

Structure of the negative parity states in ^{131}Xe

S. Chakraborty,^{1,*} S. Bhattacharyya,^{1,2,†} R. Banik,³ Soumik Bhattacharya,¹ G. Mukherjee,^{1,2} S. Biswas,⁴ S. Rajbanshi,⁵ Shabir Dar,^{1,2} S. Nandi,^{1,2} Sajad Ali,⁶ S. Chatterjee,⁷ S. Das,⁷ S. Das Gupta,⁸ S. S. Ghugre,⁷ A. Goswami,^{9,2} A. Lemasson,⁴ D. Mondal,¹ S. Mukhopadhyay,^{1,2} H. Pai,⁹ S. Pal,^{1,2} D. Pandit,^{1,2} R. Raut,⁷ Prithwijita Ray,^{9,2} M. Rejmund,⁴ and S. Samanta⁷

¹Variable Energy Cyclotron Centre, Kolkata, India

²Homi Bhabha National Institute, Mumbai, India

³Institute of Engineering and Management, Kolkata, India

⁴Grand Accélérateur National d'Ions Lourds (GANIL), CAEN Cedex, France

⁵Department of Physics, Presidency University, Kolkata, India

⁶Department of Physics, Government General Degree College at Pedong, Kalimpong, India

⁷UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, India

⁸Department of Physics, Victoria Institution (College), Kolkata, India

⁹Saha Institute of Nuclear Physics, Kolkata, India

Introduction

Non-axiality in nuclear shapes has long been a subject of interest as it causes a variety of structural phenomena. Xe isotopes are well known for their triaxial shapes [1] and hence become a good laboratory to test several processes to generate higher angular momentum. Unique parity $\nu h_{11/2}$ orbital plays a crucial role on the structure of these nuclei. Systematically, two $I^\pi = 13/2^-$ states were reported in $^{119-127}\text{Xe}$, as shown in FIG. 1. Rotational band built on the yrast $13/2^-$ state is designated as the unfavoured signature partner of the $\nu h_{11/2}$ band. On the other hand, the band built on yrare $13/2^-$ state is described as the quasi- γ -band coupled to an odd-quasineutron in $h_{11/2}$ orbital. However, these interpretations fail to answer certain issues as discussed in Ref. [2]. Recently, different interpretations

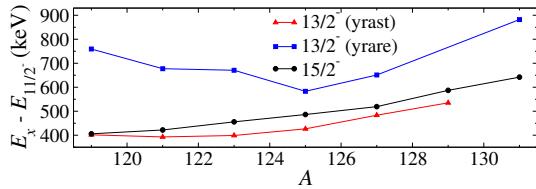


FIG. 1: Variation of the excitation energy, relative to $E_{11/2^-}$, of $15/2^-$ and $13/2^-$ (yrast and yrare) states in $^{119-131}\text{Xe}$, as a function of mass number.

are proposed for the negative parity bands in ^{127}Xe based on the electromagnetic properties of the $\Delta I = 1$ inter-band γ -transitions [3]. A detailed spectroscopic investigation on ^{131}Xe is reported recently, but, only the favoured signature partner of $\nu h_{11/2}$ band is observed [4]. Therefore, an attempt has been made in this work to search for the unfavoured signature partner of $\nu h_{11/2}$ band in ^{131}Xe .

Experimental Details

Excited states in ^{131}Xe were populated via $^{130}\text{Te}(^4\text{He}, 3n\gamma)$ fusion-evaporation reaction at 38 MeV, using K-130 cyclotron at VECC. The target consisted of isotopically enriched ^{130}Te , 2 mg/cm² thick, evaporated on a myler backing (600 $\mu\text{g}/\text{cm}^2$). Seven Compton suppressed Clover detectors of the Indian National Gamma Array [5], connected with a PIXIE based digital DAQ [6], were employed to detect and record the time stamped data in single and coincident modes.

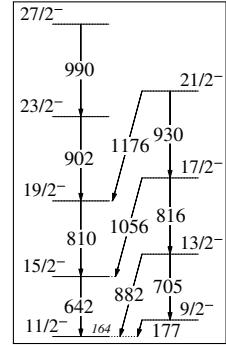


FIG. 2: The $\nu h_{11/2}$ band in ^{131}Xe .

