp (k) + Hj a4 (k)

=) [l +7)+ tze_ik]CZ,k@B,k +[(tr =) + tzeik]CE,k@A,k]
k

1 e ikn ikm
I ;He) (81Cak (gne + gme ) +H.cl

(11)

Similarly, the matrix form of Hamiltonian (3b) in the momentum space can be expressed as

O tl _|_ r)/ _I_ tze—ikl O 0 gne—fkln;%me—iklm
fh—v+ fzeikl 0 0 0 0
0 0 0 t + 7 + ek gnflkz";%mf’kﬂ’ W)
0 0 f1—7+ fzeikz 0 0
—ik n' B —ikqim —ik n. - —ikom
gue M1 4 g1 i

The corresponding transcendental equation for energy E satisfies (See Appendix A for
analytical results)

(13)

E— 1 9% + g2, + 2gngm cosk(m — n)])
L L F2 _ o2 :
k k

Obviously, E = 0is always the solution of Equation (13), which can be seen in the numerical
spectra of Hamiltonian Hy 4 (Figure 3a—d). Fortunately, this system always has a chiral
symmetry 0~ 'H 4 (k)o = —H g 4 (k) with

1 0 0 O 0
0 -1 0 O 0
o— o 0 1 0 0 (14)
0O 0 0 -1 0
o 0o o o0 ... -1

Even after setting g, = 0 or g, = 0, we find that chiral symmetry will not vanish. This
further indicates that zero mode will always exist.

Figure 4. Absolute value of the spectrum as a function of t; with A — A coupling. The results were
obtained by numerically solving the Schédinger equation. g, = 0.5, 0.1, 0.01, and 0.001 for (a), (b),
(c), and (d), respectively. The other parameters were setas L = 50,m = 26,n = 25,g; = 1,1, =1,
and v = 0.5.
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3.2. Localization of Zero Mode

In the previous section, we mainly found that asymmetric couplings can cause topo-
logical phase transitions for A — B couplings. To illustrate this result again, we show the
relationship between the localization of middle bound states and asymmetric couplings.
To begin with, we define the population as modular square of the wave function [¥ 4(p) |?
in real space, and the populations of middle bound states for the system (3a) with A — B
coupling with different parameters g, are shown in Figure 5a-d. Here, the parameters are
ty =1,8, =0.5,0.3,0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other parameters
are the same as used in Figure 3a—d. One can see that middle bound states have no obvious
symmetry for spatial distribution when g, = 0.5, as shown in Figure 5a. However, the
spatial distribution of the bound state gradually becomes an exponential decay (type of
zero mode) as g, almost vanishes from a finite value, as shown in Figure 5d. This visually
indicates that reducing one of the coupling strength can induce a zero mode.

X A sites 0.4 A sites
04 B sites 5 sites:
2 0.3 | |gEpuiey 2 (3 | Iy
s 3
=02 <0.2
= o
0.1 0.1
ol Lik ol0) ,
20 40 60 80 100 0 50 100
0.4 I A sites 0.4 HEA sites
B sites B sites
=03 Il mpurity = 0.3 [{ Il wpurity
a =)
= =
N 0.2 = 0.2
0.1 II. 0.1 IL
c d
o Jl
0 50 100 0 50 100
N N

Figure 5. Populations of the middle bound states for the system (3a) with A — B coupling as a
function of site N. Here g, = 0.5, 0.3, 0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other
parameters were chosen as L = 50,m = 26,n = 25,g;; = 1, = 1, = 1, and v = 0.5. The site of
impurity was set to N = 2L +1 = 101.

Next, we are interested in analyzing localization of zero mode for the system wherein
emitters couple to a nonreciprocal SSH chain. The populations of the zero mode as a
function of site N with different parameters are shown in Figure 6 for A — B coupling. The
population on the impurity was set to N = 2L + 1 = 101. The bars represent numerical
results and the empty circles represent the analytical results. The corresponding coefficients
of wave function are as follows (See Appendix B for analytical results):

S (_m>(n_l), (1<n),

B;/U, = { bt t2
0, (I >n),
(15)
0, (I <m),
A/U, = b (1=m)
() asm,

where B; (4; ) denotes the amplitude in the B(A) sublattice site of the I-th unit cell.
Equation (15) shows that amplitudes in the wave function occupy B(A) lattice sites on
the left (right) side of the impurity, and they satisfy exponential decay. Assuming ! =n —1,
we have |B,_1/U,| = |gn/t2|, and assuming | = m + 1, we have |A;11/Ue| = |gm/t2].
This means that the zero modes mainly occupies B sites on the left side of the impurity
when g, > ¢, and occupies the A sites on the right side of the impurity when g, > gy.
This has been clearly shown in Figure 6a—d. In addition, with the increase in g,,,,) /2, the
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populations of zero mode on the impurity are gradually suppressed. This means that the
spatial distribution of zero modes can be regulated by coupling strengths.