Results

Partial negative parity level scheme of ^{131}Xe , as shown in FIG. 2, is developed in this work on the basis of $\gamma\gamma$ -coincidence and inten-

*Electronic address: saikat.c@vecc.gov.in

†Electronic address: sarmi@vecc.gov.in

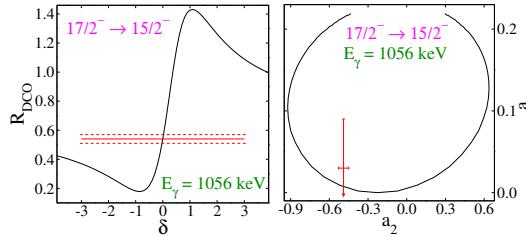


FIG. 3: (Left) Variation of the theoretical DCO ratio as a function of δ , and (Right) contour plot of the angular distribution coefficients, a_2 vs. a_4 , for different δ . Experimental data point for the 1056 keV γ ray is marked in red.

sity relationships. The band above $I^\pi = 9/2^-$ state is established by placing three new γ rays, *viz.*, 882, 930 and 1176 keV in addition to the earlier reported 705, 816 and 1056 keV γ -transitions [4, 7]. The dipole (quadrupole) character of 882, 1056 and 1176 keV (705, 816 and 930 keV) γ -rays is confirmed from the present angular correlation measurement (R_{DCO}). To estimate the $E2/M1$ multipole mixing ratio ($\delta_{E2/M1}$) of the inter-band $\Delta I = 1$ γ -rays, the experimental R_{DCO} is compared with its theoretical values, estimated using the computer code ANGCOR. A representative plot of R_{DCO} versus δ for 1056 keV transition is shown in FIG. 3. It is evident from this figure that this γ ray has a very low $E2$ admixture ($\delta \approx 0$). Earlier reported angular distribution coefficients are also found in agreement with such low $\delta \approx -0.2$ value (FIG. 3) [7].

Discussions

Structure of the $\alpha = +1/2$ partner of $h_{11/2}$ band in odd- A nuclei has become a topic of investigation nowadays. In a recent study, the earlier reported signature partner of $\pi h_{11/2}$ band in ^{135}Pr has been reinterpreted in terms of wobbling excitation mostly, based on the large δ value of the connecting transitions [8].

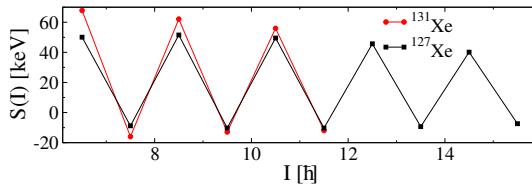


FIG. 4: Energy staggering [$S(I)$] between the $\alpha = \pm 1/2$ partners of $\nu h_{11/2}$ band in $^{127,131}\text{Xe}$.

Later, the wobbling motion is also confirmed for the so-called unfavoured signature partner of $\pi h_{11/2}$ ($\nu h_{11/2}$) band in ^{133}La (^{127}Xe , ^{105}Pd) [3, 9, 10]. Therefore, proper identification of the unfavoured signature partner of $h_{11/2}$ band is important to understand the structure of this band.

Systematically, two bands were reported above yrast and yrare $13/2^-$ states in $^{119-127}\text{Xe}$. However, no such bands is found in the latest studies on ^{131}Xe [4, 11]. The spin-parity assignment, and the decay pattern of the newly established band above $I^\pi = 9/2^-$ state make it a suitable candidate for the unfavoured signature partner of $\nu h_{11/2}$ band. Low $E2$ admixture in the $\Delta I = 1$ inter-band transitions provide further support to this interpretation. The energy staggering [$S(I)$] between $\alpha = \pm 1/2$ partners of $\nu h_{11/2}$ band in ^{131}Xe is found to be similar to that reported in ^{127}Xe (FIG. 4).

Summary

Low-lying negative parity states in ^{131}Xe were studied following an α -induced reaction at VECC, Kolkata. The unfavoured signature partner of $\nu h_{11/2}$ band has been identified with firm spin-parity assignment. The $S(I)$ value is found to be large and comparable in magnitude with that reported in ^{127}Xe . The detailed results along with the theoretical calculations under the framework of particle-rotor model will be presented.

Acknowledgement

We are thankful to the VECC cyclotron staff for providing excellent α -beam. Effort of INGA collaboration, partially funded by DST, GoI, is gratefully acknowledged. Financial support received from CEFIPRA is duly acknowledged.

References

- [1] A. Gelberg *et al.*, *NPA* **557**, 439c (1993).
- [2] C.-B. Moon *et al.*, *PRC* **76**, 067301 (2007).
- [3] S. Chakrabarty *et al.*, *PLB* **811**, 135854 (2020).
- [4] R. Banik *et al.*, *PRC* **101**, 044306 (2020).
- [5] S. Bhattacharya *et al.*, *Proc. DAE Symp.* **63**, 1156 (2018).
- [6] S. Das *et al.*, *NIM A* **893**, 138 (2018).
- [7] T. Lönnroth *et al.*, *PS* **27**, 228 (1983).
- [8] J. T. Matta *et al.*, *PRL* **114**, 082501 (2015).
- [9] J. Timár *et al.*, *PRL* **122**, 062501 (2019).
- [10] S. Biswas *et al.*, *EPJA* **55**, 159 (2019).
- [11] L. Kaya *et al.*, *PRC* **98**, 014309 (2018).