0.5 05 A sites
04 0.4 M sies
~ ~ Il L purity
@0-3 60.3 o Anal
=02 =02
0.1 0.1
0 i o) wii] I
100 0 50 100
0.5 0.5
A sites I A sites
0.4 {IEB sites 0.4 | |IB sites
o Il [npurity o~ Il [ purity
503 o Anal §03 o Anal
= 02 = 02
0.1 0.1
o 7 @ j
0 50 100 0 50 100
N N

Figure 6. Populations of zero mode for the system (3a) with A — B coupling as a function of site N.
gn = 1,0.5,0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other parameters were chosen
as L = 50,m = 40,n = 20,gm = 1,11 = 0.2, = 1, and v = 0.5. The site of impurity was set to
N =2L+1 =101

For the system with A — A coupling, zero modes always exist regardless of the value of
parameters. Simple algebra (see Appendix B for analytical results) shows that amplitudes
of zero modes take A; = 0, and

A (2e) " e ()", <),

_ i —n\ (m=1)
Bl/Ug = tlgr’y( 1%2 ’7) , (Tl <l< m)’ (16)
0, (m<1),

with —t) + 7 <t; <t —yand
0, (I <n),
B/U, = t;%fy (tl_f'y) , (n<I<m), (17)
I—n I—m
—&n —t —8m —t
t1+7<t1+2’)/> + t1+7(t1+2’)/) 4 (m S l)/

withty > th+yorty < —tp —y. For—thh —y<h < —hh+yand -t —y < t) < —fr + 7,
the analytical results of the zero mode are not given. Similarly, the spatial distribution of

the zero modes can also be changed by tuning the coupling strengths g, and g,;, as shown
in Figure 7. It is clear that the analytical results (empty circles) given by Equation (16) are
in good agreement with the numerical results (bars).

In this section, we mainly show that the localization of the zero modes is regulated
by tuning the coupling strengths g;, and g, for A — B couplings and A — A couplings. A
notable feature is that the localization of the zero modes can be flexibly adjusted; as well,
nonreciprocal hopping and asymmetric nonlocal couplings play a decisive role in systems.
Concretely speaking, the impurity is nonlocally coupled to an SSH chain at two points
and acts as two effective boundaries for the chain. Zero modes can localize at one of the
two effective boundaries or both of them by tuning the coupling strengths g, and g.
While for a nonreciprocal SSH chain, zero modes only localize at one of the two boundaries
due to the non-Hermitian skin effect. For Hermitian systems, zero modes localize at both
the two boundaries. It is obviously seen that the localization of the the zero modes of
these two systems is relatively fixed. In short, we find a zero mode that can be regulated
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flexibly. In addition, except for the zero modes in the gap, there are other eigenvalues
outside the continuous bands, as shown in Figure 3a. We call the corresponding eigenstates
upper bound states. We find that these bound states can also be regulated by the coupling
strengths g,, and g,. See Appendix C for the analytical results and numerical simulations.

A sites Il A sites
0.3 | B sites 2 [ B sites
o Il [purity Il [opurity
20.2|° Anal o Anal
=
2 0.1 .
a b iii
@ Jo
0 50 100 0 50 100
03 A sites A sites
- [ I B sites ~ || B sites
I Il [purity Il purity
2 0.2 o Anal o Anal
; A
=, th
c ) d
L@ ) L@ y
0 50 100 0 50 100
N N

Figure 7. Population of zero mode for the system (3a) with A — A coupling as a function of site N.
gn = 1,0.5,0.1, and 0.01 for (a), (b), (c), and (d), respectively. The other parameters were chosen
as L = 50,m = 40,n = 20,gm = 1,t; = 02, = 1, and v = 0.5. The site of impurity was set to
N=2L+1=101.

3.3. Systems with Disorder

We further explore the localization of all eigenstates for systems in the A — A coupling
case (A — B couplings are similar) with on-site disorder. To this end, a Hamiltonian with
disorder reads as

Hais = Hagpy + Hi a4, (18)

with
L

Héspy = Y (1 +71)Ch Cry + (1 — 11)Ch Cay
i=1

+ tZCA;},lJrlCB,l + tzé‘g,lCA,lJrl
+ VICL,ICAA,I + VZCE,ICB,I]

(19)

where V) denotes an on-site disorder potential. Here, we set V; = SR;, where S is the
disorder strength, and R; is a normal random number.

This localization behavior of all eigenstates can be easily quantified by the mean center
of mass (mcom) of the amplitude squared of all eigenvstates [¥r ,) averaged over many
disorder realizations as follows:

, (20)

with

1 N )
(A())v = <N ;I(ﬁ | YRl > , (21)

where (-)y indicates disorder averaging, and we are only interested in the wave functions
living at the SSH chain, so the population of the impurity is not considered.

As shown in Figure 8, we plot the mcom as a function of coupling strength g, and
disorder strength S for the system with A — A coupling. The results were averaged for
50 disorder realizations. Note that one can clearly see that in the limit of small disorder
strength S and small coupling strength g, all eigenstates localize at the right coupling point
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(white region in Figure 8). Thus, making the coupling strength g, larger will gradually
increase localization of the eigenstates to the left coupling point (black region in Figure 8).
In addition, the system exhibits a different localization behavior with the increase in the
disorder strength S. On-site potential disorder will always dominate, leading all eigenstates
to localize on the basis of Anderson localization (red region in Figure 8). The localization
behavior is that eigenstates are randomly localized at points in the SSH chain.

10°

10°
|d
=

101 E

0
10 1 0 1
10° 10 10
S

Figure 8. Mcom on the parameter space of coupling strengths g, and disorder strengths S for the
system with A — A coupling. The results have been averaged for 50 disorder realizations. The
parameters were chosen as L = 50,m = 40,n = 10, g, = 100,f; = 1,¢» = 1, and y = 0.5. The site of
impurity was set to N = 2L + 1 = 101.

4. Conclusions

In summary, we have studied an impurity coupled to a nonreciprocal SSH chain with
asymmetric couplings. We show the fundamental properties of non-Hermitian spectra
and find that asymmetric couplings can cause topological phase transitions for the A — B
couplings case. In addition, the interplay of asymmetric couplings and nonreciprocal
hopping can induce flexibly adjusted zero modes. They are localized at one of the two ef-
fective boundaries or both of them by tuning the coupling strengths g, and g,. It is worth
noting that the analytical results of the zero modes are precise and almost identify with
the numerical results. We also explored the localization of all eigenstates for systems with
on-site disorder, and we uncovered three types of localization behavior—localized at the
right coupling point, localized at the left coupling point, and randomly localized at points
in the SSH chain.
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Appendix A. Energy Equation

Make use of the time-independent Schodinger equation H4p(k)|¢) = E|¢), together
with Equations (4) and (5) in the main text, which then leads to

_ 1 ikn ikm
Euﬁ’ - \/Z;(lxkgne +ﬁkgm€ )/
Ear — ( —ik 8n —ikn Al
ap = |t + 7 + e ,3k+ 7\@6 u,, ( )

Bpi = (11— 7+ e )y + %e*"k’”ug.

Eliminating ay,Bx, and U, from the above equations, we will obtain the transcendental
equation for energy E as

(g% gzm) E 28n8m
E = E + E tycoslk(m —n
I p E2 :,]% i - (t [k( )] (A2)

— qsinfk(m — n)] + ty cos[k(m — n +1)])/ (E* — w?)

To discuss the existence condition of the zero mode, we set E = 0; then, Equation (A2) can
be simplified as

A R

+ tycos[k(m —n+1)])/(—w?).

Simple algebra shows that the right-hand side of Equation (A3) =0when t; € [—t; + 7, t, — 77].
This means that the condition for the emergence of the zero mode is t; € [ty + 7,2 — 7]

Similarly, for the system with A — A coupling, the Hamiltonian in the momentum
space reads as

Haa (k) =Hssp (k) + Hj a4 (k)
=Y (1 +7) + t2e ™Y Crpe+ [(1 — ) + 12¢¥]CE ,Cax]
T

1 & ikn ikm (A4)
= LlIe) (gIC (g™ +gne™) + Hel,
k
Hpa(k)|$) = E|) leads to
EU, = 1 Y o (gneikn +gmeikm)
VL% '
. 1 . .
Eay = (t1 +7+ tze_”‘) Br + 7I (gne_lk” + gme_”‘m) U, (AD)
Eﬁk = (tl -7+ tzeik) K.
Some algebraic calculations show that the energy E satisfies
1 242 +2 coslk(m —n
E:Lz<gn S+ 2gngmcoslkln = 1)) A6
k k

Obviously, E = 0 is always the solution of the Equation (A6).
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Appendix B. States outside the Band

For the system with A — B couplings, according to the Equation (A1), amplitudes aj

and By satisfy
k - ‘ .
ap/Ue = \fét) (gnEe_lk” + (fl + 7+ tze_lk)gme_lkm),
2
_ f(k) —ikm _ ik —ikn (A7)
Br/ U = N (nge + (t1 6+ tre )gne ),

where f(k) = 1/(x — (t; + 7)e* — (t; — y)e™ ), and x = (E2 — (t; + 7)(t1 —7) — 1) /ta.
By Fourier expansion of f(k), we will obtain the amplitude A;(B;) in real space as follows:

1 .
A/Ue = ﬁ Zelkl“k/ue
k
(_1)y+1 (TT1|l—n| +ng2\l—m—1\ +Y2Tz\l—m\)
Va2 =4t +7)(t =) ’
1 ,
B;/U, = ﬁ Zelklﬁk/Ue
k

(A8)

(—1)y+t (TT2|l_m| + gnrl‘l_”H‘ + erl‘l_”‘>

V2 —4(t ) (k=) '

where T = ¢,E/ty, Y1 = gn(t1 —7)/t2, and Yo = g (ty + )/ t2. In addition, 7y = a for
Il >n,andty =bforl <n. ©=aforl >mandn =bforl <m Anda = (x+
Va2 =4t +7)(l—7)/2(h +7),b = (x+ /22 =4t +7)(h — 7)) /2(t = 7) for x <
2|l ora = (x — /%2 —4(ti +7)(t1 — 7)) /2(hh +7),b = (x = /32 —4(t +7) (1 — 7))
/2(t; — ) for x > 2|t|.

For the zero modes, setting E = 0, Equation (A8) can be simplified as

_\ (I=m)
8m t
AU = {() ;4> m),

0, (I<m),
t () (A9)
8n [ Hh+y
B;/U, = tl*”( B ) (<),
0, (I>n),
Similarly, for the system with A — A coupling, Equation (A5) yields
E , ,
ap /U, = —— efzkn + e*lkm k),
k/ Ue Vit <8n 8m )f( )
. Al
(tl — v+ tzelk) (A10)

_ —ikn —ikm
B/ Ue = T (8ne + gme )f(k)-

Through the inverse Fourier transformation, we can obtain
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1 ikl
Al/ue - ﬁ Ze D‘k/ue
k
_ (—1)y+iT (T|l—n| _I_T|l—m|)
V=4t + )b —m)\ ! °
1 .
Bl/Ug = ﬁ Eelklﬁk/ufg (A]-l)
k

- (—1)ytt =n| | _|i—m|
_¢x2—4<t1+7><t1—v>{“<”l ")

+g (T1|l—n+1| + Tg\l—m+1|) },

where 173 = afor! > m, and 13 = b for I < m. Then by setting E = 0, Equation (A11) can
be simplified as A;/U, = 0, where

0, (I <n),
_ _ I—-n
By/Ue = { 752 (ﬁ) ) (n<1<m), (A12)

—gn [ —ty lin_i_*gm —t I—m (m<l)
b1y \ B+ ti+y \ i+ ’ -

fort; > th+yort; < —ty — 7y, and

= (*t%{")(n_l) + e (<42 "D <,

— =\ (M=)
BI/UE = tlg—r:'y( t}z ’Y) , (7’1 <l< m)/ (A13)
0, (m<1),

for —th + 9 <t; < tp—1.

Appendix C. Upper Bound States

In Figure Ala—d, we show the corresponding populations of the upper bound state
with A — B coupling and A — A coupling, respectively. It is clearly shown that the analytical
results (empty circles) given by Equations (A8) and (A11) are in good agreement with the
numerical results (bars). The spatial distribution of the upper bound states can also be
changed by tuning the coupling strengths g, and g;.

02 A sites|

B sites

N:O'ls Il Atom
[8a] 0.1te Anal

(a) (b)

N

Figure A1l. Populations of upper bound states in (a,b) with A — B coupling and (c,d) with A — A
coupling as a function of site N. g, = 0.5 for (a,c), and g, = 0.3 for (b,d). The other parameters were
chosenas L =50,m = 40,n = 20,g = 1,1 = 0.2,tp = 1, and y = 0.5. The site of impurity was set
toN =2L+1=101.
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